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Abstract

This paper explores the effectiveness of model-
generated signals in improving zero-shot gen-
eralization of text-to-text Transformers such as
T5. We study various designs to pretrain T5
using an auxiliary model to construct more chal-
lenging token replacements for the main model
to denoise. Key aspects under study include
the decoding target, the location of the RTD
head, and the masking pattern. Based on these
studies, we develop a new model, METRO-
T0, which is pretrained using the redesigned
ELECTRA-Style pretraining strategies and
then prompt-finetuned on a mixture of NLP
tasks. METRO-T0 outperforms all similar-
sized baselines on prompted NLP benchmarks,
such as T0 Eval and MMLU, and rivals the
state-of-the-art T011B model with only 8% of
its parameters. Our analysis on model’s neural
activation and parameter sensitivity reveals that
the effectiveness of METRO-T0 stems from
more balanced contribution of parameters and
better utilization of their capacity. The code
and model checkpoints are available at https:
//github.com/gonglinyuan/metro_t0.

1 Introduction

Recent work in NLP has shown that pretrained lan-
guage models have made noteworthy progress to-
ward generalization to unseen tasks. Despite being
pretrained on only language modeling objectives,
large language models can perform reasonable zero-
shot generalization given natural language instruc-
tions, i.e. prompts (Radford et al., 2019; Brown
et al., 2020). Further research shows that finetuning
language models on a mixture of tasks with prompt
templates enhances their performance on held-out
new tasks (Sanh et al., 2022; Wei et al., 2021).

In recent years, two significant research paths
have emerged in the field of pretrained language

∗Part of this work is done during Linyuan and Yiqing’s
internship at Microsoft.

models: one seeks to improve generalization ei-
ther by scaling up the model, increasing param-
eters, data, and compute, or by refining prompts.
Another divergent yet complementary approach
focuses on augmenting the efficiency of pretrain-
ing, particularly in the context of BERT-style mod-
els. This approach has been proven to signifi-
cantly improve pretraining efficiency through the
use of model-generated pretraining signals, as evi-
denced by ELECTRA (Clark et al., 2020), COCO-
LM (Meng et al., 2021), and METRO-LM (Bajaj
et al., 2022). However, this improvement has pri-
marily been witnessed in single-task supervised
finetuning settings. Our work seeks to bridge
these two areas of research. We present a novel
method that enhances the pretraining efficiency of
T5, a widely used encoder-decoder Transformer
in prompt-based learning, by utilizing ELECTRA-
Style model-generated signals.

Our preliminary studies, however, encountered
many challenges in pretraining T5 with model-
generated signals, particularly in designing an ef-
fective objective to train the decoder and ensuring
training stability. To address these challenges, we
study the impact of key components in this pre-
training scheme, such as the decoding target, the
location of the Replace Token Detection (RTD)
task, and the masking pattern. Then we redesign
the pretraining algorithm to solve training stability
issues, thus bringing in the benefits of ELECTRA-
style pretraining to T5-style Transformer encoder-
decoder models. The pretrained model is then fine-
tuned on a family of multi-task training mixtures of
NL-prompted dataset, which has previously been
used to train the T0 models (Sanh et al., 2022). Our
model, METRO-T0, is a T0 model pretrained with
Model generated dEnoising TRaining Objective.

Experimental results show that METRO-T0 is
highly parameter efficient. It consistently outper-
forms similar-sized baselines on all NL-prompted
benchmark we evaluated upon. As shown in Fig-
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Figure 1: Prompt learning results of METRO-T0 versus our T0 baseline and T03B by Sanh et al. (2022) on 4 tasks
in the T0 Eval benchmark. Each point denotes the accuracy using one prompt template, except that the median
accuracy over all templates of T03B is indicated by the blue point. The plots of other tasks are in Appendix A.7.

ure 1, METRO-T0BASE++ outperforms T03B (Sanh
et al., 2022) with only 7% of its parameters on
the T0 Eval benchmark. Moreover, METRO-
T0++LARGE++ rivals 14x larger T0++11B, the state-
of-the-art in prompt-based learning. Our method
is also compute efficient: METRO-T0 pretrained
for 500k steps has similar performance as its T0
counterpart pretrained for 2M steps.

To further understand the benefit of METRO pre-
training, we conduct two studies on the pretrained
METRO-T0 model, analyzing its neural activation
and parameter sensitivity. The studies show that
model-generated signals balance the contribution
of each NN parameter and reduce the number of
under-activated neurons by 55%, indicating that a
key source of the improved pretraining efficiency
is better utilization of network parameters.

2 Related Work

Prompt-based learning with language models.
Prompt-based learning allow language models to
handle a wide range of tasks with no training data
(zero-shot) or a few training data (few-shot), by
leveraging natural language instructions and task
demonstrations as context (Radford et al., 2019;
Brown et al., 2020). Raffel et al. (2019) proves the
effectiveness of prompt-based learning as a frame-
work of multi-task learning for text-to-text Trans-
formers such as T5. LMs are usually finetuned
with NL instructions to improve their performance
and usability. Such a procedure is called prompt-
finetuning. The finetuning data comes from aggre-
gated mixtures of NLP tasks (Sanh et al., 2022; Wei
et al., 2021), dialogs (Chung et al., 2022), or even
chain-of-thoughts (Wei et al., 2022). Our work
aims to improve the zero-shot generalization of T5-
like text-to-text LMs in prompt-based learning by
efficient and effective pretraining strategies.

Efficient pretraining using model-generated sig-
nals. Training big language models require sub-

stantial computational resources. This paper is
part of a line of research that improves the pre-
training efficiency of LMs using model-generated
signals, i.e., METRO (Bajaj et al., 2022), pio-
neered by ELECTRA (Clark et al., 2020), a Trans-
former encoder pretrained using signals generated
by an auxiliary BERT. Various studies (Meng et al.,
2021, 2022; Chi et al., 2021; Fang et al., 2022)
show that an auxiliary model can generate infor-
mative training signals that greatly improve the
efficiency and effectiveness of BERT-like Trans-
former encoder models, as evaluated on supervised
single-task benchmarks like GLUE (Wang et al.,
2018). Compared with these works, we use model-
generated signals to pretrain T5-like Transformer
encoder-decoder models and evaluate this model
on large-scale NL-prompted benchmarks.

