
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
Volume 1: Long Papers, pages 12617–12631

July 9-14, 2023 ©2023 Association for Computational Linguistics

Learning Latent Relations for Temporal Knowledge Graph Reasoning

Mengqi Zhang1,2 , Yuwei Xia3,4 , Qiang Liu1,2 , Shu Wu1,2∗, Liang Wang1,2

1School of Artificial Intelligence, University of Chinese Academy of Sciences
2Center for Research on Intelligent Perception and Computing

State Key Laboratory of Multimodal Artificial Intelligence Systems
Institute of Automation, Chinese Academy of Sciences

3Institute of Information Engineering, Chinese Academy of Sciences
4School of Cyber Security, University of Chinese Academy of Sciences

mengqi.zhang@cripac.ia.ac.cn,xiayuwei@iie.ac.cn,
{qiang.liu,shu.wu,wangliang}@nlpr.ia.ac.cn

Abstract

Temporal Knowledge Graph (TKG) reasoning
aims to predict future facts based on histori-
cal data. However, due to the limitations in
construction tools and data sources, many im-
portant associations between entities may be
omitted in TKG. We refer to these missing as-
sociations as latent relations. Most of the exist-
ing methods have some drawbacks in explicitly
capturing intra-time latent relations between
co-occurring entities and inter-time latent rela-
tions between entities that appear at different
times. To tackle these problems, we propose
a novel Latent relations Learning method for
TKG reasoning, namely L2TKG. Specifically,
we first utilize a Structural Encoder (SE) to
obtain representations of entities at each times-
tamp. We then design a Latent Relations Learn-
ing (LRL) module to mine and exploit the intra-
and inter-time latent relations. Finally, we ex-
tract the temporal representations from the out-
put of SE and LRL for entity prediction. Exten-
sive experiments on four datasets demonstrate
the effectiveness of L2TKG.

1 Introduction

Temporal knowledge graphs (TKGs) play a vital
role in capturing temporal facts in the real world.
Each fact in a TKG is represented as a quadru-
ple (s, r, o, t), such as (Obama, run for, president,
2012). Reasoning over TKGs involves two primary
settings: interpolation and extrapolation. In recent
years, there has been significant interest in the ex-
trapolation setting due to its practical value in event
prediction (Deng et al., 2020), question answering
(Mavromatis et al., 2022), and other applications.
In the extrapolation setting, the objective is to pre-
dict facts that occur at a time t with t > tn, based
on the historical information available in the TKG
from t0 to tn.

*To whom correspondence should be addressed.

(w
ithdraw

n)

(com
plain)

(go to)

(leave)

USA

Taliban Border Area President
Ghani

Pakistan

Afghan people

2021-05 2021-08

(Inter-time latent relation)

(In
tra

-ti
me

lat
en

t r
ela

tio
n) AfghanistanAfghanistan

Afghanistan

(w
ill be governed by)

?

2021-09

…

…

(has occupied)

Figure 1: An example of reasoning over TKG. The gray
dotted lines indicate two types of latent relations

Most extrapolation models utilize the temporal
and structural information available in the TKG for
reasoning. For example, RE-NET (Jin et al., 2020a)
and RE-GCN (Li et al., 2021) incorporate recur-
rent neural networks and graph neural networks to
capture the temporal and structural dependencies
of historical TKG sequences. Additionally, xERTE
(Han et al., 2021a) and TITer (Sun et al., 2021) de-
velop sub-graph search and path search strategies
to predict target entities based on existing TKG
structures, respectively.

While these methods demonstrate promising re-
sults in TKG reasoning, they still face the challenge
of missing associations within TKGs. Specifically,
the majority of TKG data is automatically identified
and extracted from diverse news articles, such as
ICEWS data (Boschee et al., 2015). Many crucial
associations between entities may be omitted from
TKGs due to the limitations of construction tools
and data sources. We refer to these missing associ-
ations as latent relations between entities. Existing
approaches fail to explicitly discover and utilize
these latent relations, which manifest primarily in
two aspects.

Firstly, existing methods fail to explicitly capture
intra-time latent relations between co-occurring en-

12617

tities. During TKG reasoning, certain concurrent
entities may lack direct connections but exhibit
strong semantic correlations. Figure 1 illustrates
this phenomenon, where Afghanistan and Taliban
are not connected in the TKG for May 2021. How-
ever, in reality, the Taliban was involved in ne-
gotiations with Afghanistan during that time, sig-
nificantly impacting the situation in Afghanistan.
Hence, it is crucial to model the critical latent re-
lations among concurrent entities. Most existing
TKG reasoning models rely on Relational Graph
Neural Networks (RGNNs) (Schlichtkrull et al.,
2018; Li et al., 2021) to capture the semantic depen-
dencies between entities at each timestamp. How-
ever, RGNNs heavily depend on existing edges
or associations, making it challenging to model
critical semantic dependencies among indirectly
connected entities.

Secondly, existing methods ignore the inter-time
latent relations between entities appearing at dif-
ferent timestamps. Some entities at various times-
tamps can exhibit strong semantic dependencies,
providing essential auxiliary information for TKG
reasoning. Therefore, it is necessary to consider the
associations between these entities. Taking Figure
1 as an example, the impact of the USA in May
2021 on Afghanistan in August 2021 is significant.
However, as these two entities appear at different
times, they cannot be directly related in the TKG.
Existing TKG reasoning models primarily focus on
modeling the semantic dependencies of the same
entities at different times but fall short when ad-
dressing entities at distinct timestamps.

To address the aforementioned challenges, we
propose a novel Latent relations Learning method
for TKG reasoning, L2TKG for brevity. The over-
all framework of L2TKG is presented in Figure
2. Specifically, we first employ a Structural En-
coder (SE) to generate the representations of enti-
ties at each timestamp. Inspired by graph structural
learning (Jin et al., 2020b; Zhu et al., 2021b; Liu
et al., 2022), we design a Latent Relations Learn-
ing module (LRL) for learning the two types of
missing associations in TKG reasoning. Utilizing
the embeddings of entities at each timestamp, LRL
enables the creation of new crucial associations be-
tween unconnected entities in a learnable manner
and then encodes the learned latent relational graph
to obtain more comprehensive representations of
entities. Finally, we extract temporal representa-
tions from the output of SE and LRL components

for the entity prediction task.
In summary, our work makes the following main

contributions:
• We emphasize and investigate the necessity

of capturing critical missing associations in
TKG reasoning.

• We introduce graph structure learning into
TKG reasoning, and propose a novel and ef-
fective latent relations learning method to al-
leviate the problem of missing associations in
TKG reasoning.

• We conduct extensive experiments on four typ-
ical TKG datasets, which demonstrate the ef-
fectiveness of our proposed model.

2 Related Work

In this paper, we illustrate the related work about
TKG reasoning under the extrapolation setting and
graph structure learning.

2.1 TKG Reasoning under the Extrapolation
Setting

TKG reasoning under the extrapolation setting aims
to predict new facts in future timestamps based on
historical TKG sequence.

