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Abstract
Neural machine translation (NMT) has become
the de-facto standard in real-world machine
translation applications. However, NMT mod-
els can unpredictably produce severely patho-
logical translations, known as hallucinations,
that seriously undermine user trust. It becomes
thus crucial to implement effective preventive
strategies to guarantee their proper function-
ing. In this paper, we address the problem of
hallucination detection in NMT by following
a simple intuition: as hallucinations are de-
tached from the source content, they exhibit
cross-attention patterns that are statistically dif-
ferent from those of good quality translations.
We frame this problem with an optimal trans-
port formulation and propose a fully unsuper-
vised, plug-in detector that can be used with
any attention-based NMT model. Experimental
results show that our detector not only outper-
forms all previous model-based detectors, but
is also competitive with detectors that employ
external models trained on millions of samples
for related tasks such as quality estimation and
cross-lingual sentence similarity.

1 Introduction

Neural machine translation (NMT) has achieved
tremendous success (Vaswani et al., 2017; Kocmi
et al., 2022), becoming the mainstream method
in real-world applications and production systems
for automatic translation. Although these mod-
els are becoming evermore accurate, especially in
high-resource settings, they may unpredictably pro-
duce hallucinations. These are severely pathologi-
cal translations that are detached from the source
sequence content (Lee et al., 2018; Müller et al.,
2020; Raunak et al., 2021; Guerreiro et al., 2022).
Crucially, these errors have the potential to seri-
ously harm user trust in hard-to-predict ways (Perez
et al., 2022), hence the evergrowing need to develop
security mechanisms. One appealing strategy to
address this issue is to develop effective on-the-fly
detection systems.

In this work, we focus on leveraging the cross-
attention mechanism to develop a novel hallucina-
tion detector. This mechanism is responsible for
selecting and combining the information contained
in the source sequence that is relevant to retain dur-
ing translation. Therefore, as hallucinations are
translations whose content is detached from the
source sequence, it is no surprise that connections
between anomalous attention patterns and hallu-
cinations have been drawn before in the literature
(Berard et al., 2019; Raunak et al., 2021; Ferrando
et al., 2022). These patterns usually exhibit scat-
tered source attention mass across the different to-
kens in the translation (e.g. most source attention
mass is concentrated on a few irrelevant tokens
such as punctuation and the end-of-sequence to-
ken). Inspired by such observations, previous work
has designed ad-hoc heuristics to detect hallucina-
tions that specifically target the anomalous maps.
While such heuristics can be used to detect hallu-
cinations to a satisfactory extent (Guerreiro et al.,
2022), we argue that a more theoretically-founded
way of using anomalous attention information for
hallucination detection is lacking in the literature.

Rather than aiming to find particular patterns, we
go back to the main definition of hallucinations and
draw the following hypothesis: as hallucinations—
contrary to good translations—are not supported by
the source content, they may exhibit cross-attention
patterns that are statistically different from those
found in good quality translations. Based on this
hypothesis, we approach the problem of hallu-
cination detection as a problem of anomaly de-
tection with an optimal transport (OT) formu-
lation (Kantorovich, 2006; Peyré et al., 2019).
Namely, we aim to find translations with source
attention mass distributions that are highly distant
from those of good translations. Intuitively, the
more distant a translation’s attention patterns are
from those of good translations, the more anoma-
lous it is in light of that distribution.
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Our key contributions are:

• We propose an OT-inspired fully unsupervised
hallucination detector that can be plugged into
any attention-based NMT model;

• We find that the idea that attention maps for
hallucinations are anomalous in light of a ref-
erence data distribution makes for an effective
hallucination detector;

• We show that our detector not only outper-
forms all previous model-based detectors, but
is also competitive with external detectors
that employ auxiliary models that have been
trained on millions of samples.1

2 Background

2.1 Cross-attention in NMT models
A NMT model M defines a probability distribution
pθ(y|x) over an output space of hypotheses Y con-
ditioned on a source sequence x contained in an
input space X . In this work, we focus on models
parameterized by an encoder-decoder transformer
model (Vaswani et al., 2017) with a set of learned
weights θ. In particular, we will look closely at the
cross-attention mechanism, a core component of
NMT models that has been extensively analysed
in the literature (Bahdanau et al., 2014; Raganato
and Tiedemann, 2018; Kobayashi et al., 2020; Fer-
rando and Costa-jussà, 2021). This mechanism is
responsible for computing, at each generation step,
a distribution over all source sentence words that in-
forms the decoder on the relevance of each of those
words to the current translation generation step. We
follow previous work that has drawn connections
between hallucinations and cross-attention (Berard
et al., 2019; Raunak et al., 2021), and focus specifi-
cally on the last layer of the decoder module. Con-
cretely, for a source sequence of arbitrary length
n and a target sequence of arbitrary length m, we
will designate as Ω ∈ [0, 1]m×n the matrix of atten-
tion weights that is obtained by averaging across
all the cross-attention heads of the last layer of
the decoder module. Further, given the model M
we will designate πM(x) := 1

m [Ω(x)]⊤ 1 ∈ △n

as the source (attention) mass distribution com-
puted by M when x is presented as input, where
△n = {p ∈ Rn |p ≥ 0, 1⊤p = 1} is the (n− 1)-
dimensional probability simplex.

1Our code and data to replicate our experiments
are available in https://github.com/deep-spin/
ot-hallucination-detection.

2.2 Optimal Transport Problem and
Wasserstein Distance

The first-order Wasserstein distance between two
arbitrary probability distributions µ ∈ △n and
ν ∈ △m is defined as

W (µ,ν) = inf
γ∈Π(µ,ν)

E(u,v)∼γ [c(u, v)] , (1)

where c : [n]× [m] → R+
0 is a cost function,2 and

Π(µ,ν) = {γ ∈ △n×m : γ1 = µ;γ⊤1 = ν}3 is
the set of all joint probability distributions whose
marginals are µ, ν. The Wasserstein distance arises
from the method of optimal transport (OT) (Kan-
torovich, 2006; Peyré et al., 2019): OT measures
distances between distributions in a way that de-
pends on the geometry of the sample space. In-
tuitively, this distance indicates how much prob-
ability mass must be transferred from µ to ν in
order to transform µ into ν while minimizing the
transportation cost defined by c.

A notable example is the Wasserstein-1 distance,
W1, also known as Earth Mover’s Distance (EMD),
obtained for c(u, v) = ∥u−v∥1. The name follows
from the simple intuition: if the distributions are in-
terpreted as “two piles of mass” that can be moved
around, the EMD represents the minimum amount
of “work” required to transform one pile into the
other, where the work is defined as the amount of
mass moved multiplied by the distance it is moved.

