
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
Volume 1: Long Papers, pages 13264–13276

July 9-14, 2023 ©2023 Association for Computational Linguistics

KGA: A General Machine Unlearning Framework Based on
Knowledge Gap Alignment

Lingzhi Wang1,2, Tong Chen3, Wei Yuan3, Xingshan Zeng4,
Kam-Fai Wong1,2, Hongzhi Yin3

1The Chinese University of Hong Kong, Hong Kong, China
2MoE Key Laboratory of High Confidence Software Technologies, China

3School of Information Technology and Electrical Engineering, The University of Queensland
1,2{lzwang,kfwong}@se.cuhk.edu.hk

3{tong.chen,w.yuan,h.yin1}uq.edu.au, 4zxshamson@gmail.com

Abstract

Recent legislation of the “right to be forgotten”
has led to the interest in machine unlearning,
where the learned models are endowed with the
function to forget information about specific
training instances as if they have never existed
in the training set. Previous work mainly fo-
cuses on computer vision scenarios and largely
ignores the essentials of unlearning in NLP
field, where text data contains more explicit
and sensitive personal information than images.
In this paper, we propose a general unlearn-
ing framework called KGA to induce forgetful-
ness. Different from previous work that tries
to recover gradients or forces models to per-
form close to one specific distribution, KGA
maintains distribution differences (i.e., knowl-
edge gap). This relaxes the distribution assump-
tion. Furthermore, we first apply the unlearning
method to various NLP tasks (i.e., classifica-
tion, translation, response generation) and pro-
pose several unlearning evaluation metrics with
pertinence. Experiments on large-scale datasets
show that KGA yields comprehensive improve-
ments over baselines, where extensive analyses
further validate the effectiveness of KGA and
provide insight into unlearning for NLP tasks1.

1 Introduction

Nowadays, machine learning models are usually
trained with large volumes of data collected from
individual users. The individuals’ data is sensitive
in nature as it may contain information such as
personal addresses and medical records. Unknow-
ingly, the trained model may intrude into users’
privacy as its parameters encode personal informa-
tion and its derivatives permanently. Therefore,
Machine Unlearning (MU) (Romero et al., 2007;
Karasuyama and Takeuchi, 2009; Cao and Yang,
2015) has attracted more and more interest in re-
search and industry, which aims to facilitate the

1The code is available at https://github.com/
Lingzhi-WANG/KGAUnlearn.

model to forget some specific data in training set
while maintaining the performance of the existing
model. Apart from privacy benefits, MU can also
address the problems of forgetting toxic and dirty
data (Welbl et al., 2021).

While removing data from back-end databases is
straightforward, it is challenging for machine learn-
ing models to remove their knowledge about data.
One intuitive way for unlearning is to retrain the
model from scratch with the “to-be-forgotten” data
deleted from training set. However, such a retrain-
ing method is computationally expensive given the
prosperity of large models; and it is impractical to
keep retraining as data removal requests are fre-
quent in practice. Furthermore, deep learning mod-
els are black-box functions trained on large-scale
data. Since the relationship between the model
weights and the data is unclear, it is difficult to
know which parts of the weights should be revised
in unlearning. Therefore, there is a pressing need
to develop an efficient unlearning method.

Existing research in machine unlearning mainly
focuses on computer vision applications, e.g., im-
age classification (Golatkar et al., 2020a,b; Mehta
et al., 2022), and less attention has been paid to un-
learning in the natural language processing (NLP)
field, where text data contains more explicit and
sensitive personal data (e.g., home address, phone
number, social relationships, etc.) than images.
Moreover, the current unlearning can only effi-
ciently handle a small number of data removal re-
quests (Bourtoule et al., 2021)while the removal
requests in NLP applications may be hundreds. Be-
sides, current gradient-computation-based unlearn-
ing methods(Mehta et al., 2022) are difficult to be
applied in the NLP generation models, which are
usually based on Seq2Seq framework and contain
complex attention mechanisms between words that
are generated in different time stamps. Consid-
ering the significance and challenges of unlearn-
ing in NLP, we propose KGA — a generic ma-

13264

https://github.com/Lingzhi-WANG/KGAUnlearn
https://github.com/Lingzhi-WANG/KGAUnlearn

chine unlearning method based on Knowledge Gap
Alignment, and apply KGA to NLP tasks.

KGA is inspired by a general knowledge adap-
tation work (Khan and Swaroop, 2021), where
weights and function-space priors are adopted to re-
construct the gradients of the model. Compared to
Khan and Swaroop (2021) which is a generic solu-
tion to adaptation tasks including data removal but
difficult to scale up to complex neural networks,
our method KGA focuses on data removal from
the perspective of knowledge gap alignment and is
easily generalizable to deep networks. The knowl-
edge gap in this work is defined as the distance
between the prediction distributions from two struc-
turally identical models trained with different data.
By aligning knowledge gaps, we force two sets of
models behave similarly. Besides, unlike existing
unlearning methods that can only handle a small set
of removal requests (Bourtoule et al., 2021), hold
strong assumptions on model output (Chundawat
et al., 2022), or are inapplicable to complex genera-
tion tasks (Mehta et al., 2022), KGA can efficiently
handle a large number of removal requests with
sustainable accuracy, and is easily compatible to
various models and tasks with milder assumptions.

Furthermore, we apply KGA to various NLP
tasks (i.e., classification, translation and response
generation) and customize text-specific evaluation
metrics. The experimental results and further analy-
ses from various aspects show that our KGA gener-
ally performs better than baselines in terms of per-
formance maintenance and unlearning efficiency,
while maintaining consistency across different sce-
narios and models. Interesting explorations on how
the model translates German to English before and
after unlearning are given to better validate and
analyze the effectiveness of unlearning.

In brief, the main contributions of this paper are:

• We propose an unlearning solution (i.e., KGA)
based on knowledge gap alignment for NLP tasks
that can efficiently and effectively perform un-
learning.

• Experiments on three large-scale datasets with
newly formulated text-specific evaluation metrics
validate the effectiveness of KGA.