Specifically, GHNN (Han et al., 2020) and
Know-Evolve (Trivedi et al., 2017) use temporal
point process (TTP) to model the TKG data for
capturing the continuous-time temporal dynamics,
and they predict the future facts by estimating the
conditional probability of TTP. CyGNet (Zhu et al.,
2021a) proposes a copy-generation mechanism that
predicts the future based on repeating patterns in
historical facts.

Some recent methods (Jin et al., 2020a; Li
et al., 2021, 2022) combine graph neural networks
(GNNs) and recurrent neural networks (RNNs) to
model the semantic and temporal dependencies be-
tween entities. For instance, RE-NET (Jin et al.,
2020a) incorporates RNNs and RGCNs to capture
the temporal and structural dependencies from en-
tity sequences. RE-GCN (Li et al., 2021) considers
adjacent structural dependencies of entities while
introducing static properties of entities. To incor-
porate global temporal information, TiRCN (Li
et al., 2022) designs a global history encoder net-
work that collects repeated historical facts. HGLS
(Zhang et al., 2023b) designs a Hierarchical Graph
Neural Network to explicitly encode long-term tem-
poral information. Furthermore, TANGO (Han
et al., 2021b) employs Neural Ordinary Differen-

12618

tial Equations for fine-grained temporal informa-
tion in TKG reasoning, specifically for forecast-
ing future links. Additionally, some works (Han
et al., 2021a; Sun et al., 2021) propose sub-graph or
path search strategies for TKG reasoning. xERTE
(Han et al., 2021a) designs an explainable model
for entity prediction, utilizing a sub-graph search
strategy to identify answer entities. TITer (Sun
et al., 2021) performs a path search based on rein-
forcement learning to predict future entities, incor-
porating a time-shaped reward using the Dirichlet
distribution for guiding model training. Recently,
MetaTKG (Xia et al., 2022) proposes a temporal
meta-learner to learn evolution patterns of facts.
CENET (Xu et al., 2023) combines the contrastive
learning strategy with TKG models to identify sig-
nificant entities from historical and nonhistorical
dependency. However, all of these above methods
rely on existing associations between entities or
structures in TKG and disregard the utilization of
important latent associations between entities.

2.2 Graph Structure Learning

Graph Neural Networks (GNNs) have gained sig-
nificant attention for their ability to handle graph-
structured data and have shown promising perfor-
mance in various tasks, including Recommender
Systems (Wu et al., 2019; Chen and Wong, 2020;
Zhang et al., 2021, 2020a, 2023a) and Natural Lan-
guage Processing (Yao et al., 2019; Zhang et al.,
2020b). However, it has been observed that graph
data can contain noise, which can negatively im-
pact the training of GNNs (Jin et al., 2020c). To
address this issue, researchers have proposed graph
structure learning (GSL) methods, which aim to
jointly learn an optimized graph structure and node
representations.

GSL models can be categorized into three main
categories (Zhu et al., 2021b): metric-learning-
based methods (Jiang et al., 2019; Chen et al., 2020;
Cosmo et al., 2020; Li et al., 2018b), probabilis-
tic methods (Franceschi et al., 2018, 2019; Zhang
et al., 2019), and direct-optimized methods (Yang
et al., 2019; Jin et al., 2020c). For example, PTD-
Net (Luo et al., 2021) proposes a parameterized
topological denoising network to improve the ro-
bustness and generalization performance of GNNs
by learning to drop task-irrelevant edges. LDS
(Franceschi et al., 2019) introduces a method for
simultaneous learning of graph structure and graph
convolutional network parameters. This is achieved

by solving an approximate bilevel program that de-
termines a discrete probability distribution on the
graph edges. NeuralSparse (Chen et al., 2020) pro-
poses a supervised graph sparsification technique
that improves generalization power by learning to
remove potentially task-irrelevant edges from input
graphs.

Drawing inspiration from GSL approaches, our
work centers on metric-learning-based methods.
The goal is to discover new and important miss-
ing associations within TKG data while obtaining
optimal entity representations for TKG reasoning.

3 Preliminaries

In this section, we introduce the definition of TKG,
formulate the task of TKG reasoning, and explain
some notations used in this paper.

Definition 1 (Temporal Knowledge Graph). Let
E and R represent a set of entities and relations.
A quadruple qt = (es, r, eo, t) represents a relation
r ∈ R that occurs between subject entity es ∈ E
and object entity eo ∈ E at time t. All quadruple
occurring at time t constitute a knowledge graph
Gt. ets ∈ Gt indicates that entity es occurs at time t.
A temporal knowledge graph (TKG) G is defined
as a sequence of knowledge graphs with different
timestamps, i.e., G = {G1,G2, · · · ,Gt}.

Definition 2 (Temporal Knowledge Graph Rea-
soning). This paper primarily emphasizes the en-
tity prediction task within TKG reasoning. The
objective of the entity prediction task is to forecast
the missing object entity of (es, r, ?, t+ 1) or the
missing subject entity of (?, r, eo, t+ 1) based on
the historical KG sequence {G1,G2, · · · ,Gt}.

Let xs ∈ Rd and xr ∈ Rd denote the static em-
bedding of entity es and relation r, where d repre-
sents the dimension. The general paradigm of TKG
reasoning is to learn future representations of each
entity for predicting Gt+1 by using the historical
KG sequences {Gi}ti=0, along with static entity and
relation embeddings xs and xr. The embeddings
xs and xr serve as learnable parameters.

4 Methodology

In this section, we present the proposed L2TKG.
The overall framework of L2TKG is illustrated in
Figure 2. There are three main components: (1)
Structural Encoder (SE), which captures the se-
mantic dependencies among concurrent entities at
each timestamp using the existing TKG structure.

12619

(2) Latent Relations Learning (LRL), which mines
and exploits critical intra-time and inter-time latent
relations between entities. (3) Temporal Represen-
tation Learning, which extracts temporal represen-
tation for each entity from the output of SE and
LRL.

4.1 Structural Encoder

At each timestamp, there exist strong semantic de-
pendencies among connected co-occurring entities.
To capture these semantic dependencies, we pro-
pose a structural encoder based on relational graph
convolution neural network (Schlichtkrull et al.,
2018; Li et al., 2021), which aims to obtain the
embedding of each entity at the timestamp of its
appearance.

Formally, the structural encoder can be defined
as follows:

hl+1
s,ti

= f




∑

eo∈N ti
es

W1

(
hl
o,ti + xr

)
+W2h

l
s,ti




where N ti
es is the set of neighbors of es in Gti , f(·)

is the ReLU function, W1 and W2 ∈ Rd×d are
trainable weight parameter matrices in each layer,
and the initial entity embedding h0

s,ti and h0
o,ti are

set to static embedding xs and xo. After ω-layer
convolution, the entity representation hω

s,ti at time
ti is obtained. We denote the embedding of es at
time ti as hs,ti , omitting the superscript ω.

