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Abstract

In open-domain dialogue generation tasks, con-
texts and responses in most datasets are one-
to-one mapped, violating an important many-
to-many characteristic: a context leads to var-
ious responses, and a response answers mul-
tiple contexts. Without such patterns, models
poorly generalize and prefer responding safely.
Many attempts have been made in either multi-
turn settings from a one-to-many perspective
or in a many-to-many perspective but limited
to single-turn settings. The major challenge to
many-to-many augment multi-turn dialogues is
that discretely replacing each turn with seman-
tic similarity breaks fragile context coherence.
In this paper, we propose DialoGue Path Sam-
pling (DialoGPS) method in continuous seman-
tic space, the first many-to-many augmentation
method for multi-turn dialogues. Specifically,
we map a dialogue to our extended Brownian
Bridge, a special Gaussian process. We sam-
ple latent variables to form coherent dialogue
paths in the continuous space. A dialogue path
corresponds to a new multi-turn dialogue and
is used as augmented training data. We show
the effect of DialoGPS with both automatic and
human evaluation.

1 Introduction

Open-domain dialogue generation has received sig-
nificant attention and has made notable advance-
ments (Zhang et al., 2020b; Shuster et al., 2022;
OpenAI, 2022). However, it still faces challenges
due to the nature of the data. One specific chal-
lenge is the many-to-many relationship between
contexts and responses in open-domain conversa-
tions. A context can lead to various responses, and
a response can be relevant to multiple contexts. Un-
fortunately, most datasets only provide one-to-one
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A:         A man came into the bank with a gun.
B:         That’s insane!
A:         Let me tell you what happened.

The original version

The modified version
A:         I am also afraid… Have a hope.
B:         Wow! What a great news!!
A:         Ha ha.. I knew mom. Bye bye.

(a) Discrete replacement causes incoherence.

Latent Variable

A man came into the bank with a gun.       That’s insane!         Let me tell you what happened.

Mapping Function

Mapped Path
Sampled Path

A man robbed the bank.

Are you kidding me?

I saw it in person.

Temporally correlated distributions

(b) Sampled dialogue paths in the continuous semantic space
correspond to coherent discrete dialogues.

Figure 1: (a) When replacing each utterance in the orig-
inal conversation by semantic similarity, the modified
dialogue is incoherent. (b) We map dialogues into a
continuous semantic space where latent distributions
of utterances correlate with each other, and sample di-
alogue paths for training. Each path corresponds to a
discrete multi-turn conversation.

mappings between contexts and responses. This
limitation results in models being poorly general-
ized when they rely on learned one-to-one patterns,
making them prone to generating safe yet uninter-
esting responses (Jiang and de Rijke, 2018; Jiang
et al., 2019).

To address this limitation, many attempts (Sai
et al., 2020; Qiu et al., 2019; Xie et al., 2022) have
been made from a one-to-many perspective which
involves constructing multiple responses for a con-
text. Furthermore, some works are proposed from a
many-to-many perspective but are limited to single-
turn settings. To construct new dialogue sentence
pairs, they either replace sentences based on se-

1267

ruiyan@ruc.edu.cn


mantic similarity (Zhang et al., 2020a) or sample
new sentences from probabilistic models (Li et al.,
2019). Next, they adopt BERT (Devlin et al., 2019)
or GAN (Goodfellow et al., 2014) discriminators
to filter incoherent sentence pairs.

These methods cannot be trivially extended to
multi-turn settings. Considering T utterances in
a dialogue and K candidates for each utterance,
they need to (1) prepare a large sentence set as
candidates for replacement or a strong generative
model, and (2) check the coherence of the mod-
ified conversation at least KT−1 times, which is
impractical. Figure 1(a) shows a case in which
we replace each utterance in a conversation follow-
ing Zhang et al. (2020a). The modified conver-
sation is still incoherent across turns. Therefore,
to enhance multi-turn dialogue generation from
a many-to-many perspective, we resort to a con-
tinuous semantic space that satisfies two require-
ments. First, it describes semantic distributions of
utterances, allowing for sampling semantic neigh-
bors of each utterance. Second, latent variables
sampled from any two distributions should be tem-
porally correlated, contributing to a new coherent
dialogue path in the latent space without requiring
post-checks. This path can be utilized as a new
training sample to augment the model. Our motiva-
tion is illustrated in Figure 1(b).

Driven by this motivation, we propose a novel
method for augmenting open-domain dialogues
from a many-to-many perspective, called DialoGue
Path Sampling (DialoGPS), aiming to enhance gen-
eralization and improve the quality of generated
responses. Specifically, our approach involves the
following steps: (1) We map each utterance in
a multi-turn dialogue to a special Gaussian pro-
cess in a continuous semantic space known as the
Brownian Bridge (Revuz and Yor, 2013). (2) For
each utterance xi, we sample K latent variables
zji , j ∈ [1,K], establishing K different dialogue
paths in the bridge. Each path corresponds to a
new multi-turn conversation in the discrete space.
(3) DialoGPS utilizes an encoder-decoder archi-
tecture. To construct augmented data, we mix the
latent variable zi with representations of xi in the
encoder if xi is part of the context, and in the de-
coder if it is the response. (4) Finally, we train the
model using the augmented data.

