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Abstract

A major issue with using deep learning models
in sensitive applications is that they provide no
explanation for their output. To address this
problem, unsupervised selective rationalization
produces rationales alongside predictions by
chaining two jointly-trained components, a ra-
tionale generator and a predictor. Although this
architecture guarantees that the prediction re-
lies solely on the rationale, it does not ensure
that the rationale contains a plausible explana-
tion for the prediction. We introduce a novel
training technique that effectively limits gen-
eration of implausible rationales by injecting
noise between the generator and the predictor.
Furthermore, we propose a new benchmark for
evaluating unsupervised selective rationaliza-
tion models using movie reviews from existing
datasets. We achieve sizeable improvements
in rationale plausibility and task accuracy over
the state-of-the-art across a variety of tasks, in-
cluding our new benchmark, while maintaining
or improving model faithfulness.1

1 Introduction

With the advent of large pre-trained language mod-
els like GPT-3 (Brown et al., 2020), the size and
complexity of deep learning models used for natu-
ral language processing has dramatically increased.
Yet greater performance and complexity can come
at the cost of interpretability, masking anything
from implementation mistakes to learned bias.

A model architecture that justifies its output by
providing relevant subsets of input text as a ratio-
nale is therefore desirable (see example in Figure
1). The unsupervised selective rationalization archi-
tecture as introduced by Lei et al. (2016) generates
rationales alongside predictions by chaining two
jointly-trained components, a rationale-generator
and a predictor. The generator extracts a rationale:
concatenated short and concise spans of the input

1Code and benchmark are available at https://github.
com/adamstorek/noise_injection.

Class: Positive

Ultra low budget but extremely inventive horror film
about a group of friends vacationing in a cabin who
accidentally awaken an evil force in the woods via the
necronomicon, the book of the dead. Bruce Campbell
stars as Ash, who eventually becomes the sole survivor
and has to battle both the demons from the woods, and
his friends who have become demons (including his
own girlfriend). The results shown on screen are
amazing considering the film's tiny budget, constant
location changes, and a filming schedule that was
sporadic over two years…

Movie Review:

Figure 1: Example of a rationale selected by BERT-
A2R + NI (our model) on the USR Movie Review
dataset (our benchmark), which asks models to clas-
sify movie reviews as positive or negative.

text that suffice for prediction. The predictor bases
its prediction only on this rationale, which encour-
ages faithfulness, meaning how much the rationale
reveals what parts of the input were important to
the model’s prediction. In practice, however, the
rationale often isn’t plausible, meaning it can’t
convince a human of the correct prediction, under-
mining the architecture’s interpretability (Jacovi
and Goldberg, 2021; Zheng et al., 2022). Using a
high-capacity generator can further degrade plausi-
bility (Yu et al., 2019).

To prevent this effect, we introduce a novel train-
ing strategy that leverages online noise injection,
based on word-level unsupervised data augmenta-
tion (Xie et al., 2020). By definition, if the loss-
minimizing generator selects an implausible ratio-
nale, then the rationale both (a) offers no plausible
connection for a human to the target label and (b)
locally improves prediction accuracy. This might
include communicating via punctuation (Yu et al.,
2019) or subtle input perturbations (Garg and Ra-
makrishnan, 2020). Our new approach is to inject
noise into the generated rationale during training by
probabilistically replacing lower-importance words
with noise - random words from the vocabulary -
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before passing the rationale to the predictor. We
observe that this strategy leads to a significant im-
provement in plausible rationale generation and pre-
diction accuracy without compromising the faith-
fulness of the architecture. We also show that pow-
erful generators typically interfere with plausible
rationale generation but can be effectively deployed
when trained with noise injection.

To test our approach, we introduce a new bench-
mark for unsupervised selective rationalization by
integrating existing movie review datasets to re-
place the retracted canonical beer review dataset
(McAuley et al., 2012; McAuley and Leskovec,
2013; Lei et al., 2016).2 We merge a large
IMDb movie review dataset (Maas et al., 2011)
for training and validation and a smaller, rationale-
annotated movie review dataset (DeYoung et al.,
2020; Zaidan and Eisner, 2008; Pang and Lee,
2004) for evaluation. We also evaluate our unsu-
pervised approach on the ERASER Movie Review,
MultiRC and FEVER tasks (DeYoung et al., 2020;
Khashabi et al., 2018; Thorne et al., 2018).3

Our contributions therefore include: 1) character-
izing the issue of implausible rationale generation
from the perspective of powerful rationale gener-
ators, 2) introducing a novel training strategy that
limits implausible rationale generation and enables
unsupervised selective rationalization models with
powerful generators, 3) proposing a new unsuper-
vised rationalization benchmark by repurposing
existing movie review datasets, and 4) achieving
more plausible rationale generation, with up to a
relative 21% improvement in F1 score and a 7.7
point improvement in IOU-F1 score against the
baseline model across a number of tasks.