4.2 Latent Relations Learning

After capturing the semantic dependencies among
concurrent entities at each timestamp, we intro-
duce a latent relations learning module to identify
and leverage significant missing associations: intra-
time latent relations and inter-time latent relations,
between historical entities.

4.2.1 Learning latent relational graph
The purpose of this part is to mine latent relations
between entities appearing in TKG sequence G =
{Gt−L, · · · ,Gt}. In this context, the same entity
appearing at different times is treated as distinct
entities, such as etis and e

tj
s . Consequently, the

number of entities considered in this module is
N =

∑t
tk=t−L ntk , where ntk represents the num-

ber of entities in Gtk , and L represents the length
of historical sequence.

Assuming no loss of generality, we posit that
highly associated entities also exhibit similarity

within the embedding space. As a result, we first
compute the similarity between entity embeddings.
There are many similarity metrics that can be cho-
sen. We use simple cosine metrics to compute the
similarity:

d(x,y) =
(W3x)

T (W4y)

∥W3x∥∥W4y∥
, (1)

where ·T represents transposition, W3 and W4

∈ Rd×d are learnable weight parameters.
To reduce the complexity of calculations, we

only calculate the similarity between entity pairs
that have not connected in the TKG sequence. Next,
we will introduce in detail how to obtain the crucial
intra-time and inter-time latent relations, respec-
tively.
Intra-time latent relation learning. We calculate
the similarity between any two entity representa-
tions appearing at the same timestep tp but not
becoming connected. The similarity matrix Stp

∈ Rntp×ntp between unconnected entities at time
tp is computed by

S
tp
i,j = d(hei,tp ,hej ,tp), (2)

where (ei, ej) ∈ Gtp and (ei, r, ej , tp) /∈ Gtp , for
all r ∈ R. For other case, the value of Stp

i,j is set to
0.

To retain important latent relations and reduce
noise interference, we use the sparse operation
based on k-NN (Chen et al., 2009) for each ma-
trix Stp , that is: for each entity, we only keep latent
relations with the top-k scores. In this way, the
final similarity matrix at time tp is calculated as:

Ŝ
tp
i,j =

{
S
tp
i,j , S

tp
i,j ∈ Top-k(S

tp
i,:)

0, otherwise
, (3)

where S
tp
i,: denotes the i-row of Stp . Each Ŝtp

records the important intra-time latent relations
between entities at time tp.
Inter-time latent relation learning. We calculate
the similarity between any two entity representa-
tions appearing at different timesteps tp and tq.

Q
tp,tq
i,j = d(hei,tp ,hej ,tq), (4)

where ei ∈ Gtp , ej ∈ Gtq , tp ̸= tq. For other cases,
the value of Qtp,tq is 0. Similar to intra-time latent
relation learning, we also perform sparsification on
the similarity matrix:

Q̂
tp,tq
i,j =

{
Q

tp,tq
i,j , Qi,j ∈ Top-k(Q

tp,tq
i,:)

0, otherwise
. (5)

12620

StructuralEncoder

G
R
U

G
R
U G
ating

Integration

R
elationalG

AT
Similarity Matrix Latent Relational Graph

Latent Relations Learning

Tem
poralR

epresentation

Intra-time latent relation

0.5

0.3

0.8

00.4

0

0

…

TKG

?

…

𝑡!

𝑡"

𝑡#
Inter-time latent relation

Figure 2: An illustration of L2TKG model architecture. We first utilize a Structural Encoder (§4.1) to obtain
representations of entities at each timestamp. Then, the well-designed Latent Relations Learning (§4.2) module
sequentially calculates the similarity matrix, and constructs and encodes a latent relational graph to obtain a
comprehensive representation of each entity. Finally, we extract the temporal representations from the output of SE
and LRL for the entity prediction task (§4.3).

Each Q̂tp,tq records the important inter-time latent
relation between entities at different times.

We independently choose Top-k values for the
sparse operations in learning the two types of latent
relations, denoted as k1 and k2, respectively. Based
on the acquired similarity matrices, we proceed to
construct a latent relational graph denoted as P .
Specifically, if Ŝtp

i,j > 0, we construct an intra-time

latent relation between e
tp
i and e

tp
j within P . Sim-

ilarly, if Q̂
tp,tq
i,j > 0, we construct an inter-time

latent relation between e
tp
i and e

tq
j within P . In

this graph P , we solely consider latent relations
and omit original relations of the TKG sequence.
Furthermore, similar to existing relations, we trans-
form the two types of latent relations into low-
dimensional embedding vectors, which serve as
learnable parameters. To facilitate presentation, we
directly employ numerical numbers {1, ..., N} to
represent the nodes in P in the subsequent section.

4.2.2 Encoding latent relational graph
After obtaining the latent relational graph P , we
perform message propagation and aggregation op-
erations on it to capture the semantic dependencies
of entities under the newly learned associations.

In specific, we first utilize a graph attention
mechanism (Lv et al., 2021) to calculate the co-
efficient between two adjacent nodes i and j under
the learned latent relation r in P:

αij =
exp

(
f
(
aTW3

[
zli ∥ zlj ∥ zijr

]))

∑
k∈Ni

exp
(
f
(
aTW3

[
zli ∥ zlk ∥ zikr

])) ,

where initial embedding z
(0)
i is the corresponding

entity embedding obtained by Structural Encoder
(§4.1), zijr is the embedding of latent relation be-
tween node i and node j, Ni is the set of neighbors
of i in P , a ∈ R3d and W5 ∈ R3d×3d are learn-
able weight parameters in each layer, f(·) is the
LeakyReLU activation function, and ∥ is the con-
catenation operation.

After that, we obtain a more comprehensive rep-
resentation for each entity by aggregating the em-
beddings from its neighbors in the latent relational
graph,

zl+1
i = g


∑

k∈Ni

αijW6

(
zlk + zikr

)
+W7z

l
i


 ,

where g(·) is the ReLU activation function, W6

and W7 are weight parameter matrices in each
layer. For simplicity, we use zi to represent zβi
after β-layer operation.

4.3 Temporal Representations Learning

In addition to the semantic dependencies under dif-
ferent relations, the temporal patterns of entities are
also crucial for TKG reasoning. This section dis-
cusses how to obtain the temporal representations
of entities based on the output of SE and LRL.

4.3.1 Global temporal representation
Since the LRL module captures the semantic de-
pendencies of the entity under the new associations,
its output contains more global information. We

12621

further input them into GRU to get the global tem-
poral representation of each entity:

eGs,t+1 = GRUG

(
eGs,t, zs,t

)
, (6)

where zs,t corresponds to the output representation
of LRL (§4.2) at entity ets.

4.3.2 Local temporal representation
Local temporal representation reflects the semantic
changes of entities in recent times. Following (Li
et al., 2021, 2022), we adopt GRU to encode the
most recent m timestamps of each entity based on
the output of the structural encoder:

eLs,t+1 = GRUL

(
eLs,t,hs,t

)
, (7)

where hs,t is the corresponding entity embedding
obtained by Structural Encoder (§4.1).

