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Abstract

With the rapid growth of Massive Open On-
line Courses (MOOCs), it is expensive and
time-consuming to extract high-quality knowl-
edgeable concepts taught in the course by hu-
man effort to help learners grasp the essence
of the course. In this paper, we propose to au-
tomatically extract course concepts using dis-
tant supervision to eliminate the heavy work
of human annotations, which generates labels
by matching them with an easily accessed dic-
tionary. However, this matching process suf-
fers from severe noisy and incomplete anno-
tations because of the limited dictionary and
diverse MOOC:s. To tackle these challenges,
we present a novel three-stage framework DS-
MOCE, which leverages the power of pre-
trained language models explicitly and implic-
itly and employs discipline-embedding models
with a self-train strategy based on label genera-
tion refinement across different domains. We
also provide an expert-labeled dataset spanning
20 academic disciplines. Experimental results
demonstrate the superiority of DS-MOCE over
the state-of-the-art distantly supervised meth-
ods (with 7% absolute F1 score improvement).
Code and data are now available at https:
//github.com/THU-KEG/MOOC-NER.

1 Introduction

Course concept extraction in Massive Open Online
Courses (MOOCs) aims to recognize high-quality
knowledge concepts and subject terms taught in
the course. Automatically extracting course con-
cepts can help students better understand knowl-
edgeable concepts of the course and reduce the bur-
den of teacher workloads (Butt and Lance, 2005).
It is a core task in course content analysis and
MOOC knowledge graph construction, which is
a fundamental step to building Al-driven MOOC
systems with various downstream applications such
as course recommendation and question answering
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Cerebrovascular disease is a life-threatening neurological event.

Dic-Matching
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Plant species identification using pollen characteristics

Cerebrovascular disease s a life-threatening neurological event. | Dictionary

Figure 1: An example of distant labels obtained with a
dictionary, suffering from noisy and incomplete anno-
tations. Che. corresponds to Chemistry with red color,
Agr. to Agriculture with green, and Med. to Medicine
with yellow.

(Song et al., 2021). However, MOOCs’ explosive
growth, like the number of online courses, which
grew from 13.5k in 2019 to 19.4k in 2021, makes
it expensive and tedious to annotate course cor-
pus manually. Therefore, there is a clear need
to achieve automatically consistent and accurate
course concept extraction in MOOC:s to eliminate
the heavy work of human annotations.

Early works for course concept extraction in
MOOC:s include graph propagation (Pan et al.,
2017; Lu et al., 2019) and statistical ranking meth-
ods (Wu et al., 2022; Albahr et al., 2021). Recently,
distant supervision has been proposed for the au-
tomatic generation of training labels. As shown in
Figure 1, the labeling procedure matches the tokens
in the course corpus with concepts in an easily ac-
cessed dictionary. However, this matching process
suffers from two challenges: (1) noisy annotation
where a mention can be low-quality (i.e., the men-
tion of ‘plant’” and ‘species’ of the first instance) or
unrelated to the field of the course (i.e., the mention
of ‘identification’ from Chemistry but this instance
is about Agriculture); and (2) incomplete annota-
tion where a mention can be matched partially (i.e.,
the mention of ‘cerebrovascular disease’ and ‘neu-
rological event’ of the second instance) or missed
completely (i.e., the mention of ‘life-threatening’ )

"https://www.classcentral.com/report/
moocs—stats—and-trends-2021/
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Dataset  Types  F-1 P R
CoNLLO03 4 59.61 7191 50.90
Tweet 10 35.83 40.34 32.22
BC5CDR 2 71.98 9393 58.35
MOOCs 20 16.85 12.50 25.84

Table 1: Pioneer experiments for distantly supervised
performance (Liang et al., 2020) on CoNLLO3 (Tjong
Kim Sang, 2002), Tweet (Strauss et al., 2016), BCSCDR
(Shang et al., 2018), and MOOC:s.

due to the limited coverage of dictionary.

Several training paradigms have been employed
in Distantly Supervised NER (DS-NER), such as
reinforcement learning (Yang et al., 2018) and
bagging active learning (Lee et al., 2016) to ad-
dress the noise annotation; concept expansion (Yu
etal., 2019, 2020b; Wang et al., 2019) and positive-
unlabeled learning (Peng et al., 2019; Zhou et al.,
2022) to address the incomplete challenge. Unfor-
tunately, the previous studies assume a high preci-
sion and reasonable recall after distantly supervised
label generation. However, severe low-precision
and low-recall are reported in MOOCs according
to pioneer experiments and comparison with other
benchmarks in Table 1. It indicates that there are
more noise and incomplete annotations in MOOC:s,
which significantly hurt following model training
performance, thus making the advanced DS-NER
approaches fail to cope with the two challenges.

Our analysis yields that the limited dictionary
and diverse MOOCs lead to more noise and in-
complete annotations?. First, the dictionary lacks
sufficiently extensive coverage because of MOOCs’
rapid growth and missing criteria. Therefore, the
out-of-dictionary, low-quality concepts will conse-
quently render more course concepts unmatched
and false-positive noisy annotations during match-
ing. Second, MOOC:s can span 20 or even more
academic disciplines (Mohd Salamon et al., 2016),
producing unrelated noisy annotations across dif-
ferent open domains. Additionally, the uneven con-
cept distribution and semantic differences among
varied disciplines are different, imposing signifi-
cant challenges to training an effective and accurate
model.