2 Related Work

A major challenge with selective rationalization is
that discrete selection of rationale tokens is non-
differentiable, making training challenging without
additional rationale supervision. Lei et al. (2016)
use REINFORCE-style learning (Williams, 1992)
to propagate the training signal from the predictor
to the generator. Bastings et al. (2019) propose
a differentiable approach leveraging the Hard Ku-
maraswamy Distribution. Yu et al. (2019) strive to
improve rationale comprehensiveness. Chang et al.
(2020) focus on avoiding spuriously correlated ra-

2The dataset has been retracted at the request of BeerAd-
vocate and is no longer in use.

3Licensing information can be found in Appendix A.

tionales. Yu et al. (2021) tackle the propensity of
selective rationalization models to get stuck in local
minima. Atanasova et al. (2022) use diagnostics-
guided training to improve plausibility.

Our work builds on the previous approaches,
since we also frame the generator-predictor in-
teraction as a cooperative game and seek to im-
prove plausibility. The previous approaches have,
however, introduced additional training objectives
(Atanasova et al., 2022) or involved incorporating
a third adversarial (Yu et al., 2019) or cooperative
(Yu et al., 2021) component. This increases model
complexity significantly, leading to more resource-
intensive and/or complicated training. Instead, we
demonstrate the effectiveness of online noise injec-
tion, a considerably more lightweight approach.

An alternative approach is proposed by DeYoung
et al. (2020) who assemble a series of datasets with
labeled rationales; this enables fully supervised ra-
tionale learning. Given rationale-annotated training
sets, Jain et al. (2020) train each model component
separately, approaching the accuracy of an entirely
black-box model. Although this is a compelling di-
rection, requiring supervision reduces the practical
usability of this technique, as many applications
lack rationale annotations.

Both unsupervised and supervised selective ratio-
nalization approaches generally require a specific
token selection strategy to select the output ratio-
nale from the generator model (Yu et al., 2021; Jain
et al., 2020; Paranjape et al., 2020). No previous
work that we are aware of, however, has tried to
then modify the output rationale before it is input
into the predictor. Using online noise injection
to enforce prediction stability is therefore a novel
approach that adds greater power to the current
architectures and can be easily retrofitted.

3 Implausible Rationale Generation

Previous work has conceptualized the interaction
between the generator and the predictor as a coop-
erative game (Chen et al., 2018a,b; Chang et al.,
2019; Yu et al., 2019; Chang et al., 2020; Yu et al.,
2021). This repeated sequential game consists of
two-round stage games. In the first round, the gen-
erator accepts an input sequence X1:T and outputs
a rationale selection as a binary mask M1:T ∈M
whereM represents the set of all masks such that
X1:T ⊙M1:T satisfies rationale constraints. In the
second round, the predictor accepts an input se-
quence X1:T⊙M1:T and outputs prediction Y . The
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joint objective is to minimize the loss (see Equation
2) based on the generated mask (see Equation 1):

M1:T ← gen(X1:T ; θgen),M1:T ∈M (1)

min
θgen,θpre

L(pre(X1:T ⊙M1:T ; θpre), Ỹ ) (2)

For classification, it is customary to minimize the
cross-entropy loss LCE . Such a system can be
shown to maximize mutual information (MMI) of
the rationale with respect to the class label provided
sufficient generator and predictor capacity as well
as a globally optimal generator (Yu et al., 2021;
Chen et al., 2018a):

max
M1:T∈M

I(X1:T ⊙M1:T ; Ỹ ) (3)

However, this property does not guarantee rationale
plausibility.

First, MMI does not protect against spurious
correlations (Chang et al., 2020). For example,
a pleasant taste is not a good explanation for a
positive review of a beer’s appearance, although
the two aspects are strongly correlated.

Second, MMI does not prevent rationale degener-
ation if the generator and predictor already contain
certain biases, for example from pre-training (Ja-
covi and Goldberg, 2021).