4.3.3 Gating Integration
To facilitate model reasoning, we adopt a learnable
gating function (Hu et al., 2021) to adaptively inte-
grate the global and local temporal representations
into a unified temporal representation. Formally,

es,t+1 = σ(ge)⊙ eGs,t+1 + (1− σ(ge))⊙ eLs,t+1,

where ge ∈ Rd is a gate vector parameter to trade-
off two types of temporal information of each entity
e, σ(·) is to constrain the value of each element in
[0, 1], and ⊙ denotes element-wise multiplication.

4.4 Parameter Learning
In this section, we describe how to get the score for
each quadruple (es, r, eo, t + 1) and the learning
objective for training our model.

We first calculate the probability of interaction
between entity es and eo under the relation r at
time t+ 1. Formally,

pt+1(o|s, r) = σ (eo,t+1 f (es,t+1,xr)) ,

where f(·) is decoder function ConvTransE (Li
et al., 2021), es,t+1 and eo,t+1 are temporal rep-
resentations that contain both global- and local
temporal information. The learning tasks can be
defined as,

Le = −
T∑

t=0

∑

(es,r,eo,t+1)∈Gt+1

log pt+1(o|s, r).

Thus, the objective function is as follows:

L = Le + λ1∥Θ∥2,
where ∥ · ∥2 is L2 norm and λ1 is to control regu-
larization strength.

5 Experiments

In this section, we perform experiments on four
TKG datasets to evaluate our model. We aim to an-
swer the following questions through experiments.

• Q1: How does L2TKG perform compared
with state-of-the-art TKG reasoning methods
on the entity prediction task?

• Q2: How does L2TKG perform in learning
missing associations?

• Q3: How do different components affect the
L2TKG performance?

• Q4: How sensitive is L2TKG with different
hyper-parameter settings?

5.1 Experimental Setup

5.1.1 Datasets
We evaluate our L2TKG on four representative
TKG datasets in our experiments: ICEWS14
(García-Durán et al., 2018), ICEWS18 (Jin et al.,
2020a), ICEWS05-15 (García-Durán et al., 2018),
and GDELT (Jin et al., 2020a). The first three
datasets are from the Integrated Crisis Early Warn-
ing System (Boschee et al., 2015) and record the
facts in 2014, 2018, and the facts from 2005 to
2015, respectively. The last one is from the Global
Database of Events, Language, and Tone (Leetaru
and Schrodt, 2013). The details of data split strat-
egy and data statistics are shown in Appendix A.

5.1.2 Baselines
We compare L2TKG with static KG (SKG) reason-
ing models: DisMult (Yang et al., 2015),ComplEx
(Trouillon et al., 2016), R-GCN (Schlichtkrull et al.,
2018), ConvE (Dettmers et al., 2018), and RotatE
(Sun et al., 2019), as well as TKG models such as
CyGNet (Zhu et al., 2021a), RE-NET (Jin et al.,
2020a), xERTE (Han et al., 2021a), TIEer (Sun
et al., 2021), RE-GCN (Li et al., 2021), TiRCN (Li
et al., 2022), and CENET (Xu et al., 2023). We
provide implementation details of baselines and
L2TKG in Appendix B and C, respectively.

5.1.3 Evaluation Metrics
We adopt widely-used metrics (Jin et al., 2020a;
Li et al., 2021), MRR and Hits@{1, 10} to eval-
uate the model performance in the experiments.
For a fair comparison, we follow the setup of Li
et al. (2022), using the ground truth history during
multi-step inference, and report the experimental
results under the time-aware filtered setting for all
compared models.

12622

Model
ICEWS14 ICEWS05-15 ICEWS18 GDELT

MRR Hit@1 Hit@10 MRR Hit@1 Hit@10 MRR Hit@1 Hit@10 MRR Hit@1 Hit@10

DisMult 25.31 17.93 42.22 17.43 10.08 30.12 16.59 10.01 31.69 15.64 9.37 29.01
ComplEx 32.33 23.21 52.37 23.14 14.56 41.63 18.84 11.41 25.78 12.23 8.30 20.36

RGCN 28.14 19.43 46.02 27.43 20.15 44.62 18.04 8.57 35.68 10.93 4.59 22.38
ConvE 30.93 21.74 50.18 25.25 16.07 44.34 24.28 15.61 44.59 17.28 10.34 30.63
RotatE 27.53 18.60 47.62 19.39 10.19 38.57 15.35 7.10 33.09 5.48 1.96 13.76

CyGNet 37.65 27.43 57.90 40.42 29.44 61.60 27.12 17.21 46.85 20.22 12.35 35.82
RE-NET 39.86 30.11 58.21 43.67 33.55 62.72 29.78 19.73 48.46 19.55 12.38 34.00
xERTE 40.79 32.70 57.30 46.62 37.84 63.92 29.31 21.03 46.48 19.45 11.92 34.18
TITer 41.73 32.74 58.44 47.60 38.29 64.86 29.98 22.05 44.83 18.19 11.52 31.00

RE-GCN* 41.99 32.93 61.92 47.39 37.65 68.56 30.13 19.11 48.86 19.13 11.54 32.35
CENET 41.30 32.58 58.22 47.13 37.25 67.61 29.65 19.98 48.23 19.73 12.04 34.98
TiRGN* 43.18 33.12 62.24 48.83 38.62 69.20 32.22 22.24 51.88 21.67 13.63 37.60

L2TKG 47.40 35.36 71.05 57.43 41.86 80.69 33.36 22.15 55.04 20.53 12.89 35.83
∆Improve. 9.77% 6.73% 14.15% 17.61% 8.39% 16.60% 3.54% – 6.09% – – –

Table 1: Performance comparison on four datasets in terms of MRR (%), Hit@1 (%), and Hit@10 (%) (time-aware
metrics). The best performance is highlighted in boldface, and the second-best is underlined. * indicates that we
remove the static information from the model to ensure the fairness of comparisons between all baselines.

5.2 Performance Comparison (RQ1)

The performance of all models on the entity pre-
diction task is presented in Table 1. Based on the
results, we made the following observations:
L2TKG achieves the best performance on all

ICEWS datasets with most evaluation metrics,
which verifies the effectiveness of our model.
Specifically, L2TKG significantly outperforms all
compared static models, demonstrating the impor-
tance of modeling temporal information in TKG
reasoning. Our model is better than RE-GCN and
TiRCN. The reason might be that RE-GCN only
utilizes the most recent historical sequence of TKG
and neglects the global historical information of the
entities. Although TiRCN considers more histori-
cal dependencies than RE-GCN, it only utilizes the
first-order repetitive patterns of global history. Our
L2TKG not only encodes some recent information
but also exploits more learned latent relations be-
tween historical entities, allowing it to make better
use of global historical data than TiRCN. Com-
pared with L2TKG and TiRCN, both the RE-NET
and CyGNET ignore the use of local temporal in-
formation about entities and thus perform less well
than most TKG models. In contrast to our model,
xERTE and TITer employ sub-graph-based search
and path-based search, respectively, for target en-
tity prediction. However, their search methods are
constrained by existing paths, limiting their search
scope and compromising their performance.