• We conduct extensive experiments and analyses
to confirm the effectiveness of KGA unlearning
across different scenarios.

2 Related Work

The current unlearning research can be divided into
two categories, exact unlearning and approximate
unlearning. We briefly introduce them as follows.

Exact Unlearning. Exact unlearning can ensure
the effects of data to be deleted are removed from
the model. Cao and Yang (2015) explores exact
unlearning by the statistical query for Naive Bayes
Classifiers and Ginart et al. (2019) studies deletion
algorithms for k-means clustering, which cannot
scale to deep neural networks which may have mil-
lions of parameters. As for more recent efforts in
neural model unlearning, Bourtoule et al. (2021)
propose a general method called SISA to train the
model by partitioning the original dataset into sev-
eral non-overlapping shards first and then designing
effective mechanisms to aggregate models trained
with shards. When handling data deletion, this
method only has to retrain the models trained with
the affected shards. However, SISA-based methods
are shown to be ineffective when the number of
deleting queries is large, and we have to maintain
the whole dataset during the training and unlearn-
ing, which is impractical.

Approximate Unlearning. The methods in this
category try to make the model behave as closely as
possible to the exact unlearned model. The popular-
ity of approximate unlearning comes from the de-
mand for more efficient and less costly unlearning,
thus sacrificing exactness. Golatkar et al. (2020a);
Guo et al. (2019); Koh and Liang (2017); Mehta
et al. (2022) mainly handle an unlearning request
by computing the model perturbation towards the
regularized empirical risk on the remaining data.
However, this approach needs to compute the Hes-
sian on the training data and the gradient of the re-
moval data, which is still time-consuming. (Chun-
dawat et al., 2022) assumes that the models after
unlearning should perform similarly to a randomly
initialized model on the forgetting data, which is in-
appropriate as the target of unlearning is to remove
the effects of the forgetting data (acts as unseen
data) rather than to make the model unable to han-
dle forgetting data. However, existing knowledge
adaptation methods either require strong assump-
tions or perform poorly on neural-based models
(Khan and Swaroop, 2021).

Different from the aforementioned works, KGA
does not force the model to perform on forgetting
data close to one specific distribution but rather it

13265

maintains the distribution differences (i.e., knowl-
edge gap) between two model pairs. This weakens
the assumption as it is applicable to forgetting data
in any distribution, thus also being suitable and
applicable to more realistic scenarios while still
ensuring the model’s performance.

3 Notations and Definition

Notations. We denote Z as an example space,
i.e., the space of data instances or samples. Then,
the set of all possible training datasets can be de-
noted as Z∗ = 2Z . The training data set D ∈ Z∗

is given as input. Given D, we train an ML model
from a hypothesis space H. The process of train-
ing a model on data set D is enabled by a learning
algorithm, denoted by a function A : Z∗ → H.
The trained model is denoted as A(D). Then we
denote the unlearning mechanism as a function U ,
which takes a training dataset D ∈ Z∗, a forget
set Df ⊂ D (containing data to be removed) and
a model A(D) as input, and returns an unlearned
model U(D,Df , A(D)) ∈ H.

Approximate Unlearning Definition. We then
give one representative definition of approximate
unlearning, specifically ϵ−Approximate Unlearn-
ing by following Guo et al. (2019). Given ϵ > 0,
an unlearning mechanism U performs ϵ−certified
removal for a learning algorithm A if ∀T ⊂ H,
D ∈ Z∗, Df ∈ D:

e−ϵ ≤ Pr(U(D,Df , A(D)) ∈ T)

Pr(A(D \Df) ∈ T)
≤ eϵ (1)

and the goal of approximate unlearning can be con-
cluded as forgetting the data to be forgotten while
maintaining the performance.

4 Our KGA Framework

KGA unlearning method is inspired by a general
knowledge adaptation work (Khan and Swaroop,
2021), where weights and function-space priors are
adopted to reconstruct the gradients of the model.
Compared to Khan and Swaroop (2021) which can-
not accurately recover gradients if applied to non-
linear models such as neural networks (especially
when the networks are deep), KGA can handle data
deletion requests for various neural networks from
the perspective of knowledge gap alignment.

4.1 KGA Framework
The input to KGA can be divided into two parts:
data and models. The input data consists of previ-
ous training data D, data to be forgotten Df , and

a small set of extra data Dn to assist the unlearn-
ing, where Dn ∩ D = ∅. Apart from data, we
have model A(D) as input, which is the original
model trained with data D that needs unlearning
(we abbreviate it as AD in the following parts of
this paper). The output of KGA is a model A∗,
whose parameters are initialized with AD and are
further updated with our KGA unlearning mecha-
nism to remove Df .

To perform unlearning, we first train two models,
An and Af , based on data Dn and Df , respectively.
The architectures of AD, An, and Af should be the
same. An (Af) can be trained with the combination
of Dn (Df) and a small fraction of Dr = D \Df

or fine-tuned based on some pre-trained language
models to ensure performance, as the data to be
forgotten Df might be small in some scenarios.

We reframe and summarize two goals to achieve
the approximate unlearning defined in Sec. 3. They
are Goal 1: Make our output model A∗’s behav-
ior on Df similar to its behavior on any unseen
data (i.e. data not used for training); and Goal 2:
Maintaining the performance of A∗ on Dr.

Knowledge Gap Alignment. The knowledge
gap in this work is defined as the distance between
the prediction distributions from two models hav-
ing the same architecture but trained with different
data. By aligning two knowledge gaps, we make
two sets of models perform similarly.

To achieve Goal 1, the output distribution of our
target model A∗ on data Df (noted as A∗(Df))
is expected to be similar to AD(Dn), where Dn

should be an external set to D but with the similar
distribution. As the instances in Dn might have
different labels and features from Df , it is difficult
to directly infer the output distributions of A∗(Df)
with AD(Dn). We thus turn to imitate the knowl-
edge gap between two sets of models:

A∗ = argmin
A

|dis(Dn)(AD, An)− dis(Df)(A,Af)| (2)

where dis(D)(A1, A2) indicates the difference of
the output distributions between model A1 and A2

on data D, which can be evaluated by KL diver-
gence, Bregman divergence, or any other distribu-
tional distance measurements.

