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Abstract

Existing neural models have difficulty general-
izing to unseen combinations of seen compo-
nents. To achieve compositional generalization,
models are required to consistently interpret
(sub)expressions across contexts. Without mod-
ifying model architectures, we improve the ca-
pability of Transformer on compositional gen-
eralization through consistency regularization
training, which promotes representation con-
sistency across samples and prediction consis-
tency for a single sample. Experimental results
on semantic parsing and machine translation
benchmarks empirically demonstrate the effec-
tiveness and generality of our method. In addi-
tion, we find that the prediction consistency
scores on in-distribution validation sets can
be an alternative for evaluating models during
training, when commonly-used metrics are not
informative.

1 Introduction

Compositional (systematic) generalization refers to
the ability to understand and produce a potentially
infinite number of novel combinations of known
atoms (Chomsky, 2009; Janssen and Partee, 1997).
Humans exhibit exceptional compositional gener-
alization capability, easily producing and under-
standing unseen linguistic expressions by recom-
bining the learned rules (Montague and Thomason,
1975). Therefore, it is also regarded as a desired
property for neural networks. Despite the impres-
sive progress in language modeling (Vaswani et al.,
2017; Liu et al., 2019; Raffel et al., 2020), the
sequence-to-sequence (seq2seq) models have been
demonstrated inefficient in capturing the composi-
tional rules, thus failing to generalize to novel com-
positions (Lake and Baroni, 2018; Keysers et al.,
2020a; Kim and Linzen, 2020; Li et al., 2021).
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Center, WeChat AI, Tencent Inc, China.
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Achieving compositional generalization requires
a model to perform consistently in the interpre-
tation assigned to a (sub)expression across con-
texts (Janssen and Partee, 1997; Dankers et al.,
2022). For example, the interpretation of a phrase
“the book” is consistent whether it is described by
a modifier “he likes”, in both semantic parsing
and machine translation domains (Kim and Linzen,
2020; Li et al., 2021). To improve the consistency,
most existing work considers a change of neural
architecture to suit particular composition or gen-
eralization test sets (Chen et al., 2020b; Guo et al.,
2020b; Yin et al., 2022; Zheng and Lapata, 2022),
which limits their potentials in real world applica-
tions.

Recently, the Transformer architecture has be-
come the standard for natural language process-
ing (NLP), particularly in supporting large pre-
trained language models (PLMs) such as T5 and
GPT-3 (Raffel et al., 2020; Brown et al., 2020).
The Transformer-based PLMs have significantly
improved few-shot fine-tuning and even made effi-
cient zero-shot learning possible. As a result, there
has been a trend towards developing data-centric AI
(Koch et al., 2021; Jakubik et al., 2022), where the
focus is on data preparation and training strategies
rather than on the model architecture. However, it
has recently been shown that the standard Trans-
former is underestimated in its ability to handle
compositionality (Csordás et al., 2021; Ontanon
et al., 2022), and there has been relatively little
research done on how to improve this capability
through training.

We observe that limitation of compositional gen-
eralization in Transformer can arise from the in-
ternal inconsistency under the standard training
paradigm. First, Transformer token representations
have been shown to reside within a narrow range of
the embedding space (Gao et al., 2019; Cai et al.,
2021), which can easily be affected by context vari-
ations, especially from novel compositions (Zheng
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Figure 1: Illustration of consistency regularization training. During training, we encourage the representation
consistency of the same token (i.e., “book”) across contexts, and enforce the instance-level output consistency when
passing the input (e.g., X2) to the model M twice (i.e., Y2 and Y ‘

2). The gray dash line denotes pushing apart the
representations. The representation consistency can be performed on the source or target side, and we display the
target side for simplicity.

and Lapata, 2022). Second, internal uncertainties
like dropout can lead to prediction variations of
a single sample (Sajjadi et al., 2016; Liang et al.,
2021). Such prediction inconsistency can limit the
efficiency of learning patterns in training data (Ghi-
asi et al., 2018). During inference, this defect is not
significant when the models process in-distribution
data; however, unseen compositions can magnify
the negative influence, which degrades the final
performance on compositional generalization.

