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Abstract

Verbatim queries submitted to search engines
often do not sufficiently describe the user’s
search intent. Pseudo-relevance feedback
(PRF) techniques, which modify a query’s
representation using the top-ranked documents,
have been shown to overcome such inade-
quacies and improve retrieval effectiveness
for both lexical methods (e.g., BM25) and
dense methods (e.g., ANCE, ColBERT). For
instance, the recent ColBERT-PRF approach
heuristically chooses new embeddings to add
to the query representation using the inverse
document frequency (IDF) of the underlying
tokens. However, this heuristic potentially
ignores the valuable context encoded by
the embeddings. In this work, we present a
contrastive solution that learns to select the
most useful embeddings for expansion. More
specifically, a deep language model-based
contrastive weighting model, called CWPRF,
is trained to learn to discriminate between
relevant and non-relevant documents for
semantic search. Our experimental results
show that our contrastive weighting model can
aid to select useful expansion embeddings and
outperform various baselines. In particular,
CWPRF can improve nDCG@10 by upto to
4.1% compared to an existing PRF approach
for ColBERT while maintaining its efficiency.

1 Introduction

When using search engines, users frequently enter
queries that insufficiently express their desired
intent. For instance, a user who issues the query
georgia run off elections may indeed be looking
for details about a specific electoral procedure in
the US state of Georgia. For search algorithms that
rely on lexical matching, such as BM25, this can
result in a lexical gap, since relevant documents
may just as easily use different terms (e.g., GA and
2nd-round). Pseudo-Relevance Feedback (PRF)
techniques are often employed to overcome such
a lexical gap. Indeed, classical PRF techniques,
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Figure 1: Effectiveness (nDCG@10) versus dense PRF
stage mean execution time on the TREC 2019 query set.

such as RM3 (Abdul-Jaleel et al., 2004), have been
widely used to enrich the user’s query with terms
selected from the initial retrieval top-ranked docu-
ments, i.e. the pseudo-relevance feedback set (Am-
ati and Van Rijsbergen, 2002; Roy et al., 2016; Cao
et al., 2008). This expanded query is capable of
overcoming the lexical gap if the pseudo-relevance
feedback documents are relevant and additional
related terms can be identified (for instance adding
GA to the query). However, there is a risk that
the added terms drift the intent of the query (for
instance, adding terms such as Tbilisi that relate to
the country of Georgia rather than the US state).

An alternative approach for overcoming the lexi-
cal gap is to perform semantic search over learned
embedded documents (single representation, e.g.,
ANCE (Karpukhin et al., 2020)) or tokens (multi-
ple representations, e.g., ColBERT (Khattab and
Zaharia, 2020)). Such dense retrieval approaches
enable queries to retrieve documents that do not
necessarily contain the query terms. However, the
encoded query vectors might still not adequately
express the user’s desired intent. Indeed, several re-
cent works have shown that implementing PRF
techniques within the dense retrieval paradigm
– such as ANCE-PRF (Yu et al., 2021), Vector-
PRF (Li et al., 2023) and ColBERT-PRF (Wang
et al., 2021, 2022b) – can further improve retrieval
effectiveness. ColBERT-PRF has been shown to be
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more effective than Vector-PRF and ANCE-PRF
variants applied on various dense retrieval models.

A key limitation of ColBERT-PRF is that it re-
lies on clustering and inverse document frequency
(IDF) statistics for identifying the expansion em-
beddings — both of which are heuristics. This
approach ignores valuable context present in the
embeddings, e.g., for the georgia run off elections
query, effectiveness might be improved by adding
an embedding for ‘US’, however, this would not
likely be selected due to its low IDF (indeed, ‘us’ is
also a pronoun, and is often included in stopword
lists). Moreover, there is no direct connection be-
tween the expansion embeddings selected by the
heuristic and the semantic search algorithm itself.

To overcome these problems, we propose a
contrastive weighting method, called CWPRF, to
select and weight the usefulness of the feedback
embeddings for dense expansion. More specifically,
for each feedback token, we construct a contrastive
objective, where, given positive and negative doc-
uments, CWPRF is trained to assign high weights
to the tokens that are semantically closer to tokens
occurring the positive document than to those in the
negative document. Introducing the PRF passages
into the training procedure of CWPRF enables the
model to take the surrounding context into account
when identifying the useful tokens from the PRF
passages. Meanwhile, training CWPRF with the
contrastive objective allows it to learn the effective
weights for expansion embeddings that are tailored
for the semantic ranking task.

Figure 1 presents the trade-off between the
retrieval effectiveness and the mean PRF stage
execution time for a variety of existing dense PRF
techniques on the TREC 2019 Deep Learning
track queries, including Vector-PRF (Li et al.,
2023), ANCE-PRF (Yu et al., 2021), ColBERT-
PRF variants (Wang et al., 2021, 2022b) and
our proposed CWPRF method. As the figure
shows, the default ColBERT-PRF implementation
outperforms ANCE-PRF and Vector-PRF in terms
of retrieval effectiveness but requires a longer
execution time. Meanwhile, our proposed CWPRF
achieves the highest nDCG@10 score without
requiring high computational cost.

Overall, our contributions are summarised as
follows: (1) We propose CWPRF, a contrastive
weighting method for dense query expansion; (2)
We construct the contrastive targets and train our
CWPRF model to assign high expansion weights

for tokens that can discriminate the relevant doc-
uments from the non-relevant documents. Based
on the predicted weights, CWPRF helps to iden-
tify useful expansion embeddings for generating
refined query representations; (3) We perform an
extensive empirical evaluation and demonstrate
how to effectively train our CWPRF in a super-
vised way; (4) Experiments show that our CWPRF
can achieve significantly higher retrieval effective-
ness but with less execution time than the default
ColBERT-PRF.

2 Preliminaries

Given a query q and a document1 d, we em-
ploy the pre-trained ColBERT (Khattab and Za-
haria, 2020) query and document encoders to en-
code the query and document, respectively. The
ColBERT query and document encoders share
weights but are distinguished by the different
prepended special tokens. The ColBERT model
is defined as a linear layer upon the raw to-
ken embeddings obtained from a BERT model:
ColBERT = Linear(BERT(t1, ..tn),m)) ∈
Rm, where m is typically set to 128 (Khat-
tab and Zaharia, 2020). In particular, the in-
put query tokens are encoded as a list of query
embeddings (each of dimension m), as fol-
lows: ϕq = ColBERT([CLS], [Q], q1, ..., q|q|) ∈
R32×m, where m = 128 and the ‘[MASK]’ embed-
dings are used to pad the input query embeddings to
32. Similarly, for a document d, we encode it into
a list of document embeddings, as follows: ϕd =
ColBERT([CLS], [D], d1, ..., d|d|) ∈ R|d|×m.