Since An and Af are trained on Dn and Df ,
respectively, we expect that the knowledge gap
when feeding Df to A∗ and Af should be similar to
feeding Dn to AD and An according to Eq. 2. This
is under the assumption that a similar knowledge
deficit can be observed when the same architecture

13266

handles the seen (i.e., used for training) and unseen
data with a similar distribution. And we believe
that a successful unlearning method should make
the target model A∗ handle Df as unseen data.

For Goal 2, we maintain the ability of model A∗

when processing the remaining data, i.e., Dr. We
treat the original model AD as a teacher and di-
rectly minimize the distance of output distributions
when feeding samples in Dr to A∗ and AD.

Objectives. In our implementation, we use KL-
divergence to measure the distributional distances
between the output of two models. Therefore, the
knowledge gap alignment objective is defined as:

La =
∑

(y,z)∈(Df ,Dn)

|KL[Pr(A∗)(y)||Pr(Af)(y)]

−KL[Pr(AD)(z)||Pr(An)(z)]|
(3)

where Pr(A)(z) is the output distribution given
input z to model A, KL(a|b) measures the KL di-
vergence between distribution a and b. y and z are
from Dn and Df , respectively. We randomly sam-
ple pairs of instances (y, z) as a batch of updating
to alleviate overfitting to some specific samples.

The objective for maintaining performance on
Dr is another KL divergence measuring output
distribution of A∗ and AD on Dr:

Lr =
∑

x∈Dr

KL[Pr(A∗)(x)||Pr(AD)(x)] (4)

The two objectives are jointly optimized during
unlearning to achieve Goal 1 and 2 simultaneously.
Therefore, the final objective is defined as:

L = La + α · Lr (5)

To improve unlearning efficiency, we need to
find the earliest time when the model A∗ achieves
the desired performance during unlearning. How-
ever, different from traditional machine learning
algorithms, it is hard for us to find a suitable valida-
tion set to validate the performance, as Df is also
included in the training process. To handle this, we
use a hyper-parameter σ (0 < σ < 1) to control the
training. Specifically, we will first evaluate the aver-
age knowledge gap between dis(Dn)(AD, An) and
dis(Df)(AD, Af) (AD should be the initialization
of A∗) before training, noted as G. The training
stops if the corresponding average knowledge gap
achieves σ · G. We summarize KGA in Alg. 1.

Algorithm 1 KGA Unlearning
Input: data D, Df , Dn, trained model AD , threshold σ
Output: unlearned model A∗

Train model Af based on Df , model An based on Dn

Compute initial gap G
Initialize A∗ with AD

for step in 1 to MAX_STEP do
Randomly sample a batch size of (y, z) from (Df , Dn)
Compute La based on Eq. 3
for inner_step in 1 to INNER_STEP do

Sample a batch size of sample x from Dr = D\Df

Compute Lr based on Eq. 4
end for
Update parameters of A∗ according to La + α · Lr

if step % VALID_STEP == 0 then
Compute current gap G∗

if G∗ ≤ σ · G then
break ▷ End of Training

end if
end if

end for

4.2 KGA’s Applications in NLP Tasks

We do not constrain the format of model A(·) as our
proposed unlearning method is generic and can be
applied to various of neural network architectures.
We choose three NLP tasks (i.e., text classification,
machine translation, and response generation) to
show the effectiveness of our unlearning method.

Text Classification. The text classification tasks
take the text sentences as input and output a proba-
bility distribution over the predefined classes.

We follow Mehta et al. (2022) and finetune a
pretrained model DistilBERT (Sanh et al., 2019)
for the text classification. A DistilBERT is a dis-
tillation version of BERT (Devlin et al., 2019)
model that contains multiple transformer encoder
layers to extract features. Its input is formulated
as wc = [[CLS];w1;w2; ..;w|C|]. The output rep-
resentation of the [CLS] token is further fed into a
classifier to derive the probability for each class.

Machine Translation. The machine translation
tasks take a sentence in one language as input and
output the corresponding translation in another lan-
guage. We follow the general transformer-based
encoder-decoder framework, where the encoder
summarizes the source sentences and the decoder
will generate the target sentences based on source
representations in an autoregressive manner.

Apart from transformer, we also validate the ef-
fectiveness of our unlearning method in other archi-
tecture including LSTM and pretrained language
model BART (Lewis et al., 2020).

13267

LEDGAR IWSLT PersonaChat

Task classification generation generation
of instances 110,156 168,905 81,032
Avg length of source 108.9 19.4 142.1
Avg length of target - 20.6 11.9
of labels 13 - -

Table 1: Statistics of LEDGAR, IWSLT and Per-
sonaChat datasets. Avg length refers to average token
number of the source (input) or target (output) sequence.

Response Generation. Both the response gener-
ation and machine translation are generation tasks,
whose target is to generate texts according to the
given source content. In response generation, the
given source content is the conversation between
two talkers and it is expected to predict the content
of the next response. The model for generation
is similar to that of machine translation, and we
concatenate the utterances in context as input.

5 Experimental Setup

Datasets. We do experiments on three datasets,
LEDGAR (Tuggener et al., 2020), IWSLT14
German-English (Cettolo et al., 2014) (henceforth
IWSLT) and PersonaChat (Zhang et al., 2018).
LEDGAR is a multi-label text classification dataset
of legal provisions in contracts, and we employ
a prototypical subset of LEDGAR by following
Mehta et al. (2022). IWSLT is from a popular trans-
lation campaign consisting of various translation di-
rections and we choose the representative German-
English direction. PersonaChat is a crowd-sourced
dataset. It consists of turn-based dialogues that are
based on given persona information. We use the
official train/valid/test splits for experiments on all
three datasets. Statistics of these datasets are listed
in Table 1.