Without modifying model architectures, we im-
prove compositionality of Transformer with con-
sistency regularization training in terms of repre-
sentation and prediction. For representation, we
encourage the representations of the same token
across contexts to be more consistent with each
other, and the representations of different tokens to
be separated, which can be achieved by contrastive
learning (Khosla et al., 2020; Chen et al., 2020a).
As shown in the right part of Figure 1, when com-
bined with the modifier “he likes”, the representa-
tion of “book” is pulled to be consistent with those
in other contexts. Such representations tolerate
context changes better and meanwhile capture dis-
criminative semantics. For prediction consistency,
we feed each instance to the model multiple times
and force the output distributions of a specific to-
ken to be close. In this way, the negative influence
of internal uncertainties can be mitigated, which
decreases fluctuation in output distributions while
maintaining task-specific features.

We conduct experiments on standard bench-
marks for compositional generalization, including
representative semantic parsing datasets (COGS
(Kim and Linzen, 2020) and CFQ (Keysers et al.,

2020a)), and machine translation datasets (CoGni-
tion (Li et al., 2021) and OPUS En-Nl (Dankers
et al., 2022)). Our method consistently improves
upon standard Transformer or pre-trained language
models, achieving state-of-the-art performance on
COGS, CoGnition, and OPUS En-Nl, and com-
petitive performance on CFQ. Specifically, we ex-
plore a consistency-based metric for model selec-
tion on COGS, as commonly-used metrics (e.g.,
accuracy) on the validation set are often not infor-
mative. The analysis of learning efficiency shows
that our regularization enables the model to achieve
an accuracy score of 18% with only 1.2k samples
on CFQ MCD1, which the baseline fails to learn.
In addition, our analyses of representation variance
and robustness to input noise demonstrate that our
method delivers better consistency.1

2 Related Work

Compositional Generalization has attracted in-
creasing attention with dedicated datasets (Lake
and Baroni, 2018; Keysers et al., 2020a; Kim and
Linzen, 2020; Li et al., 2021; Shaw et al., 2021;
Dankers et al., 2022). One line of research con-
siders dedicated model architectures (Chen et al.,
2020b; Gordon et al., 2020; Kim, 2021), which per-
form well on small scaled data but can face difficul-
ties scaling to large or practical data. For example,
Chen et al. (2020b) propose a differentiable neu-
ral network to operate a symbolic stack machine.
Another line of research enhances the composition-
ality of standard architectures (i.e., Transformer) by
introducing new modules (Bergen et al., 2021; Yin

1The code is available at https://github.com/ARIES-
LM/CSR4CG.git.



et al., 2022; Zheng and Lapata, 2022). However,
significant architecture changes can bring about ex-
tra training cost or decoding latency. For example,
Edge Transformer (Bergen et al., 2021) uses vector-
based attention weights, and Dangle Transformer
(Zheng and Lapata, 2022) re-encodes source rep-
resentations at each decoding step, which increase
model complexity to O(n3). Proto-Transformer
(Yin et al., 2022) uses an additional attention mod-
ule to incorporate prototype vectors obtained by
clustering algorithms (e.g., K-Means). Different
from them, we improve Transformer from the per-
spective of regularization training without any ar-
chitecture changes.

Recently, Csordás et al. (2021) and Ontanon
et al. (2022) empirically make slight changes of
Transformer components, and find its capability of
compositionality is underestimated. Meta-learning
(Conklin et al., 2021) and data augmentation (An-
dreas, 2020; Guo et al., 2020a) are also introduced
to improve the base models, but the experiment
results are limited. Along the line of compositional
generalization studies without modifying the model
architectures, our method focuses on the internal
consistency of Transformer, and achieves better
performance.

Regularization training has been shown effec-
tive in semi-supervised training (Sajjadi et al.,
2016; Tarvainen and Valpola, 2017), robust train-
ing (Cheng et al., 2018; Liang et al., 2021), con-
tinual training (Kirkpatrick et al., 2016; Lopez-Paz
and Ranzato, 2017), etc. To encourage composi-
tional behavior, Guo et al. (2020a) softly combine
source/target sequence embeddings during training,
and Conklin et al. (2021) introduce gradient based
meta learning to simulate distribution shift. In addi-
tion, contrastive learning serving as regularization
has achieved success in various NLP tasks (Chi
et al., 2021; Su et al., 2022; Zhang et al., 2022).
Different form them, we explore the effectiveness
of the regularization training on the two different
tasks in compositional generalization.

3 Method

We propose to regularize the model training in
two aspects, as illustrated in Figure 1: representa-
tion consistency of tokens across different contexts
(§3.1), and consistency of model prediction for a
single sample (§3.2).