Based on the obtained query and document em-
beddings, the final similarity score between a query
and a document, s(q, d), is given by the summation
of the highest cosine similarity among the docu-
ment embeddings for each query embedding:

s(q, d) =
∑|q|

i=1MaxSim(ϕqi , ϕd) =
∑|q|

i=1max
|d|
j=1 ϕ

T
qiϕdj .

(1)

3 Contrastive Weighting for Dense PRF

This section first provides an implementation
overview of CWPRF for dense query expansion in
Section 3.1. It then details the contrastive weight-
ing method and the training procedure of CWPRF
in Sections 3.2 & 3.3, respectively.
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Figure 2: Overview of CWPRF for dense query expansion.

3.1 CWPRF Implementation Overview

An overview of CWPRF in a multiple-
representation dense expansion framework
is illustrated in Figure 2, where three stages are
presented: (1) initial retrieval, (2) predicting the
PRF tokens weights and (3) retrieval with the
refined query representation. We note that the first
and the third stages of this framework are shared
with ColBERT-PRF (Wang et al., 2021, 2022b).

In the initial retrieval stage, we obtain a result
list in response to the original user’s query q. The
top fp documents are employed as the pseudo-
relevance feedback documents. Then, as input for
our trained CWPRF model, we append the PRF
passages to the query. The model outputs weights
for each query token as well as for the feedback to-
kens. Finally, according to these produced weights,
we identify fe feedback tokens with high weights
as our expansion tokens and append their corre-
sponding expansion embeddings obtained from
ColBERT’s document encoder to the original query
representation. Following conventional PRF mod-
els going back to Rocchio (Croft et al., 2010), the
overall contribution of the expansion embeddings
is further controlled by a hyper-parameter denoted
by β. Finally, the refined query representation is re-
issued to the underlying dense retrieval model, i.e.
ColBERT, so as to return the final document list.

The core challenge, which lies in the second PRF
stage, is how to accurately predict the expansion
weights for the refined query representation that
can more effectively perform semantic search. We
propose a novel contrastive weighting model that
learns to weight each feedback token individually
based on the extent it will increase the score of the
relevant document w.r.t. the non-relevant one(s).

3.2 CWPRF Feedback Embedding Weighting

Building on ColBERT, and taking an initially
retrieved set of pseudo-relevant feedback pas-
1 We use ‘document’ and ‘passage’ interchangeably.

sages as input, the CWPRF model aims to pre-
dict the importance of each (token-level) feed-
back embedding in the feedback passages. This
is achieved using a separate BERT model instance,
which takes a list of input tokens and returns a
scalar weight for each token: CWPRF(t1...tn) =
Linear(BERT(t1, ..tn), 1)) ∈ Rn.

More specifically, given a document p in the
pseudo-relevant set, which is tokenised into a
sequence of PRF tokens p1, p2, ..., p|p|, we em-
ploy the ColBERT encoder to obtain its embed-
dings: ϕp = ColBERT([CLS], [D], p1, ..., p|p|) ∈
R|p|×m. Then we obtain the feedback weight for
each PRF token using CWPRF which takes the
query representations as well as the PRF represen-
tations as input:

ws = CWPRF(

query tokens︷ ︸︸ ︷
[CLS], [Q], q1, q|q|

PRF tokens︷ ︸︸ ︷
[D], p1, ..., p|p|) .

(2)
According to the returned importance score

for each of the feedback embeddings in ϕp, we
identify the highly important ranked embeddings
as our expansion embeddings. The expansion
embeddings are appended to the original query
embeddings to refine the query representation.
Note that the original query is included in the
invocation of CWPRF(·) – this is by design,
to ensure that the CWPRF model considers the
relation of the PRF tokens to the original query.
However, we ignore the predicted weights of
the original query; following ColBERT-PRF, the
weights of the original embeddings are assumed
to be unchanged. Furthermore, we apply a
ReLU upon ws, to ensure that feedback weights
non-negative. Finally, the score for a document can
be calculated as the summation of the weighted
MaxSims using the refined query representation:

s′(q, fe, d) = s(q, d) + β
∑|fe|

i=1wsi ·MaxSim(fei , ϕd).

(3)
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Figure 3: Target generation of CWPRF for the training query: “is a little caffeine ok during pregnancy”. The target
for a PRF token (blue bar) is generated by subtracting (a) the maximum negative similarity score of the PRF token
interacting with the tokens from the negative passage (left-hand interaction plot) from (b) the maximum positive
similarity of the PRF token interacting with the tokens from the positive passage (right-hand interaction plot).

3.3 Training CWPRF
To train CWPRF(·), we construct a contrastive
target for each feedback token. In particular, we
use a conventional training file containing triples
of ⟨q, d+, d−⟩, and supplement it with PRF pas-
sages, i.e. the passages highly ranked for the origi-
nal query q, which we assume to be relevant. The
aim of our training objective, therefore, is to iden-
tify which tokens of a feedback passage p result in
the positive passage being scored much higher than
the negative passage, when the feedback passage
is itself treated as the query. Therefore, for each
feedback token, and given the positive and nega-
tive documents, CWPRF is trained to assign high
weights to the tokens that are semantically closer
to the tokens occurring in positive document than
those in the negative document. Hence, the target
for the i-th PRF token, pi, is obtained as:

t(pi) = MaxSim(pi, d
+)−MaxSim(pi, d

−),
(4)

where MaxSim(., .) measures the semantic simi-
larity between representations, as per Equation (1).