To ensure the effectiveness of DialoGPS, we
address several key issues. First, traditional Brow-
nian Bridges have deterministic endpoints, which

prevent response sampling and lead our method
degenerating into a many-to-one paradigm, further
impairing generalization. To overcome this lim-
itation, we derive the formula of endpoint distri-
butions. Second, since augmented data that lacks
discrete utterance labels makes the optimization
challenging, we propose a self-distillation frame-
work where the model first learns from the ground
truth and then distills its knowledge to guide itself
in utilizing augmented data.

We evaluate DialoGPS on two multi-turn open-
domain datasets. Both automatic and human eval-
uation show that DialoGPS performs better than
strong baselines and even outperforms the model
trained on manually denoted multi-reference data,
which demonstrates the benefit of the many-to-
many augmentation paradigm. Because DialoGPS
is plug-and-play, we add it to BART (Lewis et al.,
2020) and achieve competitive results with the
state-of-the-art model, DialoFlow (Li et al., 2021).
Our contributions are as follows:
• DialoGPS is the first work to augment multi-

turn dialogues from a many-to-many perspective.
• To ensure the effectiveness of DialoGPS, we

have introduced dialogue-specific designs, includ-
ing endpoint sampling of Brownian Bridges and
self-distillation for model optimization.
• Experiments conducted on both non-pretrained

and pre-trained models show that our DialoGPS
method outperforms all baselines.

2 Related Work: Dialogue Generation
Augmentation

In general, dialogue generation can be categorized
into two groups: task-oriented and open-domain.
Open-domain generation is a context-aware pro-
cess that lasts for turns. The model learns to gen-
erate a proper but open response from the preced-
ing utterances (i.e., contexts). Task-oriented dia-
logues progress for specific purposes and are lim-
ited to specific domains, such as obtaining knowl-
edge (Zhao et al., 2020; Tao et al., 2021). However,
due to the specific domains in task-oriented dia-
logues, the many-to-many relationship is not as
apparent compared to open-domain dialogues.

In this paper, we focus on open-domain dialogue
generation augmentation from an X-to-many per-
spective. From a one-to-many perspective, Sai et al.
(2020) manually denoted multiple responses for a
dialogue context. Based on such multi-reference
datasets, Qiu et al. (2019) proposed to capture the
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common feature in feasible responses and then add
the specific feature to obtain the final output, which
augments the utility of the data and improves the
generalization. Xie et al. (2022) proposed that with
only one-to-one data, models can construct pseudo-
target data in the decoder and improve the model
by bootstrapping. From a many-to-many perspec-
tive, existing methods work in single-turn settings.
Li et al. (2019) generated multiple context or re-
sponses with CVAE (Zhao et al., 2017) and intro-
duced a GAN (Goodfellow et al., 2014) discrimina-
tor to filter incoherent sentence pairs. Zhang et al.
(2020a) augmented a one-to-one dialogue dataset
Dp with an unpaired sentence set Du. They sample
sentences from Du and replace the most similar
sentences in Dp. They use BERT (Devlin et al.,
2019) and knowledge distillation to filter noise
in incoherent sentence pairs. Until now, many-
to-many augmentation in multi-turn settings are
understudied.

3 Method

We first present some preliminaries (§ 3.1). Then,
we introduce mapping dialogue texts to the desired
latent space (§ 3.2), augmented data construction
(§ 3.3), augmented data utilization (§ 3.4), and in-
ference details (§ 3.5). Figure 2 shows the overview
of DialoGPS.

3.1 Preliminary

In open-domain dialogue generation, given a multi-
turn dialogue X = [x0, x1, ..., xT ], the goal is
to predict the response xT based on the context
X0:T−1. The number of tokens in xt is denoted as
|xt|, t ∈ {0, 1, . . . , T}. The i-th token in the xt
is denoted as xit. A Brownian Bridge B defined
on time range [0, T ] is a special Gaussian process
established on deterministic endpoints µ0 and µT .
At time t, the latent variable zt follows a Gaussian
distribution B(t|µ0, µT ):

zt ∼ B(t|µ0, µT ) = N (µ0+
t

T
(µT −µ0),

t(T − t)

T
), (1)

3.2 Extended Brownian Bridge

In DialoGPS, given X , a non-linear function fθ
maps each xt to µt, the expectations of the corre-
sponding semantic distribution. Based on µ0 and
µT , we can establish a Brownian Bridge, and from
which we sample the latent variable zt as the se-
mantic neighbor of xt. Meanwhile, z0, z1, ..., zT
compose a coherent dialogue path because in a

Brownian Bridge, the covariance between t1 and t2,
with 0 < t1 < t2 < T is t1(T−t2)

T , where the constant
positive covariance guarantees that B(t1|µ0, µT )
and B(t2|µ0, µT ) are temporally correlated.