Although OT has been explored for robust-
ness (Paty and Cuturi, 2019; Staerman et al., 2021)
and out-of-distribution detection (Wang et al.,
2021; Yan et al., 2021; Cheng et al., 2022) in com-
puter vision, the use of OT for anomaly detection
in NLP applications remains largely overlooked.

2.3 The problem of hallucinations in NMT
Hallucinations are translations that lie at the ex-
treme end of NMT pathologies (Raunak et al.,
2021). Despite being a well-known issue, re-
search on the phenomenon is hindered by the fact
that these translations are rare, especially in high-
resource settings. As a result, data with hallucina-
tions is scarce. To overcome this obstacle, many
previous studies have focused on amplified settings
where hallucinations are more likely to occur or
are easier to detect. These include settings where
(i) perturbations are induced either in the source

2We denote the set of indices {1, . . . , n} by [n].
3We extend the simplex notation for matrices repre-

senting joint distributions, △n×m = {P ∈ Rn×m :
P ≥ 0,1⊤P1 = 1}.
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sentence or in the target prefix (Lee et al., 2018;
Müller and Sennrich, 2021; Voita et al., 2021; Fer-
rando et al., 2022); (ii) the training data is corrupted
with noise (Raunak et al., 2021); (iii) the model
is tested under domain shift (Wang and Sennrich,
2020; Müller et al., 2020); (iv) the detectors are
validated on artificial hallucinations (Zhou et al.,
2021). Nevertheless, these works have provided im-
portant insights towards better understanding of the
phenomenon. For instance, it has been found that
samples memorized by an NMT model are likely
to generate hallucinations when perturbed (Raunak
et al., 2021), and hallucinations are related to lower
source contributions and over-reliance on the target
prefix (Voita et al., 2021; Ferrando et al., 2022).

In this work, we depart from artificial settings,
and focus on studying hallucinations that are nat-
urally produced by the NMT model. To that end,
we follow the taxonomy introduced in Raunak et al.
(2021) and later extended and studied in Guerreiro
et al. (2022). Under this taxonomy, hallucinations
are translations that contain content that is detached
from the source sentence. To disentangle the dif-
ferent types of hallucinations, they can be catego-
rized as: largely fluent detached hallucinations or
oscillatory hallucinations. The former are trans-
lations that bear little or no relation at all to the
source content and may be further split according
to the severity of the detachment (e.g. strong or
full detachment) while the latter are inadequate
translations that contain erroneous repetitions of
words and phrases. We illustrate in Appendix A
the categories described above through examples
of hallucinated outputs.

3 On-the-fly detection of hallucinations

On-the-fly hallucination detectors are systems that
can detect hallucinations without access to refer-
ence translations. These detectors are particularly
relevant as they can be deployed in online applica-
tions where references are not readily available.4

3.1 Categorization of hallucination detectors
Previous work on on-the-fly detection of hallucina-
tions in NMT has primarily focused on two cate-
gories of detectors: external detectors and model-
based detectors. External detectors employ auxil-
iary models trained for related tasks such as quality

4As such, in this work, we will not consider metrics that
depend on a reference sentence (e.g. chrF (Popović, 2016),
COMET (Rei et al., 2020)). For an analysis on the perfor-
mance of such metrics, please refer to Guerreiro et al. (2022).

estimation (QE) and cross-lingual embedding sim-
ilarity. On the other hand, model-based detectors
only require access to the NMT model that gener-
ates the translations, and work by leveraging rele-
vant internal features such as model confidence and
cross-attention. These detectors are attractive due
to their flexibility and low memory footprint, as
they can very easily be plugged in on a vast range
of NMT models without the need for additional
training data or computing infrastructure. More-
over, Guerreiro et al. (2022) show that model-based
detectors can be predictive of hallucinations, out-
performing QE models and even performing on par
with state-of-the-art reference-based metrics.

3.2 Problem Statement
We will focus specifically on model-based detec-
tors that require obtaining internal features from
a model M. Building a hallucination detector
generally consists of finding a scoring function
sM : X → R and a threshold τ ∈ R to build a
binary rule gM : X → {0, 1}. For a given test
sample x ∈ X ,

gM(x) = 1{sM(x) > τ}. (2)

If sM is an anomaly score, gM(x) = 0 implies
that the model M generates a ‘normal’ translation
for the source sequence x, and gM(x) = 1 implies
that M generates a ‘hallucination’ instead.5

4 Unsupervised Hallucination Detection
with Optimal Transport

Anomalous cross-attention maps have been con-
nected to the hallucinatory mode in several
works (Lee et al., 2018; Berard et al., 2019; Raunak
et al., 2021). Our method builds on this idea and
uses the Wasserstein distance to estimate the cost
of transforming a translation source mass distribu-
tion into a reference distribution. Intuitively, the
higher the cost of such transformation, the more
distant—and hence the more anomalous— the at-
tention of the translation is with respect to that of
the reference translation.

4.1 Wass-to-Unif: A data independent
scenario

In this scenario, we only rely on the generated
translation and its source mass distribution to de-
cide whether the translation is a hallucination or
not. Concretely, for a given test sample x ∈ X :

5From now on, we will omit the subscript M from all
model-based scoring functions to ease notation effort.
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Figure 1: Procedure diagram for computation of the detection scores for the data-driven method Wass-to-Data.

1. We first obtain the source mass attention distri-
bution πM(x) ∈ △|x|;

2. We then compute an anomaly score, swtu(x),
by measuring the Wasserstein distance between
πM(x) and a reference distribution u:

swtu(x) = W (πM(x),u). (3)

Choice of reference translation. A natural choice
for u is the uniform distribution, u = 1

n · 1, where
1 is a vector of ones of size n. In the context of our
problem, a uniform source mass distribution means
that all source tokens are equally attended.

Choice of cost function. We consider the 0/1 cost
function, c(i, j) = 1[i ̸= j], as it guarantees that
the cost of transporting a unit mass from any token
i to any token j ̸= i is constant. For this distance
function, the problem in Equation 1 has the follow-
ing closed-form solution (Villani, 2009):

W (πM(x),u) = 1/2 ∥πM(x)− u∥1. (4)

This is a well-known result in optimal transport: the
Wasserstein distance under the 0/1 cost function is
equivalent to the total variation distance between
the two distributions. On this metric space, the
Wasserstein distance depends solely on the proba-
bility mass that is transported to transform πM(x)
to u. Importantly, this formulation ignores the
starting locations and destinations of that proba-
bility mass as the cost of transporting a unit mass
from any token i to any token j ̸= i is constant.