The target generation process for CWPRF is
illustrated in Figure 3. This figure presents the
interaction matrices between a PRF document
(“cause baby heart rate increase”) obtained
from the returned documents list in response
to the query: “is a little caffeine ok during
pregnancy” compared to the positive and negative
document. The shading is indicative of the
magnitude of dot product similarity between a
PRF embedding and a document embedding, while
the highest document embedding for each PRF
embedding is indicated with a •. For each PRF

embedding, we subtract the negative similarity
from the positive similarity, resulting in an
importance score for each PRF embedding. In
this example, ‘cause’ and ‘heart’ are the most
important tokens. These differences are used as
targets for learning the CWPRF model. pAAAT =
p11, p

1
2, .., p

1
|p1|, [SEP], ..., p

k
1, p

k
2, .., p

k
|pk|, [SEP].

However, in common with all BERT models,
|pAAAT| is limited to 512 tokens, so some tokens
may be cut off for large feedback sets. Hence, in
the OAAT training mode, each PRF document
is regarded as an individual PRF sequence. The
CWPRF training is then conducted for each
feedback passage individually.

In-Batch Negative Sampling: In-Batch Nega-
tive (IBN) sampling is a technique that has been
widely used for training effective dense retrieval
models such as DPR (Karpukhin et al., 2020; Lin
et al., 2020). However, it has not previously been
applied for query expansion weighting. To promote
the discriminative expansion embeddings and sup-
press the unimportant ones during our target gener-
ation, we adapt the idea of in-batch negative (IBN)
sampling during the training of CWPRF. Thus,
each training sample is equipped with one positive
sample and B−1 negative samples, where B is the
batch size used during training. As a consequence,
the target for the i-th PRF token is obtained as:

t(pi) = MaxSim(pi, d
+)−max

|B−1|
j=1 MaxSim(pi, d

−
j ).

(5)
This ensures that the importance of each feedback
embedding for ranking a positive passage is
discounted by its presence in all negative passages
of the batch. While IBN is commonly used for
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training ranking models on entire passages, our
adaptation focuses instead on the token-level
embedding importance.

Loss Functions: CWPRF is trained to assign
weights from the target signal using the following
objectives. For AAAT training, the loss is com-
puted as follows:

LAAAT =
1

N

N∑

i=1

(tpi − wspi)
2 , (6)

where N is the total number of tokens in the PRF
sequence. For the OAAT training mode, we com-
pute the loss for each PRF sequence and add them
to obtain the total loss:

LOAAT =

k∑

j=1

(
1

N

N∑

i=1

(t
pji

− ws
pji
)2

)
. (7)

At the inference time, we apply CWPRF consis-
tently with its training mode, i.e. AAAT or OAAT.

3.4 Discussion
Connection to ColBERT-PRF: Similar to
ColBERT-PRF, CWPRF is implemented in the mul-
tiple representation late interaction dense retrieval
paradigm. However, in contrast to ColBERT-PRF,
CWPRF is a supervised approach, which is tailored
for semantic search by selecting and learning the
contrastive weights for the discriminate expansion
embeddings. The Kendall’s τ correlation between
the contrastive weights learned by CWPRF and the
IDF weights assigned by ColBERT-PRF is only 0.1,
which indicates that CWPRF prioritises differently
the feedback embeddings. Moreover, compared
to ColBERT-PRF, CWPRF has advantages over
ColBERT-PRF in that it can identify expansion em-
beddings that may have low IDF values. It can also
avoid the expensive clustering and nearest neigh-
bour lookups used by ColBERT-PRF.
Connection to Learned Sparse Models: In prac-
tice, the CWPRF model structure is similar to un-
expanded learned sparse retrieval approaches (Dai
and Callan, 2020; Mallia et al., 2021; Lin and Ma,
2021). Importantly, however, the learning objec-
tives are different; learned sparse retrieval opti-
mises for relevance directly, while CWPRF is opti-
mised to identify and weight the most helpful query
expansion embeddings.

4 Experimental Setup

Datasets: We conduct our experiments using the
MS MARCO (Nguyen et al., 2016) passage rank-

ing dataset. The corpus consists of 8.8M passages
from web pages, along which are provided 0.5M
training queries with sparse document relevance
judgements. We employ the TREC Deep Learning
track 2019 query set (43 queries with an average of
215 relevant documents per query) as our valida-
tion set and use TREC 2020 (54 queries with 211
relevance assessments per query) query set as our
test set due to their dense judgements, which can
provide more reliable evaluations (Carterette et al.,
2006; Craswell et al., 2021). As pseudo-relevance
feedback approaches are known not to show a ben-
efit on sparsely judged documents (Amati et al.,
2004), we omit the MS MARCO Dev queries. In
addition, we also report the performance of CW-
PRF on four BEIR (Thakur et al., 2021) datasets in
Appendix A.2.

We evaluate our method using the official met-
rics of TREC, such as nDCG@10, MAP@1000
and Recall@1000. We follow the standard practice
of TREC (non-relevant = 0 or 1 and relevant = 2
or 3) for the binary-relevance based metrics (MAP
and Recall). To investigate the extent that semantic
matching, rather than exact token matches occurs
when retrieving documents, we also report the
semantic match proportion (SMP) (Wang et al.,
2022a) for the ColBERT-based system. The
calculation of SMP is detailed in Appendix B.
For significance testing, we use the paired t-test
(p < 0.05) and apply the Holm-Bonferroni
multiple testing correction.

Experimental Implementation: Both the
AAAT and OAAT training modes are trained using
the MS MARCO "small" triples training set, i.e.
the triplets of ⟨q, d+d−⟩. Following the settings
of ColBERT (Khattab and Zaharia, 2020), we
use a ColBERT checkpoint trained using the MS
MARCO passage ranking training triplets for
44k batches. We employ the query encoder from
the trained ColBERT model to encode the query
(the maximum query length is set to 32) and the
document encoder to encode the pseudo-relevance
feedback documents (the maximum document
length is set to 512 for the AAAT training mode
and 180 for the OAAT training mode). We set the
maximum length to 180 when encoding the pos-
itive and negative passages. For ease of notation,
we use » to denote a retrieval pipeline, for instance
BM25 » ColBERT indicates applying the ColBERT
reranker on the results obtained from BM25. For
setting the hyper-parameters of CWPRF, we use
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Systems
TREC 2019 (Validation) TREC 2020 (Test)