However, as defined in Eq. 1, a conventional
Brownian Bridge B has deterministic endpoints,
which prevents us from sampling for xT , the re-
sponse, and x0, the first utterance in the context.
To avoid degenerating to a many-to-one mode
that impairs the generalization, we derive an ex-
tended Brownian Bridge β with samplable end-
points. Take the derivation of β(T |µ0, µT ) as ex-
ample: given a B, both the distance dδ between
µT and zT−δ and the summation of dδ and zT−δ

follow the Gaussian distribution, we can derive the
distribution of zT as follows:

zT−δ ∼ N (
T − δ

T
µT +

δ

T
µ0,

δ(T − δ)

T
)

dδ = µT − zT−δ ∼ N (
δ

T
µT − δ

T
µ0,

δ(T − δ)

T
)





⇒

zT = dδ + zT−δ ∼ N (µT ,
2δ(T − δ)

T
).

(2)

Due to the symmetry, z0 follows
N (µ0,

2δ(T−δ)
T ). Here, δ serves as a hyper-

parameter. To sum up, we define the extended
Brownian Bridge β as:

β(t|µ0, µT ) =





N (µt,
2δ(T − δ)

T
), t = 0 or T,

N (µ0 +
t

T
(µT − µ0),

t(T − t)

T
), otherwise.

(3)

To optimize the mapping function fθ, we fol-
low (Wang et al., 2022) to adopt a contrastive learn-
ing framework where positive samples are ordered
sentence triplets from the same conversation (xt0 ,
xt1 , xt2 , t0 < t1 < t2) and negative samples are
constructed by randomly replacing the middle point
xt1 with other sentences x

t
′
1

from the mini-batch
B. The objective is as below:

Lβ = EX


log


1 +

∑
(xt0

,x
t
′
1

,xt2
)∈B

exp(d(xt0 , xt
′
1
, xt2 ; fθ))

exp(d(xt0 , xt1 , xt2 ; fθ))





 ,

(4)

where d(xt0 , xt1 , xt2 ; fθ) = − 1
2σ2

t1

∥fθ(xt1)−(1−
t1
t2
)fθ(xt0) − t1

t2
fθ(xt2)∥22 . The essence of Eq. 4

is to optimize the outputs of fθ, i.e., µt0 , µt1 , and
µt2 to the linear relationship as defined in Eq. 1. In
DialoGPS, a 4-layer MLP serves as fθ. To embed
utterance as inputs of fθ, there are many choices
such as averaging token embeddings or encoding
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(b) Mixup details on encoder and decoder.

Figure 2: (a) The overview of DialoGPS. Teacher forcing is applied during training. Each utterance in the dialogue
is mapped into a semantic distribution on a Brownian Bridge. We sample K paths and conduct mixup operations in
the encoder and decoder, respectively. (b) Mixup details.

by a language model. We leave the embedding
details in §5.3.

3.3 Augmented Data Construction
As shown in Figure 2(a), we take Trans-
former (Vaswani et al., 2017) as the bone archi-
tecture. With fθ, an extended Brownian Bridge β
is established. We sample latent variables zt ∼
β(t|µ0, µT ) and mix them with representations of
corresponding xt. In the encoder, for each utter-
ance xt in the context X0:T−1, we conduct:

e1t , e
2
t , ...e

|xt|
t = Encoder(xt),

êit = W enc
x · eit +W enc

z · zt,
(5)

where eit is the output corresponding to the i-th
token in xt from the encoder, i ∈ [1, |xt|]. W enc

z

and W enc
x are trainable vectors of the same dimen-

sion as e and z. Finally, ê is sent to the decoder
for cross-attention. We conduct the mixup every
decoder layer:

d̂ij = W
decj
x · dij +W

decj
z · zT ,

i ∈ [1, |xT |] , j ∈ [1, N ] ,
(6)

where N is the number of decoder layers, dij is the
self-attention output at position i in layer j. Also,
W

decj
z and W

decj
x are trainable vectors. d̂j is used

as Query, and ê are used as both Key and Value
in the cross-attention. For a dialogue text X , we
conduct sampling and mixup K times, which is
equivalent to providing K extra discrete dialogues
X̂k =

[
x̂k0, x̂

k
1, ..., x̂

k
T

]
, k ∈ [1,K] for training.

Figure 2(b) shows mixup details.