In the case of the GDELT data, it contains a
higher number of facts at each time, and the issue of

missing associations is less severe. Consequently,
our model exhibits limited improvement compared
to state-of-the-art models.

5.3 Performance Comparison in Learning
Missing Associations (RQ2)

To further validate the capacity of L2TKG in dis-
covering and leveraging latent relations, we evalu-
ate its performance on datasets with different lev-
els of missing associations. On the ICEWS and
GDELT datasets, we mask a range of {0.1, ..., 0.9}
of the existing relations in the knowledge graph
for each timestamp. Figure 3 presents the per-
formance comparison of RE-GCN, TiRCN, and
L2TKG using various mask ratios, while Figure
4 illustrates the relative improvements of L2TKG
over RE-GCN and TiRCN. From the results, we
have the following observations:

From Figure 3 we find that the performance of
all models decreases to different degrees as the
mask rate increases, which is due to the gradual
decrease of historical association information in
the dataset. Nonetheless, our model suffers a rel-
atively small drop in performance and maintains
satisfactory results even when faced with signif-
icant missing association information (mask rate
> 0.6). In Figure 4, the relative performance im-
provement of our model compared to RE-GCN
and TiRCN gradually increases. In particular, the
model performance improves substantially when
the mask rate exceeds 0.6. These findings all indi-
cate that our latent relations learning method can
effectively mine and exploit the missing associa-

12623

0.0 0.2 0.4 0.6 0.8
mask rate

27

36

45

L2TKG

TiRCN

RE-GCN

(a) ICEWS14

0.0 0.2 0.4 0.6 0.8
mask rate

36

45

54

L2TKG

TiRCN

RE-GCN

(b) ICEWS05-15

0.0 0.2 0.4 0.6 0.8
mask rate

20

25

30

L2TKG

TiRCN

RE-GCN

(c) ICEWS18

0.0 0.2 0.4 0.6 0.8
mask rate

14

18

22

L2TKG

TiRCN

RE-GCN

(d) GDELT

Figure 3: Performance of L2TKG, TiRCN, and RE-
GCN under different mask rates in terms of MRR (%).

0.0 0.2 0.4 0.6 0.8
mask rate

15

30

45 Over TiRCN

Over RE-GCN

(a) ICEWS14

0.0 0.2 0.4 0.6 0.8
mask rate

20

40

60 Over TiRCN

Over RE-GCN

(b) ICEWS05-15

0.0 0.2 0.4 0.6 0.8
mask rate

8

16

24 Over TiRCN

Over RE-GCN

(c) ICEWS18

0.0 0.2 0.4 0.6 0.8
mask rate

0

13
Over TiRCN

Over RE-GCN

(d) GDELT

Figure 4: The relative improvements (%) of L2TKG
over TiRCN and RE-GCN under different mask rates.

tions between entities and alleviate the problem of
missing associations in history.

5.4 Ablation Studies (RQ3)

To investigate the superiority of each component
in our model, we compare L2TKG with different
variants in terms of MRR. Specifically, we modify
L2TKG by removing the latent relation learning
module (w/o LRL), intra-time relation learning of
LRL (w/o LRL-Intra), inter-time relation learning

Model ICEWS14 ICEWS05-15 ICEWS18 GDELT

w/o LRL 38.32 44.49 28.74 19.46
w/o LRL-Intra 47.08 55.84 33.05 20.36
w/o LRL-Inter 47.00 56.30 33.30 20.41

w/o Ltr 36.40 43.00 32.15 19.03
w/o Gtr 40.64 49.27 29.61 20.24

w/o SE 44.34 47.01 31.18 19.78
L2TKG 47.40 57.43 33.36 20.53

Table 2: Ablation studies on datasets in terms of MRR
(%) with time-aware metrics.

of LRL (w/o LRL-Inter), local temporal representa-
tion module (w/o Ltr), global temporal representa-
tion module (w/o Gtr), and structural encoder (w/o
SE), respectively. We show their results in Table 2
and have the following findings:
L2TKG significantly outperforms L2TKG (w/o

LRL) on all datasets, which confirms that our la-
tent relations learning module effectively discov-
ers and utilizes missing important associations in
TKG sequence to assist prediction tasks. L2TKG
(w/o LRL-Intra) and L2TKG (w/o LRL-Inter) also
achieves better performance than L2TKG (w/o
LRL). The improvements verify that both learned
inter-time and intra-time latent relations contribute
to model performance. Compared with L2TKG
(w/o LRL-Intra) and (w/o LRL-Inter), the per-
formance of L2TKG is further improved, which
means that two latent relations play different roles
in promoting the prediction of the model, and it is
necessary to use both latent relations together.
L2TKG also obtains significant improvements

over L2TKG (w/o Ltr) and L2TKG (w/o Gtr), in-
dicating that both global- and local-temporal infor-
mation can effectively enhance the performance on
the prediction task. The improvement between
L2TKG and L2TKG (w/o SE) verifies the im-
portance of capturing the semantic dependencies
among co-occurring entities.

6 Sensitivity Analysis (RQ4)

The structural encoder (SE) and latent relation
learning (LRL) are two vital modules in our model.
This section studies how hyper-parameters, the k
value of the sparse operations (Intra-time and Inter-
time learning), and the layer numbers of LRL and
SE affect the performance of L2TKG.

6.1 Effect of k Values in LRL

The values of k1 and k2 determine the number of
newly learned intra-time and inter-time latent rela-

12624

0 4 8 12 16 20
k-values

44

46

48

44

46

48

Intra-time k1

Inter-time k2

(a) ICEWS14

0 4 8 12 16 20
k-values

54

57

60

54

56

58

Intra-time k1

Inter-time k2

(b) ICEWS05-15

0 4 8 12 16 20
k-values

32

33

34

31

32

34

Intra-time k1

Inter-time k2

(c) ICEWS18

0 4 8 12 16 20
k-values

19

20

22

19

20

21

Intra-time k1

Inter-time k2

(d) GDELT

Figure 5: Performance of L2TKG under different k-
values in terms of MRR (%).

tions, respectively. Figure 5 illustrates the perfor-
mance of model for different values of k1 and k2.
When adjusting one ki value, the other ki utilizes
the optimal value. A ki value of 0 indicates that our
model does not consider the corresponding types
of latent relation learning.

From the results, we can find that the perfor-
mance of L2TKG improves initially as the two k
values increase. This finding confirms that the two
latent relations can provide more effective informa-
tion for TKG reasoning. However, as k continues to
increase, the trend begins to decline. This decline
could be attributed to the introduction of numer-
ous unimportant latent relations that act as noise,
thereby interfering with the model. This demon-
strates the necessity of employing k-NN sparsifica-
tion in the LRL module.

