
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
Volume 1: Long Papers, pages 13785–13802

July 9-14, 2023 ©2023 Association for Computational Linguistics

RankCSE : Unsupervised Sentence Representation Learning via
Learning to Rank

Jiduan Liu1,2∗ , Jiahao Liu3, Qifan Wang4, Jingang Wang3, Wei Wu3

Yunsen Xian3, Dongyan Zhao1,2,5,6†, Kai Chen7, Rui Yan8,9†
1Wangxuan Institute of Computer Technology, Peking University

2Center for Data Science, AAIS, Peking University; 3Meituan; 4Meta AI
5National Key Laboratory of General Artificial Intelligence

6BIGAI, Beijing, China; 7School of Economics, Peking University
8Gaoling School of Artificial Intelligence, Renmin University of China

9Engineering Research Center of
Next-Generation Intelligent Search and Recommendation, Ministry of Education

{liujiduan,chen.kai,zhaody}@pku.edu.cn, ruiyan@ruc.edu.cn, wqfcr@fb.com
{liujiahao12,wangjingang02,xianyunsen}@meituan.com, wuwei19850318@gmail.com

Abstract
Unsupervised sentence representation learning
is one of the fundamental problems in natural
language processing with various downstream
applications. Recently, contrastive learning
has been widely adopted which derives high-
quality sentence representations by pulling sim-
ilar semantics closer and pushing dissimilar
ones away. However, these methods fail to
capture the fine-grained ranking information
among the sentences, where each sentence is
only treated as either positive or negative. In
many real-world scenarios, one needs to distin-
guish and rank the sentences based on their sim-
ilarities to a query sentence, e.g., very relevant,
moderate relevant, less relevant, irrelevant, etc.
In this paper, we propose a novel approach,
RankCSE, for unsupervised sentence repre-
sentation learning, which incorporates ranking
consistency and ranking distillation with con-
trastive learning into a unified framework. In
particular, we learn semantically discriminative
sentence representations by simultaneously en-
suring ranking consistency between two repre-
sentations with different dropout masks, and
distilling listwise ranking knowledge from the
teacher. An extensive set of experiments are
conducted on both semantic textual similarity
(STS) and transfer (TR) tasks. Experimental
results demonstrate the superior performance
of our approach over several state-of-the-art
baselines.

1 Introduction

Sentence representation learning refers to the task
of encoding sentences into fixed-dimensional em-
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Target Sentences Label SimCSE RankCSE

• A woman is breaking eggs 4.80 (1) 0.93 (2) 0.97 (1)
• A man is cracking eggs 3.60 (2) 0.94 (1) 0.91 (2)
• A woman is talking to a man 1.60 (3) 0.45 (5) 0.65 (3)
• A man and a woman are speaking 1.40 (4) 0.47 (3) 0.61 (4)
• A man is talking to a boy 1.00 (5) 0.46 (4) 0.56 (5)

Query Sentence: A woman is cracking eggs

• Broccoli are being cut by a woman 4.80 (1) 0.82 (2) 0.95 (1)
• A woman is slicing vegetables 4.20 (2) 0.83 (1) 0.91 (2)
• A woman is cutting some plants 3.50 (3) 0.74 (5) 0.87 (3)
• There is no woman cutting broccoli 3.40 (4) 0.76 (3) 0.85 (4)
• A woman is cutting some flowers 2.87 (5) 0.71 (7) 0.81 (5)
• A man is slicing tomatoes 2.60 (6) 0.75 (4) 0.79 (6)
• A man is cutting tomatoes 2.40 (7) 0.73 (6) 0.76 (7)

Query Sentence: A woman is cutting broccoli

Table 1: Two examples of a query sentence and several
target sentences from the STS datasets, with their sim-
ilarity scores and rankings. The label scores are from
human annotations. The SimCSE (Gao et al., 2021)
and RankCSE similarity scores are from the model pre-
dictions respectively, with the corresponding ranking
positions. It can be seen that sentence rankings based on
SimCSE are incorrect, while RankCSE generates more
effective scores with accurate rankings.

beddings. The sentence embeddings can be lever-
aged in various applications, including information
retrieval (Le and Mikolov, 2014), text clustering
(Ma et al., 2016) and semantic textual similarity
comparison (Agirre et al., 2012). With the recent
success of pre-trained language models (PLMs),
such as BERT/RoBERTa (Devlin et al., 2019; Liu
et al., 2019), a straightforward way to generate sen-
tence representations is to directly use the [CLS]
token embedding or the average token embed-
dings from the last layer of PLMs (Reimers and
Gurevych, 2019). However, several studies (Etha-
yarajh, 2019; Li et al., 2020) have found that the
native sentence representations derived by PLMs
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Figure 1: Sentence representation performances on rank-
ing metrics KCC and NDCG (detailed in Appendix G).
It can be seen that RankCSE captures more fine-grained
ranking information than SimCSE (Gao et al., 2021)
and DiffCSE (Chuang et al., 2022).

occupy a narrow cone in the vector space, and
thus severely limits their representation capabil-
ities, which is known as the anisotropy problem.

Supervised methods like SBERT (Reimers and
Gurevych, 2019) usually generate better sentence
representations, but require fine-tuning on a large
amount of labeled data. Recent unsupervised mod-
els (Carlsson et al., 2021; Zhang et al., 2021; Giorgi
et al., 2021) adopt contrastive learning framework
without any labels, which pulls similar semantics
closer and pushes dissimilar ones away. These
methods usually design different augmentation al-
gorithms for generating positive examples, such
as back-translation (Zhang et al., 2021), dropout
(Gao et al., 2021) and token shuffling or cutoff (Yan
et al., 2021). In-batch negatives are further com-
bined with the positives. Despite achieving promis-
ing results, they treat positives/negatives equally
without capturing the fine-grained semantic rank-
ing information, resulting in less effective sentence
representations which fail to distinguish between
very similar and less similar sentences. For ex-
ample, Table 1 shows two examples of a query
sentence and several target sentences from seman-
tic textual similarity datasets. It is clear that the
similarity scores produced by the contrastive learn-
ing method SimCSE are not optimized, where the
sentence rankings are not preserved in the learned
representations. On the other hand, our RankCSE
generates effective sentence representations with
consistent rankings to the ground-truth labels. Fig-
ure 1 further shows the advantage of RankCSE in
terms of two ranking metrics. The fine-grained
ranking information is crucial in various real-world

applications including search and recommendation.
The ability to differentiate between subtle distinc-
tions in sentence meaning can help these systems
provide more relevant and accurate results, lead-
ing to a better user experience. Therefore, it is
an important problem to learn ranking preserving
sentence representations from unsupervised data.