MAP nDCG@10 Recall Mean-SMP MAP nDCG@10 Recall Mean-SMP

Sp
ar

se

(a) BM25 0.2864 0.4795 0.7553 - 0.2930 0.4936 0.8103 -
(b) BM25 » ColBERT 0.4597 0.6969 0.7553 0.3244 0.4721 0.6891 0.8072 0.3546
(c) BM25+RM3 0.3108 0.5156 0.7756 - 0.3203 0.5043 0.8423 -
(d) BM25+RM3 » ColBERT 0.4732 0.7059 0.7756 0.3404 0.4801 0.6866 0.8423 0.3560

D
en

se (e) ANCE 0.3715 0.6537 0.7571 - 0.4070 0.6447 0.7737 -
(f) ColBERT E2E 0.4310 0.6934 0.7892 0.3332 0.4648 0.6871 0.8245 0.3684

L
-S

pa
rs

e (g) SPLADE-v2 » ColBERT 0.4579 0.6957 0.8723 0.3327 0.4730 0.6794 0.8987 0.3682
(-) DeepImpact » ColBERT - 0.7220 - - - 0.6910 - -
(h) DocT5Query » ColBERT 0.5009 0.7136 0.8263 0.3400 0.4733 0.6934 0.8456 0.3618

D
-P

R
F (i) ANCE-PRF 0.4253 0.6807 0.7912 - 0.4452 0.6948 0.8148 -

(j) ColBERT-PRF 0.5244 0.7276 0.8760 0.3592 0.4904 0.6958 0.8858 0.3837
(-) Vector-PRF 0.4151 0.6629 0.6962 - 0.4341† 0.6598† 0.7948† -

O
ur

s CWPRF-AAAT 0.5319acefgi 0.7444acefgi 0.8596abefi 0.2814 0.5136abcefgi 0.7246abcdefgj 0.8783abefi 0.3240
CWPRF-OAAT 0.5252acefgi 0.7244ace 0.8722abefi 0.2923 0.5049abcefgi 0.7204acdefg 0.8783abefi 0.3265

Table 1: Main results on both TREC 2019 and TREC 2020 queries. The superscripts ‘a-j’ denote significant
improvements over the indicated baseline model. The highest effectiveness value for each metric is boldfaced.
Results not available for significance testing are denoted with ‘-’. † denotes results over-fitted to the test set.

the TREC 2019 queries as our validation set; the
resulting settings of fp = 3, fe = 10 and β = 5
are obtained, as reported later in Appendix A.1.
However, we note that fp = 3, fe = 10 is also the
recommended setting for ColBERT-PRF (Wang
et al., 2021). The high β value indicates the high
contribution of the CWPRF identified expansion
embeddings for semantic ranking. We further
provide the ablations of performing only the
expansion embeddings in Appendix A.1. For both
CWPRF and ColBERT-PRF, we perform 5 sets
of experiments with varied random seeds for each
variant and report the median results.

Compared Systems: To test the effect of CW-
PRF, we compare the retrieval effectiveness of a
CWPRF-based retrieval system with the follow-
ing 4 families of retrieval approaches: (1) Sparse
Retrieval Systems (denoted as Sparse in Table 1):
We compare with the traditional lexical retrieval
models, namely BM25 and BM25+RM3 (Abdul-
Jaleel et al., 2004), and both with and without
the ColBERT reranker, namely BM25 » Col-
BERT and BM25+RM3 » ColBERT models;
(2) Dense Retrieval Systems (denoted as Dense):
We compare with both single-representation and
multiple-representation dense retrieval models,
namely ANCE (Xiong et al., 2021) and Col-
BERT (Khattab and Zaharia, 2020); (3) Learned
Sparse Retrieval Systems (denoted as L-Sparse):
We compare with SPLADE-v2 (Formal et al.,
2022), DeepImpact (Mallia et al., 2021) and
DocT5Query (Nogueira et al., 2020), which are
reranked using ColBERT; (4) Dense PRF models
(denoted as D-PRF): we compare with the ANCE-

PRF (Yu et al., 2021), Vector-PRF (Li et al., 2023)
and ColBERT-PRF (Wang et al., 2021) models.
We compare our proposed CWPRF model with the
more effective ColBERT-PRF Ranker model using
the default KMeans clustering (Wang et al., 2021),
rather than comparing with the Reranker. More-
over, when measuring the efficiency of CWPRF,
we also compare with the recently proposed vari-
ants of ColBERT-PRF, which avoid costly ANN
lookups when calculating IDF values for embed-
dings: KMedoids and KMeans-Closest (Wang
et al., 2022b).

5 Results

This section studies the effectiveness as well as the
efficiency performance of CWPRF in Section 5.1.
The effects of the various training strategies are
investigated in Section 5.2. We also provide quali-
tative analysis of CWPRF in Appendix A.3 and a
breakdown performance of CWPRF according to
various query types in Appendix A.4.

5.1 Main Results
Effectiveness: To evaluate the effectiveness of im-
plementing the CWPRF model in a dense pseudo-
relevance feedback framework, we compare CW-
PRF with various families of baselines in Table 1.

Among the variants of CWPRF, we observe that
when comparing the CWPRF-AAAT and CWPRF-
OAAT models (the bottom block), CWPRF-AAAT,
which is trained with all PRF passages processed
as a single sequence, consistently obtains a higher
performance than CWPRF-OAAT, where the PRF
sequences are considered individually. This sug-
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gests that AAAT provides more relevant context
than OAAT for the CWPRF model.

Next, we compare our CWPRF model with other
baseline models. Firstly, we observe that the CW-
PRF models significantly outperform the sparse
retrieval models and exhibit marked improvements
over sparse-retrieval reranked with the ColBERT
reranker. When compared with dense retrieval mod-
els, the CWPRF models significantly outperform
both types of dense retrieval models. In particu-
lar CWPRF exhibits 7.4% (TREC 2019 queries)
and 5.5% (TREC 2020 queries) improvements in
terms of nDCG@10 than the ColBERT E2E model
where no expansion embeddings are appended to
the original query. This indicates the usefulness
of our CWPRF model for selecting expansion em-
beddings to augment the query representation. We
also compare the CWPRF models with the learned
sparse systems, where the document tokens are en-
riched and reweighted, then applied with a more ad-
vanced reranker. We find that the CWPRF models
significantly outperform the learned sparse models,
indicating the effectiveness of learning the feed-
back weights and refining the query representation
compared with document enrichment.