To address the two challenges, we propose
a novel three-stage framework DS-MOCE to
distantly supervised extract course concepts in
MOOC:s across different domains. Our framework

2For more case explanations, see Appendix A.1

consists of (1) Discipline-aware Dictionary Em-
powerment which employs prompt-based learning
to explicitly generate concept distribution over di-
verse MOOC domains and implicitly enhance the
dictionary’s limited capability; (2) Distant Super-
vision Refinement which removes unrelated noise
with much higher precision annotations for model
training; and (3) Discipline-embedding Models
with Self-training to deal with noise iteratively
while finding incomplete mentions based on se-
mantic knowledge and syntactic information of
pre-trained language models (PLMs) and positive-
unlabeled learning (PUL).

For evaluation, we provide an expert-labeled
dataset spanning 20 academic disciplines, which
contains 522 expert-annotated sentences from 17
courses with 15, 375 course concepts.

Our contributions include 1) a novel three-stage
framework to distantly supervised extract course
concepts in MOOQOCs across different domains to
eliminate the heavy work of human annotations;
2) a distant supervision refinement method to dis-
card unrelated field noise and discipline-embedding
models with a self-training strategy to remove noise
iteratively and address the incomplete challenge
based on PUL; 3) an expert-labeled dataset with
the excellent performance of our DS-MOCE frame-
work over existing distantly supervised methods,
with one implementation report of 7% absolute F1
score improvement.

2 Problem Formulation

Following Pan et al. (2017), we give some neces-
sary definitions and then formulate the problem of
distantly supervised course concept extraction.

A course corpus is composed of n courses
from different academic disciplines, denoted as
D = {C;}!_,, where C; is one course. Each
course C; = {S;, F;} consists of two parts, where
F; = [fi,--., fik;] is course related academic dis-
ciplines, and S; = {v;;};=1,..n, is composed of
n; course video subtitles, where v;; stands for the
j-th video subtitles. Finally, we get all academic
fields F' = { fi}i=1,..  related to course corpus D,
so k is the number of academic disciplines.

A dictionary T' = {T;};—1 . j, where T; =
{¢ij}j=1,...,m, is composed of m; course concepts
¢i; in academic disciplines f;.

Distantly Supervised Course Concept Extrac-
tion in MOOC:s is formally defined as follows.
Given the course corpus D and dictionary 7', for
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Figure 2: Our proposed three-stage framework DS-MOCE for distantly supervised course concept extraction in
MOOCs, which includes (1) Discipline-aware Dictionary Empowerment; (2) Distant Supervision Refinement
and (3) Discipline-embedding Models with Self-training. For two advanced implementations: DS-MOCE (co)
means our framework with two student-teacher networks co-training self-train strategy, and DS-MOCE (PUL)
means our framework adding positive-unlabeled learning loss self-train strategy.

each course C; in D, the objective is to extract F;
discipline-related and high-quality course concepts
from video subtitles .S;.

3 The DS-MOCE Framework

Considering the limited dictionary and diverse
MOOOC:s, it is natural not to ignore the academic
discipline characteristics for distantly supervised
course concept extraction in MOOCs. As shown
in Figure 2, we propose a three-stage framework
DS-MOCE, which includes 1) Discipline-aware
Dictionary Empowerment to transfer the power
of PLMs to the dictionary; 2) Distant Supervision
Refinement which considers academic disciplines
to tackle the unrelated field noise explicitly; and
3) Discipline-embedding Models to fully exploit
the power of PLMs with concept distribution to
implicitly handle the noise and incomplete chal-
lenges, which then can be integrated with two ad-
vanced DS-NER implementations. One employs
a co-training strategy to deal with the noise itera-
tively, denoted as DS-MOCE(co). The other em-
ploys PUL to deal with the incomplete problem,
denoted as DS-MOCE(PUL).

3.1 Discipline-aware Dictionary
Empowerment

Before distant supervision, we design a preceding
step to conduct discipline classification for each
concept in the dictionary with prompt-based learn-
ing (Liu et al., 2021b), hoping to transfer semantic
knowledge from the language model (LM) to the

dictionary. Formally, taking the input of each con-
cept ¢; in the dictionary 7' = {¢; }i=1,... m. the clas-
sification returns a ranked list of related disciplines
F., C F and outputs p; for f; € F' = {f;}j=1,..x
to indicate its likelihood to be related to f; disci-
pline:

pi(z') = LM (fra(, £;):0) (1)

where ' = fprompt(ci) is a prompt with the con-
cept ¢; filled template slot [concept], and func-
tion fry(x', f;) fills in the slot [M ASK] with
the potential answer f;. For example (Figure
2), in one case of discipline classification where
¢; ="““identification”, the template is designed as
“IM ASK] including [concept]”. Then z’ would
become “ [M AS K] including identification”, and
we calculate the probability p; for each f; € F' =
{f;j}j=1,..k according to Eq. (1).