To obtain semantically discriminative sentence
representations, we propose a novel approach,
RankCSE, which incorporates ranking consistency
and ranking distillation with contrastive learning
into a unified framework. Specifically, our model
ensures ranking consistency between two represen-
tations with different dropout masks and minimizes
the Jensen-Shannon (JS) divergence as the learning
objective. In the meanwhile, our model also dis-
tills listwise ranking knowledge from the teacher
model to the learned sentence representations. In
our work, we explore two listwise ranking methods,
ListNet (Cao et al., 2007) and ListMLE (Xia et al.,
2008), and utilize the pre-trained SimCSE (Gao
et al., 2021) models with coarse-grained seman-
tic ranking information as the teachers to provide
pseudo ranking labels. Our RankCSE is able to gen-
eralize fine-grained ranking information from the
weak ranking knowledge learned by SimCSE. We
conduct an extensive set of experiments on seman-
tic textual similarity (STS) and transfer (TR) tasks.
Experimental results show that RankCSE outper-
forms the existing state-of-the-art baselines.

2 Related Work

Unsupervised Sentence Representation Learn-
ing Early works typically augment the idea of
word2vec (Mikolov et al., 2013) to learn sentence
representations, including Skip-Thought (Kiros
et al., 2015), FastSent (Hill et al., 2016) and Quick-
Thought (Logeswaran and Lee, 2018). With the
great success of PLMs, various attempts focus on
generating sentence representations by leveraging
the embedding of [CLS] token or applying mean
pooling on the last layer of BERT (Reimers and
Gurevych, 2019). However, Ethayarajh (2019)
identifies the anisotropy problem in language repre-
sentations, which means the native learned embed-
dings from PLMs occupy a narrow cone in the vec-
tor space. BERT-flow (Li et al., 2020) and BERT-
whitening (Su et al., 2021) propose to resolve the
anisotropy problem through post-processing.

Recently, contrastive learning has been adopted
to learn sentence representations by designing dif-
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Figure 2: The framework of RankCSE which consists of three components: (1) contrastive learning object; (2)
ranking consistency loss which ensures ranking consistency between two representations with different dropout
masks; (3) ranking distillation loss which distills listwise ranking knowledge from the teacher.

ferent augmentation methods (Zhang et al., 2020;
Carlsson et al., 2021; Giorgi et al., 2021; Yan et al.,
2021; Kim et al., 2021; Gao et al., 2021). A typical
example SimCSE uses dropout as a data augmen-
tation strategy and is also the foundation of many
following works. ArcCSE (Zhang et al., 2022) en-
hances the pairwise discriminative power and mod-
els the entailment relation among triplet sentences.
DCLR (Zhou et al., 2022) alleviates the influence of
improper negatives. DiffCSE (Chuang et al., 2022)
introduces equivariant contrastive learning to Sim-
CSE. PCL (Wu et al., 2022a) proposes contrastive
representation learning with diverse augmentation
strategies for an inherent anti-bias ability. InfoCSE
(Wu et al., 2022b) learns sentence representations
with the ability to reconstruct the original sentence
fragments. Generative learning techniques (Wang
et al., 2021; Wu and Zhao, 2022) have also been
proposed to enhance the linguistic interpretability
of sentence representations. Although achieving
promising results, these methods fail to capture
the fine-grained ranking knowledge among the sen-
tences.

Learning to Rank Given a query example, learn-
ing to rank aims to rank a list of examples accord-
ing to their similarities with the query. Learning to
rank methods can be divided into three categories:
pointwise (Li et al., 2007), pairwise (Burges et al.,
2005, 2006) and listwise (Cao et al., 2007; Xia
et al., 2008; Volkovs and Zemel, 2009; Pobrotyn
and Bialobrzeski, 2021). Pointwise methods op-
timize the similarity between the query and each
example, while pairwise approaches learn to cor-

rectly model the preference between two examples.
Listwise methods directly evaluate the ranking of
a list of examples based on the ground truth. In
our framework, we leverage listwise ranking objec-
tives for learning effective sentence representations,
which have shown better performance compared to
pointwise and pairwise methods.

3 Preliminary

We provide some conceptual explanations and defi-
nitions in learning to rank.

Top One Probability Given the scores of all ob-
jects S = {si}ni=1, the top one probability of an
object is the probability of its being ranked at top-1:
s̃i =

esi/τ∑n
j=1 e

sj/τ
where τ is a temperature hyperpa-

rameter, usually utilized to smooth the distribution.
We simply denote the formulation for calculating
the top one distribution based on the scores S as:
S̃τ = σ(S/τ).

Permutation Probability Let π = {π(i)}ni=1

denote a permutation of the object indexes, which
represents that the π(i)-th sample is ranked i-th.
The probability of a specific permutation π is given

as: P (π|S, τ) = ∏n
i=1

e
sπ(i)/τ

∑n
j=i e

sπ(j)/τ
.

4 Methodology

4.1 Problem Formulation
Our goal is to learn sentence representations such
that semantic similar sentences stay close while dis-
similar ones should be far away in an unsupervised
manner. Specifically, We aim to find an optimal
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function f that maps a sentence s ∈ ps to a d-
dimensional vector f(s) ∈ pe ⊆ Rd, where ps
and pe denote the distributions of sentences and
sentence representations, respectively. Supposing
s1 and s2 are more semantic similar than s1 and
s3 (s1, s2, s3 ∈ ps), a good mapping function f
should satisfy that the distance between f(s1) and
f(s2) is smaller than that between f(s1) and f(s3),
i.e., d(f(s1), f(s2)) < d(f(s1), f(s3)), where d is
the distance metric such as Euclidean distance and
cosine distance. In this way, the similarities among
the sentences are preserved in the learned sentence
representations.