Finally, when comparing with existing dense
PRF models, namely the ANCE-PRF, Vector-PRF
and ColBERT-PRF models, we find that the CW-
PRF models exhibit significant improvements over
ANCE-PRF on both query sets and significantly
improves over ColBERT-PRF on the TREC 2020
query set. This indicates that our proposed CWPRF
approach can select more appropriate expansion
embeddings that can help to retrieve more relevant
documents, and minimise topic drift.

Overall these results show that the retrieval ef-
fectiveness can be markedly improved with the
CWPRF feedback weighting technique. Training
CWPRF with all PRF passages as one context gives
more precise retrieval at top ranks. In particu-
lar, the CWPRF approaches achieve the highest
nDCG@10 and MAP performances on both query
sets and exhibit upto 4.7% improvements on MAP
and a 4.1% improvement on nDCG@10 for the
TREC 2020 queries compared to ColBERT-PRF.

Semantic Match Proportion: To further explain
the effect of implementing CWPRF for dense query
expansion, following (Wang et al., 2022b), we also
report the mean semantic match proportion (SMP)
values for the models under the ColBERT dense
retrieval paradigm in Table 1. In particular, SMP

Systems
Mean Execution Time (ms)

Stage 1 PRF Stage Stage 3 ALL

Vector-PRF
}
67

{
4 61 132

ANCE-PRF 111 63 241

C-PRF (KMeans) (default)
}
387

{
2997 719 4103

C-PRF (KMeans-Closest) 908 757 2052
C-PRF (KMedoids) 218 744 1349
CWPRF-AAAT 320 710 1417
CWPRF-OAAT 642 714 1743

Table 2: Mean execution time of dense pseudo-
relevance feedback systems. C-PRF represents
ColBERT-PRF. Effectiveness and PRF Stage efficien-
cies are also presented in Figure 1.

quantifies the extent to which a query token exhibits
an exact match (matching with the same document
token) and a semantic match (matching with differ-
ent document tokens) in the top-ranked documents.
On analysing Table 1, we find that, for both query
sets, the CWPRF models show lower Mean-SMP
values than ColBERT-PRF, implying a more ‘fo-
cused’ retrieval. This is because CWPRF’s expan-
sion embeddings correspond to the actual tokens
while ColBERT-PRF’s expansion embeddings can
be the centroid embeddings from clustering. By
using more focused embeddings, nDCG@10 is im-
proved compared to ColBERT-PRF.
Efficiency: Following the three stages described
in Figure 2, we also report the mean execution
time of each stage for various dense PRF sys-
tems, including Vector-PRF, ANCE-PRF, variants
of ColBERT-PRF with differing efficiency and our
CWPRF methods. As Table 2 shows, our CW-
PRF method performs as efficiently as the most
efficient ColBERT-PRF variant (KMedoids vari-
ant) and brings upto 3.06x speedup than the de-
fault ColBERT-PRF method (KMeans variant). Al-
though CWPRF needs a longer execution time than
Vector-PRF and ANCE-PRF, according to the ef-
fectiveness and efficiency tradeoff in Figure 1, CW-
PRF can significantly outperform them without
adding much computational cost.

In summary, our CWPRF model achieves
the highest nDCG@10 on the test set among
all the compared baselines, while reducing the
computational overhead costs compared with
previous ColBERT-PRF approaches.

5.2 Ablation Study
Next, we inspect the effect of each of the train-
ing techniques, namely in-batch negative training,
initialisation of the model, different learning ob-
jectives and training with PRF passages obtained
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from different retrieval approaches. Experiments
for each training strategy are grouped in Table 3.
Effect of In-Batch Negative Sampling: In Table 3,
we see that training CWPRF with further in-batch
negative samples achieves higher retrieval effective-
ness on both the TREC 2019 and TREC 2020 query
sets, for both the AAAT and OAAT training modes.
In practice, more negative training samples for the
pseudo-relevance feedback tokens give more op-
portunity for the model to learn to properly weight
unimportant terms in the feedback. For instance,
the stopword “it” might occur in the feedback and
positive passages, and not in the negative passage,
resulting in a high weight. By applying IBNs, there
is more chance for “it” to occur in any of the neg-
ative passages, reducing its learned target weight,
and resulting in a more effective CWPRF model.
Effect of Model Initialisation: Here, we inves-
tigate the training from scratch and training with
the parameters initialised from an existing learned
sparse model, namely uniCOIL (Lin and Ma,
2021). In the second group of Table 3, we find that
this initialisation for CWPRF can lead to higher
performance compared with training from scratch.
Effect of Initial Retrieval: Now, we further inves-
tigate the training of CWPRF using the PRF pas-
sages obtained by sparse retrieval, using BM25, as
well as by dense retrieval, using the ColBERT E2E
retrieval model. From the final experiment group in
Table 3, we observe that there is no obvious effec-
tiveness difference between training CWPRF using
different initial retrieval systems. Thus, consider-
ing the training efficiency, our default CWPRF is
trained using the PRF passages obtained from a
sparse BM25 initial retrieval.

6 Related Work

Dense Retrieval Models: Different from the popu-
lar “cross-encoder” based BERT-rerankers (MacA-
vaney et al., 2019; Nogueira and Cho, 2019), dense
retrieval models usually build upon a BERT-based
"bi-encoder" structure. The query and document
are encoded separately into dense representations.
There are two families of dense retrieval models:
single representation dense retrieval and multiple
representation dense retrieval models (Macdonald
et al., 2021). In particular, in the single represen-
tation dense retrieval paradigm, exemplified by
DPR (Karpukhin et al., 2020) or ANCE (Xiong
et al., 2021), each query or document is repre-
sented into a single dense representation. Thus,

Models
TREC 2019 (Validation) TREC 2020 (Test)

MAP nDCG@10 MAP nDCG@10

ColBERT E2E 0.4310 0.6934 0.4648 0.6871

Effect of In-Batch Negative Sampling (IBN)

CWPRF-AAAT 0.5168† 0.7331 0.4938 0.7079
CWPRF-AAAT-IBN 0.5244† 0.7332 0.4966† 0.7045
CWPRF-OAAT 0.5050 0.7064 0.5084† 0.7125
CWPRF-OAAT-IBN 0.5151† 0.7269 0.5094† 0.7118

Effect of Model Initialisation (Init)