Additionally, creating manually crafted tem-
plates takes time and experience and is possibly
sub-optimal, failing to retrieve facts that the LM
does know (Jiang et al., 2020). Inspired by rela-
tion extraction methods (Hearst, 1992), hand-built
Hearst patterns such as “Y including X (Cities in-
cluding Madrid or Barcelona)”, we create eight
more lexico-syntactic templates to improve and

stabilize the classification performance’.

3.2 Distant Supervision Refinement

With a discipline-aware dictionary, we can generate
distantly supervised labels by matching with the

3See more templates in Appendix A.3
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Algorithm 1 Dic-Matching with Academic Disci-
pline
Input: Course Corpus D = {C;}7 ,, where C; =
{Si, F;}; Dictionary T' = {¢;}";; K number of
Top-K;
for each course C; = {S;, F;} in D do
for each video subtitles v;; in S; = {v;;} do
X = [#1, 22, ...xN] < tokenize v;;
BIO tag potential concept using POS,RE:
DE = [dy,da, ..., dy]
for potential concept pc; tagged in D}y " do
if pc; € T and
(top-K fields of pc;) NF; # () then
Tag BI to pc; tokens
else
Tag O to pc; tokens
end if
end for
Academic discipline related:
Dy, = [di1,da, ...,dN]
end for
end for

Output: labels

{(Xm, Din) b

m=1

Distantly  supervised

top- K -related disciplines* in the ranked list from
Eq. (1). This way, we can have a much higher
precision by explicitly removing unrelated noisy
annotations.

The entire Dic-Matching with academic disci-
pline process is described in Algorithm 1. The
input subtitles are first tokenized and annotated
with part-of-speech (POS) tags. Next, we em-
ploy the regular expression (RE) by only keep-
ing nouns to handle the noise challenge and min-
ing more noun phrases to address the incom-
plete challenge, as illustrated in Appendix A.2.
Finally filtering out unrelated disciplines, we
have {(X,n, D) }M_, as distantly supervised data,
where X,,, = [z1, 22, ...,2N], composed of N to-
kens, D,, = [d1,ds,...,dy], based on the BIO
schema (Li et al., 2012). Specifically, the first to-
ken of a concept mention is labeled as B; other
tokens inside that concept mention are labeled as I;
the non-concept tokens are labeled as O.

3.3 Discipline Embedding Self-training

We adapt the PLMs to the sequence labeling tasks
with the distant labels and self-training approach

*K is experimentally set to 2.

to iteratively deal with the noisy annotations mean-
time training a new integrated embedding based on
the concept discipline distribution to implicitly en-
hance model discipline-aware capability. Then we
can employ other advanced DS-NER approaches,
such as co-training and PUL.

3.3.1 Discipline Embedding Model

At the pre-process of the dictionary, for each con-
cept c¢;, we calculate its distribution in all aca-
demic disciplines according to Eq. (1), denoted
as Ue, = [p1,p2,---,pr|]. To introduce the dis-
cipline feature, each token x; of the input X, =
(1,2, ..., 2N]is encoded as E; by adding its dis-
cipline distribution to BERT word embedding if x;
is labeled as belonging to one of concept ¢; in the
dictionary:

Tj €
xj ¢ anyc;
2
Where d}, is a hidden dimension of the encoder,
and W e RIFI"dn is trainable parameters. We use
BERT (Devlin et al., 2018) as our Encoder to learn
the sequence representation. This way, external
academic field features are integrated into the em-
bedding, enhancing model discipline-aware capa-
bility (Figure 3).

B - Encoder(x;) + U, W
I Encoder(x;)

Psychology

‘cxpcricntial
learning
»

4 learning

Concept Embedding Space

Figure 3: An example of external academic discipline
feature promoting model discipline-aware capability.

Straightforward, we use f(;60) to denote our
model parameterized by 6, which is a token-wise
classifier on top of a pre-trained BERT. f, .(-;-)
denotes the probability of the n-th token in X,,
belonging to the c-th class from the BIO schema.
The model will be learned by minimizing the cross
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entropy loss £(0) over {(Xm, D) M

m=1+

o S5 o fu (Xoni)

m=1n=1
(3)

2

3.3.2 Teacher-Student Self-training

Following Liang et al. (2020); Meng et al. (2021);
Zhang et al. (2021b); Liu et al. (2021a), we employ
the teacher-student self-training strategy because
it selects high-confidence and consistent predic-
tions as pseudo labels from the teacher model and
then uses them to guide the training of the student
model, which removes the noisy labels iteratively.
We adopt two advanced self-training DS-NER ap-
proaches. One is based on Zhang et al. (2021b),
aimed at high-precision performance, which jointly
trains two teacher-student networks and confirms
its effectiveness and robustness in dealing with the
label noise.

