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Abstract

Dense retrieval has shown promising results in
various information retrieval tasks, and hybrid
retrieval, combined with the strength of sparse
retrieval, has also been actively studied. A key
challenge in hybrid retrieval is to make sparse
and dense complementary to each other. Ex-
isting models have focused on dense models
to capture “residual” features neglected in the
sparse models. Our key distinction is to show
how this notion of residual complementarity is
limited, and propose a new objective, denoted
as RoC (Ratio of Complementarity), which cap-
tures a fuller notion of complementarity. We
propose a two-level orthogonality designed to
improve RoC, then show that the improved
RoC of our model, in turn, improves the per-
formance of hybrid retrieval. Our method out-
performs all state-of-the-art methods on three
representative IR benchmarks: MSMARCO-
Passage, Natural Questions, and TREC Ro-
bust04, with statistical significance. Our find-
ing is also consistent in various adversarial set-
tings.

1 Introduction

Representing and matching queries and documents
(or answers) is crucial for designing models for
Information Retrieval (IR) and open-domain Ques-
tion Answering (QA). Existing approaches have
been categorized into sparse and dense retrieval.

Classic sparse (or symbolic) retrieval such as
BM25 (Robertson and Zaragoza, 2009), quanti-
fies the lexical overlaps (or exact matches) be-
tween query q and document d, weighted by term
frequency (tf) and inverse document frequency
(idf). Such computation can be efficiently local-
ized to a few high-scoring q-d pairs with an in-
verted index, may fail to match pairs with term
mismatches. For example, a text pair with identical

∗Corresponding Author
†Work done before joining current affiliation.

intent—“facebook change password” and “fb mod-
ify passwd”—does not share any common word,
so the pair cannot be matched by lexical retrieval.

To overcome such mismatches, dense retrieval
models, such as BERT-based DPR (Karpukhin
et al., 2020) or coCondenser (Gao and Callan,
2021), aim to support soft “semantic matching”,
by encoding queries and documents into low-
dimensional embedding vectors. Dense representa-
tion is trained so that “password” and “passwd” are
located close in the space even though they have
different lexical representations.

These complementary advantages of each model
have naturally motivated hybrid models (Gao et al.,
2020; Yadav et al., 2020; Ma et al., 2021), which we
denote as BM25+DPR, extracting scores from both
models and selecting documents with the highest
linearly combined scores.

To illustrate how we advance BM25+DPR base-
line, Figure 1(a) shows Recall@10 of BM25+DPR
on Natural Questions, where a yellow circle, repre-
sents questions answerable by BM25, or S, and a
blue circle, represents those answerable by DPR, or
D. Desirably, two retrievers together should cover
all questions in the universe U, but failure is 46.5%,
which corresponds to U −D ∪ S.

To improve, there are two directions: (1) en-
larging |D| and (2) making it more complemen-
tary to S. Figure 1(b) plots CLEAR (Gao et al.,
2020), aiming to emphasize “residual” features
neglected in sparse model, or, increase |D − S|.
Though |D − S| increased from 15.2% (Figure 1a)
to 20.0% (Figure 1b), as intended, failure did not
decrease significantly, from 46.5% (Figure 1a) to
41.8% (Figure 1b). We argue this decrease in fail-
ure cases, is confounded by enlarging |D| from
47.6 (Figure 1a) to 54% (Figure 1b), by comparing
with a hypothetical scenario keeping D fixed, but
reducing failure cases significantly from 41.8% to
14.1% when the intersection is reduced.

Based on these observations, we propose a novel
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Figure 1: Recall@10 on Natural Questions. In the venn diargram, (a) shows BM25+DPR baseline and (b) shows
CLEAR using residual margin. (c) is a hypothetical scenario, identical to (a) but without the intersection

complementarity metric, considering the residual
complementarity |D − S|, but relatively to |D|,
denoted as Ratio of Complementarity (RoC). RoC
is designed to be 1 when two models are disjoint
(Figure 1c), and 0 when D is subsumed to S.