The general idea of RankCSE is to learn seman-
tically discriminative sentence representations by
capturing the ranking information among the sen-
tences. As shown in Figure 2, our model consists
of three components: (1) contrastive learning ob-
jective (Section 4.2); (2) ranking consistency loss
which ensures ranking consistency between two
representations with different dropout masks (Sec-
tion 4.3); (3) ranking distillation loss which distills
listwise ranking knowledge from the teacher (Sec-
tion 4.4).

4.2 Contrastive Learning
Contrastive learning aims to learn effective repre-
sentations by pulling similar semantics closer and
pushing away dissimilar ones. SimCSE (Gao et al.,
2021) creates positive examples by applying differ-
ent dropout masks and takes a cross-entropy object
with in-batch negatives (Chen et al., 2017). More
specifically, for any sentence xi in a min-batch, we
send it to the encoder f(·) twice and obtain two
representations with different dropout masks f(xi),
f(xi)

′. SimCSE use the InfoNCE loss (van den
Oord et al., 2018) as the training objective:

LinfoNCE = −
N∑

i=1

log
eϕ(f(xi),f(xi)

′)/τ1
∑N

j=1 e
ϕ(f(xi),f(xj)′)/τ1

, (1)

where N is the batch size, τ1 is a temperature hyper-
parameter and ϕ(f(xi), f(xj)

′) = f(xi)⊤f(xj)
′

∥f(xi)∥·∥f(xj)′∥
is the cosine similarity used in this work. Essen-
tially, the contrastive learning objective is equiva-
lent to maximizing the top one probability of the
positive sample.

Although contrastive learning is effective in sep-
arating positive sentences with negative ones, it
ignores the continuity modeling of the similarity.
In other words, it is not effective in distinguish-
ing highly similar sentences with moderate sim-
ilar ones. To address this issue, we propose to

directly model the ranking information among the
sentences, which could enhance the discrimination
of semantic similarity in the learned sentence rep-
resentations.

4.3 Ranking Consistency
The main drawback of contrastive learning is that
the distinction between the in-batch negatives is
not modeled, resulting in less effective sentence
representations in capturing the fine-grained sen-
tence similarity. Therefore, instead of treating the
negatives equivalently, we propose to explicitly
model the ranking information within the sentences
by ensuring the ranking consistency between the
two similarity sets (circled by the solid and dashed
curves respectively in the right part of Figure 2).

Concretely, by taking a close look at the con-
trastive modeling in Section 4.2, there are two sets
of sentence representations, f(xi) and f(xi)

′, de-
rived from different dropout masks. For each sen-
tence xi, two lists of similarities with other sen-
tences can be naturally obtained from the two rep-
resentations, i.e., S(xi) = {ϕ(f(xi), f(xj)′)}Nj=1

and S(xi)
′ = {ϕ(f(xi)′, f(xj))}Nj=1. We then en-

force the ranking consistency between these two
similarity lists in our modeling. Intuitively, all cor-
responding elements in S(xi) and S(xi)

′ should
have the same ranking positions.

Given two similarity lists S(xi) and S(xi)
′, we

can obtain their top one probability distributions
S̃τ1(xi) = σ(S(xi)/τ1), S̃τ1(xi)

′ = σ(S(xi)
′/τ1).

The ranking consistency can be ensured by min-
imizing the Jensen-Shannon (JS) divergence be-
tween the two top one probability distributions:

Lconsistency =
N∑

i=1

JS(Pi||Qi)

=
1

2

N∑

i=1

(KL(Pi||Pi +Qi

2
) + KL(Qi||Pi +Qi

2
))

=
1

2

N∑

i=1

(Pi log(
2Pi

Pi +Qi
) +Qi log(

2Qi

Pi +Qi
)),

(2)

where Pi and Qi represents S̃τ1(xi) and S̃τ1(xi)
′

respectively. The reason we choose JS divergence
instead of Kullback-Leibler (KL) divergence is that
the two distributions are symmetric rather than one
side being the ground truth.

4.4 Ranking Distillation
Contrastive learning based methods like SimCSE
learn effective sentence representations with coarse-
grained semantic ranking information (shown in
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Appendix F and G), which have demonstrated their
effectiveness in various downstream tasks. Or-
thogonal to ranking consistency, we further intro-
duce ranking distillation by distilling the ranking
knowledge from pre-trained teacher models into
our learned sentence representations, to general-
ize effective ranking information from the weak
ranking knowledge learned in the teachers. More
specifically, for each sentence in a min-batch, we
obtain the similarity score list from the teacher
model, which is then served as pseudo ranking la-
bels in the ranking distillation. The intuitive idea is
to transfer the ranking knowledge from the teacher
to the student as guidance for learning ranking pre-
served sentence representations. In the ranking dis-
tillation, ListNet (Cao et al., 2007) and ListMLE
(Xia et al., 2008) methods are utilized. Formally
they are defined as:

Lrank =
N∑

i=1

rank(S(xi), S
T(xi)), (3)

where S(xi) and ST (xi) are the similarity score
lists obtained from the student and the teacher, re-
spectively, rank(·, ·) is the listwise method.

ListNet The original ListNet minimizes the cross
entropy between the permutation probability distri-
bution and the ground truth as the training objec-
tive. However, the computations will be intractable
when the number of examples n is large, since
the number of permutations is n!. To reduce the
computation complexity, the top one probability
distribution is usually adopted as a substitute:

LListNet = −
N∑

i=1

σ(ST (xi)/τ3) · log(σ(S(xi)/τ2)), (4)

where τ2 and τ3 are temperature hyperparameters.1

ListMLE Different from ListNet, ListMLE aims
to maximize the likelihood of the ground truth per-
mutation πT

i which represents the sorted indexes
of the similarity scores calculated by the teacher
model. The objective of ListMLE is defined as:

LListMLE = −
N∑

i=1

logP (πT
i |S(xi), τ2). (5)

In this work, we propose to use a multi-teacher
from which more listwise ranking knowledge can

1In practice, we exclude the score of the positive pair from
the list to calculate the top one distribution used in Eq.(4),
to enhance the ranking information of negatives, because the
score of the positive pair occupies most in the full top one
distribution calculated by the teacher SimCSE.

be transferred and preserved. In our experiments,
we utilize the weighted average similarity scores of
two teachers as pseudo ranking labels: ST (xi) =
αST

1 (xi) + (1 − α)ST
2 (xi) where α is a hyperpa-

rameter to balance the weight of the teachers.
The contrastive learning loss LinfoNCE pushes

apart the representations of different sentences to
maximize the representation space, while the rank-
ing consistency loss Lconsistency and the ranking
distillation loss Lrank pull similar negatives closer,
thus capturing fine-grained semantic ranking infor-
mation. Combining the above three loss functions,
we can obtain the overall objective:

Lfinal = LinfoNCE + βLconsistency + γLrank, (6)

where β and γ are hyperparameters to balance dif-
ferent losses.