The other is inspired by Peng et al. (2019), aimed
at high-recall performance, which introduces PUL
as it can unbiasedly and consistently estimate the
task loss. We apply the binary label assignment
mechanism for using this algorithm by mapping “O”
to 0 and “B”, “I” to 1. Finally, we get positive set
D =ldmn1, ..., dpn,|p+)] and unlabeled set Dj;, =
[din1; -y d, pu|] from the original distantly su-
pervised labels Dy, = [d,.1,dm 2, ..., dm N]. The
PUL training loss is defined by:

L(0) = v-mpL) (0) +maz{0, L, (0) —m,L;) (6)}
4)
where
S B el
+ - - = -1 )Qn'
[%(9) A[LD+’;?%d:1 Ogjal( 79)
Ly(0)=1-LS(0
N 1 M D
L, (9) log fa,0(Xm;0)
~ W 3, 2

and m, is the ratio of positive concept words within
D,,. A class weight + is introduced to deal with the
class imbalance problem (7, is very small). As a
whole, in this training strategy, the parameters of
the student model 6* are learned by the combina-
tion of the cross entropy loss (Eq. (3)) and the PUL
loss (Eq. (4)):

0* = argmin(L(0) + B - L(0)) %)
0

where a parameter (3 is introduced to balance these
two loss functions.

4 Experiments

4.1 Experimental Settings
4.1.1 Dataset

We provide a new dataset spanning 20 academic
disciplines, which can be used to benchmark dis-
tantly supervised methods for course concept ex-
traction task in MOOCs. Based on MOOCCube
(Yu et al., 2020a), the input includes two parts:
(1) an expert-checked dictionary with over 100k
course concepts from CNCTST?, and (2) a subtitle
corpus from 315 courses with 167,496 unlabeled
character sequences on average per course. The test
set contains 522 expert-annotated sentences from
17 courses with 15, 375 discipline-related course
concepts. All data is from XuetangX®, one of the
largest MOOC websites in China, so the dataset
is in the Chinese language. More details of the
dataset can be found in Appendix A.5.

4.1.2 Baselines and Evaluation Metrics

We compare our method with several competitive
baselines from three aspects and use Precision (P),
Recall (R), and F1 score as the evaluation metrics.
Dic-Matching Methods. We construct different
Dic-Matching (DM) methods for comparison, in-
cluding (i) DM: it is a simple string matching with
a greedy search algorithm to find the longest match-
ing strings in sentences; (ii)) DM(AD-LM) : it
adopts the matching strategy proposed in Algo-
rithm 1; (iii) DM(AD-human): it is a variation of
AD-LM that replaces the discipline classification
results from GLM with ones from CNCTST expert
annotations.

Fully-supervised Method. We also construct fully-
supervised methods for comparison. FLAT (Li
et al., 2020): For Chinese NER, it converts the
lattice structure into a flat structure consisting of
spans to handle word segmentation in the Chinese
language.

Distantly-supervised Methods. The state-of-the-
art self-training DS-NER methods are as follows.
(i) SCDL (Zhang et al., 2021b): It explores more
helpful information from the mislabeled data by a
devised co-training paradigm based on self-training.
(i1)) RoSTER (Meng et al., 2021): A self-training
method that uses contextualized augmentations cre-
ated by pre-trained language models to improve the
model’s generalization ability. (iii) BOND(Liang

Shttp://www.cnterm.cn/
®https://next.xuetangx.com/
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et al., 2020): A two-stage framework that trains
a RoBERTa model on distantly-labeled data with
early stopping in the first stage and improves the
model fitting with a teacher-student framework to
iteratively self-train the model in the second stage.

4.1.3 Implementation Details

For concept classification task, we apply the Gen-
eral Language Model (Du et al., 2022), which is
capable of handling variable-length blank. We use
the pre-trained BERT-wwm-ext model (Cui et al.,
2020) as the backbone for our method and other
distantly-supervised baselines. The maximum se-
quence length of our dataset is set to be 512 tokens.
The max training epoch is 30, and the batch size
is 4. We use Adam (Kingma and Ba, 2014) as the
optimizer, and the learning rate is 1075, The confi-
dence threshold y is 0.9 for the co-training strategy
while 0.7 for the PUL strategy with the purpose
of high-recall performance. More implementation
details can be found in Appendix A.4.

4.2 Experimental Results

Overall Results. Table 2 shows the overall results
of different methods on our MOOC:s test set. Our
DS-MOCE framework with two self-training strate-
gies achieves the best performance among distantly-
supervised methods. Specifically, (1) the proposed
Dic-Matching method with academic discipline
refines the distant labels by improving precision
significantly; (2) DS-MOCE(co) reports a high
precision with 7% absolute F1 score improvement
over the best performing baseline model BOND,
demonstrating the superiority of our proposed Dic-
Matching with academic discipline method and
self-training approach; (3) DS-MOCE(PUL) con-
sistently outperforms other distantly-supervised
methods with a higher recall and reasonable pre-
cision, showing more robustness to the issue of
incomplete labeling.

As we have discussed, the Dic-Matching method
suffers from extremely low precision and low recall
in MOOC:s for its diversity, which dramatically
hurts the performance of the distantly supervised
baselines and limits the model fitting ability in fully
supervision.