6.2 Effect of LRL Layer Nubmer β

The number of layers in LRL decides the degree of
utilizing the latent relations. In this part, we con-
duct our model when the LRL layer number β is in
the range of {0, 1, 2, 3, 4}. The results are shown
in Figure 6 (yellow line). We can find our method
achieves significant improvement between β = 0
and β > 0, which validates the rationality of min-
ing the latent associations in TKG reasoning. When
further stacking the LRL layer, the performance of
L2TKG begins to deteriorate, which is probably
because the LRL suffers from the over-smoothing
problem (Li et al., 2018a).

0 2 4
Layer numbers

44

46

48

35

40

45

SE Layer (%)
LRL Layer (%)

(a) ICEWS14

0 2 4
Layer numbers

40

50

60

40

48

56

SE Layer (%)
LRL Layer (%)

(b) ICEWS05-15

0 2 4
Layer numbers

32

33

34

28

32

36

SE Layer (%)
LRL Layer (%)

(c) ICEWS18

0 2 4
Layer numbers

18

20

21

15

18

21

SE Layer (%)
LRL Layer (%)

(d) GDELT

Figure 6: Performance of L2TKG under different layer
numbers of SE and LRL in terms of MRR (%).

6.3 Effect of SE Layer Number ω

The number of layers in SE determines the degree
of modeling semantic dependencies among concur-
rent facts. We also set the SE layer number ω in
the range of {0, 1, 2, 3, 4} and conduct our model.
From the results in Figure 6 (blue line), we can find
that our model achieves the best performance when
ω = 2 and significantly outperforms the value at
ω = 0, which demonstrates that utilizing the high-
order neighbor information in concurrent entities
can enhance the semantic representations of enti-
ties at each timestamp. As the number of layers
further increases (ω > 2), the model’s performance
begins to decline, which may be because the use of
higher-order information makes it easy to introduce
noise and lead to over-smoothing.

7 Conclusion

In this paper, we have proposed a novel method
L2TKG for reasoning over TKG. We first obtain
the embedding of each historical entity based on
the structural encoder. Then, a well-designed latent
relations learning module is proposed to mine and
encode the two types of latent relations, obtaining
comprehensive entity embeddings. Finally, we ex-
tract temporal representations of entities from the
outputs of LRL and SE for final prediction. Experi-
mental results on four benchmarks and extensive
analysis demonstrate the effectiveness and superi-
ority of L2TKG in TKG reasoning.

12625

Limitations

In this section, we discuss the limitations of our
model. Specifically, the selection of k values
in the LRL module necessitates human involve-
ment. Various types of data or entities may rely
on distinct k values. While the majority of k val-
ues within a reasonable range lead to improve-
ments in model performance, identifying the opti-
mal value solely through human involvement poses
challenges. Moving forward, we will investigate
the automatic optimization of k values to enhance
the model’s capacity for acquiring latent relations.

Acknowledgement

This work is supported by National Natural Sci-
ence Foundation of China (62141608, 62206291,
U19B2038).

References
Elizabeth Boschee, Jennifer Lautenschlager, Sean

O’Brien, Steve Shellman, James Starz, and Michael
Ward. 2015. ICEWS Coded Event Data.

Jie Chen, Haw-ren Fang, and Yousef Saad. 2009. Fast
approximate knn graph construction for high dimen-
sional data via recursive lanczos bisection. Journal
of Machine Learning Research, 10(9).

Tianwen Chen and Raymond Chi-Wing Wong. 2020.
Handling information loss of graph neural networks
for session-based recommendation. KDD.

Yu Chen, Lingfei Wu, and Mohammed Zaki. 2020. Iter-
ative deep graph learning for graph neural networks:
Better and robust node embeddings. In NIPS, pages
19314–19326.

Luca Cosmo, Anees Kazi, Seyed-Ahmad Ahmadi, Nas-
sir Navab, and Michael M. Bronstein. 2020. Latent
patient network learning for automatic diagnosis.

Songgaojun Deng, Huzefa Rangwala, and Yue Ning.
2020. Dynamic knowledge graph based multi-event
forecasting. In KDD, pages 1585–1595.

Tim Dettmers, Pasquale Minervini, Pontus Stenetorp,
and Sebastian Riedel. 2018. Convolutional 2d knowl-
edge graph embeddings. In AAAI, pages 1811–1818.

Luca Franceschi, Paolo Frasconi, Saverio Salzo, Ric-
cardo Grazzi, and Massimiliano Pontil. 2018. Bilevel
programming for hyperparameter optimization and
meta-learning. In ICML, pages 1568–1577.

Luca Franceschi, Mathias Niepert, Massimiliano Pontil,
and Xiao He. 2019. Learning discrete structures for
graph neural networks. In ICML, pages 1972–1982.

A García-Durán, Sebastijan Dumani, and M. Niepert.
2018. Learning sequence encoders for temporal
knowledge graph completion. In EMNLP, pages
4816–4821.

Zhen Han, Peng Chen, Yunpu Ma, and Volker Tresp.
2021a. Explainable subgraph reasoning for forecast-
ing on temporal knowledge graphs. In ICLR.

Zhen Han, Zifeng Ding, Yunpu Ma, Yujia Gu, and
Volker Tresp. 2021b. Learning neural ordinary equa-
tions for forecasting future links on temporal knowl-
edge graphs. In EMNLP, pages 8352–8364.

Zhen Han, Yunpu Ma, Yuyi Wang, Stephan Günnemann,
and Volker Tresp. 2020. Graph hawkes neural net-
work for forecasting on temporal knowledge graphs.
In AKBC.

Linmei Hu, Tianchi Yang, Luhao Zhang, Wanjun Zhong,
Duyu Tang, Chuan Shi, Nan Duan, and Ming Zhou.
2021. Compare to the knowledge: Graph neural fake
news detection with external knowledge. In ACL,
pages 754–763.

Bo Jiang, Ziyan Zhang, Doudou Lin, Jin Tang, and
Bin Luo. 2019. Semi-supervised learning with graph
learning-convolutional networks. In CVPR, pages
11305–11312.

W. Jin, M. Qu, X. Jin, and X. Ren. 2020a. Recur-
rent event network: Autoregressive structure infer-
enceover temporal knowledge graphs. In EMNLP,
pages 6669–6683.

Wei Jin, Yao Ma, Xiaorui Liu, Xianfeng Tang, Suhang
Wang, and Jiliang Tang. 2020b. Graph structure
learning for robust graph neural networks. In KDD,
pages 66–74.

Wei Jin, Yao Ma, Xiaorui Liu, Xianfeng Tang, Suhang
Wang, and Jiliang Tang. 2020c. Graph structure
learning for robust graph neural networks. KDD.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
Method for Stochastic Optimization. In ICLR.

Kalev Leetaru and Philip A Schrodt. 2013. Gdelt:
Global data on events, location, and tone, 1979–2012.
In ISA annual convention, volume 2, pages 1–49.
Citeseer.

Qimai Li, Zhichao Han, and Xiao-Ming Wu. 2018a.
Deeper insights into graph convolutional networks
for semi-supervised learning. In AAAI.