Third, MMI does not prevent rationale degenera-
tion if the generator and predictor are sufficiently
powerful to develop a common encoding. Yu et al.
(2019) found that providing the generator with a
label predicted by a full-input classifier led the gen-
erator to develop a communication scheme with
the predictor, including a period for positive and
a comma for negative examples. Jacovi and Gold-
berg (2021) argue that any generator with sufficient
capacity to construct a good inner-representation
of Y can cause rationale degeneration.

The key underlying cause is that a sufficiently
powerful generator is not disincentivized to pro-
duce implausible rationales beyond the assumption
that generating a plausible rationale should max-
imize the expected accuracy of the predictor in
the current training iteration. However, since the
predictor is treated as a black box, this is not guar-
anteed. On the i-th training iteration, the generator
greedily selects a binary mask M1:T that minimizes
the expected loss:

argmin
M1:T∈M

E [L(p̃rei(X1:T ⊙M1:T ))] (4)

where p̃reG,i represents the generator’s learned rep-
resentation of pre(·; θpre) from its previous expe-
rience interacting with the predictor for i − 1 it-
erations in game G. As i increases, the generator
learns to leverage deficiencies and biases of the
predictor that remain hidden to humans, resulting
in rationale plausibility degeneration.

4 Online Noise Injection

We propose a strategy that disrupts the generator’s
learned representation of the predictor p̃reG,i for
all games G ∈ G, thereby making it harder for the
generator to learn to exploit quirks of the predictor.
We use online noise injection, which probabilis-
tically perturbs unimportant words in a rationale
sequence X of length T (see Algorithm 1).

Algorithm 1: Noise Injection.
Input: input text X1:T ; binary mask M1:T

Data: set of documents D; vocabulary V
R1:T ← X1:T ⊙M1:T ;
R∗

1:T ← R1:T ;
forall ri ∈ R1:T do

pi = ProbOfReplacementD(ri);
replace← Binomial(1, pi);
if replace then

r∗i ← SampleFromVocabD;V();
end

end
return perturbed rationale R∗

1:T

If the generator attempts to generate an implau-
sible rationale during training iteration i, it strate-
gically includes unimportant words from the input
text in the generated rationale, relying on the pre-
dictor to pick up on the bias. By subtly perturbing
the rationale - replacing the unimportant words -
noise injection disrupts this attempt, and the pre-
dictor does not respond to the generator-injected
bias favorably as expected by the generator. The
generator is therefore forced to unlearn/reset its
representation p̃reG,i of the predictor and reassess
its strategy, learning that generating implausible ra-
tionales is ineffective. Across any two stages i, j of
game G, noise injection therefore keeps the learned
representations of the predictor more consistent:

∀G ∈ G, ∀i, j ∈ stages(G), p̃reG,i(·) ≈ p̃reG,j(·)
(5)

We implement the ProbOfReplacement and Sam-
pleFromVocab functions by adapting a strategy
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that probabilistically replaces words with small
TF*IDF, originally proposed for unsupervised data
augmentation by Xie et al. (2020). We precom-
pute the probability of replacement of each word
wi ∈ d in each document d ∈ D as its normalized
TF*IDF score multiplied by the document length
and a hyperparameter representing the magnitude
of augmentation p:

wmax − TF*IDF(wi)∑
w∈dwmax − TF*IDF(w)

p|d| (6)

wmax = max
w∈d

TF*IDF(w) (7)

We use these precomputed probabilities to sam-
ple which words to replace as shown in Algorithm
1. The words are replaced with random words from
the vocabulary V . Nonetheless, we also strive to
prevent sampling "keywords" from the vocabulary
- words that are highly indicative of a label - to
avoid confusing the predictor. We compute the sam-
pling probability of wi as its normalized ATF*IDF,
where ATF corresponds to term frequency macro-
averaged over D:

w∗
max − ATF*IDF(wi)∑

w∈dw
∗
max − ATF*IDF(w)

(8)

w∗
max = max

w∈d
ATF*IDF(w) (9)

5 Model

Our baseline model builds on the A2R architecture
by Yu et al. (2021) who improve training stability
by using an auxiliary predictor connected directly
to the generator via an attention layer - this allows
for gradients to flow. A2R selects top-k2 bigrams
with the highest attention scores from the generator
as the rationale and input for the second predictor,
with k corresponding to the number of rationale
tokens selected as a fraction of the size of the input
text. The two components minimize their separate
criteria as well as the Jensen-Shannon divergence
of their predictions Y a and Y r for the attention-
based predictor and the rationale-based predictor,
respectively. A2R’s generator consists of a fixed
GloVe (Pennington et al., 2014) embedding layer
and a linear token scoring layer.