3 Preliminaries

This section provides an overview of T5 and
METRO-style pretraining.

3.1 Text-to-Text Transformers
Our models are based on the T5 framework (Raf-
fel et al., 2019). T5 is a text-to-text Transformer
pretrained on natural language corpus.

T5 Pretraining. T5 is a Transformer encoder-
decoder language model pretrained by modeling
corrupted spans of subword tokens. The noisy in-
put is constructed by replacing consecutive spans
of tokens in the input by distinct “sentinel” tokens,
e.g., Xnoise = [x

orig
1 , ..., [M]i:j , ...xorig

n ], where the
sentinel token is denoted by [M]i:j . Then the pre-
training task is to generate the deleted tokens using
the Transformer decoder, conditioned on Xnoise as
input to the Transformer encoder:

[x
orig
1 , . . . [M]i:j , . . . xorig

n ]
Encoder−−−−→ Henc

Henc Decoder−−−−→ [[M]i:j , xorig
i , ..., x

orig
j ].

(1)
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Text-to-Text Formulation of Downstream Tasks.
T5 supports multitask learning on a diverse set of
downstream tasks—including classification, ques-
tion answering, and summarization—by casting all
these tasks into a text-to-text format, where the en-
coder is fed with the text input and the decoder is
then asked to generate the target prediction.

Text-to-Text Prompt-Finetuning. A pretrained
text-to-text Transformer can then be finetuned to
enhances its performance on held-out new tasks.
The finetuning corpus is usually a multi-task mix-
ture of NLP datasets, where each input-output pair
is an example formatted with an NL prompt tem-
plate. The finetuning procedure is standard seq2seq
learning: the input sequence is fed to the encoder,
and the target sequence serves as the ground truth
to compute the cross-entropy loss of the decoder
output.

3.2 Model-Generated Pretraining Signals
In this subsection, we discuss techniques involving
model-generated pretraining signals in prior work.

Replace token detection (RTD) is the training
objective used to train ELECTRA (Clark et al.,
2020). The RTD input is a noisy text sequence
Xnoise, generated by an auxiliary masked language
model (MLM) like BERT. The token xnoise

i in each
masked position of the text sequence is sampled
from the predicted probability of the auxiliary
model pMLM(xnoise

i |haux
i ), while the token in each

unmasked position xnoise
j is copied from the orig-

inal text xorig
j . The main model, a Transformer

encoder, is pretrained to denoise the noisy input by
classifying whether each token is replaced by the
auxiliary model or from the original text.

Xorig Random Mask−−−−−−−→ [xorig
1 , . . . [M], . . . xorig

n ]; (2)

[xorig
1 , . . . [M], . . . xorig

n ]
Auxiliary−−−−−→ Xnoise; (3)

Xnoise Model−−−→ H
RTD Head−−−−−→ 1(xorig

i = xnoise
i ). (4)

Prior work show that the RTD objective is more
efficient than the MLM objective, resulting in sig-
nificant performance improvement for pretrained
Transformer encoders (Clark et al., 2020). How-
ever, replacing MLM with RTD turns the genera-
tive model into a discriminative model, hindering
the model’s ability to perform generation.

Corrective language modeling (CLM) restores
the generation capability of a Transformer encoder

model pretrained with RTD (Meng et al., 2021).
The CLM objective is trained alongside the RTD
objective in a multi-task manner, so the CLM input
is the same as the RTD input Xnoise. The model is
pretrained to recover the original text Xorig.

Xnoise Model−−−→ H
CLM Head−−−−−−→ Xorig. (5)

4 Method

In this section, we present the algorithm to train
our model, METRO-T0.

4.1 Pretraining Objective Design
METRO-T0 is jointly pretrained with two objec-
tives: the RTD objective, enhancing performance
through model-generated signals, and the CLM ob-
jective, enabling text-to-text generation akin to T5.
The pretraining algorithm is illustrated in Figure 2.
METRO-T0 uses a BERT-style MLM encoder as
the auxiliary model and a T5-style encoder-decoder
as the main model. The overall pretraining proce-
dure is:

Xorig i.i.d. Random Mask−−−−−−−−−−→ [xorig
1 , . . . [M], . . . xorig

n ]; (6)

[xorig
1 , . . . [M], . . . xorig

n ]
Auxiliary−−−−−→ Xnoise; (7)

Xnoise Encoder−−−−→ Henc RTD Head−−−−−→ 1(xorig
i = xnoise

i ); (8)

Henc Decoder−−−−→ Hdec CLM Head−−−−−−→ Xorig. (9)

The auxiliary model receives inputs constructed
by randomly masking tokens in the original text
Xorig, and makes MLM predictions, which are used
to create noisy inputs Xnoise for the main model.
The main model is pretrained using two objectives:
(a) the RTD objective on the encoder outputs Henc,
which aims to identify whether each token was
replaced by the auxiliary model or not, and (b) the
CLM objective, which aims to recover the original
text Xorig through the decoder. During pretraining,
the weighted average of three losses is optimized:

LMLM = −Ei∈M log pMLM(xorig
i |haux

i ), (10)

LRTD = −E log pRTD(1(x
orig
i = xnoise

i )|henc
i ), (11)

LCLM = −Ei∈M log pLM(xorig
i |hdec

i ), (12)
L = LMLM + λRTDLRTD + λCLMLCLM. (13)

In crafting METRO-T0’s pretraining algorithm,
we explored various alternatives before finalizing
our design. For example, an alternative method
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Figure 2: The architecture of METRO-T0 during pretraining using BERT as the auxiliary model to generate signals.