5 Experiment

5.1 Setup
We evaluate our approach on two sentence related
tasks, Semantic Textual Similarity (STS) and Trans-
fer (TR). The SentEval toolkit (Conneau and Kiela,
2018) is used in our experiments. For STS tasks,
we evaluate on seven datasets: STS12-16 (Agirre
et al., 2012, 2013, 2014, 2015, 2016), STS Bench-
mark (Cer et al., 2017) and SICK-Relatedness
(Marelli et al., 2014). These datasets contain pairs
of sentences with similarity score labels from 0
to 5. Following SimCSE, we directly compute
the cosine similarity between the sentence repre-
sentations which means all the STS experiments
are fully unsupervised, and report the Spearman’s
correlation. For TR tasks, we evaluate on seven
datasets with the default configurations from Sen-
tEval: MR (Pang and Lee, 2005), CR (Hu and Liu,
2004), SUBJ (Pang and Lee, 2004), MPQA (Wiebe
et al., 2005), SST-2 (Socher et al., 2013), TREC
(Voorhees and Tice, 2000) and MRPC (Dolan and
Brockett, 2005). We use a logistic regression clas-
sifier trained on top of the frozen sentence repre-
sentations, and report the classification accuracy.

For fair comparison, we use the same 106 ran-
domly sampled sentences from English Wikipedia
provided by SimCSE. Following previous works,
we start from pre-trained checkpoints of BERT
(Devlin et al., 2019) and RoBERTa (Liu et al.,
2019), and utilize the embedding corresponding
to [CLS] token as the representation of the input
sentence. First we train SimCSE models includ-
ing four variants: SimCSE-BERTbase, SimCSE-
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PLMs Methods STS12 STS13 STS14 STS15 STS16 STS-B SICK-R avg.

Non-BERT GloVe(avg.) 55.14 70.66 59.73 68.25 63.66 58.02 53.76 61.32
USE 64.49 67.80 64.61 76.83 73.18 74.92 76.69 71.22

BERTbase

first-last avg. 39.70 59.38 49.67 66.03 66.19 53.87 62.06 56.70
+flow 58.40 67.10 60.85 75.16 71.22 68.66 64.47 66.55
+whitening 57.83 66.90 60.90 75.08 71.31 68.24 63.73 66.28
+IS 56.77 69.24 61.21 75.23 70.16 69.21 64.25 66.58
+ConSERT 64.64 78.49 69.07 79.72 75.95 73.97 67.31 72.74
+SimCSE 68.40 82.41 74.38 80.91 78.56 76.85 72.23 76.25
+DCLR 70.81 83.73 75.11 82.56 78.44 78.31 71.59 77.22
+ArcCSE 72.08 84.27 76.25 82.32 79.54 79.92 72.39 78.11
+DiffCSE 72.28 84.43 76.47 83.90 80.54 80.59 71.23 78.49
+PaSeR 70.21 83.88 73.06 83.87 77.60 79.19 65.31 76.16
+PCL 72.84 83.81 76.52 83.06 79.32 80.01 73.38 78.42
+RankCSElistNet 74.38 85.97 77.51 84.46 81.31 81.46 75.26 80.05
+RankCSElistMLE 75.66 86.27 77.81 84.74 81.10 81.80 75.13 80.36

BERTlarge

+SimCSE 70.88 84.16 76.43 84.50 79.76 79.26 73.88 78.41
+DCLR 71.87 84.83 77.37 84.70 79.81 79.55 74.19 78.90
+ArcCSE 73.17 86.19 77.90 84.97 79.43 80.45 73.50 79.37
+PCL 74.87 86.11 78.29 85.65 80.52 81.62 73.94 80.14
+RankCSElistNet 74.75 86.46 78.52 85.41 80.62 81.40 76.12 80.47
+RankCSElistMLE 75.48 86.50 78.60 85.45 81.09 81.58 75.53 80.60

RoBERTabase

+SimCSE 70.16 81.77 73.24 81.36 80.65 80.22 68.56 76.57
+DCLR 70.01 83.08 75.09 83.66 81.06 81.86 70.33 77.87
+DiffCSE 70.05 83.43 75.49 82.81 82.12 82.38 71.19 78.21
+PCL 71.13 82.38 75.40 83.07 81.98 81.63 69.72 77.90
+RankCSElistNet 72.91 85.72 76.94 84.52 82.59 83.46 71.94 79.73
+RankCSElistMLE 73.20 85.95 77.17 84.82 82.58 83.08 71.88 79.81

RoBERTalarge

+SimCSE 72.86 83.99 75.62 84.77 81.80 81.98 71.26 78.90
+DCLR 73.09 84.57 76.13 85.15 81.99 82.35 71.80 79.30
+PCL 74.08 84.36 76.42 85.49 81.76 82.79 71.51 79.49
+RankCSElistNet 73.47 85.77 78.07 85.65 82.51 84.12 73.73 80.47
+RankCSElistMLE 73.20 85.83 78.00 85.63 82.67 84.19 73.64 80.45

Table 2: Sentence representations performance on STS tasks (Spearman’s correlation). We directly import the
results from the original papers and mark the best (bold) and second-best (underlined) results among models with
the same PLMs. Results are statistically significant with respect to all baselines on each PLM (all p-value < 0.005).