RoC =
|D − S|
|D| = 1− |D ∩ S|

|D| (1)

RoC has the following two advantages:

• RoC is backwardly compatible with existing
residual complementary notions. We later de-
rive (Section 3) that optimizing RoC can be di-
vided into two sub-goals of increases |D− S|
and |D ∩ S|, where the former is compatible
with residual complementarity.

• RoC, when multiplied by |D ∪ S|, directly
approximates the number of questions that
can be answered by hybrid models. As a re-
sult, increasing RoC as an objective, naturally
correlates to the improved performance of a
hybrid retriever.

With these advantages, we use our metric in Table
1 to explain the limitation of CLEAR building on
residual complementarity alone. CLEAR increases
|D − S| as intended, but increases |D ∩ S| as its
byproduct (see Figure 1b), due to their correlation.
In contrast, we propose a simple but effective two-
level orthogonality to resolve this correlation, and
achieves both sub-goals, which significantly im-
proves RoC. Table 1 shows that the improved RoC
correlates to the improved recall as well *.

We verify that enhancement in RoC leads to
improvement in hybrid retrieval performance on
three IR datasets: MS MARCO, Natural Questions
and TREC Robust04.

*This table is a motivational preview, and detailed setting
and results can be found in Section 4.2

Model Increase
|D − S|

Decrease
|D ∩ S| RoC R@100

on NQ
CLEAR ✓ +0.05 +0.51
Ours ✓ ✓ +0.12 +1.19

Table 1: Relative increases in two sub-goals, with re-
spect to BM25+DPR (Figure 1a)

2 Related Work

2.1 Sparse and dense retrieval

Sparse (or symbolic) space is generally indepen-
dent such that data structures, such as inverted in-
dex or bitmap, can efficiently identify matching
candidates with exact matches, and ranking can
also be efficiently computed. BM25 (Robertson
and Zaragoza, 2009) is a well-known lexical rank-
ing model using bag-of-words representation.

Meanwhile, dense retrieval models (Shen et al.,
2014; Guo et al., 2016; Zhai et al., 2016; Nogueira
and Cho, 2019; Zhan et al., 2020) have been pro-
posed to tackle the term mismatch problem, which
can be categorized as two groups (Guo et al.,
2016): (1) embedding-based and (2) interaction-
based models. Our target scenario is the former,
representing query q and document d into two in-
dependent dense vectors and match q-d by using
the vector similarity. However, we also discuss
how our idea can apply to interaction-based rank-
ing approaches (Nogueira and Cho, 2019; McDon-
ald et al., 2018), capturing word-by-word interac-
tions without vectors, which we discuss as non-
embedding models in Section 3.3.

2.2 Complementarity

To leverage complementarity, there have been ap-
proaches to either combine the two spaces, or trans-
fer knowledge from one space to another.

First, for combining, a naive approach is aggre-
gating the scores from two spaces (Ma et al., 2021),
which is advanced to a more sophisticated model,
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Figure 2: Architecture of our model for query-document matching. Red arrow indicates the proposed orthogonality
loss and blue arrow indicates the relevance loss as query-document pairs.

such as CLEAR (Gao et al., 2020) learning by a
residual margin of BM25. Specifically, when q-d
pair is hard to match lexically, the margin becomes
larger, then the loss for semantic matching is em-
phasized. In other words, the model is trained

Second, for transferring, SparTerm (Bai et al.,
2020) learns sparse representations by distilling
contextualized knowledge of BERT into bag-of-
words space. Specifically, based on BERT en-
coders, SparTerm first produces a dense distribu-
tion of semantic importance for the vocabulary
terms, then controls the activation of each term,
ensuring the sparsity of the final representations.
It means that, the representation capacity of term-
based matching methods can be improved up to
semantic-level matching. Ours falls into the first
category that combines the two spaces, but we pro-
pose a new metric named RoC to evaluate com-
plementarity in hybrid retrieval directly. Table 1
shows how existing complementarity metrics only
partially cover RoC. Meanwhile, we also discuss
how ours can be combined with the second cate-
gory approaches, i.e., SparTerm, to achieve further
gains (Section 4.3).