Original Sentence Thank you for inviting me to your party last week

Auxiliary Model Input Thank you [M] [M] me to your party [M] week
Output Thank you for giving me to your party apple week

Main Model Input Thank you for giving me to your party apple week

Decoding Masked Tokens Only for inviting last
Target All Tokens Thank you for inviting me to your party last week

All Tokens, Masked Loss⋆ Thank you for inviting me to your party last week

Table 1: Examples of encoder inputs and decoder targets of different ways to configure the denoising task. [M]
denotes a shared mask token. The auxiliary MLM model predicts one token for each [M]. Grayed-out tokens are
part of the target fed into the decoder but not included in pretraining loss.

could train RTD objectives on decoder outputs or
use a masking pattern other than i.i.d. random
sampling. In the rest of this section, we will explain
our design choices and the reasons behind them.

Decoding Target. Table 1 shows three variants
of decoding targets: “masked tokens only”, “all
tokens”, and “all tokens masked loss”.

Pretraining with the T5-style “masked tokens
only” target proves unfeasible due to its ill-formed
nature. The decoder cannot distinguish between
unmasked tokens (e.g., “you”) and those correctly
predicted by the auxiliary model in masked posi-
tions (e.g., “for”). Consequently, a single source
sequence may correspond to multiple correct target
sequences, introducing ambiguity and impeding ef-
fective pretraining. A detailed example is provided
in Appendix A.9.

The “all tokens” target is inefficient, as the cross
entropy loss is averaged on all tokens, including
unmasked tokens where the tasks are trivial copy-
and-pastes. Therefore, METRO-T0 uses “all to-
kens masked loss”, where the loss is averaged on
masked tokens only.

Location of the RTD Head. We consider two
choices to place the RTD head: on the outputs of
the Transformer encoder or decoder. Decoder RTD
at position i requires the information of the i-th
token of the encoder input, but this information is
absent from the input of the decoder. Consequently,
the decoder needs a long attention path to connect

position i of the encoder. This complexity defeats
the purpose of RTD in providing a simpler task to
stabilize optimization, making pretraining unstable
in practice (Xu et al., 2020). Therefore, METRO-
T0 uses encoder RTD.

Masking Pattern on Auxiliary. When can use
either T5-style contiguous span masking or BERT-
style i.i.d. random masking to generate the MLM
input for the auxiliary model. However, using
contiguous span masking in METRO-T0 pretrain-
ing leads to label leakage. At position i during
teacher-forced training, the decoder has access to
the ground truth Xorig before position i. It can com-
pare xorig

i−1 with xnoise
i−1 . If the two disagree, it is likely

the following position i is also masked out. As a re-
sult, the model can exploit this shortcut to achieve
high RTD accuracy without learning meaningful
representations of natural languages. Therefore,
METRO-T0 uses i.i.d. random masking.

4.2 Architectural Upgrades over T5
We incorporate model architecture changes that
have been proved to be beneficial in earlier works.

The vanilla T5 exclusively uses relative posi-
tional embeddings, while the vanilla BERT (De-
vlin et al., 2019) model relies solely on absolute
positional embeddings. However, recent research
by Luo et al. (2022) suggests that using only rela-
tive positional embeddings may not yield optimal
results. Consequently, in line with the practices
in COCO-LM (Meng et al., 2021) and METRO-
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LM (Bajaj et al., 2022), we use absolute positional
embeddings in addition to relative position embed-
dings in our model.

We also introduce a change in how layer nor-
malization is combined with residual connections.
Rather than using T5’s Pre-LayerNorm approach
(defined as x 7→ x + f(LN(x)) where f is either
multi-head attention or MLP), our model adopts
a Post-LayerNorm design (x 7→ LN(x + f(x))).
The Post-LayerNorm vs. Pre-LayerNorm debate is
ongoing in the field, but we use Post-LayerNorm,
which typically resulted in better performance on
downstream tasks in our studies.

4.3 Prompt-Finetuning

The model pretrained using the method described
above is called METRO-T5. After pretraining
METRO-T5 on an NL corpus, we discard the aux-
iliary model and retain the main model, which
is a standard text-to-text Transformer. We fine-
tune this model on multi-task training mixtures of
NL-prompted datasets, T0/T0+/T0++ Train (Sanh
et al., 2022), to obtain METRO-T0/T0+/T0++, a
text-to-text Transformer that supports zero-shot
generalization to held-out tasks.

5 Experimental Setup

Model Architecture. Each of our models has an
architecture similar to T5 (Raffel et al., 2019).
We train models in three standard setups: base,
base++, and large++. Our base/base++ model
has an architecture similar to T5BASE. Our large++
model has an architecture similar to T5LARGE ex-
cept for some differences mentioned in Section 4.
The auxiliary model for generating training signals
is a Transformer encoder of the same hidden size
as the main model but is shallower: it consists of 4
layers in base/base++ and 6 layers in large++. We
follow Clark et al. (2020) and share token embed-
dings between the main and the auxiliary model.

Pretraining. Our base model is pretrained on
English Wikipedia and BookCorpus (16GB of
texts) for 131 billion tokens (512 tokens per se-
quence, 2,048 sequences per batch, and 125k steps).
Base++/Large++ is the training configuration first
used in RoBERTa (Liu et al., 2019): pretraining
on a mixed corpus of 160GB texts for a maximum
2.1 trillion tokens (512 tokens per sequence, 2,048
sequences per batch, and at most 2M steps).

Prompt-Finetuning. We finetune each of our pre-
trained METRO-T5 models on three multi-task
mixtures: T0/T0+/T0++ Train, using the same
prompt templates and shuffling strategy as Sanh
et al. (2022) does. Each model is finetuned for
125k steps, using the same hyperparameters as pre-
training, except the peak learning rate is reduced to
0.1x. We do not perform any checkpoint selection
and simply use the last checkpoint at 125k steps
for evaluation.