CWPRF-AAAT-Init 0.5304† 0.7301 0.5125† 0.7184†
CWPRF-AAAT-IBN-Init 0.5319† 0.7444† 0.5136† 0.7246†
CWPRF-OAAT-Init 0.5151† 0.7269 0.4948† 0.7112
CWPRF-OAAT-IBN-Init 0.5252† 0.7244 0.5049† 0.7204†

Effect of Initial Retrieval Stage

CWPRF-AAAT (BM25) 0.5168† 0.7331 0.4938 0.7079
CWPRF-AAAT (ColBERT) 0.5109† 0.7346† 0.4869 0.7002
CWPRF-OAAT (BM25) 0.5050 0.7064 0.5084† 0.7125
CWPRF-OAAT (ColBERT) 0.5138† 0.7170 0.4983 0.6904

Table 3: Performance of CWPRF with different train-
ing strategies on the TREC 2019 & 2020 queries. ‘†’
denotes significant improvements over the ColBERT
model. The highest value for each metric within each
group is boldfaced.

with the pre-computed document representations,
retrieval can be conducted using the Nearest Neigh-
bour search. In contrast, a multiple representation
dense retrieval model encodes each token of the
query and document into a dense representation,
for instance, ColBERT model introduced by Khat-
tab and Zaharia (2020). During retrieval, ColBERT
performs an approximate nearest neighbour search
(using FAISS (Johnson et al., 2019)) for each query
embedding, followed by an exact scoring.

Pseudo-Relevance Feedback: Traditional lexical
pseudo-relevance feedback (PRF) approaches,
such as RM3 (Abdul-Jaleel et al., 2004) and
Bo1 (Amati and Van Rijsbergen, 2002), as well as
some recent proposed neural PRF models (Naseri
et al., 2021; Li et al., 2018; Zheng et al., 2020)
are applied upon sparse retrieval. Some initial
efforts of implementing PRF mechanism for dense
retrieval have been proposed recently: for instance,
ColBERT-PRF (Wang et al., 2021), which is
the most similar work to ours, selects cluster
centroids as expansion embeddings. Different from
ColBERT-PRF, where the expansion embeddings
are prioritised by the closest token’s IDF, our work
focuses on learning the contextualised weights
of the PRF tokens and identifies the prominent
ones as the expansion tokens that can better
differentiate between the positive and negative
documents. On the other hand, ANCE-PRF (Yu
et al., 2021) is a supervised PRF approach, which
trains an additional query encoder. Similar to
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CWPRF-AAAT, the query and passages are passed
to this new encoder. However, unlike CWPRF,
ANCE-PRF is trained to produce a new single
embedding for the query. Due to the nature of its
single embedding output, it is infeasible to analyse
how the query representation has been refined
in ANCE-PRF, while CWPRF provides explicit
weights for each selected expansion embedding.
Contrastive Learning in IR: The contrastive learn-
ing technique has been used to optimise the query
and document representations produced by the
BERT-based dense retrieval models in IR. More
specifically, some works focus on employing var-
ious negative sampling methods, such as the in-
batch (Yih et al., 2011) and cross-batch negative
sampling (Qu et al., 2021), while some works mine
hard negative samples for more effective dense re-
trieval model (Xiong et al., 2021; Zhan et al., 2021).
To the best of our knowledge, our work is the first
to leverage contrastive learning for optimising the
expansion weights for dense query expansion.
Feedback Weighting for PRF: Various sparse
PRF models have been proposed for weighting
the importance of terms occurring in the feedback
documents. For instance, Clinchant and Gaussier
(2011) emphasised the importance of term rarity (cf.
IDF) in selecting expansion terms, a finding echoed
by Roy et al. (2019) – indeed, the importance of
IDF is a key insight brought into ColBERT-PRF.
Going further, while there have been several ap-
proaches that have proposed supervised models for
selecting high-quality expansion terms for sparse
retrieval, e.g., (Cao et al., 2008; Imani et al., 2019),
none of these have tackled the problem from a
dense retrieval perspective, as proposed in CWPRF.

7 Conclusions

Pseudo-relevance feedback has recently been
shown to be effective for dense retrieval. In this
work, we propose a deep language model-based
contrastive weighting approach (CWPRF) for se-
lecting useful query expansion embeddings and
calibrating their expansion weights for semantic
search. In particular, CWPRF is trained with a con-
trastive objective to learn to assign a high weight
for feedback embeddings that can distinguish rele-
vant documents from non-relevant documents. Dur-
ing retrieval, the embeddings of tokens appearing in
the feedback documents that CWPRF predicts to be
important are appended to the query embeddings.
Extensive experiments performed on two query sets

demonstrate that our proposed CWPRF approach
can significantly outperform the ColBERT dense
retrieval model. In particular, CWPRF significantly
improves over ColBERT-PRF by 4.1% in terms of
nDCG@10 on the TREC 2020 query set without
requiring high computational cost.

Limitations and Future Work

Our approach makes it feasible to learn the dis-
criminative ability of an expansion embedding for
dense retrieval. However, it is unclear how it may
be adapted for the single-representation dense re-
trieval PRF model. In addition, in this work, we
did not test the effect of the hard negative sampling
and the number of negative samples for CWPRF.
Finally, while we have focused on passage retrieval,
longer document retrieval can be addressed through
splitting documents into passages during indexing,
retrieval and PRF, and applying a max-passage ag-
gregation (Dai and Callan, 2019) to obtain a docu-
ment ranking.

For future work, we will consider a hybrid ap-
proach to incorporate both the learned weights pro-
duced by CWPRF and the statistical information
in the expansion embedding identification process.
While PRF approaches typically increase query
response time, they can also be used as teacher
approaches to realise more effective and efficient
student models (e.g., ColBERT-PRF is applied as
teacher by Kim et al. (2022)). This means that
improved PRF approaches, such as CWPRF, can
also have downstream benefits to other retrieval
approaches.
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Model Training Details

Mathematical setting cf. Section 3
Source code https://anonymous.4open.science/r/

CWPRF-31E0/
Computing infrastruc-
ture

NVIDIA RTX TITAN

Training time 8h
Inference time cf. Figure 1 & Table 2
Batch size 12
Number of parameters 109M
Validation performance cf. Table 1
Evaluation Metrics cf. Section 4; implemented by

ir-measures (MacAvaney et al., 2022)
Number of training runs 5
Number of evaluation
runs

1

Hyper-parameter Experiments

Bounds for hyper-
parameters

1 ≤ fp ≤ 5; 1 ≤ fe ≤ 128; 0 < β ≤ 10.