3.1 Representation Consistency

The representation consistency encourages the con-
textualized representations of the same token across
contexts to be more consistent in the embedding
space. To this end, we introduce the popular con-
trastive learning (Chen et al., 2020a; He et al.,
2020), especially the supervised variant (Khosla
et al., 2020). Specifically, we collect representa-
tions that belong to the same token as positive sam-
ples, and representations of different tokens in the
mini-batch as negative samples. For example, in
Figure 1, for the token “book” in the sequence Y1,
the positive sample is h2 in Y2, and the negatives
include the representations of other tokens. Follow-
ing (Gao et al., 2021), the dropout augmentation is
also considered as positive samples.

For construction of positive samples, we can
use a data sampling strategy which groups mini-
batches according to token types. When building a
mini-batch, we first randomly sample a token from
the vocabulary, then retrieve several sentence pairs
(e.g., 8) containing the token. We repeat this pro-
cess until reaching the batch size, and the sentence
pairs that have been chosen will not be retrieved
again in that training epoch. In practice, since the
current focus on compositional generalization is
the composition of high-frequency atoms, a rela-
tively large batch size is able to ensure reasonable
co-occurrence of positive samples.

Formally, given a mini-batch of input pairs
{(X,Y )}, we define the contrastive objective as

Lr = − 1

N

N∑
i=1

∑
p∈P (i)

log
es(hi,hp)/τ∑N

j=1 1i ̸=jes(hi,hj)/τ
,

(1)
where N is the number of the total tokens that are
chosen for regularization, considering that some
tokens can be excluded from the consistency reg-
ularization, e.g., the token used for padding. P (i)
is the set of indices of all the positive samples for
hi, τ is a temperature hyper-parameter2. Moreover,
s(·) denotes the cosine similarity between repre-
sentations to:

s(hi, hp) =
hTi hp

∥hi∥∥hp∥
, (2)

where hi is the representations of the top layer in
the encoder or the decoder, projected by a multi-
layer perceptron with ReLU activation.

2We set τ to 0.07 in the experiments.



3.2 Prediction Consistency

Due to the training mechanism of neural models,
predictions of the same instance can vary across
forward passes. The internal stochastic perturba-
tions in the model components accumulate layer-
by-layer, negatively affecting the efficiency of in-
variance learning (Ghiasi et al., 2018). To enforce
the sample-level consistency, we feed the instance
(X,Y ) to the model M multiple times during train-
ing, and obtain the final output distributions derived
from different dropout perturbations. We minimize
the difference between the output distributions for
each target token:

Lp =
1

|Y |
∑
yi∈Y

d(p1(yi|X, y<i), ..., p
M (yi|X, y<i)),

(3)
where |Y | is the number of tokens in the target se-
quence Y , d(·) is a metric function measuring the
difference, and M denotes the number of perturba-
tions. Empirical results show that Jensen-Shannon
divergence between two perturbations are effective
enough while maintaining efficiency We also ex-
perimented with more than two perturbations and
other metrics such as sample variance, and found
that it possibly lead to better performance but also
more training cost. Therefore, we set M as 2 in
all the experiments. By explicitly encouraging the
model to generate consistent output during training,
the model is able to capture global compositional
patterns with more confidence.

3.3 Training and Inference.

The overall loss function is defined as:

L = Lce + αLr + βLp, (4)

where Lce denotes cross-entropy loss for baseline
models, and α and beta are the coefficients of the
two regularization losses, respectively. Notably,
our proposed regularization terms guide the model
training from the aspects of representation and pre-
diction, without changing the inference process,
which means no additional decoding latency.

4 Experiments: Semantic Parsing

This section demonstrates empirical results on rep-
resentative semantic parsing benchmarks for com-
positional generalization: COGS and CFQ.

Model ACC

MAML-Transformer 66.7
Rela-Transformer 81.0
Lex-LSTM 82.1
Dangle-Transformer* 85.9

Transformer 80.8
Transformer + CReg 84.5
Transformer* + CReg 86.2

Table 1: Exact match accuracy on COGS. We report the
accuracy averaged over three runs. Transformer* means
that the word embeddings are initialized by Glove.

4.1 COGS

Setting. All of our models are implemented
based on Fairseq3. The embedding and feed-
forward dimension of Transformer are 512 and the
number of model layers is 2. We use the Adam opti-
mizer with learning rate 1e-4, warmup steps 4,000,
and a batch size of 4,096 tokens. For our regulariza-
tion, we set α and β to 0.01 and 1.0, respectively,
and we apply the representation consistency on the
target side. Following the previous work (Csor-
dás et al., 2021; Zheng and Lapata, 2022), we use
dropout with probability of 0.1. We report the mean
accuracy over three runs. More details about the
dataset are shown in Appendix A.