Evaluation. We evaluate zero-shot generalization
on the T0 Eval benchmark (Sanh et al., 2022) and
the Massive Multi-task Language Understanding
(MMLU) benchmark (Hendrycks et al., 2020). T0
Eval consists of 11 datasets in natural language
inference, coreference, word sense disambiguation,
and sentence completion. MMLU includes exam
questions from 57 tasks such as maths, history, law,
and medicine. For each dataset, we report accuracy
on the validation split. Following GPT-3 (Brown
et al., 2020) and T0 (Sanh et al., 2022), we use rank
classification for inference.

For T0 Eval, we use the same prompt templates
as T0. For MMLU, we use prompt templates from
the AI2 Reasoning Challenge (AI2-ARC) (Clark
et al., 2018), concatenated with 5 passages retrieved
using T5-ANCE (Ge et al., 2023; Ni et al., 2021)
(See Appendix A.8 for details). When there are
multiple prompts for a dataset, we do not perform
prompt selection based on the validation split, be-
cause such prompt selection will break the “zero-
shot” evaluation. Instead, we report the average
accuracy across all prompts for this dataset, follow-
ing the standard practices of Sanh et al. (2022).

Baselines. For a fair comparison, the main base-
line is our own T0 runs. Except for METRO-style
pretraining, our T0 baselines use the same Trans-
former architecture, pretraining data, and prompt-
finetuning data, pretrained in the same computa-
tional environment.

We also compare with the reported numbers
of other language models that supports zero-shot
prompting, including pretraining-only models such
as GPT-3 (Brown et al., 2020) and T5 (Raffel et al.,
2019), as well as prompt-finetuned models such as
T0 (Sanh et al., 2022) and Flan-T5 (Wei et al., 2021;
Chung et al., 2022). T0/T0+/T0++ is pretrained on
the the C4 (Raffel et al., 2019) corpus of 800GB of
texts for 1 trillion tokens and then prompt-finetuned
on the T0/T0+/T0++ Train multitask mixture af-
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Model Params NLI Coref. Compl. WSD

RTE CB ANLI r1/r2/r3 WSC Wino. COPA SC. HS. WiC AVG

Pretraining only

GPT-313B (Brown et al., 2020) 13B 62.80 19.60 33.20/33.50/34.40 64.40 67.90 84.00 79.50 70.90 0.00 50.02
GPT-3175B (Brown et al., 2020) 175B 63.50 46.40 34.60/35.40/34.50 65.40 70.20 91.00 83.20 78.90 0.00 54.83
T5+LM (Lester et al., 2021) 11B 53.03 34.34 32.89/33.76/33.82 54.09 50.65 54.88 27.00 48.16 50.30 42.99

Prompt Finetune on T0 Train

T0BASE 226M 62.85 45.30 30.82/32.37/32.14 62.16 50.77 70.63 81.03 24.86 50.78 49.43
METRO-T0BASE 226M 65.18 45.60 31.64/32.98/33.81 55.77 51.07 70.81 80.97 25.28 50.69 49.44

T0BASE++ 256M 62.24 53.45 31.68/32.94/34.88 61.73 51.65 70.63 87.62 25.88 51.21 51.26
METRO-T0BASE++ 256M 68.16 63.21 34.92/33.81/36.82 60.48 52.03 78.50 89.23 27.68 50.88 54.15

T03B (Sanh et al., 2022) 3B 64.55 45.36 33.84/33.11/33.33 65.10 50.97 72.40 84.03 27.29 50.69 50.97
METRO-T0LARGE++ 775M 76.75 65.48 41.49/36.29/40.18 60.58 54.51 88.00 94.07 29.31 50.97 57.97

T011B (Sanh et al., 2022) 11B 80.83 70.12 43.56/38.68/41.26 61.45 59.94 90.02 92.40 33.58 56.58 60.77

Prompt Finetune on T0+ Train

T0+BASE 226M 63.57 48.93 31.76/32.92/33.02 60.96 51.93 72.38 81.71 40.11 51.32 51.69
METRO-T0+BASE 226M 70.56 47.08 33.05/34.53/34.37 57.98 51.75 69.13 83.08 49.00 50.78 52.85

T0+BASE++ 256M 68.30 60.24 33.77/34.31/35.00 60.96 51.59 70.00 89.29 56.10 51.39 55.54
METRO-T0+BASE++ 256M 71.44 60.71 36.91/35.24/36.46 62.21 54.08 78.88 90.29 67.57 51.60 58.67

METRO-T0+LARGE++ 775M 81.26 70.00 45.06/38.59/42.35 60.67 57.52 90.50 95.41 83.82 52.32 65.23

T0+11B (Sanh et al., 2022) 11B 67.47 59.20 43.45/39.77/40.76 62.24 59.94 92.24 96.43 86.13 55.02 63.88

Prompt Finetune on T0++ Train

T0++BASE 226M 69.06 48.39 31.90/33.61/33.94 55.72 51.15 76.06 82.55 39.62 63.18 53.20
METRO-T0++BASE 226M 72.04 58.63 33.85/35.29/36.57 56.11 52.15 74.06 83.65 48.66 64.29 55.94

T0++BASE++ 256M 77.87 63.10 36.15/34.61/38.18 56.44 51.78 75.38 89.33 55.95 65.53 58.57
METRO-T0++BASE++ 256M 77.80 69.52 39.69/36.61/40.08 61.44 54.55 83.88 90.88 68.54 67.59 62.78

METRO-T0++LARGE++ 775M 83.68 74.88 46.84/40.37/44.95 71.83 62.75 92.63 95.65 83.74 70.49 69.80

T0++11B (Sanh et al., 2022) 11B 85.31 75.69 47.07/42.18/44.09 70.29 66.42 93.71 96.49 86.11 70.02 70.67

Table 2: Prompt learning results on the T0 Eval dataset. “Wino.”, “SC.”, and “HS” refer to Winogrande, StoryCloze,
and HellaSwag, respectively. All reported datasets use accuracy as their metric. Italic results are produced under the
supervised setting. Others are under the zero-shot setting. Each row without a citation contains experimental results
from models trained by us (our T0 baseline and METRO-T0), while each row with a citation contains experimental
results from the cited paper (GPT-3, Google T5, and the original T0).