BERTlarge, SimCSE-RoBERTabase and SimCSE-
RoBERTalarge. We utilize the first two as a multi-
teacher for RankCSE-BERTbase and RankCSE-
BERTlarge, while the last two for RankCSE-
RoBERTabase and RankCSE-RoBERTalarge. We
evaluate our model every 125 training steps on the
dev set of STS-B and keep the best checkpoint for
the evaluation on test sets of all STS and TR tasks.
More training details can be found in Appendix A.

We compare RankCSE with several unsuper-
vised sentence representation learning methods,
including average GloVe embeddings (Penning-
ton et al., 2014), USE (Cer et al., 2018) and Skip-
thought (Kiros et al., 2015), average BERT embed-
dings from the last layer, post-processing methods
such as BERT-flow (Li et al., 2020) and BERT-
whitening (Su et al., 2021), and contrastive learn-
ing methods such as IS-BERT (Zhang et al., 2020)
and ConSERT (Yan et al., 2021). We also include
recent strong unsupervised sentence representation
baselines, including SimCSE (Gao et al., 2021),

DCLR (Zhou et al., 2022), ArcCSE (Zhang et al.,
2022), DiffCSE (Chuang et al., 2022), PaSER (Wu
and Zhao, 2022) and PCL (Wu et al., 2022a). Since
RankCSE and the teacher model SimCSE are using
the same unsupervised training data, the compari-
son between RankCSE and baselines is fair.

5.2 Main Results

Results on STS Tasks As shown in Table 2, it is
clear that RankCSE significantly outperforms the
previous methods on all PLMs, which demonstrates
the effectiveness of our approach. For example,
compared with SimCSE, RankCSE has brought
noticeable improvements: 4.11% on BERTbase,
2.19% on BERTlarge, 3.24% on RoBERTabase and
1.57% on RoBERTalarge. RankCSE-BERTbase

even outperforms SimCSE-BERTlarge by nearly
2%. Compared with the previous state-of-the-
art methods, RankCSE still achieves consistent
improvements, which validates that RankCSE is
able to obtain more semantically discriminative
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PLMs Methods MR CR SUBJ MPQA SST TREC MRPC avg.

Non-BERT GloVe(avg.) 77.25 78.30 91.17 87.85 80.18 83.00 72.87 81.52
Skip-thought 76.50 80.10 93.60 87.10 82.00 92.20 73.00 83.50

BERTbase

last avg. 78.66 86.25 94.37 88.66 84.40 92.80 69.54 84.94
+IS 81.09 87.18 94.96 88.75 85.96 88.64 74.24 85.83
+SimCSE 81.18 86.46 94.45 88.88 85.50 89.80 74.43 85.81
+ArcCSE 79.91 85.25 99.58 89.21 84.90 89.20 74.78 86.12
+DiffCSE† 81.76 86.20 94.76 89.21 86.00 87.60 75.54 85.87
+PCL 80.11 85.25 94.22 89.15 85.12 87.40 76.12 85.34
+RankCSElistNet 83.21 88.08 95.25 90.00 88.58 90.00 76.17 87.33
+RankCSElistMLE 83.07 88.27 95.06 89.90 87.70 89.40 76.23 87.09

BERTlarge

+SimCSE 85.36 89.38 95.39 89.63 90.44 91.80 76.41 88.34
+ArcCSE 84.34 88.82 99.58 89.79 90.50 92.00 74.78 88.54
+PCL 82.47 87.87 95.04 89.59 87.75 93.00 76.00 87.39
+RankCSElistNet 85.11 89.56 95.39 90.30 90.77 93.20 77.16 88.78
+RankCSElistMLE 84.63 89.51 95.50 90.08 90.61 93.20 76.99 88.65

RoBERTabase

+SimCSE 81.04 87.74 93.28 86.94 86.60 84.60 73.68 84.84
+DiffCSE† 82.42 88.34 93.51 87.28 87.70 86.60 76.35 86.03
+PCL 81.83 87.55 92.92 87.21 87.26 85.20 76.46 85.49
+RankCSElistNet 83.53 89.22 94.07 88.97 89.95 89.20 76.52 87.35
+RankCSElistMLE 83.32 88.61 94.03 88.88 89.07 90.80 76.46 87.31

RoBERTalarge

+SimCSE 82.74 87.87 93.66 88.22 88.58 92.00 69.68 86.11
+PCL 84.47 89.06 94.60 89.26 89.02 94.20 74.96 87.94
+RankCSElistNet 84.47 89.51 94.65 89.87 89.46 93.00 75.88 88.12
+RankCSElistMLE 84.61 89.27 94.47 89.99 89.73 92.60 74.43 87.87

Table 3: Sentence representations performance on transfer tasks (accuracy). The results of DiffCSE† are obtained
from the publicly available code and checkpoints, while others are imported from the original papers. We mark
the best (bold) and second-best (underlined) results among models with the same PLMs. Results are statistically
significant with respect to all baselines on each PLM (all p-value < 0.005).

Models STS(avg.) TR(avg.)

SimCSE 76.25 85.81

RankCSElistNet 80.05 87.33
w/o Lconsistency 79.56 86.80
w/o LinfoNCE 79.72 86.91
w/o Lconsistency,LinfoNCE 79.41 86.76

RankCSElistMLE 80.36 87.09
w/o Lconsistency 79.88 86.65
w/o LinfoNCE 79.95 86.73
w/o Lconsistency,LinfoNCE 79.73 86.24

RankCSE w/o Lrank 76.93 85.97
RankCSE w/o LinfoNCE, Lrank 73.74 85.56

Table 4: Ablation studies of different loss functions
based on BERTbase. Other PLMs yield similar patterns
to BERTbase.

representations by incorporating ranking consis-
tency and ranking distillation. We also observe
that the performances of RankCSElistNet and
RankCSElistMLE are very consistent across all
datasets, which demonstrates the effectiveness of
both listwise ranking methods.

Results on TR Tasks It can be seen in Table
3 that RankCSE achieves the best performance
among all the compared baselines on all PLMs.

Teacher RankCSE
ListNet ListMLE

SimCSEbase 77.48 77.75
DiffCSEbase 78.87 79.06
SimCSElarge 79.66 79.81

SimCSEbase+DiffCSEbase 79.10 79.28
SimCSEbase+SimCSElarge 80.05 80.36
DiffCSEbase+SimCSElarge 80.20 80.47

Table 5: Comparisons of different teachers based on
BERT. Results of RankCSE are average STS perfor-
mance using BERTbase.