Results. The baselines models used for compari-
son on COGS includes MAML-Transformer (Con-
klin et al., 2021), Lex-LSTM (Akyurek and An-
dreas, 2021), Rela-Transformer (Csordás et al.,
2021), and Dangle-Transformer (Zheng and Lapata,
2022). The results in Table 1 show that, enhanced
with the proposed regularization, the Transformer
model is improved by 3.7% and achieves an overall
84.5% generalization accuracy. Rela-Transformer
achieves good performance with several modifica-
tions to Transformer (e.g., initialization, relative po-
sitional encoding), and ours performs better than it.
In comparison to MAML-Transformer trained us-
ing meta-learning, our method is more effective and
conceptually simpler, requiring no meta-gradients
or construction of meta-datasets. In particular, us-
ing the same initialization (i.e., Glove (Penning-
ton et al., 2014)), our regularized Transformer out-
performs Dangle-Transformer without architecture
modifications and additional decoding latency.

Consistency-based Metric for Model Selection.
A general and important problem in compositional

3https://github.com/facebookresearch/fairseq



generalization is the lack of effective validation
sets that are representative of the generalization
distribution, particularly on the popular benchmark
COGS (Conklin et al., 2021; Csordás et al., 2021;
Zheng and Lapata, 2022). Concretely, the only
provided IID validation set in COGS is easy to
achieve 100% or almost 100% accuracy, which is
difficult for model selection and testing novel ideas.
Previous studies have resorted to sampling a small
subset from the generalization test set, which can
potentially lead to overfitting to the test set.

We hypothesize that consistency on the IID
validation set can be used as a metric to predict
their generalization ability. To verify it, we con-
duct a preliminary experiment on COGS. We use
three configurations for training Transformer4: (1)
M1, which has two layers with 128 embedding di-
mension and 256 feedforward dimension, (2) M2,
which has four layers with 128 embedding dimen-
sion and 256 feedforward dimension, and (3) M3,
which has two layers with 512 embedding and feed-
forward dimensions. Each model is run five times
with different random seeds for 50,000 training
steps. We record the validation loss (w/ Loss), ac-
curacy (w/ Acc), and prediction consistency score
of each checkpoint every 1000 training steps, after
they pass the period of drastic changes (i.e., 15,000
steps). In order to reduce the impact of random
fluctuations on the correlation calculation, we only
save the adjacent checkpoints if the performance
difference exceeding 0.5. For the consistency score,
we feed each instance into the model twice with
dropout retained, and calculate the sample variance
(w/ Pvar) and JS divergence (w/ Js) over the output
token distributions.

The results are shown in Table 2. Although
all of the models can achieve 99.9% accuracy on
the validation set5, their oracle generalization per-
formances are different. Overall, the consistency
scores exhibit a higher correlation to the general-
ization performance than the validation loss and
accuracy. For example, the w/ Acc of M2 achieves
a 0.533 spearman’s correlation while w/ Js achieves
0.805. According to the consistency score, we can
select the M3 checkpoint with 81.0 test accuracy,
which is equal to the oracle, while only obtaining
a model with 79.7 test accuracy according to the
validation accuracy. Additionally, we display the

4We use the code released by Csordás et al. (2021)
5The accuracy score is reported 100% in (Csordás et al.,

2021) and the minor difference possibly results form the dif-
ferences in software and hardware.

Model M1 M2 M3

w/ Loss 74.4 / 0.228 79.8 / 0.085 79.7 / 0.033
w/ Acc 79.5 / 0.669 80.7 / 0.533 79.7 / 0.223
w/ Js 78.3 / 0.793 81.0 / 0.805 81.0 / 0.292
w/ Pvar 78.3 / 0.801 81.0 / 0.803 80.4 / 0.468

Valid 99.9 99.9 99.9
Test(oracle) 79.7 81.4 81.0

Table 2: M1, M2, and M3 indicate different model con-
figurations. For each model, the first number of each
column represents the test accuracy of the checkpoint
selected with the best corresponding metric during train-
ing. The second number is the spearman correlation be-
tween the test accuracy scores and the metric scores on
the validation set of all of the checkpoints. Test(oracle)
means the performance of the checkpoint selected by
the test accuracy. The results are averaged over five runs
with different random seeds.
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Figure 2: Relationship between the consistency score
on the IID validation set of COGS and the test accuracy.
We use two strategies to calculate the consistency scores:
JS divergence (dev_js) and sample variance of output
probability distributions (dev_Pvar).

relationship between the test accuracy and consis-
tency scores of M2 during training in Figure 2. As
the training progresses, it can be seen that the con-
sistency score, especially the one calculated via
variance, decreases as the test accuracy increases.