Model Params MMLU

T0++BASE 226M 37.5
METRO-T0++BASE 226M 38.3

Flan-T5BASE (Wei et al., 2022) 223M 35.9
T0++BASE++ 256M 41.7
METRO-T0++BASE++ 256M 42.7

GPT-3175B (Brown et al., 2020) 175B 43.9
Flan-T5LARGE (Wei et al., 2022) 750M 45.1
T0++11B (Sanh et al., 2022) 11B 35.6
METRO-T0++LARGE++ 775M 48.0

Table 3: Prompt learning results on the MMLU dataset.
All reported results use accuracy averaged over 57 sub-
tasks as their metric.

ter LM adaptation for 100 billion tokens. Flan-T5
is also pretrained on the C4 corpus, but finetuned
on a much larger dataset of prompted multi-task
mixtures, dialog, and chain-of-thoughts.

6 Evaluation Results

This section compares the performance of METRO-
T0 and baseline models on T0 Eval and MMLU

to demonstrate the effectiveness and efficiency of
our method. We also explore the reason behind
METRO-T0’s effectiveness through detailed model
analysis.

6.1 Main Results
Table 2 presents the experimental results on T0
Eval, and Table 3 presents the experimental results
on MMLU. These results show that:

METRO-T0 is highly parameter efficient,
as it rivals or even outperforms much larger
models in zero-shot generalization. METRO-
T0BASE++, having only 256M parameters, outper-
forms T03B (Sanh et al., 2022) with only 7% of its
parameters. Also, METRO-T0LARGE++, having only
775M parameters, outperforms T03B by 7pts and
is only 2.8pts behind T011B, a 14x larger model.

METRO-T0 often outperforms GPT-3 (175B),
a state-of-the-art Transformer decoder LM, on
both T0 Eval and MMLU. Compared to the
11B-parameter T0/T0+/T0++ model, a family of
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Model/Finetuning Data T0 T0+ T0++

METRO-T0/T0+/T0++ 49.44 54.15 57.97
+ CLM Loss on All Position 49.24 51.05 53.97
+ CLM with Copy Mechanism 49.46 50.70 54.06
+ RTD on Decoder 46.75 48.47 49.20

+ Projection Layer on CLM 48.85 50.10 52.82
+ Continuous Span Mask 49.04 50.37 53.42

T0/T0+/T0++ 49.43 51.69 53.20
+ All-token LM loss 48.13 49.43 50.76

Table 4: Performance of METRO-T0 variations on T0
Eval. All ablations are done in the base pretraining set-
ting using exactly the same prompt-finetuning pipeline.

state-of-the-art prompt-finetuned text-to-text LM,
METRO-T0/T0+/T0++ in the large++ setup has
competitive or sometimes superior performance.

The gain stems from METRO-style pretraining.
On both benchmarks, METRO-T0 models in all
setups consistently outperform our fair-comparison
T0 baselines of the same model size, which were
pretrained using the same corpus and configura-
tions. This fact demonstrates that the performance
improvement is not due to better hyperparameters
or data engineering, but a result of using METRO-
style pretraining. Further confirmation of this argu-
ment will be provided through model analysis in
Section 6.4 and Section 6.5.

6.2 Ablation Studies
In Section 4, we discuss the choices we made to
redesign the pretraining method for METRO-T0.
In this subsection, we compare the empirical results
of different variants of METRO-T0. Table 4 shows
the performance of each variant prompt-finetuned
on T0/T0+/T0++ Train and evaluated on T0 Eval.

“All tokens, masked loss” is the best decoding
target. Table 1 presents three possible choices for
the decoding target, in which “masked tokens only”
is ill-formed and thus not suitable, as discussed in
Section 4. Table 4 compares the remaining two op-
tions and shows that computing CLM/LM loss on
all positions negatively affects the downstream per-
formance of METRO-T5/T5 by overwhelming the
model with too many trivial copy-and-paste tasks.
The same reasoning also applies to our decision not
to use the copy mechanism (Meng et al., 2021) in
CLM heads.

Encoder RTD makes pretraining more stable.
Figure 3a demonstrates this by comparing the loss
on the CLM task during pretraining with RTD ap-
plied to the encoder (red line) versus the decoder
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Figure 3: Pretraining behaviors of different designs.

(blue line). Decoder RTD caused pretraining to
diverge. While techniques such as strong gradient
clipping and an additional projection layer can miti-
gate this issue (orange and green lines), the model
still has higher training loss and poorer generaliza-
tion on downstream tasks as shown in Table 4.

Label leakage is prevented by i.i.d. masking.
Figure 3b illustrates the RTD recall (true posi-
tive rate) of METRO-T5 when using i.i.d. random
masking on the auxiliary model compared to T5’s
continuous span masking. As discussed in Sec-
tion 4, continuous span masking leads to label leak-
age, resulting in easy solutions for many masked
positions, as demonstrated by the more than 2x pre-
training RTD recall on masked positions with Span
Mask. As expected, this label leakage hurts the
model’s generalization ability as shown in Table 4.

6.3 Pretraining Efficiency
In this experiment, we study the pretraining effi-
ciency of METRO-T5 by comparing the intermedi-
ate checkpoints pretrained for 500k/1M/2M steps
of T5BASE++ and METRO-T5BASE++. We assess
each checkpoint’s prompt-based learning perfor-
mance by finetuning on the T0++ Train dataset
and recording the average performance on T0 Eval.

Figure 4 shows that METRO-T5 is more com-
pute efficient than vanilla T5. METRO-T0++
achieves better downstream performance at every
point. In particular, METRO-T0++ pretrained for
500k steps has a similar performance to T0++ pre-
trained for 2M steps, showing a 165% efficiency
increase.

An interesting research question is: does model-
generated signals simply make pretraining faster or
do METRO-T5 and T5 learn different representa-
tions?