Hyper-parameter config-
urations

cf. Appendix A.1

Number of hyper-
parameter search trials

3

Method of choosing
hyper-parameter values

Highest retrieval effectiveness (MAP@1000)
on validation set

Dataset

Dataset Languages English
Number of examples in
datasets

Training: 39,780,811; validation: 43; test: 54.

MSMARCO obtained
from

https://microsoft.github.io/msmarco/

Training dataset triples.train.small.tar.gz
Validation & Test sets https://trec.nist.gov/data/deep.html
Data pre-processing
steps

Using ir-datasets (MacAvaney et al., 2021)

Table 4: Summary of reproducibility criteria for CW-
PRF.

A CWPRF Model Description

For reproducibility purposes, the source code for
the training and inference of our CWPRF model is
provided in our virtual appendix.2

A.1 Hyper-parameter Study
The hyper-parameters for CWPRF are: the number
of expansion embeddings fe and β which controls
the overall contribution of the expansion embed-
dings. In addition, fp defines the number of feed-
back documents used during training and retrieval
of CWPRF.

We first vary the fe and β hyper-parameters dur-
ing retrieval. Figure 4 and Figure 5 presents the
effectiveness of applying the CWPRF models while
varying fe and β, respectively. Note that fe = 0 or
β = 0 represents the vanilla ColBERT model with-
out any expansion embeddings appended. From
Figure 4, we find that for both CWPRF-AAAT
and CWPRF-OAAT models, 10 expansion terms
give the highest MAP performance. Thus, we set
2 github.com/Xiao0728/CWPRF_VirtualAppendix
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Figure 4: Impact of the number of expansion terms fe
for CWPRF on the TREC 2019 query set. ‘baseline’
represents the model without any expansion, i.e. Col-
BERT E2E.
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Figure 5: Impact of varying β on the TREC 2019 query
set. ‘baseline’ represents the model without contribution
from expansion embeddings, i.e. ColBERT E2E.

fe = 10 as the default. This echoes the default ex-
pansion setting identified for ColBERT-PRF (Wang
et al., 2021). For the β parameter (Figure 5), we
find that for both CWPRF-AAAT and OAAT mod-
els, MAP performance shows a rising trend as
higher β → 5 and becomes stable for β > 5.
Indeed for β > 5, it appears that the feedback
embeddings are dominating over the original query
embeddings. This indicates the high contribution of
the selected expansion embeddings during retrieval.
Based on this, we set β = 5 as default in this work.

Indeed, we further quantify the contribution of
the expansion embeddings of CWPRF technique
and the original query embeddings in respectively
in Table 5. We find that for CWPRF-AAAT, us-
ing only the 10 selected expansion embeddings for
reranking, markedly outperforms using the query
embeddings alone, which verifies the high contri-
bution of CWPRF selected expansion embeddings.

Furthermore, we study how many PRF passages
are needed for CWPRF. We conduct experiments to
train both the CWPRF-AAAT and CWPRF-OAAT

Systems MAP nDCG@10 Recall

ColBERT (only Q) 0.4648 0.6871 0.8245
CWPRF-AAAT (only exp) 0.4824 0.6925 0.8697†
CWPRF-AAAT (Q & exp) 0.5136† 0.7246† 0.8783†
CWPRF-OAAT (only exp) 0.4639 0.6750 0.8600
CWPRF-OAAT (Q & exp) 0.5049† 0.7204† 0.8783†

Table 5: Contribution of the expansion embeddings of
CWPRF on the TREC 2020 test query set. † denotes
significant differences over ColBERT using paired t-test
with p < 0.05.

models with a different number of PRF passages.
We note that similar to the setting of the ANCE-
PRF model, due to the input length of BERT-based
encoders, for the CWPRF-AAAT training, the max-
imum number of PRF passages is set to 3. On the
other hand, for the OAAT training mode, as each
PRF document is treated independently, there is
no such requirement. The nDCG@10 results are
presented in Figure 6. We observe that for CW-
PRF-OAAT, three feedback documents employed
for training alone or evaluation alone give higher
performance than other fp values. Overall, the
combination of fp = 3 for both training and re-
trieval gives the highest performance. In addition,
for CWPRF-AAAT, we find that a high MAP per-
formance is achieved by training with only the top
two PRF passages. However, this is not stable, as
during retrieval, more PRF passages are needed
under this setting. This indicates the model might
not be trained enough. Moreover, we observe a
similar trend for fp = 3 used for both training and
retrieval. Thus, based on this observation, we sug-
gest to set fp = 3 as the default for the training and
evaluation of CWPRF.

A.2 Performance of CWPRF on BEIR

We examine the performance of the ColBERT
and CWPRF (both trained on MSMARCO) in a
zero-shot setting, using the BEIR datasets. We
choose four datasets from BEIR that have dense
judgements (Amati et al., 2004). Table 6 reports
the performance of CWPRF as well as that of
existing dense PRF models on four BEIR (Thakur
et al., 2021) benchmarks. From Table 6, we find
that CWPRF shows comparable performance with
ColBERT-PRF but with much lower query latency.
In addition, CWPRF outperforms ANCE-PRF by
a large margin, indicating the superiority of our
contrastive weighting method in such zero-shot
settings.
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Figure 6: Impact of the number of feedback passages fp during training (x-axis) and retrieval (y-axis) for CWPRF,
in terms of MAP on the TREC 2019 query set.

Models DBPedia NFCorpus TREC-COVID Touché-2020

ANCE 0.265† 0.236† 0.392† 0.291†
ANCE-PRF 0.268† 0.239† 0.430 0.292†
ColBERT 0.392 0.316† 0.533 0.307†
ColBERT-PRF 0.387 0.321 0.548 0.348

CWPRF-AAAT 0.385 0.321 0.524 0.348

Table 6: Effectiveness of CWPRF on BEIR. All scores
denote nDCG@10. The best score on a given dataset
is boldfaced. † denotes significant differences between
CWPRF and the indicated model using paired t-test with
p < 0.05.