Discipline Classification Results. Through the
comparison of DM(AD-human) and DM(AD-
LM) in Table 2, we find that the academic dis-
cipline classification result from GLM outperforms
that from expert annotations during Dic-Matching,
showing the robustness of our designed classifica-

Method P R F1
Dic-Matching

DM 12.50 25.84 16.85
DM(AD-human) 22.95 17.38 19.78
DM(AD-LM) 3459 1540 21.31
Distant-Sup.
SCDL 3459 21.16 26.26
RoSTER 35.40 26.70 30.40
BOND 32.37 4478 37.58
Our DS-MOCE
DS-MOCE(co) 81.93 30.82 44.79
DS-MOCE(PUL) 34.53 49.34 40.62
Sup.
FLAT 56.08 57.17 56.62

Table 2: Overall results (%) on our MOOC:s test set.

tion step for transferring PLMs knowledge to the
dictionary. On the contrary, human annotations
suffer from missing, incorrect, and out-of-date clas-
sifications.

Moreover, we evaluate the pre-process concept
classification task using the Mean Average Preci-
sion (MAP), a metric in information retrieval for
evaluating ranked lists. Table 3 shows some ex-
ample results using different templates. (See more
templates in Appendix A.3). The first example is
based on experience and the rest are Hearst pat-
terns, showing better and more stable performance.
We finally use the best-performing template in the
following parts.

Template MAP

[concept] belongs to [M ASK] | 51.35
[concept], a concept of [M ASK] | 58.44
[M ASK], especially [concept] | 58.89
[M ASK] including [concept] | 59.95

Table 3: Results (%) of different templates.

Ablation Study. To evaluate the influence of each
component, we conduct the following ablation
study for further exploration by removing one com-
ponent at a time: (1) do not adopt Alg. 1 and use the
Dic-Matching method when generating distantly
supervised labels. (2) only use BERT Encoder
without adding academic discipline embedding; (3)
do not perform self-training; (4) do not perform
co-training for DS-MOCE(co) and only use cross-
entropy loss in Eq. (3) without adding PUL loss
in Eq. (4) for DS-MOCE(PUL). The results are
shown in Table 4. It can be seen that w/o Alg.
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Method P R F1

DS-MOCE(co) 8193 30.82 44.79
w/o Alg. 1 14.15 34.28 20.04
w/o embedding  34.59 21.16 26.26
w/o self-train 60.07 27.38 37.61
w/o co 67.63 30.74 4247
DS-MOCE(PUL) 3453 4934 40.62
w/o Alg. 1 17.52 50.26 25.98
w/o embedding  34.30 48.79 40.28
w/o self-train 14.33 40.66 21.19
w/o PUL 32.02 36.63 34.17

Table 4: Ablation study results (%).

Discipline ratio P R F1

Philosophy  0.05 80.65 11.57 20.24
CS 0.27 84.16 47.87 61.03
Mathematics 0.16 92.89 4850 63.73
Medicine 0.16 89.38 2290 36.46

Table 5: DS-MOCE(co) results (%) on courses from
different disciplines. The ratio is calculated by ( # of
concept words) / (# of words of subtitles). See specific
course names in Appendix A.5.1.

1 refinement and w/o embedding for both strate-
gies lead to worse performance than the full model,
confirming the necessity of considering discipline
features in MOOCs. Removing the self-training or
co-training component also reduces performance,
showing its importance in DS-MOCE(co) of de-
noising learning because false-negative labels can
be explored via peer model or another network it-
eratively. Without PUL, the recall value decreases
sharply, which validates the effectiveness of intro-
ducing PUL to tackle the incomplete challenge.

Parameter Study. Before discussing the parame-
ter study of 7, defined in Eq. (4), we first calculate
the true value of m, = (# of concept words) / (#
of words of the training set) in our dataset, with a
0.1002 result. Then we train the proposed model
DS-MOCE(PUL) with different estimated 7, and
evaluate its performance on the test set. From Fig-
ure 4(a), we can see that although the highest recall
is achieved by setting m, = 0.1, most closely to
the true value, the variation of results across dif-
ferent m, is relatively tiny. This motivates us to
use a proper estimated value of m, to deal with
the diversity of MOOCs where courses from dif-
ferent disciplines have incongruous and unknown
mp values. Therefore, we set m, = 0.01 for DS-
MOCE(PUL) to achieve a high recall and a higher

60.00
50.02
5000 924837
o 45.28
e [
°
30.00 P
R
®F
003 007 010 014
(a) different m,
60.00
51.94
4975 49.87 5124 2
50.0 ®
4315
® 4028
40.0037.86 39.46 38.93 35 91
()
30.00 L4 or
R
® F

1.00 2.00 3.00 4.00 5.00 6.00
(b) different 8

Figure 4: Parameter study results (%) of DS-
MOCE(PUL).

F1 score. Besides, we set 8 = 1 in Eq. (5) through-
out our experiments without further illustration,
according to Figure 4(b).