3 Proposed Method

We propose RoC in Section 3.1 and then discuss
how S (Section 3.2) and D (Section 3.3) are imple-
mented. Section 3.4 discusses how D and S can be
combined to optimize RoC.

3.1 Ratio of Complementarity (RoC)

RoC is a metric that can measure complementarity
and directly approximates failure cases in Figure 1,
i.e., RoC ∝ |U − Fail| where U indicates all

answer documents. Based on this hypothesis, our
goal is to maximize |D ∪ S| · RoC. We describe
this goal into two sub-goals as follows:

|D ∪ S| ·RoC

= |D ∪ S| · |D − S| / |D|
= (|D − S|+ |S|) · |D − S| / |D|
≃ |D − S|2 / |D| ∗†

= |D − S| / (1 + |D ∩ S|
|D − S|)

(2)

The first sub-goal is optimizing |D ∩ S|, for
which we separate the features captured by the
sparse and dense models from each other. The sec-
ond sub-goal is to maximize |D−S|, for which we
propose to capture residual features of the sparse
model. We describe how to achieve each sub-goal
in Section 3.3.

3.2 Lexical Representation (S)

While any lexical retriever can be used, we de-
scribe our approach with BM25 (Robertson and
Zaragoza, 2009) to construct symbolic represen-
tation (green vector qlex in Figure 2(left)), to cap-
ture lexical matches. BM25 score can be written
as an inner product between bag-of-words repre-
sentations of the query and document. We define
q and d representation from BM25 as qbm25 and
dbm25 ∈ R|V |, respectively, where the i-th element
of the representations qbm25 and dbm25 can be writ-

†since |S| is a constant.
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ten as follows:

qbm25(i) =

{
IDF(qi) qi ∈ q

0 qi ̸∈ q

dbm25(i) =
TF(di)(k1 + 1)

TF(di) + k1 · (1− b+ b |d|
avgdl)

,

where IDF(·) is inverse document frequency of
term i, and TF(·) is frequency of term i in a given
document. Thus, BM25(q, d) can be denoted as an
inner product between qbm25 and dbm25.

Given that the lexical representations have much
larger dimensionality than semantic representa-
tions, it is required to compress qbm25 and dbm25

into a low-dimensional space. For such com-
pression, random projection (Vempala, 2004) was
found effective for preserving document ranking in
Luan et al. (2020), which we adopt in this work.
Though compression loss exists, this loss can be
bounded by changing embedding dimension k. In
our experiments on NQ, we follow the protocol
from Luan et al. (2020), to set k as 715, which guar-
antees errors to be lower than 0.038, for the 768 di-
mension BERT embedding. Random projection is
a linear transformation via matrix A, and each ele-
ment of the matrix A ∈ R768×|V | is randomly sam-
pled from a Rademacher distribution with equal
probability from the two values: {− 1√

768
, 1√

768
}.

The final lexical representation, qlex and dlex, can
be obtained as follows:

qlex = A · qbm25, dlex = A · dbm25 (3)

With Eq. (3), qlex and dlex are in the same dimen-
sional space as semantic vectors from BERT, while
preserving the ranking. In addition, our goal is to
enforce complementarity with the semantic vectors
in Section 3.3.

From lexical representations, the final relevance
score between query q and document d is calculated
by an inner product, as follows:

Scorelex(q, d) = qlex · dlex (4)

This relevance score is approximated to BM25
score, and at the same time, we can handle the
two vectors, qlex and dlex, in semantic space.