A.3 Qualitative Analysis

Table 7 presents an example of the expansion to-
kens identified by CWPRF and the ColBERT-PRF
technique as well as their retrieved top-ranked docu-
ment. We observe that the two comparing methods
can generate some expansion tokens in common
but not necessarily received the same weights. In
particular, compared to the ColBERT-PRF model,
CWPRF can bring a highly relevant document (La-
bel=2) to the top rank, by expanding with tokens:
“revision” and “allows”, which are helpful in re-
trieving the more relevant document (indicated by
their darker shading). Indeed, this superior abil-
ity to retrieve highly relevant documents at high
ranks is more useful in a real-life retrieval scenario.
Unexpectedly, “allow” and “allows” are identified
by CWPRF as important expansion tokens. This
indicates that CWPRF can take the context into
account – more so than IDF.

The second example in Table 7 is selected from a
case when CWPRF underperforms ColBERT-PRF.

Indeed, while CWPRF experiences a performance
drop compared to ColBERT-PRF, it can still re-
trieve a document with label 3 at the top rank. This
indicates the benefits of our contrastive weighting
technique for bringing more relevant documents to
the top positions.

Overall, we see that CWPRF can select more
useful expansion embeddings to help bring more
relevant documents on top, which would be more
useful when implementing in a retrieval system in
a real-life scenario.

A.4 Performance of CWPRF across Different
Query Types

We further investigate the performance of the CW-
PRF models compared to ColBERT on different
query types using the query taxonomy of Bolo-
tova et al. (2022). Specifically, we combine the
TREC 2019 and TREC 2020 queries to create a
single query pool, consisting of 97 queries. Then,
the merged queries are classified using a trained
query category classifier according to the query
taxonomy introduced by Bolotova et al. (2022).
Figure 7a and Figure 7b illustrate the absolute
difference in performance between the CWPRF-
AAAT model and the ColBERT-PRF model in
terms of MAP and nDCG@10, respectively. Simi-
larly, Figure 7c and Figure 7d provide comparisons
for the CWPRF-OAAT model against ColBERT-
PRF. From Figure 7, it is evident that CWPRF-
AAAT demonstrates improvement across all query
types in terms of MAP and nDCG@10, except
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Approach CWPRF > ColBERT-PRF QID 156498: Query: do google docs auto save

CWPRF

Expansion tokens doc google save ##s allows revision automatically deleted allow just

Top returned passage after
PRF

DOCNO: 104801 TEXT: Allow Google Docs to automatically save your document.
As you add new content to your Google Doc, the changes you make to the document are
automatically saved to your drive. Next to the“Help” tab at the top of your screen, you will
see light gray text.

Label=2

ColBERT-PRF

Expansion tokens ##’ doc automatically google document save saves drive changes back

Top returned passage after
PRF

DOCNO: 104803 TEXT: Allow Google Docs save and sync your changes automatically.
In the offline application, Google Drive automatically saves changes made to a document
every few seconds. When your computer connects to the internet, the Google Drive applica-
tion will function like its online counterpart.

Label=1

CWPRF < ColBERT-PRF QID 67316: Query: can fever cause miscarriage early pregnancy

CWPRF

Expansion tokens fever cause pregnancy mis ##carriage increases baby temperature causing birth

Top returned passage after
PRF

DOCNO: 6680964 TEXT: 1 A temperature above 103F (39.50C) during early weeks
of pregnancy (usually the first trimester) may be responsible for a miscarriage, spinal cord
or mental defects in the baby. Fever in early pregnancy may cause more harm than fever in
late pregnancy.

Label=3

ColBERT-PRF

Expansion tokens defects ##’ ##ping bath trim fever studies pregnancy early during

Top returned passage after
PRF

DOCNO: 7348851 TEXT: A temperature higher than 100.4 degrees Fahrenheit – or
the illness causing the fever – could harm both you and your developing baby. A high fever
increases the risk of birth defects or miscarriage in early pregnancy. The higher the fever
and the longer it lasts, the higher the risk. If you want to lower your fever without using
medicine like acetaminophen – or just don’t have any on hand – you can try these methods:
1 Lie down and place a cool, damp washcloth on your forehead. 2 Take a lukewarm tub bath
or sponge bath.

Label=3

Table 7: Example of the expansion tokens identified by the CWPRF and ColBERT-PRF approaches, as well as the
top returned passage for each approach after applying PRF. Tokens with a darker red contribute more to nDCG@10.

for the NOT-A-QUESTION type. However, it
is worth noting that the number of queries be-
longing to the NOT-A-QUESTION type is quite
low, comprising only approximately 1% (a single
query) of the total. Similarly, we observe that
CWPRF-OAAT also enhances performance across
various query types, except for the single NOT-A-
QUESTION type in terms of MAP, and the REA-
SON type (with a ratio of approximately 4.1%) in
terms of nDCG@10. These observations further
highlight the effectiveness and robustness of our
proposed CWPRF models compared to ColBERT-
PRF across diverse query types.

B Semantic Match Proportion

In ColBERT and other multi-representation models
using MaxSim, semantic matching of token-level
embeddings occurs when the surface token form
of a query embedding is matched with a document
embedding that has a different token. To quantify
the proportion of the query embeddings perform-
ing semantic or exact matching, following Wang
et al. (2022a), we report the proportion of average
semantic matching occurring for all the ColBERT
related models in Table 1. More formally, given
a query q and the list Rk of the top-ranked k pas-
sages, the Semantic Match Proportion (SMP) at

rank cutoff k w.r.t. q and Rk is calculated as:

SMP(q,Rk) =
∑

d∈Rk

∑
i∈toks(q) 1[ti ̸=tj ]·maxj=1,...,|d| ϕT

qi
ϕdj∑

i∈toks(q) maxj=1,...,|d| ϕT
qi
ϕdj

,

(8)
where ti and tj denote the token ids of the i-th
query embedding and j-th passage embedding, re-
spectively. In this work, we report the Mean-SMP
values calculated at rank cutoff k = 10 in Table 1.
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Figure 7: Performance of CWPRF compared to ColBERT-PRF across different types of queries according to the
query type taxonomy proposed by Bolotova et al. (2022). The percentage of queries within each query type, relative
to the total number of queries in the query pool, is indicated within each bar.
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