Interpretation of Wass-to-Unif. Attention maps
for which the source attention mass is highly con-
centrated on a very sparse set of tokens (regardless
of their location in the source sentence) can be very
predictive of hallucinations (Berard et al., 2019;
Guerreiro et al., 2022). Thus, the bigger the dis-
tance between the source mass distribution of a
test sample and the uniform distribution, the more
peaked the former is, and hence the closer it is to
such predictive patterns.

4.2 Wass-to-Data: A data-driven scenario
In this scenario, instead of using a single refer-
ence distribution, we use a set of reference source
mass distributions, Rx, obtained with the same
model. By doing so, we can evaluate how anoma-
lous a given translation is compared to a model
data-driven distribution, rather than relying on an
arbitrary choice of reference distribution.

First, we use a held-out dataset Dheld that con-
tains samples for which the model M generates
good quality translations according to an auto-
matic evaluation metric (in this work, we use
COMET (Rei et al., 2020)). We use this dataset
to construct (offline) a set of held-out source atten-
tion distributions Rheld = {πM(x) ∈ △|x| : x ∈
Dheld}. Then, for a given test sample x ∈ X , we
apply the procedure illustrated in Figure 1:

1. We generate a translation ŷ = (y1, . . . , ym) and
obtain the source mass attention distribution
πM(x) ∈ △|x|;

2. We apply a length filter to construct the sample
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reference set Rx, by restricting Rx to contain
source mass distributions of Rheld correspon-
dent to translations of size [(1− δ)m, (1+ δ)m]
for a predefined δ ∈]0, 1[;6

3. We compute pairwise Wasserstein-1 distances
between πM(x) and each element ri of Rx:

Wx =
(
W1(πM(x), r1), . . . , (5)

W1(πM(x), r|Rx|)
)
.

4. We obtain the anomaly score swtd(x) by averag-
ing the bottom-k distances in Wx:

swtd(x) =
1
k

∑
si∈S si, (6)

where S is the set containing the k smallest
elements of Wx.

Interpretation of Wass-to-Data. Hallucinations,
unlike good translations, are not fully supported by
the source content. Wass-to-Data evaluates how
anomalous a translation is by comparing the source
attention mass distribution of that translation to
those of good translations. The higher the Wass-
to-Data score, the more anomalous the source at-
tention mass distribution of that translation is in
comparison to those of good translations, and the
more likely it is to be an hallucination.

Relation to Wass-to-Unif. The Wasserstein-1
distance (see Section 2.2) between two distribu-
tions is equivalent to the ℓ1-norm of the differ-
ence between their cumulative distribution func-
tions (Peyré and Cuturi, 2018). Note that this
is different from the result in Equation 4, as the
Wasserstein distance under c(i, j) = 1[i ̸= j] as
the cost function is proportional to the norm of the
difference between their probability mass functions.
Thus, Wass-to-Unif will be more sensitive to the
overall structure of the distributions (e.g. sharp
probability peaks around some points), whereas
Wass-to-Data will be more sensitive to the specific
values of the points in the two distributions.

4.3 Wass-Combo: The best of both worlds
With this scoring function, we aim at combining
Wass-to-Unif and Wass-to-Data into a single de-
tector. To do so, we propose using a two-stage
process that exploits the computational benefits

6For efficiency reasons, we set the maximum cardinality
of Rx to |R|max. If length-filtering yields a set with more than
|R|max examples, we randomly sample |R|max examples from
that set to construct Rx.

of Wass-to-Unif over Wass-to-Data.7 Put simply,
(i) we start by assessing whether a test sample is
deemed a hallucination according to Wass-to-Unif,
and if not (ii) we compute the Wass-to-Data score.
Formally,

swc(x) = 1 [swtu(x) > τwtu]× s̃wtu(x) (7)

+ 1 [swtu(x) ≤ τwtu]× swtd(x)

for a predefined scalar threshold τwtu. To set that
threshold, we compute Wwtu = {swtu(x) : x ∈
Dheld} and set τwtu = PK , i.e τwtu is the K th per-
centile of Wwtu with K ∈ ]98, 100[ (in line with
hallucinatory rates reported in (Müller et al., 2020;
Wang and Sennrich, 2020; Raunak et al., 2022)).8

5 Experimental Setup

5.1 Model and Data

We follow the setup in Guerreiro et al. (2022). In
that work, the authors released a dataset of 3415
translations for WMT18 DE-EN news translation
data (Bojar et al., 2018) with annotations on criti-
cal errors and hallucinations. Our analysis in the
main text focuses on this dataset as it is the only
available dataset that contains human annotations
on hallucinations produced naturally by an NMT
model (we provide full details about the dataset
and the model in Appendix A). Nevertheless, in
order to access the broader validity of our methods
for other low and mid-resource language pairs and
models, we follow a similar setup to that of Tang
et al. (2022) in which quality assessments are con-
verted to hallucination annotations. For those ex-
periments, we use the RO-EN (mid-resource) and
NE-EN (low-resource) translations from the MLQE-
PE dataset (Fomicheva et al., 2022). In Appendix J,
we present full details on the setup and report the
results of these experiments. Importantly, our em-
pirical observations are similar to those of the main
text. For all our experiments, we obtain all model-
based information required to build the detectors
using the same models that generated the transla-
tions in consideration.

7We also tested with a convex combination of the two de-
tectors’ scores. We present results for this alternative approach
in Appendix G.

8In order to make the scales of swtu and swtd compatible,
we use a scaled s̃wtu value instead of swtu in Equation 7. We
obtain s̃wtu by min-max scaling swtu such that s̃wtu is within
the range of swtd values obtained for a held-out set.
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Figure 2: Histogram scores for our methods – Wass-to-Unif (left), Wass-to-Data (center) and Wass-Combo (right).
We display Wass-to-Data and Wass-Combo scores on log-scale.

5.2 Baseline detectors
5.2.1 Model-based detectors
We compare our methods to the two best per-
forming model-based methods in Guerreiro et al.
(2022).9

Attn-ign-SRC. This method consists of comput-
ing the proportion of source words with a total
incoming attention mass lower than a threshold λ:

sais(x) =
1
n

∑n
j=1 1

[
(Ω⊤(x)1)j < λ

]
. (8)

This method was initially proposed in Berard et al.
(2019). We follow their work and use λ = 0.2.

Seq-Logprob. We compute the length-normalised
sequence log-probability of the translation:

sslp(x) =
1
m

∑m
k=1 log pθ(yk | y<k,x). (9)

5.2.2 External detectors
We provide a comparison to detectors that exploit
state-of-the-art models in related tasks, as it helps
monitor the development of model-based detectors.

CometKiwi. We compute sentence-level quality
scores with CometKiwi (Rei et al., 2022), the
winning reference-free model of the WMT22 QE
shared task (Zerva et al., 2022). It has more than
565M parameters and it was trained on more than
1M human quality annotations. Importantly, this
training data includes human annotations for sev-
eral low-quality translations and hallucinations.