3.4 Utilizing Augmented Data by
Self-Distillation

In general, given X to a dialogue generation model,
parameters ϕ of model are optimized by minimiz-
ing the negative log-likelihood:

ϕ = argmin
(
EX

[
− log(Pϕ(xT |X0:T−1]))

])
. (7)

However, as aforementioned, what we obtain are
continuous representations of X̂ whereas the corre-
sponding discrete sentences are inaccessible, which
makes Eq. 7 intractable. Hence, to utilize the aug-
mented data, we make an assumption that: There
is an inaccessible many-to-many dialogue dataset
DMtoM . PMtoM describes the conditional distribu-
tion of responses given contexts in this dataset. The
accessible one-to-one dataset D1to1 is collected by
sampling from DMtoM uniformly, and thus P1to1

can be viewed as an approximation of PMtoM .
Based on this assumption, we propose a self-

distillation framework consisting of two steps: (1)
It optimizes the model with the original discrete
data following Eq. 7. (2) During training, as Pϕ

fits P1to1, which is an approximation of PMtoM ,
the model can use its output given X to teach it-
self when presented with augmented data, i.e., the
representations of X̂:

ϕ = argmin
(
DKL

[
Pϕ(xT |X0:T−1)||Pϕ(x̂T |X̂0:T−1)

])
,

(8)

where DKL[·||·] is the KL-divergence (Kullback
and Leibler, 1951). In Eq. 8, to remove the gap
between utilizing the original discrete data X and
the augmented continuous data X̂ in the same ar-
chitecture, we mix each utterance in X with the
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expectations µ0:T . Formally, the overall training
objective is to minimize:

L = Lβ︸︷︷︸
Mapping X to β

+ EX [− log(Pϕ(xT |X0:T−1, µ0:T ))]︸ ︷︷ ︸
Utilizing original discrete data

+

1

K

K∑

k

DKL

[
Pϕ(xT |X0:T−1, µ0:T )||Pϕ(x̂

k
T |X̂k

0:T−1, z
k
0:T )

]

︸ ︷︷ ︸
Utilizing augmented data

(9)

3.5 Inference
The inference goal is to predict xT based on context
X0:T−1. First, fθ takes X0:T−1 and outputs corre-
sponding µt for sampling and mixup in the encoder,
where t ∈ {0, 1, . . . , T − 1}. Next, the decoder re-
ceives the encoder output and an inferred µT to
decode the response in an autoregressive manner.
To obtain the value of µT , we do not require addi-
tional prediction networks. Instead, we can directly
derive its value based on the property of Brownian
Bridge. Specifically, given the context, we know
that for any t:

µt = µ0 +
t

T − 1
(µT−1 − µ0). (10)

If µT is already known, a Brownian bridge es-
tablished on µT and µ0 would yield the same µt

values. Consequently, we can establish an equality
and derive the value of µT as follows:

µt = µ0 +
t

T
(µT − µ0) = µ0 +

t

T − 1
(µT−1 − µ0)

⇒ µT =
T

T − 1
µT−1 − 1

T − 1
µ0.

(11)

We find that there is hardly a difference in eval-
uation results when conducting mixup operations
with either expectations µ or sampled variables
z. To reduce randomness for easier analyses, ex-
periments in below use expectations µ to mixup.
Nonetheless, sampling variables gives DialoGPS
the ability to generate diverse responses to an arbi-
trary context and we will discuss it in § 5.4.

4 Experimental Settings

Datasets We conduct multi-turn dialogue gener-
ation experiments on two public datasets: Daily-
Dialog (Li et al., 2017) and PersonaChat (Zhang
et al., 2018a). DailyDialog contains high-quality
multi-turn dialogues collected from daily conversa-
tions, and it has many multi-reference versions (Sai
et al., 2020; Gupta et al., 2019) denoted by hu-
mans, which makes it possible for us to compare

DialoGPS with human annotators. Besides, it is
more reliable to evaluate the generalization and per-
formance with multiple references. PersonaChat
collects dialogues based on chatters’ profiles. Pro-
files are not shown to models, so it is more challeng-
ing and open to generate proper responses, measur-
ing generalization capacity better.

Baselines and Parameters We compare Di-
aloGPS with (1) Transformer (Vaswani et al., 2017).
(2)DD++ (Sai et al., 2020): it is a variant of Dai-
lyDialog in which each context has five manually
denoted responses. We train a vanilla Transformer
on it. (3) TSA (Xie et al., 2022): it is an unsuper-
vised augmentation method in the decoder side. It
uses its decoder’s output to construct pseudo-target
data which is used to train the model for another
round. From a dialogue generation viewpoint, it
is a one-to-many method that bootstraps based on
one-to-one data. (4) M&D-D (Zhang et al., 2020a):
it uses a pre-trained model and BM-25 algorithm
to construct new context-response pairs from un-
paired sentences. Since it is a single-turn augmen-
tation, given a multi-turn dialogue, we only apply
this method to the last two turns. (5) ResBag (Qiu
et al., 2019): an augmented VAE-based model. It
captures the common feature in the bag of plausi-
ble responses and then adds the specific feature to
obtain the final output, which utilizes the multiple
references better.

Because DialoGPS is a plug-and-play method,
we add it to a BARTLarge (Lewis et al., 2020) and
compare with DialoFlowLarge (Li et al., 2021). Di-
aloFlow is one of the state-of-the-art pre-trained
models in open-domain dialogue generation. It
augments the model by modeling the dialogue flow.
More details on the implementation and hyper-
parameters are in Appendix A.1.