To take full advantage of our noise injection strat-
egy, we replace the limited-capacity generator with
BERT (Devlin et al., 2019). This allows us to use
a simpler attention-based predictor than A2R (see
Figure 2). To further manifest the efficacy of noise

injection, we opt for a top-k unigram selection strat-
egy which offers less regularization compared to
a bigram selection strategy. Selecting unigrams is
more challenging because it allows the model to
select uninformative stopwords like "a" or "the".

Our architecture is shown in Figure 2. Both the
selection strategy and the noise injection are model-
external and untrained. As in Yu et al. (2021), the
attention-based (see Equation 10) and the rationale-
based (see Equation 11) components are trained
using identical objectives - minimizing the sum
of the cross-entropy loss and the Jensen-Shannon
divergence of the two predictors:

La = LCE(Y
a, Ỹ ) + λJSD(Y a, Y r) (10)

Lr = LCE(Y
r, Ỹ ) + λJSD(Y a, Y r) (11)

We refer to our model as BERT-A2R and add +NI
when noise injection is used during training.

6 USR Movie Review Dataset

Previous work on unsupervised selective rational-
ization used a decorrelated subset of the BeerAd-
vocate review dataset (McAuley et al., 2012) as
preprocessed by Lei et al. (2016). The dataset has
recently been removed at the request of BeerAd-
vocate and is therefore inaccessible to the scien-
tific community. BeerAdvocate reviews consists of
80,000 labeled reviews without rationales for train-
ing/validation and ∼1,000 labeled reviews with
token-level annotated rationales for testing. Alter-
native datasets either include rationale labels for
the entire dataset (DeYoung et al., 2020) or do
not provide rationale labels altogether (e.g. Maas
et al. (2011)). Moreover, large datasets such as
MultiRC or FEVER tend to provide sentence-level
rationales compared to BeerAdvocate token-level
rationales. We thus repurpose existing movie re-
view datasets to recreate a task similar to beer re-
view, enabling new work on unsupervised selec-
tive rationalization to evaluate their performance
against models designed for beer review. We merge
a smaller ERASER Movie Review dataset (DeY-
oung et al., 2020; Zaidan and Eisner, 2008; Pang
and Lee, 2004) that has full token-level rationale
annotations with the lower-cased Large Movie Re-
view Dataset (Maas et al., 2011) which has no ra-
tionale annotations.

The movie review task is similar to the binarized
beer review task as used in Chang et al. (2019); Yu
et al. (2019); Chang et al. (2020); Yu et al. (2021);
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Figure 2: BERT-A2R + NI architecture. We replaced the generator’s fixed GloVe (Pennington et al., 2014)
embedding layer used in A2R with BERT-base. The original A2R uses a fixed GloVe embedding layer, GRU (Cho
et al., 2014), and a linear classifier pipeline for each predictor. For the attention-based predictor, we remove the
GloVe-GRU pipeline and instead reuse the generator’s BERT embeddings. For the rationale-based predictor, we
replace the GloVe-GRU pipeline with another BERT-base. Both A2R and BERT-A2R feed the masked input text
directly into the predictor. To add noise injection during training, we first feed the masked input text into the noise
injection component. This component is disabled during evaluation.

“Party Camp," is one of the most mindnumbingly
brainless comedies I've seen in awhile. A late rip-off
of the “Meatballs" series, the film follows a group of
young camp counselors at camp chipmunk. That's
really about all that can be said about the "plot"
because nothing much happens, except that the main
character, wise-cracking Jerry (Andrew Ross), has the
hots for a cute blonde (Kerry Brennan ), and there is a
big contest in the climax. How fun!

Class: Negative

IMDb Movie Review 1:

ERASER Movie Review 1:

ERASER Movie Review 2:

Jim Carrey shines in this beautiful movie. This is now
one of my favorite movies. I read all about the
making and I thought it was incredible how they did
it. I can't wait till this comes out on dvd. I saw this in
theaters so many times, I can't even count how times
I've seen it. Class: Positive

Absolute Power, the new film produced and directed
by Clint Eastwood, attempts to be a thriller set in the
world of hypocritical presidents and their murderous
political staff. It is about as thrilling as a lecture on
the mating habits of the South American
grasshopper. One can only wonder how an utterly
absurd script like the one written by William
Goldman could have ever interested Eastwood. Not
only is the plot unbelievable and contrived, but
even the writing itself lacks any consistency or
intelligence. Class: Negative