3.3 Semantic Representation (D)
For semantic representation (pink vectors in Fig-
ure 2(left)), we adopt a state-of-the-art (coCon-
denser; (Gao and Callan, 2021)) for explanation

purposes, consisting of a dual-encoder structure
based on BERT (Devlin et al., 2019). Thus, our
dense retrieval follows BERT’s architecture, set-
tings, and hyper-parameters. Following BERT’s
input style, we apply wordpiece tokenizer to the
input document and query, and then add a [CLS]
token at the beginning and a [SEP] token at the end,
as follows:

Input(·) = [CLS] Tokenizer(·) [SEP] (5)

Then, we take the embeddings of queries and docu-
ments, from the representation of BERT at [CLS]
token. The semantic representations of q and d can
be formulated as follows:

hq = BERT(Input(q)) ∈ R|q|×768

hd = BERT(Input(d)) ∈ R|d|×768

qsem = Pool(hq), dsem = Pool(hd) ∈ R768

(6)

where Pool(·) indicates [CLS] pooling extracting
the first vector over the hidden states h. Their
semantic relevance Scoresem is calculated by an
inner product of qsem and dsem: Scoresem = qsem ·
dsem.

The training loss for DPR is the negative log
likelihood of the positive passage:

Lrel = − log
eScoresem(q,d+)

eScoresem(q,d+) +
∑

d− eScoresem(q,d−)
,

(7)

where d+ and d− indicate positive and negative
documents corresponding to given query q. For
selecting the negative documents, we follow the
convention in previous works (Karpukhin et al.,
2020; Sachan et al., 2021; Gao et al., 2020), i.e.,
hard negative sampling, of selecting top-ranked
documents retrieved from BM25 that do not con-
tain the answer.

3.4 Complementarity Objective
We propose embedding-level and input-level or-
thogonality constraints, which decrease |D ∩ S|
and increase |D − S|, respectively.

Embedding-level Orthogonality To reduce |D∩
S|, we separate the features between the semantic
and lexical representation spaces. Specifically, we
enforce orthogonality between lexical and semantic
representations (i.e., qlex ⊥ qsem). While training
BERT by Eq. (7), we impose an additional con-
straint using cosine similarity, which normalizes
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the features, to constrain the direction of the two
vectors (lex and sem). We define the loss function
of the orthogonality, as follows:

Lortho =

( ⟨qlex, qsem⟩
∥qlex∥∥qsem∥

)2

+

( ⟨dlex, dsem⟩
∥dlex∥∥dsem∥

)2

(8)
where ⟨·, ·⟩ is an inner product. If the two vectors
are perfectly perpendicular to each other, the loss
is equal to 0; otherwise, it has a positive value.
This is compatible with our goal of minimizing
common features of the two vectors, resulting in
the reduced overlap |D ∩ S| of the semantic (D)
and lexical (S) model, as in Figure 1(c). Adding
this orthogonality loss, the final loss function for
BERT-ranker is computed as follows:

Ltotal = Lrel + Lortho (9)

While we can tune the above aggregation, we em-
pirically found 1:1 aggregation was effective.

Input-level Orthogonality For increasing |D −
S| in the input-level, we follow the convention of
using residual features, neglected by the sparse
model, such as the synonymy between mismatched
terms, e.g., "password = passwd". For this ob-
jective, we propose a method to perturb a sub-
set of matched tokens for learning mismatched
terms, similar to a denoising autoencoder (Hill
et al., 2016). In the denoising autoencoder, input
text is corrupted by random noise function, then
the decoder is trained to recover the original text,
learning robust features on variances (Vincent et al.,
2008). In contrast, while our token perturbation
does not have the recovering decoder, our distinc-
tion is corrupting exact matches, focusing on soft
matching. Given a q-d pair, we denote a set of
exact matched tokens in d as XEM = {xi|xi ∈ q
and xi ∈ d}. Through random sampling, we re-
place tokens in Xem with the [MASK] token and
feed the new sequence d′ into BERT. By the token
perturbation, we modify dsem in Eq. (6) to d′sem,
computed as follows:

d′ = d\{Sample(XEM )}
d′sem = Pool(BERT(Input(d′)))

(10)

where Sample(·) is random sampling of tokens.‡

This perturbation is applied for only training pro-
cess and we do not use this at inference time.