Different Discipline Analysis. We analyze that
the diversity of MOOCSs academic disciplines ac-
counts for more noisy and incomplete annotations
in distantly supervised MOOCs. As a result, we
select some courses from different disciplines and
use DS-MOCE(co) framework to perform predic-
tion on these courses. From Table 5, we discover
that (1) the intensive and appropriate terminologi-
cal concepts in formal and applied science, such as
CS and Mathematics, bootstrap the model with its
high-recall predictions that benefit the model’s gen-
eralization; (2) the sparse distribution (low concept
ratio) in Humanities and Social Science Philoso-
phy makes it uncertain about selecting tokens to
train a robust model; (3) excessive terminological
concepts (nested structure and long formulas) in
some professions, such as Chemistry and Medicine,
amplify the issue of incomplete annotation, where
several concept extraction methods have been de-
veloped specifically to handle this problem (Wang
et al., 2021; Fu et al., 2020).
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HIThEE &1 ZIE,
Sentence # 1 The function of is ... between and
DM B RE AR A ZIHE, ...
DM(LM) FIThRERAE T SR 2 /], ...
SCDL FIBhRERTE SR 28], .
RoSTER HITHRERAE - SR 2z ],
BOND FIShRERAEH SR 208, ...
DS-MOCE(co) HITRERTE 20,

=] P : =y
Sentence # 2 M 1 LE—RIIK PR
are produced by a range of such as
s and

DM PR R, M, AT ERESE—RFW P
DM(LM) YRR RS, HME, [RAEShYfer & REE—RTIM TR
DS-MOCE(co) UM R R R, M, RAEhme i ES—RTIH PR
DS-MOCE(PUL) ZH #n EE—RII PR

Table 6: Case studies between DS-MOCE(co) and baselines of the first sentence; DS-MOCE(co) and DS-

MOCE(PUL) of the second sentence. Golden labels are marked in

. Noisy labels are marked in red

and incomplete in blue. See the corresponding English illustration in Appendix A.6.

Case Study. Finally, we perform a case study to
understand the advantage of DS-MOCE(co) with a
concrete example in Table 6.

Besides, we select another case study to demon-
strate why DC-MOCE(PUL) is provided in our
work. The extremely high precision accounts for
the F1 score increment of the DS-MOCE(co) frame-
work, but low recall leads to more missing to-
kens. Consequently, aimed at improving recall,
we design the DC-MOCE(PUL) as an alternative
option by sacrificing the precision properly. Fi-
nally, DS-MOCE(co) with high-precision and DS-
MOCE(PUL) with high-recall can be applied in
different real-world scenarios.

To help our model’s behaviors be understood
and applied to real-world applications, we suggest:
(1) For DS-MOCE(co) with high-precision perfor-
mance, it is better to apply it to the downstream
tasks that acquire accurate concepts but ignore
the coverage, such as course concept recommen-
dation and Al-driven robot assistant; (2) For DS-
MOCE(PUL) with high-recall performance, it is
better to apply it to scenarios where there is surplus
human labor available for corrections, and where
there is a need to recall as many course concepts
as possible, such as in MOOC knowledge graph
construction.

5 Related Work

Distantly Supervised NER. Our work is more
closely related to distantly supervised NER, where
the primary research focuses on coping with the

noise and incomplete annotations problem.
Several new training paradigms have been pro-
posed along the denoising line, such as Reinforce-
ment learning (Yang et al., 2018), AutoNER (Shang
et al., 2018) with a new tagging scheme “tie or
break”, Hypergeometric Learning (Zhang et al.,
2021a) and Bagging-based active learning with
negative sampling (Lee et al., 2016). Along the
incomplete mining line, a direct solution is con-
cept expansion (Yu et al., 2019, 2020b; Wang et al.,
2019), which finds new candidates and ranks them
to expand the set based on the seed set with fig-
urative elements. AdaPU (Peng et al., 2019) and
Conf-MPU (Zhou et al., 2022) are developed to ad-
dress the incomplete challenge by formulating the
task as a positive-unlabeled learning problem. Be-
sides, many studies (Yang et al., 2018; Shang et al.,
2018) attempt to modify the standard CRF to par-
tial annotation CRF to consider all possible labels
for unlabeled tokens. However, these works do not
work well in MOOCs where severe low-precision
and low-recall problems have been reported previ-
ously.
Course Concept Extraction. Our study is also rel-
evant to course concept extraction, which is related
to keyphrase extraction (Hasan and Ng, 2014) in
the information retrieval domain. The well-known
methods such as tf-idf (Ramos et al., 2003), co-
occurrence (Mihalcea and Tarau, 2004), and Po-
sitionRank (Florescu and Caragea, 2017) are fre-
quently used in unsupervised automatic keyphrase
extraction. However, the low-frequency (i.e., ap-
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pearing only once or twice in the subtitles) feature
of keyphrases in MOOCSs makes statistical informa-
tion less useful (Pan et al., 2017). Therefore, Pan
et al. (2017) develop a graph-based propagation
algorithm, and Albahr et al. (2021) design a novel
unsupervised cluster-based approach to address the
low-frequency problem in keyphrases extraction
from MOOC:s.

DS-MOCE also benefits from distributed rep-
resentations of words, namely word embeddings
(Mikolov et al., 2013) to learn academic discipline
representations for concepts from the dictionary,
which has been employed in Wang et al. (2018);
Wau et al. (2022).