Figure 3: Examples from the USR Movie Review
Dataset. Note that compared to ERASER reviews,
IMDb reviews tend to be shorter; ERASER reviews
vary in length dramatically. Furthermore, ERASER ra-
tionale annotations are often inconsistent: the rationale
for review 1 contains only very short spans, whereas the
rationale for review 2 spans a few sentences.

both are binary sentiment classification tasks based
on English user reviews. However, human ratio-
nale annotations of Eraser Movie Review are less
coherent and consistent than beer review (see Fig-
ure 3) and lack single-aspect labels comparable to
beer review’s appearance, aroma, and taste labels.
Moreover, movie review annotations tend to be
over-complete (Yu et al., 2021): the same relevant
information is often repeated many times in each
review. This new task therefore also evaluates pre-
vious models’ robustness to a subtle distribution
shift, an increasingly important consideration for
real-world systems.

The reviews from the ERASER Dataset were col-
lected and processed by Pang and Lee (2004) from
the IMDb archive of the rec.arts.movies.reviews
newsgroup, whereas the Large Movie Review
Dataset was scraped from the IMDb website by
Maas et al. (2011). In order to avoid overlap be-
tween the train and test sets, we looked for sim-
ilarity by searching for matches between lower-
cased, break-tag-free, stop-word-free, lemmatized
sentences which spanned at least 5 tokens to avoid
generic matches such as "would not recommend" or
"great film !". We discovered no overlap between
the datasets. We use 40,000 reviews from the Large
Movie Review Dataset for training and the remain-
ing 10,000 reviews for validation. We then test
our model on the 2,000 annotated examples from
ERASER Movie Review.

7 Experimental setup

Metrics We evaluate generated rationales across
several datasets using different metrics that capture
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faithfulness and plausibility. Faithfulness captures
the extent to which the generated rationales truly
explain the model’s output. For faithfulness, we use
comprehensiveness and sufficiency metrics (DeY-
oung et al., 2020). A rationale is comprehensive if
it extracts all the information contained in the input
text that is relevant for prediction and sufficient if
it contains enough relevant information to make
an accurate prediction. The comprehensiveness
score measures the difference between the model’s
predictions on the entire input text and the input
text without the selected rationale (higher is better),
whereas the sufficiency score measures the differ-
ence between the model’s predictions on the entire
input text and just on the rationale (lower is better).

For plausibility, we use standard alignment met-
rics in reference to the human-annotated rationales:
precision, recall, and F1 score as well as IOU-F1
score (referred to as IOU in tables) with partial
match threshold 0.1 (DeYoung et al., 2020; Paran-
jape et al., 2020). We use token-level metrics for
Movie Review which offers token-level annota-
tions and sentence-level metrics for MultiRC and
FEVER which provide only sentence-level annota-
tions. Finally, we report prediction accuracy for the
overall classification task. All results are averaged
across 5 random seeds and reported as the mean
with standard deviation in parentheses.

Implementation Our BERT-A2R models are
trained for a maximum of 20 epochs for ERASER
Movies and 5 epochs for every other dataset, keep-
ing the checkpoint with the lowest validation loss.
All BERT-A2R variants use uncased BERT-base,
A2R closeness parameter λ = 0.1, and the selec-
tion strategy of picking the top k = 20% of the
highest attention-scoring tokens for movie review
or sentences for MultiRC and FEVER. We compute
sentence-level scores by taking sentence-level av-
erages of token scores. For optimization, we used
Adam (Kingma, D.P. et al., 2015) with learning
rate 2e-5 and batch size 16. Noise injection level p
was set to 0.2 for USR and ERASER Movie review,
0.3 for MultiRC, and 0.05 for FEVER. This was
determined based on our hyperparameter search.
All of the models were trained on a single machine
equipped with a 12-core processor, 64 GB of RAM,
and a GPU with 24 GB of VRAM. 4

4Training details can be found in Appendix B.

8 Results

8.1 Does noise injection improve selective
rationalization?

Model Acc. F1
Hard-Kuma (2019) - 27.0
BERT Sparse IB (2020) 84.0 27.5
A2R (2021) - 34.9
BERT-A2R (Ours) 84.0 (2.9) 36.4 (2.8)

BERT-A2R + NI (Ours) 85.7 (2.7) 38.6 (0.6)

Table 1: Results on ERASER Movie Review (with-
out rationale supervision). +NI indicates using noise
injection. We only report Accuracy and F1 to match
published results on this benchmark and dashes indicate
where the original paper did not publish this metric.