Evaluation Metrics We consider three automatic
evaluation metrics: BLEU (Papineni et al., 2002),
Distinct (DIST) (Li et al., 2016), and BLEURT (Sel-
lam et al., 2020). BLEU measures the word over-
lap between generated responses and the ground
truth. DIST measures the ratio of unique n-grams
in the generated responses. Because these two
metrics are only sensitive to lexical variation, we
evaluate BLEURT, an advanced learned semantic-
sensitive evaluation metric based on BERT (De-
vlin et al., 2019). On the evaluation of fine-tuning
pre-trained models, we follow (Li et al., 2021) to
report METEOR (Lavie and Agarwal, 2007) and
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Models BLEU-1 BLEU-2 BLEU-3 BLEU-4 DIST-1 DIST-2. BLEURT

PersonaChat Dataset

Transformer 17.79[0.14] 6.93[0.06] 3.03[0.08] 1.41[0.06] 0.82[0.01] 6.60[0.05] 30.16[0.05]
ResBag 17.82[0.17] 6.88[0.12] 3.04[0.09] 1.37[0.11] 0.85[0.02] 6.83[0.02] 30.25[0.17]
TSA 17.76[0.19] 6.92[0.16] 2.97[0.15] 1.35[0.10] 0.85[0.02] 6.56[0.01] 30.66[0.09]
M&D-D 18.42[0.13] 7.25[0.09] 3.23[0.11] 1.44[0.07] 0.80[0.01] 6.55[0.01] 30.46[0.13]

DialoGPSK=1 18.29[0.08] 7.21[0.05] 3.14[0.03] 1.44[0.05] 1.05[0.01] 7.97[0.07] 30.54[0.06]
DialoGPSK=2 18.96[0.15] 7.61[0.09] 3.32[0.04] 1.54[0.02] 0.84[0.00] 7.10[0.04] 30.77[0.14]
DialoGPSK=4 19.05[0.18] 7.70[0.16] 3.41[0.09] 1.61[0.07] 0.91[0.01] 7.45[0.09] 30.29[0.12]
DialoGPSK=8 19.04[0.08] 7.64[0.11] 3.40[0.10] 1.60[0.08] 0.93[0.01] 7.64[0.06] 30.39[0.14]

Multi-reference DailyDialog Dataset

Transformer 33.93[0.26] 12.32[0.25] 4.93[0.23] 2.14[0.14] 2.59[0.03] 20.62[0.12] 35.79[0.15]
ResBag 34.10[0.27] 12.61[0.18] 4.82[0.17] 2.13[0.13] 2.98[0.06] 24.44[0.17] 35.22[0.15]
TSA 36.14[0.11] 13.21[0.15] 5.43[0.14] 2.46[0.13] 3.56[0.04] 26.89[0.21] 35.37[0.13]
DD++ 36.87[0.32] 14.09[0.24] 6.13[0.23] 2.91[0.17] 3.84[0.03] 28.58[0.38] 37.04[0.14]
M&D-D 36.97[0.12] 14.28[0.09] 6.50[0.19] 3.28[0.17] 3.65[0.03] 25.35[0.21] 36.02[0.15]

DialoGPSK=1 37.21[0.12] 14.72[0.14] 6.65[0.12] 3.29[0.11] 4.25[0.05] 28.39[0.14] 36.14[0.08]
DialoGPSK=2 38.01[0.13] 14.79[0.07] 6.52[0.06] 3.20[0.04] 4.34[0.06] 29.04[0.25] 36.15[0.16]
DialoGPSK=4 38.27[0.20] 14.77[0.13] 6.62[0.15] 3.33[0.20] 4.53[0.07] 30.18[0.17] 36.09[0.08]
DialoGPSK=8 38.46[0.18] 15.05[0.23] 6.70[0.24] 3.30[0.14] 4.32[0.06] 28.35[0.14] 35.82[0.16]
DialoGPSK=16 38.38[0.14] 14.89[0.06] 6.62[0.13] 3.30[0.15] 4.41[0.05] 29.84[0.08] 35.81[0.05]

Component Ablation on Multi-reference DailyDialog (K=4)

–M.E. 38.04[0.17] 15.00[0.12] 6.63[0.12] 3.21[0.11] 4.22[0.03] 28.05[0.10] 35.96[0.09]
–M.D. 34.62[0.12] 12.71[0.13] 5.20[0.08] 2.33[0.08] 3.19[0.04] 24.65[0.16] 35.14[0.13]
–Brown. 38.05[0.22] 14.68[0.05] 6.36[0.04] 3.01[0.10] 4.05[0.09] 27.58[0.18] 35.52[0.11]
–M.E. –Brown. 38.42[0.13] 14.76[0.15] 6.55[0.05] 3.17[0.12] 4.11[0.03] 27.64[0.16] 36.12[0.12]
–M.D. –Brown. 34.49[0.31] 12.68[0.28] 5.15[0.23] 2.29[0.17] 2.97[0.45] 24.46[0.15] 35.11[0.12]
–M.E. –M.D. 33.93[0.26] 12.32[0.25] 4.93[0.23] 2.14[0.14] 2.59[0.03] 20.62[0.12] 35.79[0.15]

Table 1: Automatic evaluation and ablation results on multi-reference DailyDialog and PersonaChat. We apply
Top-5 Sampling decoding scheme. The standard deviation [σ] (across 5 runs) is also reported. In the ablation results
table, M.E/D. stands for applying mixup in the encoder/decoder, and Brown. stands for optimizing fθ with Eq. 4.
When there is no mixup in either encoder or decoder, the model degenerates into a vanilla transformer.

