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Abstract

Language Models (LM) are becoming more
and more useful for providing representations
upon which to train Natural Language Process-
ing applications. However, there is now clear
evidence that attention-based transformers re-
quire a critical amount of language data to pro-
duce good enough LMs. The question we have
addressed in this paper is to what extent the
critical amount of data varies for languages
of different morphological typology, in par-
ticular those that have a rich inflectional mor-
phology, and whether the tokenization method
to preprocess the data can make a difference.
These details can be important for low-resource
languages that need to plan the production of
datasets. We evaluated intrinsically and ex-
trinsically the differences of five different lan-
guages with different pretraining dataset sizes
and three different tokenization methods for
each. The results confirm that the size of the
vocabulary due to morphological characteris-
tics is directly correlated with both the LM
perplexity and the performance of two typical
downstream tasks such as NER identification
and POS Tagging. The experiments also pro-
vide new evidence that a canonical tokenizer
can reduce perplexity by more than a half for a
polysynthetic language like Quechua as well as
raising macro-F1 score from 0.8 to more than
0.9 in both downstream tasks with a LM trained
with only 6M tokens.'.

1 Introduction

Language Models (LMs) are becoming more and
more useful for providing representations upon
which to train different Natural Language Process-
ing (NLP) applications. However, there is evidence
that LMs trained with attention-based transformers
need large quantities of pretraining language data
to provide good enough representations that can be
used in downstream tasks.

"Equal contribution

To have very large amounts of data, multilingual
LMs have been proposed as a solution. However,
there is evidence (Rust et al., 2021, Bansal et al.,
2021, Goyal et al., 2021) that the monolingual LMs
outperformed their multilingual counterparts.

As for the amount of monolingual data required,
Zhang et al. (2021) experiments with English
showed that the amount of data for reaching at
least an 80% average over several tasks of relative
performance is around 10M tokens. The question
we have addressed in our research is whether the
critical figures for English are the same for other
languages and in particular for languages of a dif-
ferent morphological type. Having hints about the
critical amount of data and tokenization strategies
to make the most profit of the available data is of up-
most importance for low-resource languages, many
of them with a morphology more complex than that
of English, and that need to plan the production of
datasets.

A LM is an assessment of the probability distri-
bution over sequences of words given a fixed set of
words with parameters estimated from data. The
increase in the number of tokens of the vocabu-
lary of particular languages due to their inflectional
morphology has been demonstrated to affect the
coverage of the Markovian LMs (Whittaker and
Woodland, 2003). For current attention-based trans-
former language models (TLM), like RoOBERTa
that is a closed vocabulary system, the direct conse-
quence of modeling a rich inflectional morphology
should also be that the coverage of the vocabulary
will be lower than that of a morphologically simpler
language. For instance, Mielke et al. (2019) found
that English was among the easiest languages for
building a LM, while German, which is a synthetic
language, was among the hardest. Polysynthetic
languages like Quechua, with more than 100 inflec-
tional suffixes, and in which up to five suffixes can
be attached to a verbal stem, would have harder
modeling problems that will aggravate its problems

12508

Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
Volume 1: Long Papers, pages 12508-12522
July 9-14, 2023 ©2023 Association for Computational Linguistics



for being a low-resource language.

To understand how the amount of critical pre-
training data varies for different languages, we re-
produced Zhang et al. (2021) experiments but for
different languages of an increasing degree of mor-
phological complexity, as measured by type-token
ratio (TTR) following Kettunen (2014) and Mielke
et al. (2019). The languages are: English, French,
German, Turkish and Quechua. In Table 1, the TTR
of these languages assessed with the 6M datasets
used in our experiments shows the big differences
among these languages.

Language  Type Tokens  TTR

English 132,936 6,000,198 0.0221
French 188,741 6,000,003 0.0314
German 201,465 6,000,086 0.0335
Turkish 262,531 6,000,093 0.0437
Quechua 325,248 5,985,472 0.0543

Table 1: Number of Tokens, Type-Tokens and Type-
Token Ratio (TTR) for each language for the 6M dataset

However, we reproduced the conditions of
Zhang et al. (2021) but with datasets of 1M, 2M,
3M, and 6M for each language, as Quechua has
no more corpus available. For all languages and
datasizes we carried out an intrinsic evaluation, i.e.
differences in LM perplexity and an extrinsic eval-
uation, i.e. to assess to what extent critical learning
can be achieved with representations made with
smaller datasets. We have used the representations
produced by the different models to fine-tune clas-
sifiers for Name Entity Recognition (NER) and
Part-of-Speech (POS) tagging.