To compare against previous published results,
we trained a BERT-A2R model on the ERASER
Movie Review dataset with and without noise in-
jection and compared our numbers to published
results from the best unsupervised selective ratio-
nalization systems on this benchmark (see Table 1).
All models were trained without rationale supervi-
sion. We see that our model with noise injection
improves on both the classification task accuracy
and the rationale F1 score relative to previous sys-
tems. Note that noise injection improves the F1
score more than the introduction of BERT to A2R.

We then train BERT-A2R models with and with-
out noise injection on the MultiRC and FEVER
benchmarks (see Table 2) as well as on our
new USR Movie Review benchmark (see Table
3). Again, our noise injection training strategy
achieves statistically significant improvements in
rationale alignment with human annotations (p <
0.01 on the MultiRC and USR Movies, p < 0.05
on the FEVER, and p < 0.1 on ERASER Movies),
achieving up to a relative 21% improvement in F1
score over our already performant baseline. The
plausibility improvement applies for both token-
level and sentence-level extraction tasks and across
all metrics. Prediction accuracy also improves
across all tasks except FEVER. Noise injection also
does not seem to have a negative impact on model
faithfulness. On ERASER benchmarks, neither
comprehensiveness nor sufficiency worsen dramat-
ically, and in the case that one score worsens, the
other score tends to remain stable or even improve.
On USR movie review, we see an improvement in
both faithfulness scores from using noise injection.
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Task Plausibility Faithfulness
Dataset Model Acc. P R F1 IOU Com ↑ Suf ↓
MultiRC

BA2R 66.1 (1.9) 18.5 (1.6) 21.9 (2.2) 19.3 (1.8) n/a -.01 (.01) -.02 (.02)

BA2R+NI 66.4 (0.8) 22.6 (1.2) 26.9 (1.8) 23.8 (1.4) n/a -.01 (.01) -.02 (.02)

FEVER
BA2R 82.1 (3.2) 36.3 (0.6) 44.0 (0.3) 36.7 (0.5) n/a .02 (.01) -.01 (.02)

BA2R+NI 78.2 (1.9) 39.0 (2.5) 47.2 (2.9) 39.5 (2.5) n/a .02 (.00) .00 (.00)

Movies
BA2R 84.0 (2.9) 36.3 (2.8) 36.5 (2.8) 36.4 (2.8) 30.9 (3.9) .02 (.02) -.04 (.02)

BA2R+NI 85.7 (2.7) 38.5 (0.6) 38.7 (0.6) 38.6 (0.6) 34.4 (2.2) .05 (.02) -.02 (.01)

Table 2: Results on ERASER benchmark datasets. P, R, and F1 are sentence-level for MultiRC and FEVER, since
they use sentence-level rationale annotations, and token-level for Movie Review, as it uses token-level annotations.
IOU is only sensible to use for token-level rationale annotations.

8.2 How does the noise injection level p affect
model performance?

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
p ~ noise injection level
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FEVER
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Figure 4: BERT-A2R + NI rationale F1 on the test set
with varying noise injection level p. Error bands show
±1 standard error. Long-dash lines indicate the no noise
injection baselines (p = 0) for each dataset.

We train variants of BERT-A2R+NI with dif-
ferent levels of p to examine what noise level is
optimal for different datasets (see Figure 4). We
average results across 5 seeds but there is still some
noise given that the methodology injects noise into
the process. It appears that in all cases noise in-
jection seems to degrade performance once p be-
comes too high as we would expect since too much
noise prevents useful signal from getting through.
The optimal p varies depending on the task. Ra-
tionale alignment performance on FEVER peaks
at just p = 0.05. The optimum for ERASER and
USR Movie Review is at p = 0.1 and p = 0.2, re-
spectively. The best performance on MultiRC was
achieved at p = 0.3. There are numerous factors
that might interact with noise injection to cause
this behavior: task-specific demands, sentence vs.
token-level rationale annotations, and the suitabil-

ity of other training parameters. These interactions
might be complex, especially with training strate-
gies that dynamically adjust p during training. We
leave exploration of these factors for future work.

8.3 Does noise injection enable the use of
powerful high-capacity rationale
generators?

For this experiment, we train BERT-A2R with fixed
or trainable BERT weights in the generator, with
or without noise injection, and evaluate on our new
USR Movie Review benchmark (see Table 3). The
version with fixed BERT weights in the generator
has much less trainable capacity and cannot learn a
task-specific text representation, whereas the gen-
erator with trainable BERT weights can potentially
learn much better rationales or degrade to implau-
sible rationales.