LaBSE. We leverage LaBSE (Feng et al., 2020)
to compute cross-lingual sentence representations
for the source sequence and translation. We use
the cosine similarity of these representations as
the detection score. The model is based on the
BERT (Devlin et al., 2019) architecture and was

9We compare with ALTI+ (Ferrando et al., 2022), a method
thas was leveraged for hallucination detection concurrently to
our work in Dale et al. (2022), in Appendix H.

trained on more than 20 billion sentences. LaBSE
makes for a good baseline, as it was optimized in
a self-supervised way with a translate matching
objective that is very much aligned with the task of
hallucination detection: during training, LaBSE is
given a source sequence and a set of translations
including the true translation and multiple negative
alternatives, and the model is optimized to specif-
ically discriminate the true translation from the
other negative alternatives by assigning a higher
similarity score to the former.

5.3 Evaluation metrics

We report the Area Under the Receiver Operating
Characteristic curve (AUROC) and the False Posi-
tive Rate at 90% True Positive Rate (FPR@90TPR)
to evaluate the performance of different detectors.

5.4 Implementation Details

We use WMT18 DE-EN data samples from the held-
out set used in Guerreiro et al. (2022), and construct
Dheld to contain the 250k samples with highest
COMET score. To obtain Wass-to-Data scores,
we set δ = 0.1, |R|max = 1000 and k = 4. To ob-
tain Wass-to-Combo scores, we set τwtu = P99.9.
We perform extensive ablations on the construc-
tion of Rheld and on all other hyperparameters in
Appendix G. We also report the computational run-
time of our methods in Appendix D.

6 Results

6.1 Performance on on-the-fly detection

We start by analyzing the performance of our pro-
posed detectors on a real world on-the-fly detection
scenario. In this scenario, the detector must be able
to flag hallucinations regardless of their specific
type as those are unknown at the time of detection.

Wass-Combo is the best model-based detector.
Table 1 shows that Wass-Combo outperforms most
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DETECTOR AUROC ↑ FPR@90TPR ↓
External Detectors
CometKiwi 86.96 53.61
LaBSE 91.72 26.91
Model-based Detectors
Attn-ign-SRC 79.36 72.83
Seq-Logprob 83.40 59.02
OURS
Wass-to-Unif 80.37 72.22
Wass-to-Data 84.20 0.15 48.15 0.54

Wass-Combo 87.17 0.07 47.56 1.30

Table 1: Performance of all hallucination detectors. For
Wass-to-Data and Wass-Combo we present the mean
and standard deviation scores across five random seeds.

other methods both in terms of AUROC and FPR.
When compared to the previous best-performing
model-based method (Seq-Logprob), Wass-Combo
obtains boosts of approximately 4 and 10 points in
AUROC and FPR, respectively. These performance
boosts are further evidence that model-based fea-
tures can be leveraged, in an unsupervised manner,
to build effective detectors. Nevertheless, the high
values of FPR suggest that there is still a significant
performance margin to reduce in future research.

The notion of data proximity is helpful to detect
hallucinations. Table 1 shows that Wass-to-Data
outperforms the previous best-performing model-
based method (Seq-Logprob) in both AUROC and
FPR (by more than 10%). This supports the idea
that cross-attention patterns for hallucinations are
anomalous with respect to those of good model-
generated translations, and that our method can ef-
fectively measure this level of anomalousness. On
the other hand, compared to Wass-to-Uni, Wass-to-
Data shows a significant improvement of 30 FPR
points. This highlights the effectiveness of lever-
aging the data-driven distribution of good trans-
lations instead of the ad-hoc uniform distribution.
Nevertheless, Table 1 and Figure 2 show that com-
bining both methods brings further performance
improvements. This suggests that these methods
may specialize in different types of hallucinations,
and that combining them allows for detecting a
broader range of anomalies. We will analyze this
further in Section 6.2.

Our model-based method achieves comparable
performance to external models. Table 1 shows
that Wass-Combo outperforms CometKiwi, with
significant improvements on FPR. However, there
still exists a gap to LaBSE, the best overall detector.

Figure 3: Distribution of Wass-Combo scores (on log-
scale) for hallucinations and data samples, and perfor-
mance on a fixed-threshold scenario.

This performance gap indicates that more powerful
detectors can be built, paving the way for future
work in model-based hallucination detection. Nev-
ertheless, while relying on external models seems
appealing, deploying and serving them in practice
usually comes with additional infrastructure costs,
while our detector relies on information that can be
obtained when generating the translation.

Translation quality assessments are less predic-
tive than similarity of cross-lingual sentence rep-
resentations. Table 1 shows that LaBSE outper-
forms the state-of-the-art quality estimation system
CometKiwi, with vast improvements in terms of
FPR. This shows that for hallucination detection,
quality assessments obtained with a QE model are
less predictive than the similarity between cross-
lingual sentence representations. This may be ex-
plained through their training objectives (see Sec-
tion 5.2.2): while CometKiwi employs a more
general regression objective in which the model
is trained to match human quality assessments,
LaBSE is trained with a translate matching training
objective that is very closely related to the task of
hallucination detection.

6.2 Do detectors specialize in different types
of hallucinations?

In this section, we present an analysis on the per-
formance of different detectors for different types
of hallucinations (see Section 2.3). We report both
a quantitative analysis to understand whether a de-
tector can distinguish a specific hallucination type
from other translations (Table 2), and a qualitative
analysis on a fixed-threshold scenario10 (Figure 3).

10We set the threshold by finding the 99th percentile of
Wass-Combo scores obtained for 100k samples from the clean
WMT18 DE-EN held-out set (see Section 5.4).
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DETECTOR
Fully Oscillatory Strongly

Detached Detached

External Detectors
CometKiwi 87.75 93.04 81.78
LaBSE 98.91 84.62 89.72
Model-based Detectors
Attn-ign-SRC 95.76 59.53 77.42
Seq-Logprob 95.64 71.10 80.15
OURS
Wass-to-Unif 96.35 69.75 72.19
Wass-to-Data 88.24 0.29 87.80 0.10 77.60 0.18

Wass-Combo 96.57 0.10 85.74 0.10 78.89 0.15

(a) AUROC – the higher the better.

DETECTOR
Fully Oscillatory Strongly

Detached Detached

External Detectors
CometKiwi 33.70 23.80 42.98
LaBSE 0.52 50.26 28.88
Model-based Detectors
Attn-ign-SRC 8.51 81.24 76.68
Seq-Logprob 4.62 72.99 65.39
OURS
Wass-to-Unif 3.27 78.78 88.32
Wass-to-Data 36.60 1.92 40.04 1.57 63.96 2.04

Wass-Combo 3.56 0.00 41.38 1.59 64.55 1.93

(b) FPR@90TPR (%) – the lower the better.