Entropy (Zhang et al., 2018b). For human evalua-
tion, we recruit five evaluators to manually judge
200 samples from each experiment in blind test-
ing, where we set three metrics to comprehensively
evaluate the generation quality: whether a response
is readable (Read.), coherent (Coh.), and informa-
tive (Info.). For each aspect, evaluators can score
at ‘bad’, ‘borderline’ and ‘good’.

5 Results

Table 1 shows the automatic evaluation results. On
PersonaChat, without access to chatters’ profiles,
conversations are so open that there is so much
noise in data for models to learn. Therefore, mod-

els prefer safe responses and thus DISTs are rela-
tively low. However, DialoGPS still improves by
about 20% in DISTs than the best-performing base-
line. Also, BLEU and BLEURT scores imply that
DialoGPS matches references more lexically and
more semantically. On the multi-reference Daily-
Dialog dataset, DialoGPS gains improvement by
a large margin than other strong baselines. Also,
most baselines suffer a trade-off between match-
ing the references and diversifying responses. By
contrast, DialoGPS performs evenly well on all
metrics. DialoGPS also wins 6 out of all 7 metrics
compared with the model trained on DD++, the
human-written multi-reference training set. Our
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Models DailyDialog PersonaChat

BLEU-2 BLEU-4 METEOR Entropy BLEU-2 BLEU-4 METEOR Entropy

BART 27.87 10.85 14.69 9.29 9.95 3.38 8.69 6.55
DialoFlow 28.02 11.57 16.40 9.46 10.46 3.03 9.32 6.89

BART + DialoGPS 29.18 12.05 15.30 9.73 10.97 4.08 9.26 6.70

Table 2: Automatic evaluation results on fine-tuning pre-trained models (beam search with width 5).

Models DailyDialog PersonaChat

Read. Coh. Info. Read. Coh. Info.

Transformer 70/8 69/9 73/12 53/14 51/11 52/9
ResBag 58/13 60/11 64/14 51/14 50/19 51/16
TSA 59/15 57/16 60/16 48/20 47/22 43/20
DD++ 53/24 55/20 51/17 - - -
M&D-D 56/19 47/20 52/16 44/21 46/18 45/17

BART 40/34 42/23 44/26 39/31 41/26 34/20
DialoFlow 36/32 40/29 43/27 39/34 35/28 35/25

Table 3: Human evaluation results (rounded). Compared
with each baseline, we report our win/lose percentage.
Evaluators achieve substantial agreement with kappa
value 0.62 on experiments trained from scratch and 0.70
on pre-trained experiments.

results in bold pass the significance test p < 0.01.
In Table 2, when adding DialoGPSK=2 to a pre-
trained BART and fine-tuning on two datasets, it
achieves competitive performance as one of the
SOTA dialogue generation pre-trained models, Di-
aloFlow. DialoFlow augments the generation with
the help of ‘flow’, i.e., the difference of adjacent
utterances in continuous space. Their flows are not
as flexible as paths sampled from the Brownian
Bridge, which is one of the reasons that DialoGPS
outperforms DialoFlow in five out of all eight met-
rics. Table 3 shows human evaluation results. In
three metrics, DialoGPS achieves the top rank with
solid agreement among evaluators. More evalua-
tion details are in Appendix A.2.

5.1 Study on Dialogue Paths

We conduct an ablation study on the number of sam-
pled dialogue paths K, results are shown in Table 1.
On both datasets, with the increase of K, various
metrics increase and then reach the bottleneck or
slightly decrease. This phenomenon mainly dues
to that different from discrete data, sampled paths
in continuous space have a information bottleneck,
i.e., if K is big enough to cover the most samplable
area in the Brownian Bridge, then increasing K
further may cause little improvement or even de-
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Figure 3: The visualization of sampled dialogue paths
(normalized expectations) for a 5-utterance dialogue,
training with varying K.

crease due to more noise. We visualize the sampled
paths of a conversation with 5 utterances during
training in Figure 3. A sample at each time step
is denoted as a point and paths are depicted. We
can see that the Brownian Bridge area covered by
paths is significantly increased when K increases
from 1 to 8, but there is a slight difference when K
further increases to 16. The visualization confirms
automatic evaluation results in Table 1.