To answer this question, we compare the follow-
ing two models by showing their performance on
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Figure 5: Per-task performance of T0++ (pretrained for
2M steps) and METRO-T0++ (pretrained for only 500k
steps) on T0 Eval. The error bars are calculated using
the model’s performance across prompt templates.

each task in the T0 Eval benchmark in Figure 5:
(a) T0++ finetuned from the T5 checkpoint pre-
trained for 2M steps, indicated by the last blue
datapoint in Figure 4; (b) METRO-T0++ finetuned
from the METRO-T5 checkpoint pretrained for
500k steps, indicated by the first orange datapoint.
Although these two models have similar average
accuracies (58.57 vs. 58.68), they have different
strengths, as shown in Figure 5. T0++ (2M steps)
outperforms METRO-T0++ (500k steps) on word-
level tasks (WiC) and conventional natural lan-
guage inference (ANLI and RTE), while METRO-
T0++ (500k steps) has much better performance on
commonsense reasoning (HellaSwag and COPA).
This phenomenon implies that model-generated sig-
nals let the model learn different representations
of texts, which finally result in a significant perfor-
mance gap between the fully pretrained T0++ and
METRO-T0++, as shown in Table 2.
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Figure 6: Comparison of the percentage of under-
activated neurons in T5 and METRO-T5 on T0++ train
dataset. The first point of both models (0 steps) overlap
because they are the same initial model.

6.4 Neural Activation

In this subsection, and the following one, explore
the extent to which the internal statistics of the
neural networks quantify the differences between
METRO-T5 and T5.

The first aspect we explore is neural activation.
Specifically, we examine the feedforward module
in each Transformer layer of METRO-T5BASE++
and T5BASE++, counting neurons that are under-
activated. A neuron is considered under-activated
if it is inactive (exhibits zero ReLU activations) for
99.5% of tokens within the T0++ Train dataset.

Figure 6 shows that T5 has ∼2x as many under-
activated neurons as METRO-T5 at every check-
point. Studies suggest that such neurons can typi-
cally be pruned without substantially affecting neu-
ral network performance (Polyak and Wolf, 2015;
Li et al., 2016). So the presense of many under-
activated neurons is a sign of underutilization of
model capacity and computing cost. Therefore,
our findings suggest that METRO-style model-
generated training signals enhance neuron utiliza-
tion in METRO-T5.

6.5 Parameter Sensitivity

In addition to analyzing the neural activation of T5
and METRO-T5, we also examine their parame-
ter sensitivity, which serves as another means to
quantify the underlying differences between T5 and
METRO-T5.

The sensitivity of a parameter, defined in Equa-
tion (14), approximates the change in the loss mag-
nitude when this parameter is completely zeroed-
out. θ denotes the parameter vector and L denotes
the loss function. θ−j denotes the parameter vector
θ with its j-th entry set to zero. The approximation
is derived from the first-order Taylor expansion of
L at θ. Therefore, the sensitivity of the j-th param-
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eter, denoted by Ij , approximates the change in the
loss magnitude when this parameter is completely
zeroed-out (LeCun et al., 1989).

Ij = |θT−j∇θL(θ)| ≈ |L(θ)− L(θ − θ−j)| (14)

Liang et al. (2022) shows that parameter sensi-
tivity is a reliable indicator of redundancy in pre-
trained language models. Specifically, parameters
with low sensitivity can be safely pruned with only
marginal impact on the LM’s downstream perfor-
mance, and an LM with lower, more concentrated
sensitivity is more sufficiently trained and general-
izes better.

We compare parameter sensitivity distributions
of each checkpoint of METRO-T5 and T5, using
gradients calculated on the T0++ Train dataset.
The result is shown in Figure 7, from which we
observe that the sensitivity distribution exhibits a
lower variance in METRO-T5 (the orange hill in
each row) than in T5 (the blue hill in each row).
The difference in parameter sensitivity becomes
more conspicuous when the models are trained
for more steps. These observations suggest that
pretraining with model-generated signals makes
the sensitivity of parameters more concentrated.
In other words, the amount of each parameter’s
contribution becomes more balanced with METRO-
style pretraining, which leads to a more sufficiently
trained model.

7 Conclusion

This paper presents a new method for improving
the zero-shot generalization of T5-like text-to-text
Transformers by incorporating model-generated
signals in the pretraining process. METRO-T0,
the model sufficiently trained using our redesigned

pretraining method, is highly parameter efficient
and compute efficient. We hope that the success of
our approach could inspire further work on efficient
big LM pretraining and prompt-based learning.

Limitations

This work focuses on pretraining large language
models for zero-shot generalization. Although our
proposed method is more efficient than baselines,
it still requires significant computational resources,
specifically GPU resources. The GPU resources
used and training time are detailed in Appendix A.6.
Our study is also limited by the computational bud-
get, preventing us from training models as large
as GPT-3 or T011B. However, our large++ model
(775M parameters) already rivals or outperforms
previous state-of-the-art models.

Ethics Statement

This work proposes and releases language mod-
els that are pretrained on web-crawled data and
finetuned on a large collection of NLP datasets.
These models may perpetuate social stereotypes
and disparities reflected in the training data, or
accidentally reveal private information. Mitigat-
ing these risks presents a significant open research
challenge that calls for collective efforts within the
NLP community. Therefore, it is recommended
to take appropriate measures to assess risks and
potential harms in the application context before
deployment.
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A Appendix

A.1 Pretraining Corpus

Our base model is pretrained on English Wikipedia and BookCorpus (16GB of texts). We encode the
pretraining corpus with an uncased vocabulary of 32,768 BPE tokens. This setup is similar to vanilla
BERT (Devlin et al., 2019).

Our base++/large++ model is pretrained on a mixed corpus of 160GB texts, which consists of English
Wikipedia, BookCorpus, OpenWebText (Gokaslan and Cohen, 2019), CC-News (Liu et al., 2019), and
STORIES (Trinh and Le, 2018). We encode the corpus with a cased vocabulary of 64,000 BPE tokens. This
setup is similar to RoBERTa (Liu et al., 2019), COCO-LM (Meng et al., 2021), and METRO-LM (Bajaj
et al., 2022).