6 Conclusion and Future Work

In this paper, we attribute the increased noise
and incomplete challenges of distantly supervised
course concept extraction in MOOC:S to the limited
dictionary and diverse MOOCs. To tackle these
challenges, we propose a three-stage framework
DS-MOCE, which handles the unrelated noise
through Dic-Matching refinement and discipline-
embedding model training, and leverages the power
of pre-trained language models for dictionary em-
powerment and incomplete mentions mining. We
also provide an expert-labeled dataset spanning 20
academic disciplines. Experimental results show
that DS-MOCE is highly effective, outperform-
ing the state-of-the-art distantly supervised meth-
ods. Although achieving significant improvement,
course concept extraction in MOOC:s is still non-
trivial. In the future, we plan to design a more
robust training method to jointly deal with severe
noisy and incomplete issues and apply it to other
real-world open domains.

7 Ethic Consideration

We provide an expert-labeled dataset spanning 20
academic disciplines, which contains 522 expert-
annotated sentences from 17 courses with 15,375
course concepts. We define the 20 academic disci-
plines according to Discipline Doctor and Master
Degree and postgraduate training, the professional
directory issued by the Ministry of Education of the
People’s Republic of China’. The course corpus
is collected from an open-source database MOOC-
Cube (Yu et al., 2020a)®. The dictionary is col-

"http://www.moe.gov.cn/srcsite/A22/
moe_833/200512/t20051223_88437.html
$http://moocdata.cn/data/MOOCCube

lected from CNCTST® with expert-checked 100k
course concepts. The annotated sentences in the
test set are from an expert from the Education De-
partment in our university, which may have limi-
tations but missing criteria in MOOCs means that
we can accept this human bias. The annotator is a
voluntary participant who was aware of any risks
of harm associated with their participation and had
given their informed consent. To lighten the burden
of the annotator, we first use unsupervised methods,
such as tf-idf, to give a rough annotation result for
each course, randomly selected from XuetangX'?.
Then the annotator marks mentions of high-quality
course concepts based on that. More details of the
dataset can be found in Appendix A.S5.

8 Limitations

Although we conducted extensive experiments, the
exploration scope of this work has some limita-
tions: (1) All data is from one of the largest MOOC
websites in China, so the dataset is in the Chinese
language, which limits the linguistic features cov-
ered in our analyses. We will add comprehensive
corpora from other MOOC platforms with various
languages such as English, Japanese, French, and
so on to enhance the availability and coverage of
our dataset. (2) We present two models with high-
precision and high-recall behaviors. The severe
noisy and incomplete issues could not be coped
with simply by combining two technical methods
(i.e. co-training and PUL). A more robust train-
ing method should be proposed to jointly achieve
better overall performance. We encourage future
works to address these limitations and get more
comprehensive analysis results.
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A Appendix

A.1 Case Explanations of Limited Dictionary
& Diverse MOOCs

The limited dictionary. It is expensive and time-
consuming to expand or tailor a dictionary to
every specific domain because of MOOCs rapid
growth and criteria missing, ending up with out-
of-dictionary and low-quality concept problems.
We categorize two types of low-quality course con-
cepts in the dictionary. The first type is not specific
enough, missing prefixes and suffixes. The sec-
ond type is unigram concepts with many extended
meanings, which end up with false-positive labels.

The diverse MOOCs. Compared with other
benchmark datasets, Table 1 illustrates that the
number of concept types is inversely proportional
to the distantly matching performance. As shown
in Table 1, where BCSCDR (Shang et al., 2018)
is restricted to the biomedical domain, a domain-
specific dictionary with a corpus-aware dictionary
tailoring method can achieve higher precision and
reasonable recall. MOOCs can span 20 or even
more academic disciplines. During label genera-
tion, unrelated concept annotations would produce
more false-positive noise.

Besides, the characteristics among varied dis-
ciplines are different. Most of the time, the con-
cept distribution in humanities and social science
is sparse, while in formal science is dense. Ac-
cording to the statistics, the concept proportion
of contents in one psychology course is 0.0163,
whereas in one computer science course is 0.1. The
uneven concept distribution may lead to a matching
bias toward the concept-intensive academic disci-
pline. Furthermore, in Chinese, homonyms are
more likely to appear in humanities and social sci-
ence, where words share the same characters and
pronunciations but have different meanings. For
example, in Philosophy, the debate of right and
wrong makes "right" annotations correct. However,
"right", as a high-frequency phrase, is easily an-
notated in other contexts, producing false-positive
labels. The ambiguity of homonyms makes it diffi-
cult to extract the correct meaning concept in these
domains.

A.2 Regular expression in Distant
Supervision Refinement

During distant supervision refinement, we employ
the following regular expression, introduced by

Template MAP
[concept], a concept of [M ASK] 58.44
[M ASK] such as [concept] 56.77
[M AS K] including [concept] 59.95
[concept] and other [M ASK] 54.63
[concept] or other [M AS K] 54.32
[concept] which is known as [MASK] 54.57
[M ASK], especially [concept] 58.89
like [M ASK], [concept] 54.87

Table 7: Results (%) of Hearst Pattern Templates.