Note that for DiffCSE, we obtain the results from
the publicly available code and checkpoints, be-
cause DiffCSE uses different dev sets to find the
best hyperparameters for TR tasks than other base-
lines. More detailed explanation and comprehen-
sive comparison are provided in Appendix B. An-
other observation is that the performance of the
RankCSElistNet is slightly better than that of the
RankCSElistMLE. Our hypothesis is that the inaccu-
rate pseudo ranking labels introduce more errors in
the calculation of the permutation probability than
the top one probability. Nevertheless, both listwise
methods achieve better results than the baselines,
which is consistent with the results in Table 2.
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Figure 3: Effect of the temperatures τ2 and τ3. Results are aver-
age STS performance, and RankCSElistNet is based on BERTbase

while RankCSElistMLE is based on different PLMs. We do not
demonstrate results below 78 to make the variation obvious.
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Figure 4: ℓalign-ℓuniform plot for different sen-
tence representation methods based on BERTbase

measured on the STS-B dev set. Color of points
represents average STS performance.

PLMs RankCSElistNet RankCSElistMLE SimCSE
STS(avg.) TR(avg.) STS(avg.) TR(avg.) STS(avg.) TR(avg.)

BERTbase 80.00±0.13 87.28±0.19 80.39±0.04 87.05±0.06 75.52±0.70 85.44±0.47
BERTlarge 80.41±0.10 88.74±0.14 80.59±0.05 88.63±0.06 77.79±0.64 88.10±0.36

RoBERTabase 79.67±0.09 87.46±0.13 79.78±0.05 87.30±0.07 76.45±0.56 84.74±0.38
RoBERTalarge 80.46±0.11 87.97±0.14 80.34±0.08 87.82±0.08 78.53±0.49 86.29±0.33

Table 6: Mean and standard deviation across five different runs of RankCSE and SimCSE.

5.3 Analysis and Discussion

Ablation Study To investigate the impact of
different losses in our approach, we conduct a
set of ablation studies by removing LinfoNCE,
Lconsistency and Lrank from Eq.(6). The average
results on STS and TR tasks are reported in Table
4. There are several observations from the results.
First, when Lrank is removed, the performance sig-
nificantly drops in both STS and TR tasks, which
indicates the effectiveness of Lrank in our modeling.
Second, it is also clear that without LinfoNCE or
Lconsistency, the model performance also decreases,
especially on TR tasks. Thirdly, it is worth mention-
ing that RankCSE with only Lrank can also outper-
form the teachers on STS tasks. The reason is that
RankCSE is able to preserve ranking knowledge
from multiple teachers, and generalize fine-grained
ranking information from multiple coarse-grained
representations. Fourthly, since Lconsistency does
not explicitly distinguish the positives from nega-
tives, RankCSE with only Lconsistency will preserve
inaccurate rankings leading to significant perfor-
mance drop. Finally, RankCSE with all compo-
nents achieves the best performance on both STS
and TR tasks.

Comparisons of Different Teachers We con-
duct experiments to explore the impact of dif-

ferent teachers on the performance of RankCSE.
As shown in Table 5, RankCSE outperforms the
teacher model which indicates that incorporat-
ing ranking consistency and ranking distillation
leads to more semantically discriminative sentence
representations. Comparing the performance of
RankCSE using different teachers, we observe that
better teacher leads to better RankCSE, which is
consistent with our expectation since accurate rank-
ing labels yield more effective ranking knowledge
transfer. Another observation is that the perfor-
mance of RankCSE with a multi-teacher is bet-
ter than that with a single teacher, which verifies
that RankCSE is able to preserve listwise ranking
knowledge from more than one teacher. It is also in-
teresting to see that using DiffCSE-BERTbase and
SimCSE-BERTlarge as multi-teacher leads to even
higher performance than the results in Table 2. We
plan to conduct more investigation along this direc-
tion to explore the upper bound of improvements.

Effect of Hyperparameters To study the effect
of temperature hyperparameters, we conduct exper-
iments by setting different τ2 and τ3. As shown
in Figure 3a, we find that large discrepancy be-
tween τ2 and τ3 leads to significant drop in the
performance of RankCSEListNet. The best tem-
perature setting for RankCSEListNet is τ2 : τ3 =
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2 : 1. The performance of RankCSEListMLE

has similar trends based on different PLMs, as
shown in Figure 3b. For both RankCSEListNet and
RankCSEListMLE, the temperature should be set
moderate.

Robustness of RankCSE We conduct 5 runs of
model training with the hyperparameter settings
which can be referred to Appendix A with differ-
ent random seeds, and then calculate the mean and
standard deviation values. The results provided
in Table 6 demonstrate both the superior perfor-
mance and the robustness of our model. It can also
be seen that RankCSElistMLE achieves similar per-
formance but more stable results compared with
RankCSElistNet.

Alignment and Uniformity Following previous
works (Wang and Isola, 2020), we use alignment
and uniformity to measure the quality of repre-
sentation space. Alignment measures the distance
between similar instances, while uniformity mea-
sures how well the representations are uniformly
distributed (detailed in Appendix H). For both mea-
sures, the smaller value indicates the better re-
sult. We plot the distribution of ℓalign-ℓuniform for
different models using BERTbase which are mea-
sured on the STS-B dev set. As shown in Figure
4, RankCSE effectively improves both alignment
and uniformity compared with average BERT em-
beddings, while SimCSE and DiffCSE only im-
prove uniformity and alignment respectively. Since
RankCSE pulls similar negatives closer during in-
corporating ranking consistency and ranking distil-
lation, RankCSE has smaller alignment and big-
ger uniformity than SimCSE. We consider that
RankCSE achieves a better trade-off than Sim-
CSE. When compared with DiffCSE, RankCSE has
smaller uniformity whereas similar alignment. We
can also observe that RankCSE outperforms PCL
on both metrics.