We find that the tuned generator trained with
noise injection achieves superior performance
across all the rationalization metrics without com-
promising prediction accuracy (2.8 improvement
in rationale F1 score and a 7.7 improvement in ra-
tionale IOU-F1 score relative to the fixed setting).
In contrast, the tuned generator without noise in-
jection training performed the worst in all rationale
metrics as well as prediction accuracy. Noise in-
jection with a fixed generator results in a minor
improvement in both plausibility metrics and pre-
diction accuracy. We can therefore observe not
only that noise injection allows us to leverage the
power of a tunable BERT model in the generator
that previously would have resulted in performance
degradation, but also that the benefits of noise in-
jection are greater with a powerful high-capacity
generator model.

Finally, the addition of noise injection training
also slightly improves comprehensiveness for both
fixed and tuned generators while improving suffi-
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Task Plausibility Faithfulness
Model Acc. P R F1 IOU Com ↑ Suf ↓
fixed gen. weights 85.0 (0.8) 21.9 (0.4) 47.4 (0.8) 30.0 (0.5) 29.9 (0.6) .02 (.00) -.02 (.00)

fixed gen. weights + NI 85.8 (1.1) 22.3 (0.4) 48.2 (0.9) 30.5 (0.6) 30.7 (0.8) .03 (.01) -.01 (.00)

tuned gen. weights 82.4 (8.6) 20.2 (2.2) 43.7 (4.7) 27.6 (3.0) 29.1 (5.3) .03 (.02) -.03 (.03)

tuned gen. weights + NI 87.9 (1.8) 24.4 (0.6) 52.7 (1.3) 33.3 (0.8) 38.4 (1.9) .04 (.01) -.04 (.02)

Table 3: Results on USR Movie Review using fixed or trainable BERT weights in the BERT-A2R generator.

ciency for the tuned generator.

Class: Positive

With the exception of Don Knotts as the annoying "tv
repairman" the film is cast perfectly:

BERT-A2R:

With the exception of Don Knotts as the annoying "tv
repairman" the film is cast perfectly:

BERT-A2R + NI:

Human-annotated:
With the exception of Don Knotts as the annoying "tv
repairman" the film is cast perfectly:

Figure 5: An occasional failure case of noise injection
training - omitting frequently used words in movie re-
views, such as "film".

8.4 What errors do the models make?

Class: Positive

Proof of Life, Russell Crowe's one-two punch of a deft
kidnap and rescue thriller, is one of those rare gems. A
taut drama laced with strong and subtle acting, an
intelligent script, and masterful directing, together it
delivers something virtually unheard of in the film
industry these days, genuine motivation in a story that
rings true.

BERT-A2R:

Proof of Life, Russell Crowe's one-two punch of a deft
kidnap and rescue thriller, is one of those rare gems. A
taut drama laced with strong and subtle acting, an
intelligent script, and masterful directing, together it
delivers something virtually unheard of in the film
industry these days, genuine motivation in a story that
rings true.

BERT-A2R + NI:

Human-annotated:
Proof of Life, Russell Crowe's one-two punch of a deft
kidnap and rescue thriller, is one of those rare gems. A
taut drama laced with strong and subtle acting, an
intelligent script, and masterful directing, together it
delivers something virtually unheard of in the film
industry these days, genuine motivation in a story that
rings true.

Figure 6: This review shows the benefits of BERT-A2R
+ NI’s propensity to highlight longer rationale spans
where the baseline selects only single words.

For our qualitative analysis we randomly se-
lected 20 reviews to evaluate the effect of adding
noise injection to BERT-A2R during training.
From this review sample, we include examples that
we believe are characteristic for the behavior we
observed. First, a BERT-A2R trained with noise
injection tends to select longer spans of text as
rationales (see Figure 6, 7), generally without sacri-
ficing precision compared to the baseline. Selecting
continuous rationales greatly improves readability
and human-alignment as noted by Lei et al. (2016).

Class: Negative

The movie's running time is under two hours, but it
seems like it is well over it. There's just not enough
humor to speed things along, and not enough meaning
to propel any drama.

BERT-A2R:

The movie's running time is under two hours, but it
seems like it is well over it. There's just not enough
humor to speed things along, and not enough
meaning to propel any drama.

BERT-A2R + NI:

Human-annotated:
The movie's running time is under two hours, but it
seems like it is well over it. There's just not enough
humor to speed things along, and not enough
meaning to propel any drama.