Luo et al.'!, only keeping nouns and noun phrases
to remove the apparent incorrect POS noise and
mining more incomplete annotations by connecting
two nouns with Q.

(Q(([av]?n[rstz]?)|l|alv)) * (Q(([av]?n]rstz]?)|l))

A.3 Templates Results

All eight template results based on Hearst Pattern
are shown in Table 7.

A.4 Baselines Settings

For fully-supervised methods, we use 3/4 of the test
set for model training and the rest for evaluation.
Fairly, the following distantly supervised methods
use the distantly-labeled training set obtained from
Dic-Matching(AD-GLM).

* SCDL. We use the authors’ released
code: https://github.com/
ATRobotZhang/SCDL. Because our
test set is in the Chinese language, we change
the basic model to the same pre-trained
BERT-wwm-ext model with our method. We
train the model for 30 epochs with a batch
size of 8. The other hyperparameters are set
to default values.

* RoSTER. We follow the officially released
implementation from the authors: https://
github.com/yumeng5/RoSTER. Simi-
larly, we modify the backbone model from
RoBERTa-base to the same one with our
method. The epoch number is set to 3, 3, and
7 for noise-robust training, ensemble model
training, and self-training, respectively. We
train five models with 2000 intervals of noise-
robust training and 1000 of self-training with

"a parent with number CN201911140653.9
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Metrics results
number of course 17
Avg. number of video 12.06
Avg. length of subtitles 15740.71
Avg. number of related disciplines 1.82
Avg. number of concepts 904.41
Max. number of concepts 5174
Avg. length of concept 2.39

Table 8: Test set information.

a batch size of 8. The rest hyperparameters
are the same as the default values.

* BOND. We use the authors’ released code:
https://github.com/cliangl453/
BOND/. Also, we choose the pre-trained
BERT-wwm-ext model as the backbone
model. The early stopping step of the
student model is set to 100k. The other
hyperparameters are set to default values.

A.5 Dataset Statistic

A.5.1 Test Set Annotation

We select 17 courses from the course corpus span-
ning these disciplines and ask an expert to annotate
each sentence as our test sets. The more detailed
statistics are shown in Table 8. During analysis of
different discipline, we choose Introduction to the
Classical Works of Chinese Philosophy for Philoso-
phy; Machine Learning for Big Data for Computer
Sciences(CS); Finite Element Analysis and Appli-
cations for Mathematics; Pathology for Medicine.

A.5.2 Dictionary Information

We created our dictionary with 20 academic dis-
ciplines by developing the resource from MOOC-
Cube(Yu et al., 2020a) based on its concept tax-
onomy from CNCTST. Then according to Disci-
pline Doctor and Master Degree and postgraduate
training, the professional directory issued by the
Ministry of Education of the People’s Republic of
China'?, we show the prescribed 20 academic disci-
plines and the distribution of concepts that filtered
and mapped from MOOCCube in Table 9.

A.6 Case studies in English

To make the case study more vivid, we highlight
the corresponding English word in different colors
in Table 10. Considering contextual differences

Phttp://www.moe.gov.cn/srcsite/A22/
moe_833/200512/t20051223_88437.html

between the two languages, there are some missing
tokens in English.
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Academic Discipline Abbreviation in Chinese #concepts
Philosophy Phi. S 2136
Education Edu. HE¥ 2947
Linguistics and languages Lin. BE¥ 2909
History His. S 5 4021
Mathematics Mat. I 7876
Physics Phy. 7Pt 4273
Chemistry Che. = 6909
Mechanics Mec. T1%: 1119
Mechanical Engineering ~ ME P TAE 18011
Materials Science MS MEERFE SR 6923
Electrical Engineering EE RS THE 5000
Computer Science CS ITENVEZERR 4906
Architecture Arc. I 5305
Marine Engineering ME A0 AR 2333
Aeronautical Aer. WA RIS SN 4213
Aviation Avi. MR ER 2236
Agriculture Agr. R 2248
Medicine Med. R 10346
Business Bus. BB EEOR 7473
Immunology Imm. ahrae2 1564

Table 9: 20 Academic disciplines and the concept distribution.

HIThRERAE AL 2Z 18],

Sentence # 1

The function of is ... between and
DM The function of is ... between the user and
DM(LM) The function of is ... between the user state and
SCDL The function of is ... between the user state and
RoSTER The function of is ... between state and
BOND The function of is ... between state and
DS-MOCE(co) The function of is ... between and
Sentence #2 REHE, M, A L BB — PRV L

are produced by a range of such as s
s and

diseases are produced by a range of such as viruses,

DM . .
bacteria, protozoa and parasites.
Infectious diseases are produced by a range of

bacteria, protozoa and parasites.

DM(LM) such as viruses,

Infectious diseases are produced by a range of
bacteria, protozoa and parasites.
are produced by a range of
s and

such as viruses,

DS-MOCE(co)

DS-MOCE(PUL) such as

Table 10: Table 6 illustration in English. Case studies between DS-MOCE(co) and baselines of the first sentence;
DS-MOCE(co) and DS-MOCE(PUL) of the second sentence. Golden labels are marked in . Noisy labels are
marked in red and incomplete in blue.
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