Table 2: Performance of all hallucination detectors for each hallucination type. For Wass-to-Data and Wass-Combo,
we present the mean and standard deviation across five random seeds.

This analysis is particularly relevant to better under-
stand how different detectors specialize in different
types of hallucinations. In Appendix J, we show
that the trends presented in this section hold for
other mid- and low-resource language pairs.

Fully detached hallucinations. Detecting fully
detached hallucinations is remarkably easy for
most detectors. Interestingly, Wass-to-Unif sig-
nificantly outperforms Wass-to-Data on this type
of hallucination. This highlights how combin-
ing both methods can be helpful. In fact, Wass-
Combo performs similarly to Wass-to-Unif, and
can very easily separate most fully detached halluci-
nations from other translations on a fixed-threshold
scenario (Figure 3). Note that the performance
of Wass-to-Unif for fully detached hallucinations
closely mirrors that of Attn-ign-SRC. This is not
surprising, since both methods, at their core, try to
capture similar patterns: translations for which the
source attention mass distribution is highly concen-
trated on a small set of source tokens.

Strongly detached hallucinations. These are the
hardest hallucinations to detect with our meth-
ods. Nevertheless, Wass-Combo performs com-
petitively with the previous best-performing model-
based method for this type of hallucinations (Seq-
Logprob). We hypothesize that the difficulty in
detecting these hallucinations may be due to the
varying level of detachment from the source se-
quence. Indeed, Figure 3 shows that Wass-Combo
scores span from a cluster of strongly detached hal-
lucinations with scores similar to other data sam-
ples to those similar to the scores of most fully
detached hallucinations.

Oscillatory hallucinations. Wass-to-Data and
Wass-Combo significantly outperform all previous
model-based detectors on detecting oscillatory hal-
lucinations. This is relevance in the context of
model-based detectors, as previous detectors no-
tably struggle with detecting these hallucinations.
Moreover, Wass-Combo also manages to outper-
form LaBSE with significant improvements in FPR.
This hints that the repetition of words or phrases
may not be enough to create sentence-level rep-
resentations that are highly dissimilar from the
non-oscillatory source sequence. In contrast, we
find that CometKiwi appropriately penalizes oscilla-
tory hallucinations, which aligns with observations
made in Guerreiro et al. (2022).

Additionally, Figure 3 shows that the scores
for oscillatory hallucinations are scattered along
a broad range. After close evaluation, we observed
that this is highly related to the severity of the oscil-
lation: almost all non-detected hallucinations are
not severe oscillations (see Appendix I).

7 Conclusions

We propose a novel plug-in model-based detec-
tor for hallucinations in NMT. Unlike previous at-
tempts to build an attention-based detector, we do
not rely on ad-hoc heuristics to detect hallucina-
tions, and instead pose hallucination detection as
an optimal transport problem: our detector aims to
find translations whose source attention mass distri-
bution is highly distant from those of good quality
translations. Our empirical analysis shows that
our detector outperforms all previous model-based
detectors. Importantly, in contrast to these prior
approaches, it is suitable for identifying oscillatory
hallucinations, thus addressing an important gap in
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the field. We also show that our detector is competi-
tive with external detectors that use state-of-the-art
quality estimation or cross-lingual similarity mod-
els. Notably, this performance is achieved without
the need for large models, or any data with quality
annotations or parallel training data. Finally, thanks
to its flexibility, our detector can be easily deployed
in real-world scenarios, making it a valuable tool
for practical applications.

Limitations

We highlight two main limitations of our work.

Firstly, instead of focusing on more recent NMT
models that use large pretrained language models
as their backbone, our experiments were based on
transformer base models. That is because we used
the NMT models that produced the translations in
the datasets we analyze, i.e, the models that actually
hallucinate for the source sequences in the dataset.
Nevertheless, research on hallucinations for larger
NMT models makes for an exciting line of future
work and would be valuable to assess the broad
validity of our claims.

Secondly, although our method does not require
any training data or human annotations, it relies on
access to a pre-existing database of source mass
distributions. This can be easily obtained offline by
running the model on monolingual data to obtain
the distributions. Nevertheless, these datastores
need not be costly in terms of memory. In fact, in
Appendix J, we validate our detectors for datastores
that contain less than 100k distributions.
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A Model and Data Details

NMT Model. The NMT model used in Guerreiro
et al. (2022) to create the hallucination dataset is
a Transformer base model (Vaswani et al., 2017)
(hidden size of 512, feedforward size of 2048, 6 en-
coder and 6 decoder layers, 8 attention heads). The
model has approximately 77M parameters. It was
trained with the fairseq toolkit (Ott et al., 2019)
on WMT18 DE-EN data (excluding Paracrawl): the
authors randomly choose 2/3 of the dataset for train-
ing and use the remaining 1/3 as a held-out set for
analysis. We use that same held-out set in this
work.

Dataset Stats. The dataset used in this paper was
introduced in Guerreiro et al. (2022). It consists of
3415 translations from WMT18 DE-EN data with
structured annotations on different types of halluci-
nations and pathologies. Overall, the dataset con-
tains 118 translations annotated as fully detached
hallucinations, 90 as strongly detached hallucina-
tions, and 86 as oscillatory hallucinations.11 The
other translations are either incorrect (1073) or cor-
rect (2048). Details on annotation, a high-level
overview and other statistics can be found in the
original paper. We show examples of hallucinations
for each category in Table 3.12

B Details on External Detectors

COMET. We use models available in the of-
ficial repository13: wmt22-cometkiwi-da for
CometKiwi and wmt20-comet-da for COMET.

LaBSE. We use the version available in
sentence-transformers (Reimers and
Gurevych, 2019).14

C Performance of reference-free
COMET-based models

Guerreiro et al. (2022) used the COMET-QE
version wmt20-comet-qe-da, whereas we are
using the latest iteration wmt22-cometkiwi-da
(CometKiwi). CometKiwi was trained on
human annotations from the MLQE-PE

11Some strongly detached hallucinations have also been
annotated as oscillatory hallucinations. In these cases, we
consider them to be oscillatory.

12All data used in this paper is licensed under a MIT Li-
cense.

13https://github.com/Unbabel/COMET
14https://huggingface.co/

sentence-transformers/LaBSE

dataset (Fomicheva et al., 2022), which con-
tains a high percentage of hallucinations for some
language pairs (Specia et al., 2021; Tang et al.,
2022). We show the performance of both these
versions in Table 4. CometKiwi significantly
outperforms the previous iteration of COMET-QE.
This hints that training quality estimation models
with more negative examples can improve their
ability to adequately penalize hallucinations.