‡We sample 15% tokens in Xem and this ratio was de-
cided empirically on the dev set.

MS
MARCO

Natural
Questions

TREC
Robust04

Total # Queries
808K (train)
6.9K (test)

58K (train)
3.6K (test)

200 (train)
50 (test)

Total # Doc 8.8M 250K 528K
Avg Query Length 5.9 9.4 2.7
Avg Doc Length 56.2 91.1 261.0

Table 2: Statistics of three datasets.

This perturbation enables to apply disentanglement
ideas, not only to new models, but diverse ranges
of existing models (See Section 4.1).

Final Relevance Score For aggregating the
scores from the two IR models, we follow the con-
vention of major baselines (Karpukhin et al., 2020;
Gao et al., 2020; Ma et al., 2021), using a linear
combination.

Scoredual(q, d) = Scorelex(q, d) + λScoresem(q, d)

= qlex · dlex + λqsem · dsem
(11)

where λ is the hyper-parameter controlling the
weight for the different scales.

4 Experiment

In this section, we describe experimental setting
and formulate our research questions to guide our
experiments.

4.1 Experimental Setting
Dataset To validate the effectiveness of our
method, we conduct query-passage (or, query-
document) matching for the following three
datasets, which are widely used and statistically
diverse (Table 2) as well:

• MS MARCO-Passage§ (Nguyen et al., 2016):
This benchmark provides 8.8 million passages,
and labels are obtained from the top-10 results
retrieved by the Bing search engine. As the
relevance labels for the official test set are not
publicly available, we evaluate the development
set only. We use MRR@10 and R@100 to eval-
uate the performance for full-ranking retrieval.

• Natural Questions¶ (Kwiatkowski et al., 2019):
In this dataset, we aim to find relevant passages
that answer the given question from total 250K
§https://github.com/microsoft/

MSMARCO-Passage-Ranking
¶https://ai.google.com/research/

NaturalQuestions/download
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Model
MS MARCO Natural Questions TREC Robust04

MRR
@10 MAP R

@100 MAP R
@100 MAP nDCG

@20
Reported results

DPR (Karpukhin et al., 2020) 31.1∗ - - - 85.4† - -
DPR+PAQ (Oğuz et al., 2021) 31.4 - - - 88.6 - -
POSIT-DRMM+MV (McDonald et al., 2018) - - - - - 27.0 46.1
CLEAR: DPR+BM25 (Gao et al., 2020) 33.8 - - - -
COCONDENSER (Gao and Callan, 2021) 38.2 - - - 89.0 - -

Re-implemented Baselines
(1) SPARTERM 27.94 24.62 72.48 24.54 71.68 19.86 33.48
(2) BM25 19.25 19.57 69.54 26.59 73.70 25.64 41.95
(3) DPR 29.20 25.83 71.42 33.08 85.38 33.36 48.76
(4) DPR + BM25 (Naive sum) 33.75 29.34 77.34 33.56 86.77 33.65 49.32
(5) COCONDENSER 38.19 31.41 80.53 34.32 89.03 34.14 52.29
(6) COCONDENSER + BM25 (Naive sum) 37.85 31.82 80.76 34.47 88.94 34.53 53.06
(7) CLEAR: DPR+BM25 33.46 28.64 77.68 33.17 87.23 34.49 51.63
(8) CLEAR: COCONDENSER+BM25 37.99 32.08 80.42 34.93 89.456 35.866 52.78

OURS: DPR+BM25 34.62 29.27 78.75 34.15 87.89 36.43 53.27
OURS: COCONDENSER+BM25 38.6368 32.336 80.848 35.9768 90.1368 36.7468 53.39

Table 3: Results of the different models on MS MARCO, Natural Questions, and TREC Robust04 datasets. Best
performing results are showin in bold. In Reported results, we copy the numbers from ∗ (Xiong et al., 2020), †

(Karpukhin et al., 2020), and a dash (“-”) indicates the baseline methods did not report scores. 6 and 8 indicates the
p-value < 0.05 when the result is compared with baseline (6) and (8) with Bonferroni correction.

passages, and labels are minded from spans in
Wikipedia articles identified by annotators. Fol-
lowing DPR (Karpukhin et al., 2020), we con-
sider the passages including answers as relevant
passages at evaluation regarding R@k.