5.2 Component Ablation

We study the effect on the performance of the fol-
lowing components in DialoGPS: mixup in the en-
coder (M.E.), mixup in the decoder (M.D.), and
constraints from Eq. 4 that is the optimization of
the mapping function (Brown.). The results are re-
ported at the bottom of Table 1. Removing mixup
in the decoder (–M.D.) degenerates DialoGPS to
a many-to-one mode and thus the performance de-
grades much, confirming the intuition mentioned
in §1. Removing mixup in the encoder(–M.E.)
degenerates DialoGPS to a one-to-many pattern
which is insufficient compared with the many-to-
many pattern, and DIST drops while the BLEU
maintains. Nonetheless, the performance is still
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Method BLEU-2 BLEU-4 DIST-1 DIST-2

Avg. 14.77 3.33 4.53 30.18
Avg. + Pos. 14.41 2.89 4.19 29.22
GPT-2 15.13 3.28 4.23 29.55

Table 4: Experimental results with different utterance
representation methods (K=4).

competitive with the best one-to-many baseline.
Without constraints from Eq. 4 (–Brown.), there is
no context-wise correlation among sampled latent
variables and the mixup turns to introduce noise.
This variant resembles sampling each utterance
with a VAE (Bowman et al., 2016; Miao et al.,
2016). However, Eq. 11 does not hold anymore so
there exist gaps between the inference and the train-
ing, and results drop compared to the variant with
Eq. 4. Overall, this variant still plays a positive role
because adding noise during training is proved to
be effective in improving the robustness and gener-
alization of the model (Srivastava et al., 2014; Gao
et al., 2021). When there is neither M.D. nor M.E.,
the method becomes a vanilla transformer.

5.3 Study on Utterance Representation

In §3.3, we defer details on obtaining utterance rep-
resentations of each turn in a dialogue. We study
three variants of encoding an utterance: (1) average
embeddings of each token in an utterance (Avg.),
(2) average embeddings of each token in an utter-
ance along with position embeddings (Avg. + Pos.),
and (3) encode utterances by a GPT-2 (Radford
et al., 2019). We conduct this study on the multi-
reference DailyDialog dataset and the results are
in Table 4. The simplest method (Avg.) achieves
first place. With extra positional information, the
performance drops a little, and in this experiment,
we observed that the Lβ term in the overall training
objective Eq. 9 maintains steadily, but other terms
increase a little. An explanation is that features
to be mixed with latent variables (e and d) have
included positional information and positional in-
formation in latent variables introduces redundancy.
For (GPT-2), we add a special token ‘<eou>’ at the
end of an utterance and view its corresponding out-
put as the utterance representation. (GPT-2) costs
much more training time and only beat (Avg.) in
one metric. We guess there is an expression capac-
ity gap so we try to (1) train a 4-layer language
model to replace the GPT-2 and (2) apply GPT-2 in
pre-trained experiments. In both experiments, we
do not observe improvement than (Avg.). To sum

x3

X0:2

A: Excuse me, sir. Is there a barber near here?
B: Yes, the nearest one is at the third cross of this road.
A: I’m a stranger here. How can I get there, please?
B: ________________________

Transformer Thank you very much.
ResBag Two stops at the next door.

TSA Let me see. It’s about ten minutes.
DD++ Sure.

M&D-D You can take the subway to get there.

DialoGPS

You have to go to the next stop. (×2)
You get off at the next stop. (×2)
You have to change. (×2)
You have to go to the hotel. (×1)
It’s not easy. You have to go. (×1)
You have to go to the airport. (×1)
Then, you have to go to the hotel. (×1)

Table 5: 10 outputs given by DialoGPS when adopting
sampling then mixup during inference. To avoid the ran-
domness introduced by the decoding strategy, responses
are decoded by Beam Search with width 5.

up, the simplest (Avg.) achieves the best trade-off
between performance and costs so in DialoGPS,
we adopt this scheme by default.

5.4 What Does the Model Learn from
Augmented Data?

If we mixup with sampled variables instead of ex-
pectations during inference, the model obtains the
ability to generate diverse responses. Although
we do not know what discrete labels augmented
data have, to some extent the diverse outputs dur-
ing inference reflect semantics that augmented data
have during training. We provide a case in Table 5.
Transformer and ResBag generates incoherent re-
sponses, and TSA answers the arrival time but not
the way. DD++ reply to the context but does not
leads to the follow-up dialogue. M&D-D responds
properly but can only provide one answer. We
let DialoGPS generate 10 times and report all the
outputs along with their respective frequency.

The frequency, the semantics, and lexical fea-
tures of responses resemble a Gaussian distribution.
In this case, ‘you have to go to (get off at) the
next stop’ is close to the expectation. As the se-
mantics get farther away, the frequency of other
responses are lower. Overall, DialoGPS provides
diverse choices to arrive at the barber. This case
shows that continuous augmented data do have
open dialogue knowledge which is conducive to
model generalization.
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6 Conclusion

We propose DialoGPS that first augments open-
domain and multi-turn dialogue generation from a
many-to-many perspective. Specifically, We map
dialogues into the continuous semantic space which
is modeled by our extended Brownian Bridge and
sample dialogue paths to augment training. We
propose a self-distillation framework to utilize aug-
mented data despite the inaccessible discrete la-
bels. Empirically, we prove the effect of DialoGPS
and study its characteristics. DialoGPS could be
a general method that suits seq2seq tasks where
the source has multiple sentences and the target is
different from the source in semantics, like sum-
marization. However, DialoGPS should be modi-
fied according to the unique properties of the task,
which is left to study in the future.