4.2 CFQ

Setting. We use the Universal Transformer ar-
chitecture (Uni-TF) (Bergen et al., 2021; Csordás
et al., 2021) as the base model, and encoder and de-
coder are 6 layers with 256 embedding dimension.
Moreover, pre-trained language models are critical
for achieving good performance on CFQ (Furrer
et al., 2020; Zheng and Lapata, 2022). Following
Zheng and Lapata (2022), we use RoBERTa-Base
as the encoder and combine it with a Transformer
decoder initialized randomly. The encoder has 12



Model MCD1 MCD2 MCD3 AVE

HPD 72.0 66.1 63.9 67.3
Uni-Transformer 44.0 11.0 14.0 23.0
Evolved-Transformer 42.4 9.3 10.8 20.8
Edge-Transformer 47.7 13.1 13.2 24.7
Uni-TF+CReg 57.5 28.8 31.5 39.2

T5-11B-mod 61.6 31.3 33.3 42.1
RoBERTa-Dangle 78.3 59.5 60.4 66.1
RoBERTa 60.6 33.6 36.0 43.4
RoBERTa+CReg 74.8 53.3 58.3 62.1

Table 3: Exact match accuracy on CFQ. We report the
accuracy averaged over three runs with different random
seeds.

layers with the embedding dimension 756, and the
decoder has 2 layers of which the embedding di-
mension is 256. We set the learning rate to 1e-4
and the warmup steps to 4,000. The α and β are
set to 0.3 and 1.0, respectively. We apply the rep-
resentation consistency on the encoder side for the
RoBERTa-based model and decoder side for the
Universal Transformer. The dropout probability is
set to 0.1. We report the mean accuracy over three
runs. We use exact matching accuracy to measur-
ing model performance, and run each experiment
three times and report the mean accuracy.

Results. For models trained from scratch, we
compare our method with Evolved-Transformer
(Furrer et al., 2020), Uni-Transformer (Csordás
et al., 2021), Edge-Transformer (Bergen et al.,
2021) and HPD (Guo et al., 2020b). The pre-
trained language models include T5-11B-MOD
(Furrer et al., 2020), RoBERTa-Dangle (Zheng and
Lapata, 2022), and RoBERTa (Zheng and Lapata,
2022). Note that HPD is a not a seq2seq model and
is a hierarchical decoding structure dedicated for
CFQ.

As shown in Table 3, it is highly challenging
to train a Transformer, especially on the MCD2
and MCD3 splits, whether pre-trained models are
used or not. Although deep contextualized rep-
resentations are useful, they still lag behind HPD,
suggesting that more efficient methods of achieving
compositional generalization by exploiting proper
inductive biases exist. Specifically, RoBERTa+dec
achieves an average test accuracy of 43.4%. When
trained with consistency regularization, it is fur-
ther improved to an average of 62.1%. Dangle-
RoBERTa re-encodes the concatenation of the
source sequence and target history at each decod-
ing step, leading to large computational overhead

Model BLEU Instance Aggregate

Transformer 59.5 28.4 62.9
Seq-Mixup - 28.6 60.6
Proto-Transformer 60.1 21.7 51.8
Dangle-Transformer 60.6 22.8 50.6

Transformer+CReg 61.3 20.2 48.3

Table 4: Compound translation error rate (CTER) on
CoGnition. Instance and Aggregate denote the instance-
level and aggregate-level CTER, respectively.

especially for long sequences. Despite the minor
performance gap (4%), our model requires no mod-
ifications to model architecture and decoding, re-
sulting in a much lower decoding latency.

5 Experiments: Machine Translation

Unlike semantic parsing, the target of MT is also
natural language and compositionality in natural
domains is far more intricate. we further validate
the effectiveness of our method on two dedicated
machine translation datasets: CoGnition (Li et al.,
2021) and OPUS En-Nl (Dankers et al., 2022).

5.1 CoGnition

Setting. We use the Transformer iwslt_de_en set-
ting in Fairseq with 4 layers. The batch size is
4,096 tokens, and we stop training if a model does
not improve on the validation for 10 epochs. We set
α and β to 0.5 and 3.0, respectively. The dropout is
set to 0.3, and we apply the representation consis-
tency on the target side. We use beam search with
width 5 for inference. We use compound transla-
tion error rate (CTER; (Li et al., 2021)) to measure
model performance. Specifically, instance-level
CTER denotes the ratio of the instances in which
the novel compounds are translated incorrectly to
the total instances, and aggregate-level CTER de-
notes the ratio of the compound types which are
translated wrong at least once in the corresponding
contexts. We also report BLEU score (Papineni
et al., 2002), which evaluates the quality of whole
translations.