Figure 7: BERT-A2R + NI produces a more continuous
and readable rationale, but it also includes a not-so-
relevant part of the previous sentence.

We also observed that BERT-A2R + NI occa-
sionally fails to select generic words such as "film"
that, nevertheless, form a part of the rationale (see
Figure 5). This could be a downside to our noise
injection strategy, since the model will learn to ig-
nore words with low TF*IDF even though they are
relevant in a minority of cases. A potential remedy
might be to use task-specific heuristics to generate
probability of replacement information instead of
the general low TF*IDF strategy. We leave this for
future work.
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Conclusion

In this paper, we investigate a major obstacle of
unsupervised selective rationalization frameworks,
where the generator has a tendency to learn to gen-
erate implausible rationales: rationales that lack a
convincing explanation of the correct prediction.
We explain the generator’s propensity towards de-
generation in terms of a flawed incentive structure,
characterizing unsupervised selective rationaliza-
tion as a sequential, repeated cooperative game.
Through this lens, we propose a novel training strat-
egy that penalizes implausible rationale generation,
thereby realigning the incentive structure with the
objective to generate plausible rationales. Using a
new benchmark for unsupervised selective rational-
ization, we show that our noise injection approach
is beneficial for training high-capacity generators,
outperforming the current state of the art models.

Limitations

One of the main limitations of the noise injection
training strategy is that statistics used to determine
probability of replacement and sampling probabil-
ity are token-specific. Although this works well
on languages with limited morphology such as En-
glish, inflected languages like Czech that rely on
declension and conjugation might require a lemma-
based strategy or a different technique altogether.
Furthermore, the model extracts a rationale of fixed
length k, proportional to the length of the input text.
Nevertheless, input text might include more or less
information relevant to the class label; a sparsity
objective as proposed by Paranjape et al. (2020)
could remedy this issue. Lastly, injecting noise dur-
ing training sometimes leads to more unpredictable
training runs.

Additional model limitations are connected to
using BERT. Despite its performance and fast train-
ing, using BERT limits the scalability to long
text due to the 512-token limitation; nevertheless,
tasks involving long text might be able to lever-
age specialized approaches such as Beltagy et al.
(2020). Likewise, BERT renders BERT-A2R about
20 times larger than the GRU-based A2R, requiring
greater GPU resources.

The dataset also comes with a few limitations.
As Yu et al. (2021) note, some reviews contain
many clear explanations for the target label, de-
creasing the need for the generator to include all
relevant explanations in the rationale. Similarly,
the sparsity of human-annotated rationales can be

inconsistent across reviews: as shown in Figure 3,
some rationales include long, generous spans of
text that contain irrelevant information, whereas
other rationales consist of merely the most impor-
tant phrases.

Ethics Statement

We believe that improving the effectiveness and
efficiency of unsupervised selective rationalization
in the context of large pre-trained models such
as BERT (Devlin et al., 2019) can help uncover
and mitigate their learned bias as well as any im-
plementation mistakes. Enabling models to pro-
duce plausible faithful rationales increases trans-
parency, improving the end-user’s understanding
of the model’s prediction and allowing AI practi-
tioners to make more informed ethical choices in
deploying models.
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Appendix

A Licensing

Model License
A2R MIT License

HF BERT-base-uncased Apache 2.0
NLTK "popular" Apache 2.0

Table 4: Listing of model licenses.

Dataset License
FEVER Apache License 2.0
MultiRC Apache License 2.0
Movies Apache License 2.0

IMDb Movies None, to our knowledge
USR Movies MIT License

Table 5: Listing of dataset licenses.

B Training Details

Total estimated GPU hours spent on training: 500.
BERT-A2R has 109484547 parameters.

Dataset Train Val Test
FEVER 97957 6122 6111
MultiRC 24029 3214 4848
Movies 1600 200 200

USR Movies 40000 10000 2000

Table 6: Dataset details: Number of examples.

Dataset Train Test
FEVER 150 min 150 s
MultiRC 70 min 90 s
Movies 17 min 15 s

USR Movies 110 min 70 s

Table 7: Dataset details: BERT-A2R runtime.

Dataset LR BS #E P
FEVER 2e-5 16 5 2
MultiRC 2e-5 16 5 n/a
Movies 2e-5 16 20 5

USR Movies 2e-5 16 (64) 5 (10) 2 (n/a)

Table 8: BERT-A2R Training parameters by dataset.
LR, BS, #E and P stand for learning rate, batch size,
number of epochs, and patience. Parameters in paren-
theses are for fixed BERT generator training.
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