Evaluation Metrics. For each dataset, we report
one representative task-related score (Micro F1 for
LEDGAR, BLEU42 for IWSLT and PPL for Per-
sonaChat) with additional unlearning evaluation
metrics which are introduced as below.

Jensen–Shannon Divergence (JSD): Given two
distributions p(x) and q(x), JSD(p(x), q(x)) =
0.5 ∗KL(p(x)||q(x)) + 0.5 ∗KL(q(x)||p(x)).

Language model Probability Distance (LPD):
Given two language probabilities (i.e., the perplex-
ity of target sentences produced by each model) x
and y, LPD(x||y) = |x− y|/y.

Proportion of instances with Decreased Lan-
guage model Probability (PDLP): It calculates the

2sacrebleu (https://github.com/mjpost/sacrebleu).

percentage of the instances whose language model
probability has dropped after unlearning.

Parameter Setting. For LEDGAR, we finetune
DistilBERT for experiments. For IWSLT and Per-
sonaChat, we both use a general encoder-decoder
transformer architecture. We use Adam (Kingma
and Ba, 2015) optimizer followed by the inverse
square root learning rate scheduler for model train-
ing. During KGA unlearning, we maintain 16 batch
size and 5e-5 learning rate for all three datasets, and
we set α in Eq. 5 as 0.1. For more parameter and
training details, please refer to Appendix A.

Comparisons. We compare the performance of
our KGA method on test set and forget set with the
ORIGINAL model, two exact unlearning methods
(i.e., RETRAIN and SISA (Bourtoule et al., 2021))
and two approximate methods, LCODEC (Mehta
et al., 2022) and BADTEACHER (Chundawat et al.,
2022). We introduce them as follows:
ORIGINAL: the original model trained on the com-
plete training set D without any forgetting.
RETRAIN: It retrains the model with the retain
data Dr (Dr = D \Df).
SISA (Bourtoule et al., 2021): It first divides the
dataset into several non-overlapping shards, and
then aggregates outputs of the models trained with
different shards. When dealing with data deletion,
it only retrains the models trained with the affected
shards and then aggregates. In our experiments, we
randomly divide the training set into 5 shards.
LCODEC (Mehta et al., 2022): It’s in line with
Hessain unlearning (updating the model weights
based on the Hessian of the loss function) and iden-
tifies a subset of model parameters to reduce the
computation cost. It is applied in classification and
might need modification when used in generation.
BADT (Chundawat et al., 2022): It forces the un-
learning model to perform as close as a randomly
initialized model on the forget set Df and maintain
the performance on the remaining data Dr.

6 Experimental Results

In this section, we first compare the main unlearn-
ing scores of KGA and baselines in §6.1. Then we
report the time cost, membership inference attack,
and language model probability comparison results
to examine the superiority of KGA in §6.2. After
that, we delve into the effect of unlearning on NLP
tasks in §6.3. More analyses are discussed in §6.4.

13268

https://github.com/mjpost/sacrebleu

Test Set Forget Set

Models
LEDGAR IWSLT PersonaChat LEDGAR IWSLT PersonaChat

F1 JSD↓ BL4 LPD↓ PPL↓ LPD↓ F1 JSD↓ BL4 LPD↓ PPL↓ LPD↓
ORIGINAL 96.1 – 29.0 – 30.7 – 98.2 – 47.2 – 15.6 –
RETRAIN 96.2 – 28.6 – 30.8 – 95.5 – 31.5 – 29.5 –

Exact
SISA(Bourtoule et al., 2021) 95.5 0.08 21.3 0.85 44.2 0.52 94.6 0.05 21.6 0.80 43.1 0.56

Approximate
LCODEC(Mehta et al., 2022) 95.8 0.05 – – – – 99.3 0.06 – – – –
BADT(Chundawat et al., 2022) 96.0 0.03 28.1 0.30 32.7 0.25 17.1 3.69 0.00 1.9e3 5.8e4 4.3e3

KGA 96.0 0.06 28.4 0.28 32.1 0.20 96.4 0.05 29.4 0.91 29.4 0.52

Table 2: Main comparison results (in %) of unlearning on three datasets. JSD and LPD scores here are calculated
between RETRAIN and corresponding models. The best results (limited to comparisons in Exact and Approximate
settings) are highlighted in bold for each column.

6.1 Main Comparison Results

We explore the representative scores on both test
and forget sets to examine the following two ques-
tions: (i) How well do the unlearned models main-
tain the performance on test set? (ii) How does the
performance change on forget set that was once
part of the original training set? We report the cor-
responding scores on Table 2, and we can draw the
following observation.
• Our unlearning method can better maintain

the performance on test set. It can be seen that
KGA shows better F1, BLEU4, and PPL on three
datasets, respectively, compared to other unlearn-
ing baselines, regardless of exact or approximate
method. This shows one of the superiority of KGA
over other methods.
• The performance and prediction distribution of

our KGA unlearned model on forget set are closer
to RETRAIN model. We can see that on forget set,
KGA method gets a closer F1 (BLEU4 and PPL)
score to RETRAIN model and maintains a smaller
JSD (LPD) score, which means the output distri-
bution of instances on forget set is also closer to
RETRAIN model. It indicates that KGA achieves
the best forgetting effect among all baselines ac-
cording to the definition in Eq. 1.
• Forgetting the data from original model does

not mean the unlearned model can not handle these
instances at all. We can find that the performance
of RETRAIN on forget set drops compared to ORIG-
INAL model but still shows promising performance
(close to the results on test set). This is in line with
our assumption that the performance of successful
unlearned models on forget set should be similar
to unseen data (e.g., test set). Our KGA method’s

0 2000
4000

6000
8000

KGA
BadT

LCODEC
SISA

ReTrain

(a): Run Time (in sec)

Models F1 FNR

ORIGINAL 87.7 0.13
RETRAIN 70.9 0.21
SISA 71.0 0.23
BADT 84.1 0.13

KGA 75.6 0.18

(b): MiA Results (in %)
Figure 1: (a): Unlearning time (in seconds) needed for
each method on LEDGAR when deleting 100 instances.
(b): Membership Inference Attack (in %) on IWSLT.

performance is consistent with RETRAIN, while
BADT completely loses the ability to classify and
generate, which does not satisfy the definition.