D Computational runtime of our
detectors

Our detectors do not require access to a GPU ma-
chine. All our experiments have been ran on a ma-
chine with 2 physical Intel(R) Xeon(R) Gold 6348
@ 2.60GHz CPUs (total of 112 threads). Obtaining
Wass-to-Unif scores for all the 3415 translations
from the Guerreiro et al. (2022) dataset takes less
than half a second, while Wass-to-Data scores are
obtained in little over 4 minutes.

E Evaluation Metrics

We use scikit-learn (Pedregosa et al., 2011)
implementations of our evaluation metrics.15

F Tracing-back performance boosts to
the construction of the reference set Rx

In Section 6.1 in the main text, we showed that
evaluating how distant a given translation is com-
pared to a data-driven reference distribution–rather
than to an ad-hoc reference distribution– led to
increased performance. Therefore, we will now
analyze the construction of the reference set Rx

to obtain Wass-to-Data scores (step 2 in Figure 1).
We conduct experiments to investigate the impor-
tance of the two main operations in this process:
defining and length-filtering the distributions in
Rheld.

Construction of Rheld. To construct Rheld, we
first need to obtain the source attention mass dis-
tributions for each sample in Dheld. If Dheld is a
parallel corpus, we can force-decode the reference
translations to construct Rheld. As shown in Ta-
ble 5, this construction produces results similar to
using good-quality model-generated translations.
Moreover, we also evaluate the scenario where
Rheld is constructed with translations of any qual-
ity. Table 5 shows that although filtering for quality

15https://scikit-learn.org
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Category Source Sentence Reference Translation Hallucination

Oscillatory
Als Maß hierfür wird meist der sogenannte Pearl
Index benutzt (so benannt nach einem Statistiker,
der diese Berechnungsformel einführte).

As a measure of this, the so-called Pearl Index
is usually used (so named after a statistician
who introduced this calculation formula).

The term "Pearl Index" refers to the term
"Pearl Index" (or "Pearl Index") used to
refer to the term "Pearl Index" (or "Pearl
Index").

Strongly
Detached Fraktion der Grünen / Freie Europäische Allianz The Group of the Greens/European Free Al-

liance

Independence and Democracy Group (in-
cludes 10 UKIP MEPs and one indepen-
dent MEP from Ireland)

Fully
Detached

Die Zimmer beziehen, die Fenster mit Aussicht
öffnen, tief durchatmen, staunen.

Head up to the rooms, open up the windows
and savour the view, breathe deeply, marvel. The staff were very friendly and helpful.

Table 3: Examples of hallucination types. Hallucinated content is shown shaded.

MODEL VERSION AUROC ↑ FPR@90TPR ↓
wmt20-comet-qe-da 70.15 57.24
wmt22-cometkiwi-da 86.96 53.61

Table 4: Performance of COMET-QE
(wmt20-comet-qe-da) and CometKiwi
(wmt22-cometkiwi-da) on the on-the-fly detec-
tion scenario.

ABLATION AUROC ↑ FPR@90TPR ↓
Model-Generated Translations
Any 83.27 0.39 50.08 1.65

Quality-filtered 84.20 0.15 48.15 0.54

Reference Translations
Any 83.95 0.16 50.26 0.60

Table 5: Ablations on Wass-to-Data by changing the
construction of Rheld. We present the mean and standard
deviation (in subscript) across five random seeds.

improves performance, the gains are not substan-
tial. This connects to findings by Guerreiro et al.
(2022): hallucinations exhibit different properties
from other translations, including other incorrect
translations. We offer further evidence that prop-
erties of hallucinations—in this case, the source
attention mass distributions—are not only differ-
ent to those of good-quality translations but also to
most other model-generated translations.

Length-filtering the distributions in Rheld. The
results in Table 6 show that length-filtering boosts
performance significantly. This is expected: our
translation-based length-filtering penalizes transla-
tions whose length is anomalous for their respective
source sequences. This is particularly useful for
detecting oscillatory hallucinations.

G Ablations

We perform ablations on Wass-to-Data and Wass-
Combo for all relevant hyperparameters: the length-

ABLATION AUROC ↑ FPR@90TPR ↓
Random Sampling 80.65 0.15 57.06 2.04

Length Filtering 84.20 0.15 48.15 0.54

Table 6: Ablations on Wass-to-Data by changing the
length-filtering window to construct Rx. We present
the mean and standard deviation (in subscript) across
five random seeds.

ABLATION AUROC ↑ FPR@90TPR ↓
Random Sampling 80.65 0.15 57.06 2.04

Length Filtering (δ > 0)
δ = 0.1 84.20 0.15 48.15 0.54

δ = 0.2 84.37 0.17 47.12 1.04

δ = 0.3 83.93 0.18 48.45 2.32

δ = 0.4 83.06 0.16 50.12 1.29

δ = 0.5 82.78 0.34 50.89 0.71

Table 7: Ablation on Wass-to-Data by changing the
length-filtering window to construct R. We present the
mean and standard deviation (in subscript) across five
random seeds.

filtering parameter δ, the maximum cardinality
of R, |R|max, the value of k to compute the
Wass-to-Data scores (step 4 in Figure 1), and the
threshold on Wass-to-Unif scores to compute Wass-
Combo scores. The results are shown in Table 7 to
Table 10, respectively. We also report in Table 11
the performance of Wass-to-Data with a 0/1 cost
function instead of the ℓ1 distance function.

On length-filtering. The results in Table 7 show
that, generally, the bigger the length window, the
worse the performance. This is expected: if the
test translation is very different in length to those
obtained for the source sequences in Rx, the more
penalized it may be for the length mismatch instead
of source attention distribution pattern anomalies.

On the choice of |R|max. Table 8 shows that in-
creasing |R|max leads to better performance, with
reasonable gains obtained until |R|max = 2000.
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ABLATION AUROC ↑ FPR@90TPR ↓
|R|max = 100 82.99 0.19 50.86 0.95

|R|max = 500 83.93 0.08 48.07 1.37

|R|max = 1000 84.20 0.15 48.15 0.54

|R|max = 2000 84.40 0.14 49.23 1.08

|R|max = 5000 84.43 0.13 48.05 0.59

Table 8: Ablation on Wass-to-Data by changing the
maximum cardinality of R, |R|max. We present the
mean and standard deviation (in subscript) across five
random seeds.