6 Conclusion

In this work, we propose RankCSE, an unsuper-
vised approach to learn more semantically discrim-
inative sentence representations. The core idea of
RankCSE is incorporating ranking consistency and
ranking distillation with contrastive learning into a
unified framework. When simultaneously ensuring
ranking consistency and distilling listwise ranking
knowledge from the teacher, RankCSE can learn
how to make fine-grained distinctions in semantics,

leading to more semantically discriminative sen-
tence representations. Experimental results on STS
and TR tasks demonstrate that RankCSE outper-
forms previous state-of-the-art methods. We also
conduct thorough ablation study and analysis to
demonstrate the effectiveness of each component
and justify the inner workings of our approach. We
leave what is the upper bound of improvements of
the teacher for future work.

Limitations

In this section, we discuss the limitations of our
work as follows. First, despite achieving promis-
ing results, our model needs to calculate pseudo
ranking labels of the teacher which requires addi-
tional training time per epoch than the teacher. The
training efficiency of RankCSE and SimCSE can
be seen in Appendix D. Second, we directly use
SimCSEbase and SimCSElarge as a multi-teacher
in our implementation and experiments. However,
how to choose the best combination of the teacher
models is worth further exploration. It could help
researchers to better understand the upper bound of
improvements. We plan to investigate more along
this direction in the future.
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A Training Details

We implement all experiments with the deep
learning framework PyTorch on a single NVIDIA
Tesla A100 GPU (40GB memory). We carry
out grid-search of learning rate ∈ {2e-5, 3e-5}
and temperatures τ2, τ3 ∈ {0.0125, 0.025, 0.05},
while setting batch size to 128, temperature τ1
to 0.05, α to 1/3, β to 1, γ to 1 and the rate of
linear scheduling warm-up to 0.05 for all the
experiments. We train our models for 4 epochs,
and evaluate the model every 125 steps on the dev
set of STS-B and keep the best checkpoint for the
final evaluation on test sets of all STS and TR
tasks. The hyperparameter settings we adopt are
shown in Table 9. Following SimCSE, we utilize
the embedding corresponding to [CLS] token as
the representation of the input sentence. We utilize
SimCSE-BERTbase and SimCSE-BERTlarge

as a multi-teacher for RankCSE-BERTbase

and RankCSE-BERTlarge, while SimCSE-
RoBERTabase and SimCSE-RoBERTalarge as a
multi-teacher for RankCSE-RoBERTabase and
RankCSE-RoBERTalarge.

B DiffCSE Settings for Transfer Tasks

DiffCSE uses different dev sets to find the best hy-
perparameters for the two tasks (STS-B dev set for
STS tasks, dev sets of 7 TR tasks for TR tasks),
while other methods only use the STS-B dev set for
both tasks, which is not fair. Therefore we obtain
the results in Table 3 from its publicly available
code and checkpoints for STS tasks2 instead of di-
rectly importing the results from its original paper.
For a more comprehensive comparison with Dif-
fCSE on TR tasks, we also use dev sets of 7 TR
tasks to find the best hyperparameters and check-
points. As shown in Table 10, RankCSE still out-
performs DiffCSE in this setting.

C Data Statistics

The complete listings of train/dev/test stats of STS
and TR datasets can be found in Table 7 and 8,
respectively. Note that for STS tasks, we only use
test sets for the final evaluation and dev set of STS-
B to find best hyperparameters and checkpoints.
The train sets of all STS datasets are not used in our
experiments. For TR tasks, we follow the default
settings of SentEval toolkit (Conneau and Kiela,
2018) to use 10-fold evaluation for all TR datasets

2https://github.com/voidism/DiffCSE

Dataset Train Dev Test

STS12 - - 3108
STS13 - - 1500
STS14 - - 3750
STS15 - - 3000
STS16 - - 1186
STS-B 5749 1500 1379

SICK-R 4500 500 4927

Table 7: A listing of train/dev/test stats of STS datasets.

Dataset Train Dev Test

MR 10662 - -
CR 3775 - -

SUBJ 10000 - -
MPQA 10606 - -

SST 67349 872 1821
TREC 5452 - 500
MRPC 4076 - 1725

Table 8: A listing of train/dev/test stats of TR datasets.

except SST. We can directly use the already split
datasets to evaluate on SST.

D Training Efficiency

We compare the training efficiency of SimCSE
and RankCSE , which are tested on a single
NVIDIA Tesla A100 GPU (40GB memory). We set
batch size to 128 for both SimCSE and RankCSE,
and training epoch to their original settings (1
for SimCSE, 4 for RankCSE). RankCSE utilizes
SimCSEbase and SimCSElarge as a multi-teacher to
provide pseudo ranking labels. As shown in Table
11, RankCSEbase and RankCSElarge can be trained
within 2 hours and 3.7 hours respectively. Since
RankCSE needs to calculate pseudo ranking labels
of the teacher, it requires additional training time
per epoch than SimCSE.

E Cosine Similarity Distribution

We demonstrate the distribution of cosine similari-
ties for sentence pairs of STS-B dev set in Figure 5.
We can observe that cosine similarity distributions
from all models are consistent with human ratings.
However, the cosine similarities of RankCSE are
slightly higher than that of SimCSE under the same
human rating, as RankCSE pulls similar negatives
closer during incorporating ranking consistency
and ranking distillation, and shows lower variance.
Compared with DiffCSE, RankCSE shows a more
scattered distribution. This observation further vali-
dates that RankCSE can achieve a better alignment-
uniformity balance.
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RankCSE-BERT RankCSE-RoBERTa
base large base large

listNet listMLE listNet listMLE listNet listMLE listNet listMLE

Batch size 128 128 128 128 128 128 128 128
Learning rate 3e-5 2e-5 3e-5 2e-5 2e-5 3e-5 3e-5 3e-5

τ1 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
τ2 0.025 0.05 0.05 0.05 0.05 0.05 0.025 0.025
τ3 0.0125 - 0.025 - 0.025 - 0.0125 -

Table 9: The hyperparameter values for RankCSE training.

PLMs Methods MR CR SUBJ MPQA SST TREC MRPC avg.