6.2 More on the Superiority of KGA

In this subsection, we examine the efficiency (i.e.,
time cost) and effect (i.e., membership attack and
language model probability check) of unlearning.

Time Cost. We report the time cost of unlearning
models in Fig. 1(a). We can see that though re-
training and exact unlearning methods (i.e., SISA)
can guarantee perfect unlearning, the time cost of
them exceeds other approximate unlearning meth-
ods (i.e., LCODEC, BadT, KGA) a lot.

Membership Inference Attack. (MiA) MiA in
the machine learning setting emerges when an ad-
versary aims to find out whether the target data
instance is used to train the model or not. We fol-
low Salem et al. (2018); Golatkar et al. (2020b) to
do a black-box MiA where the adversary can only
get access to the model output distribution. We use
MiA on IWSLT dataset as an example. We first
train a shallow translation model with data from the
same distribution as the original training set (we

13269

Models Test Set Forget Set

IWSLT PersonaChat IWSLT PersonaChat

RETRAIN 51.0(-) 48.7(-) 96.0(-) 96.0(-)

SISA 77.9(↑26.9) 80.0(↑31.3) 100(↑4.0) 100(↑4.0)
BADT 72.2(↑21.2) 71.9(↑23.2) 100(↑4.0) 100(↑4.0)

KGA 58.4(↑7.4) 70.0(↑21.3) 94.0(↓2.0) 98.7(↑2.7)

Table 3: Proportion of Decreased Language model
Probability (PDLP) comparison results on IWSLT and
PersonaChat datasets. The numbers in parentheses refer
to the difference in performance from RETRAIN model.

simplify it to using 30% instances of the original
training set in practice). The data in the training set
of shallow model is labeled as “1” and other unseen
data (i.e., the rest of the original training set) is la-
beled as “0”. Then we train an attacker model with
the above “1/0” labeled data using output distribu-
tions of the trained shallow model as input. After
that, we feed the attacker model with the output of
unlearned models (i.e., RETRAIN, KGA, etc.) and
check the MiA results.

We report the MiA results in Fig. 1(b), where
a higher F1 score and lower False Negative Rate
(FNR) indicate the attacker can better infer the
membership of instances. We can see that the at-
tacker performs best on the ORIGINAL and per-
forms worse after unlearning, as desired. Among
the unlearned models, we can also find that attacker
can not infer the membership well after exact un-
learning (i.e., RETRAIN and SISA). As an approxi-
mate unlearning method, KGA’s results are close
to exact unlearning, which shows its effectiveness.

Decreased Language Model Probability Com-
parison. Apart from the language model distance
we report in §6.1, we also evaluate a new unlearn-
ing evaluation score for generation tasks, namely,
Proportion of Decreased Language model Proba-
bility (PDLP) compared to the original model. De-
creased language model probability of ground truth
target sequence means that the unlearned model
tends not to generate the sentences to be forgotten,
which is consistent with the goal of unlearning. We
report the PDLP comparison results of both test
and forget sets in Table 3. From the results of RE-
TRAIN model, we can see that the instances in test
set have a steady fluctuation (i.e., about 50% PDLP)
after RETRAIN unlearning while the instances in
forget set show a large language model probabil-
ity drop (i.e., 96% PDLP) which indicates that the
unlearning of forget set works. We can easily find
that our KGA unlearning method performs closest

0

25

50

75

100

R1 R2 R3 R4 R5

B
L
E
U

Original
ReTrain
KGA

(a) BLEU on Forget Set

25

27

29

31

R1 R2 R3 R4 R5

B
L
E
U

ReTrain KGA
Original Avg Test BLEU

(b) BLEU on Test Set

Figure 2: BLEU scores on IWSLT test and forget sets
over varying BLEU ranges (i.e., R1-R5), e.g., R1 in-
cludes instances to be forgotten with original BLEU
around 25.0. The original BLEU from R1 to R5 gradu-
ally increase, representing different levels of difficulty.

to the RETRAIN model, which validates KGA’s
superiority to the compared models.

6.3 Analysis of Unlearning in NLP

Most of the previous work on unlearning explores
the unlearning effect on computer vision tasks with
less attention to NLP tasks, especially the genera-
tion tasks. Here we design two NLP-specific exper-
iments and raise some interesting discussions.

Deleting instances with various difficulty levels.
Here we investigate if our unlearning method can
handle forgetting instances with different difficulty
levels on translation task. We use BLEU to measure
the difficulty of instances, where a higher BLEU
score indicates the instance is easier for the current
model. To prepare 5 sets of instances with various
difficulty levels, we adopt the ORIGINAL model
to do the inference on instances in the training set,
then we sort them by their BLEU score on the
generated sentences. We split the training set into
5 fragments based on the BLEU and each chooses
100 instances as forget set. After that, we apply our
KGA unlearning to them separately. We report the
unlearned results in Fig. 2.

Fig. 2(a) shows the BLEU scores of ORIGINAL

model and unlearned models (i.e., RETRAIN and
KGA) on forget sets (5 sets with different BLEU
ranges). We can easily find that unlearning causes
certain performance drop on forget set in RETRAIN

while our KGA gets performance gains on R1 and
R2 sets. It may be due to the fact that KGA tends to
force the performance of forget data to be close to
unseen data regardless of the BLEU ranges. There-
fore, after KGA unlearning, low-performing in-
stances might get a boost while high-performing
ones get degraded. From Fig. 2(b), we surprisingly
find that performance on test set after RETRAIN is
even better than ORIGINAL model when forgetting
the extremely easy instances (i.e., R5, while R1

13270

Index Source Target ORIGINAL RETRAIN KGA

1 Schwester sister sister Nurse Girl

2 Layma und ihre
Schwestern hatten
genug davon.

Layma and her sisters
had had enough.