Results. We compare our method to Seq-Mixup
(Yin et al., 2022), which trains Transformer with
sequence-level mixup regularization (Guo et al.,
2020a); Dangle-Transformer (Zheng and Lapata,
2022); and Proto-Transformer (Yin et al., 2022),
which applies K-Means during training to catego-
rize the representations for each source token, and



Model Small Medium
Data Condition TF TF+CReg TF TF+CReg
S -> NP VP
synthetic NP .72 .78 .84 .82
synthetic VP .79 .87 .87 .91
semi-natural NP .56 .70 .66 .70
S-> S CONJ S
synthetic S

′
1 .87 .91 .90 .95

synthetic S3 .68 .75 .76 .89
semi-natural S

′
1 .70 .78 .73 .79

semi-natural S3 .40 .56 .49 .54
natural S

′
1 .60 .72 .67 .75

natural S3 .28 .45 .39 .51
Average - .62 .72 .70 .76

BLEU - 22.6 23.4 25.1 25.8

Table 5: Evaluation of systematicity on OPUS En-Nl
including consistency and BLEU scores. The models
are trained on the small and medium training sets, re-
spectively.

integrates the cluster representations to the encod-
ing to reduce representation sparsity..

The main results are shown in Table 4. The
Transformer gives instance-level and aggregate-
level CTERs of 29.4% and 63.8%, respectively,
while the regularized Transformer achieves 19.9%
and 48.8%, respectively. Our model obtains a sub-
stantial improvement of 8.3% and 11.2% without
changing the model architecture. Particularly, the
CG-test set requires NMT models to put more em-
phasis on the invariance of atom translation under
context variations, and the result demonstrates that
the encouragement of consistency helps the model
learn it better . Besides, compared to SeqMix regu-
larization, the improvement of our method is more
significant, possibly due to the inconsistency in-
troduced by the stochastically interpolated sam-
ples in SeqMix. Moreover, the regularized Trans-
former performs better than Dangle-Transformer
and Proto-Transformer. This indicates that through
training regularization, the generalization ability of
the Transformer can be significantly improved with
scalability to various tasks maintained.

5.2 OPUS

Setting. We use Tranformer_Base configuration
in Fairseq following Dankers et al. (2022). We
use a learning rate of 5e-4 with 4,000 warmup
steps, and a batch size of 4,096 tokens on 4 GPUs.
We stop training if the model does not show im-
provement on the validation set for 10 consecutive
epochs. The regularization coefficients α and β
are set to 0.2 and 1.0, respectively, The dropout is

Model COGS CFQ CoGnition

(*)+CReg 84.5 62.1 20.2/48.3
w/o Lr 81.9 52.5 22.3/51.8
w/o Lp 83.4 59.0 24.3/57.7

Table 6: Results of ablation study.

set to 0.3, and lower probabilities lead to worse
consistency scores. For our regularization, the
representation consistency is used on the target
side. The evaluation metric is the translation con-
sistency score, which measures the consistency of
the model’s translations for a sample when the con-
text changes. Specifically, in the S -> NP VP setup,
two translations are considered consistent if they
differ by only one word. In the S-> S CONJ S
setup, the consistency is measured for the trans-
lations of the second conjunct. For more details,
please refer to Appendix A and the paper (Dankers
et al., 2022).

Result. The overall result is presented in Table
5. In both small and medium settings, our consis-
tency regularization can enhance the learning of
systematicity of Transformer, and makes the model
less prone to changing their translations after small
adaptations to source sentences. Specifically, when
trained on small size corpus (1.1M), the consis-
tency score of the NMT model is improved signif-
icantly from 0.62 to 0.72 in average. In addition,
increasing training data can intuitively improve the
model’s systematicity ability since the model sees
more compositions during training. The proposed
regularized model trained on medium size corpus
(8.6M) achieves 0.76 consistency score, outper-
forming the baseline by 0.6 in average. In par-
ticular, it performs better than the model trained
on the full data (0.73 reported in (Dankers et al.,
2022)). Finally, the BLEU scores on the general
test set is also improved due to the amelioration in
compositionality learning.

6 Analysis

In this section, we aim to provide a deeper under-
standing of how our consistency regularization im-
proves compositional generalization by analyzing
various aspects of the model’s performance.