ABLATION AUROC ↑ FPR@90TPR ↓
Minimum 84.00 0.33 52.03 1.28

Bottom-k (k > 1)
k = 2 84.25 0.23 50.07 0.70

k = 4 84.20 0.15 48.15 0.54

k = 8 83.99 0.08 48.38 1.10

k = 16 83.64 0.04 48.05 1.10

k = 32 83.23 0.07 47.34 0.94

Table 9: Ablation on Wass-to-Data by obtaining the
score swtd by averaging the bottom-k distances in R for
different values of k. We present the mean and standard
deviation (in subscript) across five random seeds.

While this increase in performance may be desir-
able, it comes at the cost of higher runtime.

On the choice of k. The results in Table 9 show
that the higher the value of k, the worse the perfor-
mance. However, we do not recommend using the
minimum distance (k = 1) as it can be unstable.

On the choice of threshold on Wass-to-Unif
scores. Table 10 show that, generally, a higher
threshold τ leads to a better performance of Wass-
Combo. Wass-to-Unif scores are generally very
high for fully detached hallucinations, a type of
hallucinations that Wass-to-Data struggles more
to detect. Thus, when combined in Wass-Combo,
we obtain significant boosts in overall performance.
However, if the threshold on Wass-to-Unif scores
is set too low, Wass-to-Combo will correspond
to Wass-to-Unif more frequently which may not
be desirable as Wass-to-Data outperforms it for
all other types of hallucinations. If set too high,
fewer fully detached hallucinations may pass that
threshold and may then be misidentified with Wass-
to-Data scores.

On the choice of Wass-to-Data cost function.
Table 11 shows that using the ℓ1 cost function in-
stead of using the 0/1 cost function to compute
Wass-to-Data scores leads to significant improve-

ABLATION AUROC ↑ FPR@90TPR ↓
τ = P99 85.79 0.08 51.09 0.97

τ = P99.5 86.34 0.07 49.64 1.71

τ = P99.9 87.17 0.07 47.56 1.30

τ = P99.99 84.69 0.15 48.15 0.54

Table 10: Ablation on Wass-Combo by obtaining the
score swc for different scalar thresholds τ = PK (K-th
percentile of Wwtu). We present the mean and standard
deviation (in subscript) across five random seeds.

COST FUNCTION AUROC ↑ FPR@90TPR ↓
ℓ1 (Wasserstein-1) 84.20 0.15 48.15 0.54

0/1 cost 81.78 0.20 51.72 1.17

Table 11: Ablation on Wass-to-Data by changing the
cost function in the computation of the Wasserstein
Distances in Equation 5.

ments. This suggests that when comparing the
source mass attention distribution of a test transla-
tion to other such distributions obtained for other
translations (instead of the ad-hoc uniform distribu-
tion used for Wass-to-Unif scores), the information
from the location of the source attention mass is
helpful to obtain better scores.

On the formulation of Wass-Combo. To com-
bine the information from Wass-to-Unif and Wass-
to-Data, we could also perform a convex combina-
tion of the two scores:

swc(x) = λswtd(x) + (1− λ)s̃wtu(x) (10)

for a predefined scalar parameter λ. In Table 12, we
show that this method is consistently subpar to our
two-pass approach. In fact, this linear interpolation
is not able to bring additional gains in performance
for any of the tested parameters λ when compared
to Wass-to-Data.

H Analysis against ALTI+

Concurrently to our work, Dale et al. (2022) lever-
aged ALTI+ (Ferrando et al., 2022), a method that
evaluates the global relative contributions of both
source and target prefixes to model predictions, for
detection of hallucinations. As hallucinations are
translations detached from the source sequence,
ALTI+ is able to detect them by identifying sen-
tences with minimal source contribution. In Ta-
ble 13, we show that ALTI+ slightly outperforms
Wass-Combo for fully detached hallucinations, but
lags considerably behind on what comes to de-
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Figure 4: Distribution of Wass-Combo scores (on log-scale) for each type of hallucination and performance on a
fixed-threshold scenario. We highlight three hallucinations that are not detected by Wass-Combo. These represent
hallucinations in the dataset that it struggles to identify: (1) exact copies of the source sequence, (2) small level of
detachment in strongly detached hallucinations, and (3) mild repetitions of 1-grams ("design").

ABLATION AUROC ↑ FPR@90TPR ↓
Our Wass-Combo 87.17 0.07 47.56 1.30

Wass-to-Unif (λ = 0) 80.37 72.22
λ = 0.2 81.57 0.00 69.02 0.19

λ = 0.4 82.28 0.01 68.69 0.13

λ = 0.6 82.77 0.02 66.15 1.09

λ = 0.8 83.48 0.05 63.01 0.44

Wass-to-Data (λ = 1) 84.20 0.15 48.15 0.54

Table 12: Convex combination of Wass-to-Unif and
Wass-to-Data scores. We present the mean and standard
deviation (in subscript) across five random seeds.

tecting strongly detached and oscillatory hallucina-
tions.

I Error Analysis of Wass-Combo

We show a qualitative analysis on the same fixed-
threshold scenario described in Section 6.2 in Fig-
ure 4. Differently to Figure 3, we provide examples
of translations that have not been detected by Wass-
Combo for the chosen threshold.

Our detector is not able to detect fully detached
hallucinations that come in the form of exact copies
of the source sentence. For these pathological trans-
lations, the attention map is mostly diagonal and
is thus not anomalous. Although these are severe
errors, we argue that, in a real-world application,
such translations can be easily detected with string
matching heuristics.

We also find that our detector Wass-Combo
struggles with oscillatory hallucinations that come
in the form of mild repetitions of 1-grams or 2-

METHOD AUROC ↑ FPR@90TPR ↓
All
ALTI+ 84.27 66.30
Wass-Combo 87.17 0.07 47.56 1.30

Fully detached
ALTI+ 98.21 2.15
Wass-Combo 96.57 0.10 3.56 0.00

Oscillatory
ALTI+ 71.39 76.72
Wass-Combo 85.74 0.10 41.38 1.59

Strongly Detached
ALTI+ 73.77 89.41
Wass-Combo 78.89 0.15 64.55 1.93

Table 13: Comparison between ALTI+ and Wass-
Combo detection methods. We present the mean and
standard deviation (in subscript) across five random
seeds.

grams (see example in Figure 4). To test this hy-
pothesis, we implemented the binary heuristic top
n-gram count (Raunak et al., 2021; Guerreiro et al.,
2022) to verify whether a translation is a severe os-
cillation: given the entire Dheld, a translation is
flagged as an oscillatory hallucination if (i) it is in
the set of 1% lowest-quality translations according
to CometKiwi and (ii) the count of the top repeated
4-gram in the translation is greater than the count
of the top repeated source 4-gram by at least 2.
Indeed, more than 90% of the oscillatory halluci-
nations not detected by Wass-Combo in Figure 4
were not flagged by this heuristic. We provide 8
examples randomly sampled from the set of oscilla-
tory hallucinations not detected with Wass-Combo
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OSCILLATORY HALLUCINATIONS NOT DETECTED WITH WASS-COMBO

SOURCE Überall flexibel einsetzbar und unübersehbar in Design und Formgebung.
TRANSLATION Everywhere flexible and unmistakable in design and design.