BERTbase

+DiffCSE 82.69 87.23 95.23 89.28 86.60 90.40 76.58 86.86
+RankCSElistNet 83.64 88.32 95.26 89.99 89.02 90.80 77.10 87.73
+RankCSElistMLE 83.05 88.03 95.13 90.00 88.41 90.60 76.81 87.43

RoBERTabase
+DiffCSE 82.82 88.61 94.32 87.71 88.63 90.40 76.81 87.04
+RankCSElistNet 83.84 88.93 94.21 89.17 90.23 91.60 77.28 87.89
+RankCSElistMLE 83.38 89.04 94.17 89.23 89.51 91.40 76.58 87.62

Table 10: Sentence representations performance on TR tasks (accuracy) using the dev sets of 7 TR tasks to find the
best hyperparameters. The results of DiffCSE are from its original paper. We mark the best (bold) and second-best
(underlined) results among models with the same PLMs.

SimCSE RankCSE
base large base large

Batch size 128 128 128 128
Epoch 1 1 4 4
Time 20min 45min 120min 220min

Time per epoch 20min 45min 30min 55min

Table 11: Training efficiency of SimCSE and RankCSE.
SimCSEbase and SimCSElarge provide pseudo ranking
labels for every RankCSE model.

F Case Study

We present another two examples of a query sen-
tence and several target sentences from the STS
datasets, with their similarity scores and rankings
in Table 12. It is obvious that the similarity scores
produced by RankCSE are more effective than Sim-
CSE, with consistent rankings to the ground-truth
labels. It further demonstrates that SimCSE only
captures coarse-grained semantic ranking informa-
tion via contrastive learning, while RankCSE can
capture fine-grained semantic ranking information.
For example, SimCSE can distinguish between sim-
ilar and dissimilar sentences, however, it can not
distinguish between very similar and less similar
sentences as RankCSE.

G Ranking Tasks

We build the ranking task based on each STS
dataset to verify that RankCSE can capture fine-
grained semantic ranking information. For one sen-
tence xi, if there are more than three sentence pairs
(xi, x

j
i ) containing xi with similarity score label

yji in the dataset, we view {xi, xji , y
j
i }kj=1(k > 3)

as a sample of the ranking task, as shown in Table
12. We adopt KCC (Kendall’s correlation coeffi-
cient (Abdi, 2007)) and NDCG (normalized dis-
counted cumulative gain (Järvelin and Kekäläinen,
2002)) as evaluation metrics for ranking tasks, and
demonstrate the results in Table 13. RankCSE out-
performs SimCSE and DiffCSE on both KCC and
NDCG, which validates that RankCSE can capture
fine-grained semantic ranking information by incor-
porating ranking consistency and ranking distilla-
tion. Another observation is that SimCSE and Dif-
fCSE also achieve moderate results, which shows
they can distinguish coarse-grained semantic dif-
ferences via contrastive learning.

H Alignment and Uniformity

Wang and Isola (2020) use two properties related to
contrastive learning, alignment and uniformity, to
measure the quality of representation space. Align-
ment calculates expected distance between normal-
ized representations of positive pairs ppos:

ℓalign ≜ E
(x,x+)∼ppos

∥f(x)− f(x+)∥2, (7)

while uniformity measures how well the normal-
ized representations are uniformly distributed:

ℓuniform ≜ log E
x,y

i.i.d.∼ pdata

e−2∥f(x)−f(y)∥2 , (8)

where pdata denotes the distribution of sentence
pairs. Smaller alignment means positive instances
have been pulled closer, while smaller uniformity
means random instances scatter on the hypersphere.
These two measures are smaller the better, and well
aligned with the object of contrastive learning.
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Figure 5: The distribution of cosine similarity for sentence pairs of STS-B dev set. Along the y-axis are 5 groups of
pairs split based on ground truth ratings, and x-axis is the cosine similarity.

Target Sentences Label SimCSE RankCSE

• a and c are on the same closed path with the battery 3.60 (1) 0.81 (1) 0.90 (1)
• bulb a and bulb c affect each other. 2.80 (2) 0.58 (3) 0.75 (2)
• the are on the same wire 1.60 (3) 0.60 (2) 0.68 (3)
• because breaking one bulb then affects the ability of the others to light up. 1.20 (4) 0.37 (5) 0.59 (4)
• if one bulb is removed , the others stop working 0.60 (5) 0.38 (4) 0.54 (5)

Query Sentence: a and c are in the same closed path

• because by measuring voltage, you find the gap where there’s a difference
in electrical states.

3.80 (1) 0.86 (1) 0.90 (1)

• it allows you to measure electrical states between terminals 3.20 (2) 0.64 (3) 0.84 (2)
• it checks the electrical state between two terminals. 2.60 (3) 0.65 (2) 0.78 (3)
• find where there are different electrical states 2.60 (3) 0.55 (5) 0.78 (3)
• you can see where the gap is 2.20 (5) 0.62 (4) 0.69 (5)

Query Sentence: measuring voltage indicates the place where the electrical state changes due to a gap.

Table 12: Two examples of a query sentence and several target sentences from the STS datasets, with their similarity
scores and rankings. The label scores are from human annotations. The SimCSE and RankCSE similarity scores
are from the model predictions respectively, with the corresponding ranking positions. It can be seen that sentence
rankings based on SimCSE are incorrect, while RankCSE generates more effective scores with accurate rankings.

Metrics Methods STS12 STS13 STS14 STS15 STS16 STS-B SICK-R avg.

KCC
+SimCSE 36.08 36.60 44.14 49.02 54.66 58.44 54.65 47.66
+DiffCSE 38.59 41.89 42.37 51.19 58.90 59.21 53.42 49.37
+RankCSE 42.79 46.26 44.53 52.00 57.21 63.64 57.40 51.98

NDCG
+SimCSE 97.80 89.33 92.71 96.93 94.28 96.49 98.44 95.14
+DiffCSE 98.35 90.22 93.05 96.91 94.79 97.05 98.34 95.53
+RankCSE 98.20 92.27 93.46 97.21 95.24 97.45 98.67 96.07

Table 13: Sentence representations performance on ranking tasks (KCC and NDCG) using BERTbase. The results
of SimCSE and DiffCSE are obtained from their publicly available codes and checkpoints. We mark the best (bold)
and second-best (underlined) results.
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