Limitations

Similar to other augmentation methods, DialoGPS
demands high requirements for computing re-
sources. The training is performed on up to 8 V100
GPUs. On DailyDialog: a vanilla transformer only
needs 50 minutes while a non-pretrained DialoGPS
takes about 80 minutes when K = 1. Other base-
lines take about the same amount of time as Di-
aloGPS K = 1. But when DialoGPS achieves its
performance peak (K = 16), the training takes 4
hours. Most of time cost comes from sampling
which is difficult to be accelerated by GPUs.
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A Appendix

A.1 Model Implements

In pre-process, we truncate the original long con-
versations in the dataset with the window size 5.
Table 6 shows the dataset statistics.

Datasets Train Valid Test

DailyDialog 44050 4176 6740(Multi-ref)
PersonaChat 68859 8593 8239

Table 6: Dataset statistics.

For non-pretrained experiments, our code
is based on fairseq (Ott et al., 2019). We
adopt grid search to tune hyper-parameters.
On the DailyDialog dataset, the search
ranges for learning rate and batch size are
{0.00008, 0.00010, 0.00012, 0.00015} and
{112, 160}, respectively. On the PersonaChat
dataset, the search ranges for learning rate and
batch size are {0.00010, 0.00012, 0.00015} and
{32, 64}, respectively. We choose the parameter
combination with the lowest perplexity in the
validation set. Table 7 shows the searched results
for each experiment.

Method LR(DD) Batch size(DD) LR(PS) Batch size(PS)

Transformer 1e-4 112 1e-4 32
ResBag 8e-5 160 1e-4 64
TSA 8e-5 160 1.5e-4 32
DD++ 8e-5 112 - -
M&D-D 1e-4 112 1e-4 64
DialoGPSK=1 1.5e-4 160 1.5e-4 64
DialoGPSK=2 1.5e-4 160 1e-4 64
DialoGPSK=4 1.5e-4 112 1.2e-4 64
DialoGPSK=8 1.5e-4 160 1.2e-4 64
DialoGPSK=16 8e-5 160 - -

Table 7: Learning rate and batch size in each experi-
ment.

Except for batch size and learning rate, the
following important settings: the warmup steps
are 4000. We use Adam optimizer with β =
(0.9, 0.98). Both attention dropout and activation
dropout are 0.1. For models trained from scratch,
δ on Dailydialog is 1

2 and 1
3 on PersonaChat. For

fine-tuned models, δ is 1
2 on two datasets. We se-

lect the best checkpoint based on the perplexity in
the validation set. Early stop patience is 10 epochs.
For pre-trained experiments, on both datasets, the
batch size is 64 and learning rate is 0.00002. The
training is performed on Nvidia V100 GPU. On
DailyDialog: our method takes about 80 minutes
when K = 1, 4 hours when K = 16, and 8 hours
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Method PersonaChat DailyDialog
Transformer 2.93 3.08
ResBag 2.93 3.12
TSA 2.92 3.13
DD++ - 3.24
M&D-D 2.96 3.13
DialoGPS(K=4) 3.03 3.24

Table 8: QuantiDCE results on two datasets.

to finetune a BARTlarge.
Because M&D-D does not suit multi-turn set-

tings, we only use it to modify the last two turns
with Okapi BM25 algorithm and we finetune BERT
on DailyDialog and PersonaChat respectively to
measure the fluency between the last two utterances
and the fluency between the penultimate sentence
and the above as filtration. In our experiments, on
two datasets, the paired sentence set Dp is same
as the original training set and the unpaired sen-
tence set Du is constructed from all sentences in
DD++. On DailyDialog, we use multiple refer-
ences in DD++ as the response bag of ResBag,
and on PersonaChat, we use constructed data from
M&D-D as its response bag.

A.2 Evaluation Details

Because some evaluation script links of Di-
aloFlow (Li et al., 2021) are out of date, we can
not reproduce NIST (Lin and Och, 2004) scores so
we do not report it. This issue was also reported
by the community 1. Also, METEOR and Entropy
are reproduced. Our reproduced BLEU scores are
close to the original paper so we directly quote their
results.

Our human evaluators are recruited from Ama-
zon Mturk. In terms of human evaluation, all gener-
ated responses are re-capitalized and de-tokenized
fairly. The salary for each evaluator is 1 dollar per
10 samples. To give a fair salary, we first evaluate
50 samples by ourselves, calculate the time and
effort, and set this amount (samples evaluated by
ourselves are just for evaluating the salary, which
is not given to evaluators and not reported in the
final results).

A.3 QuantiDCE

In addition to the metrics mentioned in the main
paper, we further supplement our evaluation with
the dialogue-specific metric QuantiDCE (Ye et al.,
2021), which measures the coherence between the

1https://github.com/microsoft/DialoGPT/issues/
72

response and the context. The results show that
our proposed DialoGPS outperforms all baseline
models.
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