As a reference, T0 (Sanh et al., 2022) models and Flan-T5 (Chung et al., 2022) are all based on the
original T5 model by Raffel et al. (2019). The pretraining corpus is the C4 corpus (Raffel et al., 2019) of
800GB of texts based on CommonCrawl. They encode the corpus with a cased vocabulary of 32k BPE
tokens.

A.2 Pretraining Hyperparameters

The hyperparameters we used to pretrain METRO-T0 and our T0 baseline are listed in Table 5.

Hyperparameters Base Base++ Large++

Encoder Layers 12 12 24
Decoder Layers 12 12 24
Auxiliary Layers∗ 4 4 6
Hidden Dimension 768 768 1,024
Peak Learning Rate 4e-4 2e-4 2e-4
Batch Size 2,048 2,048 2,048
Warm-Up Steps 10,000 10,000 10,000
Total Steps 125,000 2,000,000 1,335,000
Sequence Length 512 512 512
Relative Position Encoding Buckets 32 32 64
Relative Position Encoding Max Distance 128 128 128
Loss multipliers (λMLM, λRTD, λCLM)∗ (1, 50, 1) (1, 50, 1) (1, 50, 1)
Adam ϵ 1e-6 1e-6 1e-6
Adam (β1, β2) (0.9, 0.98) (0.9, 0.98) (0.9, 0.98)
Clip Norm - 2.0 2.0
Dropout 0.1 0.1 0.1
Weight Decay 0.01 0.01 0.01

Table 5: Pretraining hyperparameters for METRO-T0 and our T0 baselines. Rows with an “∗” are specific to
METRO-style pretraining and not applicable to our T0 baselines. We only train our large++ model for 1.3M steps
(instead of 2M steps) due to limitations of computational budgets but it still yields impressive performance.

In pretraining, we use 15% masking ratio for the auxiliary MLM pretraining task. We create a [MASK]
symbol for each masked token. Each token in Xnoise is sampled from the softmax distribution predicted
by the auxiliary model for each [MASK] symbol. The weight of each pretraining objective is λMLM = 1,
λRTD = 50, and λCLM = 1, following Meng et al. (2021). In both the auxiliary transformer and the main
transformer, we use shared token embeddings in the embedding layer and the language modeling head.

We have three projection heads in our model: MLM head on the auxiliary transformer, RTD head on
the main transformer’s encoder, and CLM head on the main transformer’s decoder. Both the MLM and
CLM head are a single linear transformation. We use RoBERTa-style projection head for the RTD head,
which contains a linear projection, a ReLU activation, a layer norm and another linear projection. For the
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RTD on decoder (complex CLM head) ablation, we use a RoBERTa-style head as the architecture of the
CLM head.

A.3 Data for Prompt-Finetuning

Following Sanh et al. (2022), we finetune our models on three training mixtures, T0 Train (39 datasets),
T0+ Train (49 datasets), and T0++ Train (55 datasets), respectively. Each dataset is associated with
multiple (8.03 on average) prompt templates that are used to format example instances to input and target
pairs. Please refer to Sanh et al. (2022) for more details about our finetuning datasets.

A.4 Prompt-Finetuning Hyperparameters

Once we have METRO-T5 pretrained on a natural language corpus, we discard the auxiliary model and
keep the main model, which is a standard text-to-text Transformer. We finetune this model on multi-task
training mixtures of NL-prompted datasets proposed by Sanh et al. (2022). Once the model parameters
are initialized with pretrained METRO-T5, the finetuning procedure is standard sequence-to-sequence
learning: the input sequence is fed to the encoder, and the target sequence serves as the ground truth to
compute the cross-entropy loss of the decoder output. Each model is finetuned using hyperparameters
listed in Table 6. Basically, we use the same hyperparameters as pretraining, except the peak learning rate
is reduced to 0.1x and each target sequence is truncated to a max length of 256. We do not perform any
checkpoint selection or hyperparameter selection, and simply use the last checkpoint at 125k steps of this
single run for evaluation.

Hyperparameters Base Base++ Large++

Peak Learning Rate 4e-5 2e-5 2e-5
Total Steps 125,000 125,000 125,000
Source Sequence Length 512 512 512
Target Sequence Length 256 256 256
Clip Norm - - -

Table 6: Hyperparameters for prompt-finetuning METRO-T5 and our pretrained T5 baseline. All hyperparameters
not mentioned in this table is the same as in the pretraining procedure.

A.5 Evaluation

We evaluate zero-shot generalization on the T0 Eval benchmark (Sanh et al., 2022) and the Massive
Multi-task Language Understanding (MMLU) benchmark (Hendrycks et al., 2020). T0 Eval consists of 11
held-out datasets in natural language inference, coreference, word sense disambiguation, and sentence
completion, and details are shown in Table 7 MMLU includes example questions from 57 tasks such as
maths, history, law, and medicine. Please refer to Hendrycks et al. (2020) for more details about MMLU.

Size Task Metric

RTE 277 Natural language inference Accuracy
CB 56 Natural language inference Accuracy
ANLI 3,200 Natural language inference Accuracy
WSC 104 Coreference resolution Accuracy
Winogrande XL 1,267 Coreference resolution Accuracy
COPA 100 Sentence completion Accuracy
StoryCloze 2016 1,871 Sentence completion Accuracy
HellaSwag 10,042 Sentence completion Accuracy
WiC 638 Word Sense Disambiguation Accuracy

Table 7: The overview of the T0 Eval benchmark for prompt learning.
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Each task in T0 Eval or MMLU is formulated as multiple-choice questions. We compute the log
probability of each choice under the finetuned model and select the choice with the highest log probability
as the prediction.

A.6 Implementation Details
Implementation We implement our T0 baseline and METRO-T0 based on fairseq1. The prompt
templates to format the finetuing data are from the promptsource2 library (Bach et al., 2022). We
evaluate pretrained models on the T0 Eval benchmark using transformers3 and t-zero4.