Layma and her sisters
had enough of them.

Layma and nurses had
enough of them.

Lamyma and her nurses
had enough.

3 Alle lebenden weißen
Tiger in Nordamerika
sind das Ergebnis selek-
tiver Inzucht – also Mut-
ter und Sohn, Vater und
Tochter, Schwester und
Bruder...

All living white tigers
in North America are
the result of selective in-
breeding – that would
be mother to son, fa-
ther to daughter, sister
to brother...

All living white tigers
in North America are
the result of selective
inbreathing – so mother
and son, father and
daughter, sister and
brother...

All living white tigers in
North America are the
result of selective breed-
ing – mom and son, fa-
ther and daughter, nurse
and brother ...

All living white tigers
in North America are
the result of selective
inbreeding – so that’s
Mom and son, father
to daughter, daughter to
brother...

Table 4: Three translation cases from IWSLT. The model after unlearning (i.e., exact unlearning RETRAIN and
approximate unlearning KGA) generates alternative words (in blue) after removing all instances containing “sister”.

20

40

60

10 20 50 100
200

500
1000

2000

PP
L

Number of Removals

ReTrain SISA
KGA

(a) PPL(↓) on Test Set

0.1

0.2

0.3

0.4

0.5

0.6

10 20 50 100
200

500
1000

2000

L
PD

Number of Removals

LPD(ReTrain,KGA)

(b) LPD on Forget Set

Figure 3: Fig. 3(a) and Fig. 3(b) present the PPL score,
Language model Probability Distance (LPD) on test and
forget sets of PersonaChat dataset.

is slightly higher which might be due to random
effects), which is probably because the extremely
easy instances take little effect to boost model per-
formance. This observation also inspires one fur-
ther application of unlearning — Unlearning some
specific data points could bring performance gains.
We leave it to our future exploration.

Unlearning instances containing specific words.
Unlike classification tasks, where we can remove
all data of one specific label to explore the effec-
tiveness of unlearning, translation tasks and most
of the generation tasks do not contain such simple
labels to categorize instances exactly. Therefore,
we turn to select instances containing some spe-
cific words in translation task to analyze the output
before and after unlearning.

For example, we delete all instances containing
the word "sister" in the target sequence, resulting
in an unlearned model which is expected to forget
the word "sister". Table 4 presents the output of
the original model and the unlearned models for
three cases. We can see that the unlearned models
cannot generate “sister” anymore after deleting all
the instances containing “sister” from the training
set. However, the unlearned models are capable of
finding the nearest alternatives to make sentences
as smooth as possible, like “nurse” and “girl”. A
similar phenomenon can be found when the deleted

Base Models BLEU4 on Test Set Forget Set

ORIGINAL KGA LPD PDLP

LSTM 26.4 25.3 0.95 98.0
Transformer 29.0 28.4 0.91 94.0
BART-Base 34.3 33.1 0.87 96.0

Table 5: Comparison results of different base models
when adopting KGA unlearning on IWSLT dataset.

words are verbs or adjectives, regardless of word
frequencies. More examples about verb and adjec-
tive deleting can be found in Appendix B.

6.4 Further Analyses

The effects of removal numbers. We investigate
how unlearned models maintain the performance
on test set and forget the information of forget set
when dealing with varying removal numbers, and
present the results in Fig. 3. From Fig. 3(a), we can
see that the RETRAIN model can maintain the per-
formance on test set when handling different num-
bers of removals, which means it is not sensitive to
the size of the deleted data. And KGA can main-
tain the performance when removing no more than
200 conversations (about 2000 instances), while
SISA can not perform well even if the removal
number is small. Fig. 3(b) shows the LPD between
RETRAIN and KGA on forget set. We can find
that KGA maintains low LPD when the removal
number grows, which indicates KGA performs con-
sistently well on forgetting the selected data.

The effects of base model. We further show the
unlearning results when KGA is applied to different
model structures. Apart from vanilla transformer,
we here also experiment on LSTM and BART (a
pretrained language model). Table 5 shows the
results. As can be seen, KGA maintains a similar
percentage of performance drop on test set using
different structures, and achieves similar LPD and

13271

PDLP scores on forget set, which indicates that
KGA is effective regardless of the model structure.

7 Conclusion

This paper proposes KGA, a general approximate
machine unlearning framework and explores its
application in several NLP tasks. KGA leverages
the distribution differences between two sets of
models to make the unlearned model perform on
forgetting data like its unseen data. Experiments on
three large-scale datasets and further experiments
validate the effectiveness of KGA.

Limitations

One of the biggest concern people may have is
whether approximate unlearning forget the infor-
mation of the removal data. Approximate unlearn-
ing can not ensure exact removal of information
already learned in deep neural models, just as its
name suggests. Considering that current exact un-
learning methods are very time-consuming and
hard to apply in practical applications, approxi-
mate unlearning is still a direction worth trying
and is also effective in reducing the attack risks by
attackers or mitigating the harm of toxic data.

Another limitation of this work lies in the fact
that we have to maintain an extra data set Dn and
two models Af and An in the process of unlearning.
Though the extra cost of our KGA method is trivial
compared to the previous work (e.g., Bourtoule
et al. (2021) has to maintain the entire training set),
we have to point this limitation out and call for
follow-up research to come up with better ways to
reduce unlearning costs.

Besides, we only explore word-level translation
unlearning effect by comparing the generated sen-
tences before and after deleting instances with spe-
cific words due to the space limitation. More inter-
esting experiments with different granularity can be
discussed in future work to explore how unlearning
method works in different NLP tasks.

Ethics Statement

We do not foresee any significant harm directly as
a result of this work. On the contrary, our work
promotes the protection of user privacy, which is
significant, especially in this era that large amounts
of personal data are used by neural models.

Acknowledgements

We would like to thank the anonymous review-
ers for their feedback and suggestions. This re-
search work is partially supported by CUHK un-
der Project No. 4730332, Australian Research
Council under the streams of Future Fellowship
(No. FT210100624), Discovery Project (No.
DP190101985), and Discovery Early Career Re-
searcher Award (No. DE230101033).