Ruoyu Li, Sheng Wang, Feiyun Zhu, and Junzhou
Huang. 2018b. Adaptive graph convolutional neural
networks. In AAAI.

Yujia Li, Shiliang Sun, and Jing Zhao. 2022. Tirgn:
Time-guided recurrent graph network with local-
global historical patterns for temporal knowledge
graph reasoning. In IJCAI, pages 2152–2158.

12626

Zixuan Li, Xiaolong Jin, Wei Li, Saiping Guan, Jiafeng
Guo, Huawei Shen, Yuanzhuo Wang, and Xueqi
Cheng. 2021. Temporal knowledge graph reason-
ing based on evolutional representation learning. In
SIGIR, pages 408–417.

Yixin Liu, Yu Zheng, Daokun Zhang, Hongxu Chen,
Hao Peng, and Shirui Pan. 2022. Towards unsuper-
vised deep graph structure learning. In WWW, pages
1392–1403.

Dongsheng Luo, Wei Cheng, Wenchao Yu, Bo Zong,
Jingchao Ni, Haifeng Chen, and Xiang Zhang. 2021.
Learning to drop: Robust graph neural network via
topological denoising. In WSDM, pages 779–787.

Qingsong Lv, Ming Ding, Qiang Liu, Yuxiang Chen,
Wenzheng Feng, Siming He, Chang Zhou, Jianguo
Jiang, Yuxiao Dong, and Jie Tang. 2021. Are we
really making much progress? revisiting, bench-
marking and refining heterogeneous graph neural
networks. In KDD, page 1150–1160.

Costas Mavromatis, Prasanna Lakkur Subramanyam,
Vassilis N Ioannidis, Adesoji Adeshina, Phillip R
Howard, Tetiana Grinberg, Nagib Hakim, and George
Karypis. 2022. Tempoqr: temporal question reason-
ing over knowledge graphs. In AAAI, volume 36,
pages 5825–5833.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. PyTorch:
An Imperative Style, High-Performance Deep Learn-
ing Library. In NeurIPS, pages 8024–8035.

Michael Schlichtkrull, Thomas N Kipf, Peter Bloem,
Rianne Van Den Berg, Ivan Titov, and Max Welling.
2018. Modeling relational data with graph convolu-
tional networks. In ESWC, pages 593–607.

Haohai Sun, Jialun Zhong, Yunpu Ma, Zhen Han, and
Kun He. 2021. TimeTraveler: Reinforcement learn-
ing for temporal knowledge graph forecasting. In
EMNLP, pages 8306–8319.

Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian
Tang. 2019. Rotate: Knowledge graph embedding by
relational rotation in complex space. In ICLR.

Rakshit Trivedi, Hanjun Dai, Yichen Wang, and
Le Song. 2017. Know-evolve: Deep temporal reason-
ing for dynamic knowledge graphs. In ICML, pages
3462–3471.

Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric
Gaussier, and Guillaume Bouchard. 2016. Complex
embeddings for simple link prediction. In ICML,
pages 2071–2080.

Minjie Wang, Lingfan Yu, Da Zheng, Quan Gan, Yu Gai,
Zihao Ye, Mufei Li, Jinjing Zhou, Qi Huang, Chao
Ma, Ziyue Huang, Qipeng Guo, Hao Zhang, Haibin
Lin, Junbo Zhao, Jinyang Li, Alexander J Smola, and
Zheng Zhang. 2019. Deep graph library: Towards
efficient and scalable deep learning on graphs. ICLR
Workshop on Representation Learning on Graphs
and Manifolds.

Shu Wu, Yuyuan Tang, Yanqiao Zhu, Liang Wang, Xing
Xie, and Tieniu Tan. 2019. Session-based recommen-
dation with graph neural networks. In AAAI.

Yuwei Xia, Mengqi Zhang, Qiang Liu, Shu Wu, and
Xiao-Yu Zhang. 2022. Metatkg: Learning evolution-
ary meta-knowledge for temporal knowledge graph
reasoning. In EMNLP, pages 7230–7240.

Yi Xu, Junjie Ou, Hui Xu, and Luoyi Fu. 2023. Tem-
poral knowledge graph reasoning with historical con-
trastive learning. In AAAI.

Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao,
and Li Deng. 2015. Embedding entities and relations
for learning and inference in knowledge bases. In
ICLR.

Liang Yang, Zesheng Kang, Xiaochun Cao, Di Jin,
Bo Yang, and Yuanfang Guo. 2019. Topology op-
timization based graph convolutional network. In
IJCAI.

Liang Yao, Chengsheng Mao, and Yuan Luo. 2019.
Graph convolutional networks for text classification.
AAAI, 33(01):7370–7377.

Jinghao Zhang, Yanqiao Zhu, Qiang Liu, Shu Wu,
Shuhui Wang, and Liang Wang. 2021. Mining latent
structures for multimedia recommendation. ACM
MM.

Mengqi Zhang, Shu Wu, Meng Gao, Xin Jiang, Ke Xu,
and Liang Wang. 2020a. Personalized graph neural
networks with attention mechanism for session-aware
recommendation. IEEE Transactions on Knowledge
and Data Engineering, 34(8):3946–3957.

Mengqi Zhang, Shu Wu, Xueli Yu, Qiang Liu, and Liang
Wang. 2023a. Dynamic graph neural networks for
sequential recommendation. IEEE Transactions on
Knowledge and Data Engineering, 35(5):4741–4753.

Mengqi Zhang, Yuwei Xia, Qiang Liu, Shu Wu, and
Liang Wang. 2023b. Learning long-and short-term
representations for temporal knowledge graph rea-
soning. In WWW, pages 2412–2422.

Yingxue Zhang, Soumyasundar Pal, Mark J. Coates, and
Deniz Üstebay. 2019. Bayesian graph convolutional
neural networks for semi-supervised classification.
In AAAI.

Yufeng Zhang, Xueli Yu, Zeyu Cui, Shu Wu, Zhongzhen
Wen, and Liang Wang. 2020b. Every document owns
its structure: Inductive text classification via graph
neural networks. ACL.

12627

Cunchao Zhu, Muhao Chen, Changjun Fan, Guangquan
Cheng, and Yan Zhang. 2021a. Learning from his-
tory: Modeling temporal knowledge graphs with se-
quential copy-generation networks. In AAAI, pages
4732–4740.

Yanqiao Zhu, Weizhi Xu, Jinghao Zhang, Qiang Liu,
Shu Wu, and Liang Wang. 2021b. Deep graph struc-
ture learning for robust representations: A survey.
arXiv preprint arXiv:2103.03036.

A Dataset

We divide ICEWS14, ICEWS18, ICEWS05-15,
and GDELT into training, validation, and test sets
with a proportion of 80%, 10%, and 10% by times-
tamps following (Li et al., 2021). The statistics of
four TKG datasets are summarized in Table 3.

B Baselines

The comparison of static KG reasoning models
with our work is presented as follows:

DisMult (Yang et al., 2015) is a model that pro-
poses a simplified bilinear formulation to capture
relational semantics.