SOURCE Um kahlen Stellen, wenn sie ohne Rüstung pg.
TRANSLATION To dig dig digits if they have no armor pg.

SOURCE Damit wird, wie die Wirtschaftswissenschaftler sagen, der Nennwert vorgezogen.
TRANSLATION This, as economists say, puts the par value before the par value.

SOURCE Besonders beim Reinigen des Verflüssigers kommt Ihnen dies zugute.
TRANSLATION Especially when cleaning the liquefied liquefied liquefied.

SOURCE Müssen die Verkehrsmittel aus- oder abgewählt werden ?
TRANSLATION Do you need to opt-out or opt-out of transport?

SOURCE Schnell drüberlesen - "Ja" auswählen und weiter gehts.
TRANSLATION Simply press the "Yes" button and press the "Yes."

SOURCE Auf den jeweiligen Dorfplätzen finden sich Alt und Jung zum Schwätzchen und zum Feiern zusammen.
TRANSLATION Old and young people will find themselves together in the village’s respective squares for fun and fun.

SOURCE
Zur Absicherung der E-Mail-Kommunikation auf Basis von PGP- als auch X.509-Schlüsseln hat die
Schaeffler Gruppe eine Zertifizierungsinfrastruktur (Public Key Infrastructure PKI) aufgebaut.

TRANSLATION
The Schaeffler Group has set up a Public Key Infrastructure PKI (Public Key Infrastructure PKI) to
secure e-mail communication based on PGP and X.509 keys.

Table 14: Examples of oscillatory hallucinations randomly sampled from the set of oscillatory hallucinations not
detected with Wass-Combo. Most hallucinations come in the form of mild repetitions of 1-grams or 2-grams.

in Table 14. Close manual evaluation of these hal-
lucinations further backs the hypothesis above.

J Experiments on the MLQE-PE dataset

In order to establish the broader validity of our
model-based detectors, we present an analysis on
their performance for other NMT models and on
mid and low-resource language pairs. Overall, the
detectors exhibit similar trends to those discussed
in the main text (Section 6).

J.1 Model and Data

The dataset from (Guerreiro et al., 2022) analysed
in the main text is the only available dataset that
contains human annotations of hallucinated trans-
lations. Thus, in this analysis we will have to make
use of other human annotations to infer annotations
for hallucinations. For that end, we follow a simi-
lar setup to that of (Tang et al., 2022) and use the
MLQE-PE dataset (Fomicheva et al., 2022)— that
has been reported to contain low-quality transla-
tions and hallucinations for NE-EN and RO-EN (Spe-
cia et al., 2021)— to test the performance of our
detectors on these language pairs.

The NE-EN and RO-EN MLQE-PE datasets con-
tain 7000 translations and their respective human
quality assessments (from 1 to 100). Each transla-
tion is scored by three different annotators. As hal-

lucinations lie at the extreme end of NMT patholo-
gies (Raunak et al., 2021), we consider a translation
to be a hallucination if at least two annotators (ma-
jority) gave it a quality score of 1.16 This process
leads to 30 hallucinations for NE-EN and 237 hallu-
cinations for RO-EN. Although the number of hallu-
cinations for NE-EN is relatively small, we decide
to also report experiments on this language pair
because the type of hallucinations found for NE-EN

is very different to those found for RO-EN: almost
all NE-EN hallucinations are oscillatory, whereas
almost all RO-EN are fully detached.

To obtain all model-based information required
to build the detectors, we use the same Trans-
former models that generated the translations in
the datasets in consideration. All details can be
found in Fomicheva et al. (2022) and the official
project repository17. Moreover, to build our held-
out databases of source mass distributions, we
used readily available Europarl data (Koehn, 2005)
for RO-EN (∼100k samples), and filtered Nepali
Wikipedia monolingual data18 used in (Koehn et al.,

16We tried other methods to infer hallucinations from the
annotations (e.g. average quality score below 5, at least one
quality score of 1). The trends on performance were similar
to those reported in this section.

17https://github.com/facebookresearch/mlqe
18Note that creating the datastore only requires access to

monolingual data. If quality filtering is needed and refer-
ences are not available, we suggest using quality estimation or
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DETECTOR
RO-EN NE-EN

AUROC ↑ FPR@90TPR ↓ AUROC ↑ FPR@90TPR ↓
External Detectors
CometKiwi † 99.62 0.49 97.64 4.03
LaBSE 99.72 0.49 92.34 20.03

Model-based Detectors
Attn-ign-SRC 99.16 0.93 28.66 100.0
Seq-Logprob 91.97 16.42 26.38 99.94
OURS
Wass-to-Unif 99.30 0.46 81.49 64.23
Wass-to-Data 96.54 0.07 10.36 0.30 90.18 0.13 48.52 2.64

Wass-Combo 98.75 0.06 0.46 0.00 90.16 0.13 48.52 2.64

Table 15: Performance of all hallucination detectors. For Wass-to-Data and Wass-Combo We present the mean and
standard deviation (in subscript) scores across five random seeds. †CometKiwi has been trained on these MLQE-PE
data samples.

2019) for NE-EN (∼80k samples).

J.2 Results
The trends in Section 6.1 hold for other language
pairs. The results in Table 15 establish the broader
validity of our detectors for other NMT models and,
importantly, for mid and low-resource language
pairs. Similarly to the analysis in 6.1, we find
that our detectors (i) exhibit better performance
than other model-based detectors with significant
gains on the low-resource NE-EN language pair;
and (ii) can be competitive with external detectors
that leverage large models.

The trends in Section 6.2 hold for other language
pairs. In Section A, we remark that almost all NE-
EN hallucinations are oscillatory, whereas almost
all RO-EN hallucinations are fully detached. With
that in mind, the results in Table 15 establish the va-
lidity of the claims in the main-text (Section 6.2) on
these language pairs: (i) detecting fully detached
hallucinations is remarkably easy for most detec-
tors, and Wass-to-Unif outperforms Wass-to-Data
on this type of hallucinations (see results for RO-
EN); and (ii) our detectors significantly outperform
all previous model-based detectors on detecting
oscillatory hallucinations (see results for NE-EN),
which further confirms the notion that some detec-
tors specialize on different types of hallucinations
(e.g Attn-ign-SRC is particularly fit for detecting
fully detached hallucinations, but it does not work
for oscillatory hallucinations).

cross-lingual embedding similarity models to filter low-quality
translations.
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