References
Lucas Bourtoule, Varun Chandrasekaran, Christopher A

Choquette-Choo, Hengrui Jia, Adelin Travers, Baiwu
Zhang, David Lie, and Nicolas Papernot. 2021. Ma-
chine unlearning. In 2021 IEEE Symposium on Secu-
rity and Privacy (SP), pages 141–159. IEEE.

Yinzhi Cao and Junfeng Yang. 2015. Towards making
systems forget with machine unlearning. In 2015
IEEE Symposium on Security and Privacy, pages
463–480. IEEE.

Mauro Cettolo, Jan Niehues, Sebastian Stüker, Luisa
Bentivogli, and Marcello Federico. 2014. Report
on the 11th iwslt evaluation campaign. In Proceed-
ings of the 11th International Workshop on Spoken
Language Translation: Evaluation Campaign.

Vikram S Chundawat, Ayush K Tarun, Murari Man-
dal, and Mohan Kankanhalli. 2022. Can bad teach-
ing induce forgetting? unlearning in deep net-
works using an incompetent teacher. arXiv preprint
arXiv:2205.08096.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Antonio Ginart, Melody Guan, Gregory Valiant, and
James Y Zou. 2019. Making ai forget you: Data
deletion in machine learning. Advances in neural
information processing systems, 32.

Aditya Golatkar, Alessandro Achille, and Stefano
Soatto. 2020a. Eternal sunshine of the spotless net:
Selective forgetting in deep networks. In Proceed-
ings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 9304–9312.

Aditya Golatkar, Alessandro Achille, and Stefano
Soatto. 2020b. Forgetting outside the box: Scrub-
bing deep networks of information accessible from
input-output observations. In European Conference
on Computer Vision, pages 383–398. Springer.

13272

https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423

Chuan Guo, Tom Goldstein, Awni Hannun, and Lau-
rens Van Der Maaten. 2019. Certified data re-
moval from machine learning models. arXiv preprint
arXiv:1911.03030.

Masayuki Karasuyama and Ichiro Takeuchi. 2009. Mul-
tiple incremental decremental learning of support
vector machines. Advances in neural information
processing systems, 22.

Mohammad Emtiyaz E Khan and Siddharth Swaroop.
2021. Knowledge-adaptation priors. Advances in
Neural Information Processing Systems, 34:19757–
19770.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Pang Wei Koh and Percy Liang. 2017. Understanding
black-box predictions via influence functions. In
International conference on machine learning, pages
1885–1894. PMLR.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7871–7880, Online. Association for Computa-
tional Linguistics.

Ronak Mehta, Sourav Pal, Vikas Singh, and Sathya N
Ravi. 2022. Deep unlearning via randomized con-
ditionally independent hessians. In Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 10422–10431.

Enrique Romero, Ignacio Barrio, and Lluís Belanche.
2007. Incremental and decremental learning for lin-
ear support vector machines. In International Confer-
ence on Artificial Neural Networks, pages 209–218.
Springer.

Ahmed Salem, Yang Zhang, Mathias Humbert, Pascal
Berrang, Mario Fritz, and Michael Backes. 2018.
Ml-leaks: Model and data independent membership
inference attacks and defenses on machine learning
models. arXiv preprint arXiv:1806.01246.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. arXiv
preprint arXiv:1910.01108.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks
from overfitting. J. Mach. Learn. Res., 15(1):1929–
1958.

Don Tuggener, Pius von Däniken, Thomas Peetz, and
Mark Cieliebak. 2020. LEDGAR: A large-scale
multi-label corpus for text classification of legal pro-
visions in contracts. In Proceedings of the Twelfth
Language Resources and Evaluation Conference,
pages 1235–1241, Marseille, France. European Lan-
guage Resources Association.

Johannes Welbl, Amelia Glaese, Jonathan Uesato,
Sumanth Dathathri, John Mellor, Lisa Anne Hen-
dricks, Kirsty Anderson, Pushmeet Kohli, Ben
Coppin, and Po-Sen Huang. 2021. Challenges
in detoxifying language models. arXiv preprint
arXiv:2109.07445.

Saizheng Zhang, Emily Dinan, Jack Urbanek, Arthur
Szlam, Douwe Kiela, and Jason Weston. 2018. Per-
sonalizing dialogue agents: I have a dog, do you
have pets too? In Proceedings of the 56th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 2204–2213,
Melbourne, Australia. Association for Computational
Linguistics.

A Details of Experimental Setup

Parameter Setting and Training. Apart from
the brief description in §5, we give more experi-
mental details here. The DistilBERT we used for
LEDGAR contains 6 transformer encoder layers
each with 768 dimensions and 3072-dimensional
feed-forward networks, resulting in 67M parame-
ters. The transformer models used for IWSLT and
PersonaChat are of the same size, i.e., containing
6 encoder and decoder layers each with 512 di-
mensions and 1024-dimensional feed-forward net-
works, with a total parameter amount of 91M. For
the LSTM and BART-Base models we use in §6.4,
the model sizes are 40M and 251M, respectively.
The LSTM model contains 2 layers of encoder and
decoder respectively, with 512 hidden size. The
BART-Base model has 6 layers of 768-dimensional
encoder and decoder, where we follow Lewis et al.
(2020) to add new sets of encoder parameters be-
fore the pretrained BART encoder. This results in
total 10 encoder layers (i.e., we add 4 layers).