ComplEx (Trouillon et al., 2016) is a model that
converts the embedding into complex vector space
to handle symmetric and antisymmetric relations.

R-GCN (Schlichtkrull et al., 2018) is a graph
neural network that handles highly multi-relational
graph data.

ConvE (Dettmers et al., 2018) is a model that
adopts a 2D convolutional neural network to model
the interactions between entities and relations.

RotatE (Sun et al., 2019), a model that defines
each relation as a rotation from the subject entity
to object entity in the complex vector space.

The temporal KG reasoning models compared
to our model are:

CyGNet1 (Zhu et al., 2021a) is a model that
utilizes recurrence patterns in historical facts to
predict future facts.

RE-NET2 (Jin et al., 2020a) is a model that
adopts RNN and RGCNs to capture the temporal
and structural dependencies from entity sequences.

RE-GCN3 (Li et al., 2021) is a Recurrent Evolu-
tion network based on Graph Convolution Network
(GCN), which learns the evolutional representa-
tions of entities and relations at each timestamp by

1https://github.com/CunchaoZ/CyGNet
2https://github.com/INK-USC/RE-Net
3https://github.com/Lee-zix/RE-GCN

Datasets ICEWS14 ICEWS05-15 ICEWS18 GDELT

E 6,869 10,094 23,033 7,691
R 230 251 256 240

Train 74,845 368,868 373,018 1,734,399
Valid 8,514 46,302 45,995 238,765
Test 7,371 46,159 49,545 305,241

Time gap 24 hours 24 hours 24 hours 15 mins

Table 3: The statistics of the datasets.

modeling the KG sequence recurrently. It also in-
corporates the static properties of entities through
a static graph module. However, to ensure fair-
ness in comparisons among models, we remove the
static properties in RE-GCN, as other models do
not utilize additional information.

xERTE4 (Han et al., 2021a) is an explainable
model that designs a sub-graph search strategy to
identify answer entities.

TITer5 (Sun et al., 2021) is a reinforcement
learning-based model, which performs a path
search to predict future entities.

TiRCN6 (Li et al., 2022) is a model that utilizes
a local recurrent graph encoder network to cap-
ture the historical dependency of events at adjacent
timestamps. It also uses a global history encoder
network to collect repeated historical facts. The
static properties are removed to ensure fairness in
comparisons among models.

CENET7 (Xu et al., 2023) is a model based on
contrastive learning that learns both the historical
and non-historical dependencies to distinguish the
most potential entities.

C Implementation Deatils

We implement our L2TKG in Pytorch (Paszke
et al., 2019) and DGL Library (Wang et al., 2019).
We use Adam optimizer (Kingma and Ba, 2015)
with learning rate set to 0.001 and l2 regularization
λ2 set to 10−5. The embedding size is fixed to 200
for all methods. For the L2TKG hyper-parameters,
we apply a grid search on the validation set: the
k1 and k2 values are searched in {2, 4, ..., 20}, the
SE layer number ω and LRL layer number β in
{1, 2, 3, 4}, and the length of local temporal repre-
sentation m in {1, 2, · · · , 10}.

For ICEWS14, ICEWS05-15, ICEWS18, and
GDELT, the optimal k1 values are 8, 10, 6, and 6.

4https://github.com/TemporalKGTeam/xERTE
5https://github.com/JHL-HUST/TITer
6https://github.com/Liyyy2122/TiRGN
7https://github.com/xyjigsaw/CENET

12628

https://github.com/CunchaoZ/CyGNet
https://github.com/INK-USC/RE-Net
https://github.com/Lee-zix/RE-GCN
https://github.com/TemporalKGTeam/xERTE
https://github.com/JHL-HUST/TITer
https://github.com/Liyyy2122/TiRGN
https://github.com/xyjigsaw/CENET

0 500 1000 1500 2000
Runtime (seconds)

ICEWS14

ICEWS18

ICEWS05-15

GDELT

RE-NET xERTE TiRCN L2TKG RE-GCN

Figure 7: Runtime (seconds) comparison to some base-
lines.

The optimal k2 values are 10, 10, 6, and 8. The
optimal LRL layer number β are 2, 2, 1, and 2. The
optimal length of local temporal representation m
for are 3, 5, 6, and 1, respectively. The optimal SE
layer number ω is 2 for all datasets. For the SE, we
set the block dimension to 2 × 2 and the dropout
rate for each layer to 0.2. For the ConvTransE of
the score function, the number of kernels, kernel
size, and the dropout rate are set to 50, 2× 3, and
0.2, respectively.

To enhance the efficiency of L2TKG while main-
taining performance, we appropriately preprocess
historical TKG data when predicting queries of the
form (es, r, ?, t+ 1). Specifically, we only use the
historical KG sequence in which es has appeared
for the learning of latent relations. For example,
entity es has appeared at time t1, t2, and t3, where
t3 < t + 1. Then we input the representations of
entities in {Gt1 ,Gt2 ,Gt3} into the LRL module to
mine and exploit important latent relations.

For the compared methods, we use the default
hyper-parameters except for dimensions. We run
the evaluation five times with different random
seeds and report the mean value of each method.
All experiments are conducted on NVIDIA Tesla
V100 (32G) and Intel Xeon E5-2660.

D Efficiency

To examine the efficiency of our model, we com-
pared L2TKG with RE-GCN, TiRCN, xERTE, and
RE-NET in terms of inference time on the test set.
As shown in Figure 7, despite the fact that our
L2TKG uncovers and leverages numerous signif-
icant latent relations from historical entities, its
inference speed surpasses that of TiRCN, xERTE,
and RE-NET. We attribute this efficiency to the

sparsification operations of LRL (§4.2) and the ap-
propriate processing of data (Appendix C). More-
over, the fundamental components of L2TKG pri-
marily rely on the GNN model, which enables par-
allel computation, thus ensuring a more optimal
balance between performance and efficiency.

12629

ACL 2023 Responsible NLP Checklist

A For every submission:
�3 A1. Did you describe the limitations of your work?

Limitation

�3 A2. Did you discuss any potential risks of your work?
There are no potential risks in our paper.

�3 A3. Do the abstract and introduction summarize the paper’s main claims?
Abstract and Section 1(Introduction)

�7 A4. Have you used AI writing assistants when working on this paper?
Left blank.

B �3 Did you use or create scientific artifacts?
Section 2,3,4

� B1. Did you cite the creators of artifacts you used?
No response.

�3 B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
Section 5

�7 B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
The use of existing artifacts in our paper is only for research.

�7 B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
The use of existing artifacts in our work is only for research.

�7 B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
The documentation of the artifacts is not the focus of our research.

�3 B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
Section 5.1.1 and Appendix A

C �3 Did you run computational experiments?
Section 5, 6, Appendix C and D.

�3 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
Yes, Appendix C reports the computing infrastructure used.

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

12630

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/

�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
Section 6 and Appendix C.

�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
Appendix C

�3 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
Appendix C

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
No response.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
No response.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
No response.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No response.

12631