• TREC Robust04|| (Voorhees et al., 2005): This
dataset contains 250 topic queries and 528K
documents. As there is no official train/test split
published in Robust04, we follow the split set-
ting provided in McDonald et al. (2018) using
5-fold cross-validation.

We honor the metrics used in the original
work, which explains different metrics for different
datasets. Robust04 is widely used but small in size,
so we also follow the convention of studying MS
MARCO and Natural Questions with larger sizes.

Implementation For DPR encoder, we use a
base version (Uncased) of BERT (Devlin et al.,
2019). For training, we set batch size 10 and use
Adam (Kingma and Ba, 2015) optimizer with learn-
ing rate 0.0002. For stable training, we used gradi-
ent clipping (Pascanu et al., 2013) with norm 1.0,
and we halve the learning rate for every epoch
after 3 epochs of training iteration. We follow

||https://github.com/nlpaueb/
deep-relevance-ranking

DPR (Karpukhin et al., 2020) for the other training
details such as hard negative sampling.

As hyper-parameters, we automatically found
the best values for λ, based on MAP on develop-
ment set, where we search λ in a range of [0, 2]
with 0.1 step size. The best configuration for λ
was 1.5, 1.3 and 2.0 on MARCO-Passage, Natural
Questions and Robust04, respectively.

Evaluation Metric For task evaluation, we com-
pute the following metrics and report average per-
formance: Mean Reciprocal Rank (MRR), Mean
Average Precision (MAP), Normalized Discounted
Cumulative Gain (nDCG), and Recall at top-k
ranks (R@k). For Recall, we follow the previous
work (Karpukhin et al., 2020), which is computed
as the proportion of questions to which the top-k
retrieved passages contain answers. For MAP and
nDCG, we use the latest TREC evaluation script**

to compute these metrics. Results of the p-value
< 0.05 on the t-test with Bonferroni correction are
displayed in bold in Table 3.

Baselines We compare our model with the fol-
lowing baselines which are state-of-the-art re-
trievals. We use SPARTERM (Bai et al., 2020), CO-
CONDENSER (Gao and Callan, 2021), and BM25

**https://trec.nist.gov/trec_eval/
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Model
NQ Robust04

R@20 MAP nDCG
(5) DPR+BM25 78.92 33.65 49.32

+ Emb-level Ortho (E)
80.87

(+1.95)
35.54

(+1.89)
52.19

(+2.87)

+ Input-level Ortho (I)
79.24

(+0.32)
34.08

(+0.43)
51.42

(+2.10)
OURS:DPR+BM25

(I + E)
81.28

(+2.36)
36.43

(+2.78)
53.27

(+3.95)

Table 4: Ablation study. The number inside the paren-
thesis indicates the increase from the baseline model.

as our baselines. SPARTERM is a term-based re-
trieval model using BERT, and gives lexical match-
ing score. BM25 is a well-known lexical matching
method using TF and IDF. For BM25, we use Py-
serini†† open-source implementation. For coCon-
denser, we use open-source implementation‡‡ to
reproduce. On the other hand, we use hybrid space
baselines such as COCONDENSER+BM25 (Naive
sum) and CLEAR (Gao et al., 2020). Both meth-
ods give similarity score by merging the scores of
sparse and dense model. Note our implementation
of CLEAR performs better than their published re-
sults, as we update its base transformer with coCon-
denser. For fair comparison, both ours and CLEAR
build upon the same coCondenser implementation.