6.1 Ablation Study

To present the influence of different regulariza-
tion terms, we conduct an ablation study on CFQ,
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Figure 3: Learning efficiency of Transformer under
the standard training and our consistency regularization
training, respectively.

COGS, and CoGnition. The results are shown in
Table 6. We can see that using either of the two
regularization methods alone can also improve the
generalization performance. Specifically, the con-
trastive loss Lr has a greater impact on COGS and
CFQ, indicating that the structure generalization
can benefit from more consistent atom representa-
tions across samples. On the other hand, the pre-
diction consistency loss Lp has a more significant
effect on CoGnition, since the evaluation metric
requires the NMT model to generate coherent trans-
lations of each atom in different contexts. Finally,
further improvement can be achieved by leveraging
the training regularization of both the representa-
tion and prediction consistency.

6.2 Learning Efficiency

We argue that the inconsistency can negatively af-
fect the efficiency of learning invariance and com-
position patterns from the training data, which can
be mitigated by our consistency training. To ver-
ify it, we train the models with different training
sizes and report the test performance in Figure 3.
For CFQ, we randomly sample four different sizes
of training corpora containing 1.2k, 2.5k, 5k, and
10k sentence pairs, respectively. For CoGnition,
we train the models using 1/2, 1/3, 1/4, and 1/5 of
the total sentence pairs in the training set, respec-
tively. We can observe that consistency regular-
ization enables the Transformer model to learn the
generalizable composition patterns with less train-
ing data. On CFQ, the Transformer enhanced by
RoBERTa fails to learn when there only exists 1.2k
training instances, while the regularization enables
the model to achieve almost 20% accuracy on the
generalization test set.

6.3 Intra-class Variance

In this part, we calculate the intra-class variance
to perform quantitative study of the improvement
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Figure 4: Intra-class variance of Transformer(TF) and
regularized Transformer(TF-CReg) on CFQ and CoGni-
tion.

K=5K=1

Figure 5: Effect of input noise on CoGnition. K repre-
sents the number of tokens that are replaced at random
in the context part of a source sentence. The vertical
axis represents the average of instance and aggregate
CTER.

of representation invariance to context changes
(Zheng and Lapata, 2022). For each token, we
perform a forward pass over the training set with
the trained model to collect all of its contextualized
representations. The intra-class variance is defined
as the weighted average of all tokens’ variances by
their frequency:

1

d

d∑
i=1

Eyvar(h
y
i ), (5)

where d is the dimension of representations and
y denotes a token type. A lower intra-class vari-
ance indicates more disentangled features, which
are more robust to variations in input composition.
As shown in Figure 4, the representations of the
regularized model have lower variance, and this
phenomenon can be explained by the influence of
the contrastive loss, which pulls the representations
belonging to the same token closer together.

6.4 Input Noise

Input noise can be regard as a special case of com-
positional generalization, which possibly destroy
semantics of sentences and is common in real ap-
plications (Michel and Neubig, 2018; Wang et al.,



2021). In this experiment, we investigate whether
our method can lead to a more robust model to
input noise. We chose CoGniton as the test bed,
since the novel compounds and the contexts are
clearly divided. For each source sentence in the
CG-test set, we keep the compound unchanged and
randomly replace K tokens in the context part with
the other tokens in the vocabulary. For each K, we
sample 10 times and the violin plot is shown in Fig-
ure 5. The vertical axis represents the average of in-
stance and aggregate CTER. Under the input noise
of different extents, the performances of TF+CReg
consistently outperform TF. Even though the con-
texts are destroyed seriously (K=5), TF+CReg can
give a performance comparable to the baseline, in-
dicating the regularized model learns the invariant
translation patterns better. The figures with the
other values of K are put in Appendix B.

7 Conclusion

We presented a regularization method to enhance
compositional generalization, jointly encouraging
the consistency of token representations across sam-
ples and sample-level prediction consistency. Ex-
periments on four dedicated datasets show the ef-
fectiveness of our method. The regularized Trans-
former can be a strong baseline for future investi-
gate of compositional generalization.

Limitations

For representation consistency, we apply the regu-
larization to all the tokens and do not distinguish be-
tween the different roles the tokens play. Adaptive
determination of which tokens or chunks require
to be consistent in the representation space is an
intriguing research question, which we leave as fu-
ture work. More effective data sampling strategies
can also be explored.
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A Data and Settings

In this section, we describe the datasets and the
model configurations in detail. Statistics of all the
datasets can be found in Table 7.