Pretraining and Finetuning Costs. Pretraining METRO-T5 in the base setting takes 20.8 hours on
64x NVIDIA A100 (40GB) GPUs. The pretraining cost of METRO-T5 is T5 (our implementation) plus
the auxiliary transformer, whose number of layers is 1/3 of the main transformer’s encoder. Pretraining
METRO-T5 in the base++ setting takes 159 hours on 128x NVIDIA A100 (40GB) GPUs. Pretraining
METRO-T5 in the large++ setting takes 289 hours on 256x NVIDIA A100 (40GB) GPUs. In finetuning,
we remove the auxiliary transformer and the RTD and CLM heads, so the finetuning cost of METRO-T5
and T5 are the same. Prompt-finetuning each base/base++ model takes about 22 hours on 64x NVIDIA
V100 (16GB) GPUs. Prompt-finetuning each large++ model takes about 70 hours on 64x NVIDIA V100
(16GB) GPUs.

A.7 Full Results on T0 Eval
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Figure 8: Prompt-based learning results of METRO-T0 versus our T0 baseline and T03B by Sanh et al. (2022) on
all 9 tasks in the T0 Eval benchmark. Each point denotes the accuracy using one prompt template, except that the
median accuracy over all templates of T03B is indicated by the blue point.

Figure 8 results of METRO-T0 versus our T0 baseline and T03B by Sanh et al. (2022) on all 9 tasks
in the T0 Eval benchmark. The results shows that METRO-T0LARGE++, having only 775M parameters,

1https://github.com/facebookresearch/fairseq
2https://github.com/bigscience-workshop/promptsource
3https://huggingface.co/docs/transformers/index
4https://github.com/bigscience-workshop/t-zero
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consistently outperforms T03B over all tasks on the T0 Eval benchmark.

A.8 Evaluation on MMLU
The prompt template used to evaluate our models MMLU is the prompt template from the AI2 Reasoning
Challenge (AI2-ARC) concatenated with 5 passages in MS MARCO (Nguyen et al., 2016). These 5
passages are selected via dense retrival using T5-ANCE (Ge et al., 2023; Ni et al., 2021), which maps a
query to a single vector to retrieve similar passage from the corpus. Adding densely-retrieved passages to
prompts is a standard approach to enhance LM’s performance on zero-shot prompting. This approach is
named retrieval augmentation. All T0 and METRO-T0 results reported in Table 3 are evaluated using this
prompt template with retrieval augmentation.

On the other hand, all Flan-T5 results reported in Table 3 are numbers reported in their paper. For each
model, we take the maximum score of the reported “direct” prompting performance and the “chain-of-
thought (CoT)” prompting performance. Both prompt templates are not publicly available as of the time
this paper is written.

As a result, Table 3 involves comparisons across multiple prompt templates. So in Table 8, we present
the performance of each model using the plain AI2-ARC prompt template without retrieval augmentation
or CoT.

Model Params MMLU

AI2-ARC Prompt Template

T0++BASE 226M 31.5
METRO-T0++BASE 226M 31.9

Flan-T5BASE (Wei et al., 2022) 223M 33.8
T0++BASE++ 256M 37.8
METRO-T0++BASE++ 256M 38.9

Flan-T5LARGE (Wei et al., 2022) 750M 39.0
T0++11B (Sanh et al., 2022) 11B 30.9
METRO-T0++LARGE++ 775M 43.4

AI2-ARC Prompt Template + Retrieval Augmentation

T0++BASE 226M 37.5
METRO-T0++BASE 226M 38.3

Flan-T5BASE (Wei et al., 2022) 223M 40.4
T0++BASE++ 256M 41.7
METRO-T0++BASE++ 256M 42.7

Flan-T5LARGE (Wei et al., 2022) 750M 41.4
T0++11B (Sanh et al., 2022) 11B 35.6
METRO-T0++LARGE++ 775M 48.0

Reported numbers by Chung et al. (2022)

Flan-T5BASE (Wei et al., 2022) 223M 35.9

GPT-3175B (Brown et al., 2020) 175B 43.9
Flan-T5LARGE (Wei et al., 2022) 750M 45.1

Table 8: Full prompt learning results on the MMLU dataset in three setups. All reported results use accuracy
averaged over 57 subtasks as their metric.

The result in Table 8 shows that METRO-T0++ still consistently outperforms the T0 baseline and
similar-sized Flan-T5 models when they are evaluated using the same prompt template.

A.9 Example of the Challenge of Ill-Formed Target
In our discussion about “decoding target” inSection 4, we claim that “masked tokens only” is an ill-formed
target for the CLM objective in METRO-style pretraining of T5. This section shows a concrete example
where such ill-formed target leads to ambiguities.

In Table 9, the original sentence is “1 2 3 4 5”. Using different random samples of masked positions,
we can derive two masked sequences as the input of the auxiliary model: “1 M M M 5” and “1 2 M M 5”.
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Table 9: An example where ill-formed target leads to ambiguities. Each number denotes a distinct subword token.
M denotes the special token [MASK]. In “Auxiliary Model Prediction”, a token shown in green denotes a correct
prediction, where a token shown in red denotes a wrong prediction.

Sentence 1 2 3 4 5

Auxiliary Model Input 1 1 M M M 5
Auxiliary Model Prediction 2 6 4
Main Model Input 1 2 6 4 5
Main Model Target 2 3 4

Auxiliary Model Input 2 1 2 M M 5
Auxiliary Model Prediction 6 4
Main Model Input 1 2 6 4 5
Main Model Target 3 4

The difference is whether “2” is masked or not. So the target for the decoder corrective LM objective
will be “2 3 4” and “3 4” respectively. After we have the masked input, the auxiliary model, which is a
masked language model (MLM), tries to fill masked positions with predicted tokens “2 6 4” and “6 4”
respectively. The resulting main model input is “1 2 6 4 5” for both cases, but the target is “2 3 4” for
case 1 and “3 4” for case 2. This is an ambiguity where the main model is unsure where it should begin
to generate predictions: “2” or “3”.
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