4.2 Experimental Results
Research Questions To evaluate the effective-
ness of our method, we address the following re-
search questions:

• RQ1: Does the two-level orthogonality im-
proves the RoC?

• RQ2: Does the improved RoC contribute to
better complementarity?

• RQ3: Does the improved complementarity im-
prove hybrid retrieval?

4.2.1 RQ1: Effectiveness of Orthogonality

Model RoC MAP on NQ
COCONDENSER 0.32 34.47
+ Emb-level Ortho (E) 0.42 34.94
+ Input-level Ortho (I) 0.38 35.62
+ I and E 0.47 35.97

Table 5: Effect of orthogonality objectives on ROC.

††https://github.com/castorini/pyserini
‡‡https://github.com/luyug/Condenser
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Figure 3: Recall@10 of our proposed hybrid method on
Natural Questions compared with Figure 1.

We conduct an ablation study to confirm whether
the two orthogonality constraints contribute to im-
proving RoC. As Table 5 shows, embedding-level
orthogonality improves RoC by 0.1 compared to
naive sum and input-level orthogonality improves
by 0.06. Applying both of these improves RoC by
0.15, which is a significant improvement compared
to CLEAR, while CLEAR improves by only 0.05
from the naive sum.

4.2.2 RQ2: Improved Complementarity with
RoC

In this section, we show our method improves com-
plementarity, by using recall of hybrid retrieval,
and also adversarial evaluation.

First, ours (Figure 3) shows 0.15 higher RoC
than CLEAR because of the improvement in RoC
and failure cases are reduced compared to CLEAR
(Figure 1b). In other words, RoC is a more reliable
predictor of |D ∪ S|, which directly correlates to
performance.

Second, we can also observe complementarity in
adverse scenarios. We categorize queries into two
groups, BM25-Easy and BM25-Hard, following
the convention of (Wei and Zou, 2019). Specif-
ically, we define easy and hard set, by sorting
MRR@10 scores of BM25 for all queries. Top
50% is BM25-Easy, where BM25 alone is already
competitive, and the rest is BM25-Hard, which is
adverse for lexical retrievers.

Desirably, we expect a hybrid model to outper-
form BM25 ranking in the hard set. With this ex-
pectation, on Figure 4, we compare the ratio that
the hybrid model provides better ranking (with re-
spect to MRR@10). Surprisingly, CLEAR does not
improve such ratio of DPR much (+1.5%), which is
consistent with the results in Figure 5. In contrast,
we significantly improve the ratio by +10.2%.

Alternative way to observe adverse scenarios,
is to build an adverse dataset with less matched
terms. Specifically, lexically matched terms be-
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Figure 4: Comparative performances on BM25-Hard,
queries of the lower 50% based on MRR@10 of BM25.
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Figure 5: MRR@10 scores on original and adversarial
MS MARCO development, of CLEAR (left) and Ours
(right).

tween query and document are replaced by their
synonyms (as similarly done in (Wei and Zou,
2019)). Figure 5 compares how CLEAR and ours
generalize to this adverse set. Both models on
the original dataset improve MRR rapidly in early
epochs, while not so much on adverse set until
epoch 5. However, this gap decreases only in ours
(Figure 5b), while stays constant in CLEAR (Fig-
ure 5a), showing CLEAR continues to focus on
lexical matching, while we learn to leverage se-
mantic matching.

4.2.3 RQ3: Effect of Complementarity in
Hybrid Retrieval

In this experiment, we verify the effect of enhanced
complementarity on various performance aspects.