COGS COGS is a dataset that maps English sen-
tences to logical forms, consisting of a training
set with 24,155 examples and a generalization test-
ing set with 21,000 examples. The generalizaiton
types include novel combination of familiar prim-
itives and grammatical roles, novel combination
modified phrases and grammatical roles, verb ar-
gument structure alternation, verb class, deeper
recursion, etc. In particular, Conklin et al. (2021)
and Zheng and Lapata (2022) construct a gener-
alization validation set sampled from the test set,
which contains 2,100 instances and used for tuning
hyper-parameters. The chosen hyper-parameters
are used to rerun the model with the other different
random seeds for reporting final results on the test
set.

CFQ The task of interest of CFQ is to seman-
tic parsing from a natural language question (e.g.,
’Which art director of [Stepping Sisters 1932]
was a parent of [Imre Sándorházi]?’) to a Free-
base SPARQL query. With a principle of max-
imizing compound divergence (MCD) (Keysers
et al., 2020b), the authors construct three splits
(i.e., MCD1, MCD2, and MCD3), which are used
to test structural generalization, i.e., the syntax pat-
terns in the test set are greatly different from those
in the training set. A number of studies have shown
that the prediction difficulty can be mitigated by
normalizing the target sequence (Guo et al., 2020b;
Zheng and Lapata, 2022) or using the intermediate
representation (Herzig et al., 2021), and we follow
Zheng and Lapata (2022) to preprocess the data.

CoGnition CoGnition is an English→Chinese
(En→Zh) story translation dataset, consisting of
196,246 training sentence pairs and a validation
set with 10,000 sentence pairs. The compositional
generalization test set (CG-test set) has 10,800 sen-
tences containing three types of novel compounds
(i.e., NP, VP, and PP). All the tokens are high fre-
quent to eliminate the influence of low-frequency
words on translation quality.

OPUS En-Nl Dankers et al. (2022) use
English→Dutch data in OPUS (Tiedemann and
Thottingal, 2020) as the training set, containing

69M sentences pairs in total. They conduct evalua-
tion on three settings: using the full dataset, using
1/8 of the data (medium), and using one million
pairs in the small setup. We conduct the experi-
ments with the small and medium settings since
using the full data only gives a slight improve-
ment (Dankers et al., 2022). The validation and
test sets for BLEU evaluation are from FLORES-
101 (Goyal et al., 2022). To evaluate systematicity,
Dankers et al. (2022) construct a large number of
test sets with two settings: (1) S -> NP VP, which
investigates the recombinations of noun and verb
phrases; and (2) S-> S CONJ S, which uses sen-
tences joined by “and” to see whether the trans-
lation of the second sentence depends on the first
one. Additionally, the source sentences used for
evaluation are divided into three categories: syn-
thetic, semi-natural, and natural data. The number
of sentences to translate in the generalization test
sets is 45,000.

B Input Noise

The performances of input noise on CoGnition with
all the values of K are shown in Figure 6.

C Dropout

For the benchmarks we used, the hyper-parameters
of the Transformer baselines, such as dropout and
model sizes, are well-tuned by the previous stud-
ies. Dropout probabilities are 0.1 on COGS and
CFQ, and 0.3 on CoGnition and OPUS En-Nl. Dis-
abling or minimizing dropout can lead to worse
performances. Concretely, when disabling dropout,
the baseline performances drop from 80.8 to 78.5
on COGS, and from 60.6 to 56.0 on CFQ-MCD1,
respectively. On CoGnition, the translation er-
ror rate increases significantly from 20.2/48.3 to
45.4/76.7 when using dropout probability 0.1. On
the Small scale of OPUS En-Nl, the average con-
sistency score deceases significantly from 0.72 to
0.51 when using dropout probability 0.1.



Dataset #Train #Valid #Test Voc

COGS 24,155 3,000 21,000 752/672
CFQ 95,743 11,968 11,968 104/104
CoGnition 196,246 10,000 10,800 5504/2208
OPUS En-Nl(Small) 1,072,851 997 45,000 41,296
OPUS En-Nl(Medium) 8,582,811 997 45,000 44,681

Table 7: Dataset statistics. “#” means the number of instances. “Voc” denotes the vocabulary sizes of source and
target sides, separated by “/”. The test set specifically refers to those used to evaluate compositional generalization
performance.
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Figure 6: Effect of input noise on CoGnition. K represents the number of tokens that are replaced at random in the
context part of a source sentence. The vertical axis represents the average of instance and aggregate CTER.