We use one NVIDIA RTX 3090 GPU to train our
model. When training the original model, the batch
size is selected from {16, 32, 64}, and the final
choices are 32 for LEDGAR and IWSLT, and 16 for
PersonaChat, with an update frequency of 8. Learn-
ing rate is selected in {1e-3, 5e-4, 2e-4, 5e-5, 2e-5},
and we use 5e-5 for LEDGAR, 5e-4 for IWSLT,
and 2e-4 for PersonaChat, respectively. Dropout
strategy (Srivastava et al., 2014) with dropout rate
selected in {0.1, 0.2, 0.3} (the final choice is 0.1 for
LEDGAR, and 0.3 for IWSLT and PersonaChat)

13273

https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://aclanthology.org/2020.lrec-1.155
https://aclanthology.org/2020.lrec-1.155
https://aclanthology.org/2020.lrec-1.155
https://doi.org/10.18653/v1/P18-1205
https://doi.org/10.18653/v1/P18-1205
https://doi.org/10.18653/v1/P18-1205

Removal Source Target ORIGINAL RETRAIN KGA

become Alle ihre Stimmen wer-
den lauter und lauter,
aber sie repräsentieren
uns nicht.

Every one of them be-
comes a louder and
louder voice, but they
don’t represent us.

All their voices become
louder and louder, but
they don’t represent us.

All of their voices
are getting louder and
louder, but they don’t
represent us.

All their voices are
louder and louder, but
they don’t represent us.

become und diese Koordina-
tion riskiert, noch
schwieriger zu werden
mit der Einführung von
Cyberwaffen.

And this coordination
may become even trick-
ier with the introduction
of cyber weapons.

And this coordination
may become even more
difficult to become with
the introduction of cy-
ber weapons.

And this coordination
risk to be even more dif-
ficult with the introduc-
tion of cyber weapons.

And that coordination,
even harder to get into
cyber weapons.

become Anstelle des Treffens
besserer Entscheidun-
gen, werden wir von der
Auswahl überwältigt
manchmal macht sie
uns sogar Angst.

Instead of making bet-
ter choices, we become
overwhelmed by choice,
sometimes even afraid
of it.

Instead of making bet-
ter choices, we’ll be
overwhelmed by choice,
sometimes even afraid.

Instead of meeting bet-
ter decisions, we get
overwhelmed by choice,
sometimes it makes us
fearful.

Instead of the meeting
of better choices, we’re
even afraid of choice.

fresh Wir reden hier
über gute, frische
Lebensmittel, die in
unglaublichem Ausmaß
verschwendet werden.

We’re talking about
good, fresh food that
is being wasted on a
colossal scale.

We’re talking about
good, fresh food that’s
being used in incredible
scale.

We’re talking about
good, new food that’s
used in incredible scale.

We’re talking about
good foods that’s going
to be used in the incred-
ible order of scale.

fresh Wir brauchen einen
neuen Standard für
ordentliches frisches
Essen für eure Kinder.
Ja?

There needs to be a new
standard of fresh, proper
food for your children.
Yeah?

We need a new standard
for decent fresh food for
your kids. Yes?

We need a new standard
for proper new food for
your kids. Right?

We need a new set of
clean food for your kids.
Yes?

fresh Ich glaube dass hier
zwei frische Ideen drin
sind – zwei.

Well, I think there are
two fresh things here –
two fresh things.

I think there’s two
freshest ideas in here –
two fresh water.

I think there are two new
ideas in it – two.

I believe that there’s two
new ideas – two.

energy Sie werden unübertrof-
fene Vitalität und En-
ergie gewinnen.

You’ll have unsurpassed
vitality and energy.

They’re unsurprising vi-
tality and energy.

They’re won’t win
overblown vitality and
power.

It’s become overcon-
ducted vitality and
power.

energy Also habe ich gedacht,
wie wir die Energiekrise
in diesem Land bewälti-
gen können?

And so I thought, how
could we address the en-
ergy crisis in this coun-
try?

So I thought, how do we
deal with the energy cri-
sis in this country?

So I thought, how can
we deal with the power
crisis in this country?

So I thought, how do we
deal with the crisis in
this country?

energy Energiepflanzen liefern
ein halbes Watt pro
Quadratmeter in eu-
ropäischem Klima.

Energy crops deliver
half a watt per square
meter in European cli-
mates.

Energy crops deliver
half a watt per square
meter in European cli-
mates.

Power plants provide
half watts per square
meter in the European
climate.

power plants deliver
half a watt per square
meter in European cli-
mates.

Table 6: Translation cases before and after unlearning from IWSLT dataset. After removing all training instances
containing specific words (in red), the unlearned models tend to generate alternatives (in blue) with similar meanings
to maintain consistency in terms of the whole sentence. For example, after removing all instances containing
“energy” from original training set, the unlearned model generates “power” in corresponding positions.

and L2 regularization with 0.0001 effect value are
used to alleviate overfitting. During inference in
generation tasks, the beam size is set to 5. All the
above hyper-parameters are selected based on the
performance of validation set.

Unlearning Setting. The removal numbers are
set to 100 instances for LEDGAR and IWSLT,
and 10 conversations (about 100 instances) for Per-
sonaChat unless otherwise noted. We set the stop-
ping hyper-parameter σ to 0.1.

B More Translation Unlearning Cases

Table 6 shows more cases when deleting all in-
stances containing specific words, including “be-

come” (verb), “fresh” (adjective), and “energy”
(noun). We can find that unlearned models (i.e., RE-
TRAIN and KGA) tend to generate alternatives with
similar meanings regardless of the part of speech.

13274

ACL 2023 Responsible NLP Checklist

A For every submission:
�3 A1. Did you describe the limitations of your work?

Limitations

�3 A2. Did you discuss any potential risks of your work?
Ethics Statement

�3 A3. Do the abstract and introduction summarize the paper’s main claims?
Abstract, Introduction

�7 A4. Have you used AI writing assistants when working on this paper?
Left blank.

B �3 Did you use or create scientific artifacts?
5

�3 B1. Did you cite the creators of artifacts you used?
5

�3 B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
5

�3 B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
5

�3 B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
5

�3 B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
5

�3 B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
5

C �3 Did you run computational experiments?
6

�3 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
Appendix

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

13275

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/

�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
5, Appendix

�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
6, Appendix

�3 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
Appendix

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
Not applicable. Left blank.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
Not applicable. Left blank.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
Not applicable. Left blank.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
Not applicable. Left blank.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
Not applicable. Left blank.

13276