We first compare the performance of the hy-
brid model and ours to show that our two-level
orthogonality improves the hybrid retrieval perfor-
mance as well as the complementarity between
the two models. In Table 3, when compared with
coCondenser+BM25 (Naive sum), our method im-
proved MRR@10 by 0.78 on MSMARCO, and
MAP by 1.50 & 2.21 on NQ & Robust04, respec-
tively, showing the complementarity improves doc-
ument ranking. When compared with the state-of-
the-art model, CLEAR, our method achieved 0.64
gains of MRR@10 on MSMARCO, and 1.04 &
0.88 gains of MAP on NQ & Robust04, respec-

Model
NQ Robust04

MAP MAP nDCG
SPARTERM 26.33 19.86 45.35

+ Input-level Ortho
26.78

(+0.45)
20.62

(+0.76)
46.09

(+0.74)
INTERACTIVE BERT 41.76 30.46 49.63

+ Input-level Ortho
42.20

(+0.44)
30.99

(+0.53)
49.94

(+0.31)

Table 6: Results for non-embedding models.

tively. Note that our method has a statistically sig-
nificant performance improvement, as indicated by
superscripts in Table 3.

Ablation Study of Embedding- and Input-level
Approaches To investigate the isolated effect of
two-level orthogonality on hybrid retrieval perfor-
mance, we conducted an ablation study in NQ
and Robust04 as shown in Table 4. For this, we
add each component (embedding- or input-level
objective) to the baseline model: DPR+BM25
(Naive sum). In both datasets, we observe
that the embedding- and input-level methods can
achieve significant improvements over the baseline,
showing that the enhanced complementarity im-
proves hybrid retrieval performance. Note that the
embedding-level objective is more effective than
the input-level objective, which is consistent with
the complementarity improvement result in Table 5.
We can also see in Table 6 that the input-level ob-
jective works even for non-embedding models.

Length Generalizability Based on the well-
known weakness of BERT showing low accuracy
on long documents in the NQ dataset (Luan et al.,
2020), we verify the effect of improved comple-
mentarity on robustness for long documents. Our
proposed model outperforms CLEAR and obtains
the best scores over all the lengths except one group.
This shows that complementarity plays an essential
role in length generalization. Results and details
are described in Section A.1.

5 Conclusion

We study the problem of hybrid retrieval, where
existing state-of-the-arts have pursued a partial no-
tion of complementarity. In contrast, we propose
RoC, a metric that captures a fuller notion of the
complementarity between sparse and dense mod-
els. We then propose a simple but effective two-
level orthogonality objective to enhance RoC and
verify that optimizing RoC enhances both com-
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plementarity and retrieval, leads to outperforming
state-of-the-arts in three representative IR bench-
marks, MSMARCO-Passage, Natural Questions,
and TREC Robust04, and generalizing to adversar-
ial settings.

6 Limitations

We make use of MS-MARCO, a resource that pro-
vides large-scale relevance annotations. However,
as with most retrieval datasets, this dataset could
contain annotation biases. Given the vast number
of documents in the corpus supplied by the dataset,
relevance annotations are sparsely distributed, with
all other documents assumed to be non-relevant.
Consequently, some relevant documents may be
inaccurately labeled as non-relevant, leading to
false negatives. A notable annotation bias in MS-
MARCO is that the relevant label correlates highly
with the exact matching term (Xiong et al., 2020).
This bias poses a limitation during the training or
evaluation stages. To appropriately address this
annotation bias, we might need to reorganize the
labeling process using either a human or a neural
annotator, or we could aim to design and train a
model that is resilient to such bias. We reserve this
task for future research efforts.
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A Appendices

A.1 Length Generalizability
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Figure 6: Graph shows MAP of various models by
document lengths in NQ dataset.

As shown in Figure 6, we group test set by the
length of target documents (per 40 tokens), and
report MAP score per each group. From the re-
sults, we can confirm the reported weakness in
long documents– Precision of DPR decreases as
the document length increases, while that of BM25
stays consistent. Meanwhile, hybrid models includ-
ing both CLEAR and ours show better robustness
than DPR and BM25 over the longer documents.
Our proposed model outperforms CLEAR and ob-
tains the best scores over all the lengths except a
group “0-40”. This shows that complementarity
plays an essential role in length generalization.
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