Besides, we repeated the different size experi-
ments with three different tokenization methods, to
get evidence on whether a linguistically motivated
tokenizer improves both perplexity and classifica-
tion results. We have compared three segmenters
that produce subword tokenization: BPE (Sennrich
et al., 2016), Unigram (Kudo, 2018) and Deep-
Spin (Peters and Martins, 2022). BPE is one of
the most used tokenizers nowadays. It initially seg-
ments the text into characters and then it iteratively
merges together the most frequently co-occurring
symbols until finding space boundaries or reach-
ing a previously set vocabulary limit. Unigram
works by segmenting the texts into words follow-
ing space boundaries to build an initial vocabu-
lary, and trimming down each symbol to obtain
a shorter vocabulary list. Differently to BPE and

Unigram, DeepSpin is a supervised canonical to-
kenizer. Mager et al. (2020) introduced canonical
segmentation as a morphological segmentation that
consists of dividing words into their standardized
morphemes. A canonical tokenizer attempts to re-
compose the character sequence that suffers some
modification when concatenated or combined with
other morphemes. For instance, in English ’prof-
itable’ becomes ’profitably’ when combined with
the adverbial morpheme ’ly’. Canonical tokeniza-
tion should produce the following tokens: ’prof-
itable’ and ’ly’, therefore reducing the vocabulary
size considerably.

The contributions of our research are two. First,
an evaluation of the critical amount of data for
training a performant TLM. The evaluation is done
intrinsically in terms of perplexity, and extrinsically
by using the produced representations to fine-tune
classifiers for two downstream applications: POS
tagging and NER. Second, evidence, both from
the intrinsic and the extrinsic evaluations, about
how much a linguistically motivated tokenization
maximizes the profit of small datasets. These hints
might be crucial for keeping technologically alive
languages that cannot get the exorbitant amount of
textual data that ensures maximal performance. Be-
sides, it is also important to get more understanding
about the capabilities of methods that could signif-
icantly differ when used for languages other than
English.

2 Related work

Hu et al. (2020) and Warstadt et al. (2020) were the
first papers addressing the amount of data necessary
for training large LM. Hu et al. (2020) trained four
classes of neural models and one baseline n-gram
model on four datasets derived from a newswire
corpus, consisting of 1M, 5SM, 14M, and 42M, to
assess differences in syntactic probing tasks among
different architectures and pretraining corpora sizes.
The main outcome of their experiments was to find
out that perplexity of the LM and performance in
the addressed probing tasks did not correlate; that
is, LM trained with more data, and therefore lower
perplexity, were not better at the probing tasks.
They concluded that the architecture proved to be a
more important source of differences than the size
of the dataset, with the GPT-2 transformer, using
BPE, achieving best results.

Warstadt et al. (2020) pretrained 12 RoBERTa
(Liu et al., 2019) models on English corpora
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varying in size and tokenized with BPE. These
MiniBERTa models were trained with quantities of
data ranging of 1M, 10M, 100M, 1B. The results
showed that RoBERTa learns linguistic features
with only a few million words, but that it takes
billions of words for the model to prefer to use
linguistic generalizations over surface ones. Us-
ing the same models, Zhang et al. (2021) explored
the relation between the amount of data and the ef-
fectiveness of ROBERTa for learning grammatical
features and other linguistic phenomena of English.
They performed an extensive collection of tests for
showing the learning curve on different tasks of the
miniBERTa models pretrained with data of differ-
ent size, from 1M to 1B words. Their results show
that the learning for traditional NLP tasks such as
POS labeling, NER identification and other higher
level tasks dealing with syntax and semantics occur
with less than 100M words of pretraining data. In
particular, learning for POS tagging and NER is re-
ported to happen with about 10M words, having no
big further improvements after that. Pérez-Mayos
et al. (2021) also used the MiniBERTas models
developed by Warstadt et al. (2020) to explore the
relation between the size of the pretraining data
and the syntactic capabilities of RoBERTa. For all
the tasks studied, the models with more training
data performed better, however the performance
improvement growth was also stalled after 10M for
tasks like POS tagging.

For languages other than English, Micheli et al.
(2020) worked on French texts with CamemBERT
(Martin et al., 2020) that is similar to RoOBERTa but
uses whole-word masking and SentencePiece tok-
enization (Kudo and Richardson, 2018), which uses
Unigram, and different pretraining data sizes. Their
results showed that 100 MB of raw text (about 10,5
M words) were sufficient to reach a similar perfor-
mance than with larger datasets on a question an-
swering task. Micallef et al. (2022) found that 46M
tokens of pretraining were enough for a Maltese
BERT to be comparable with a multilingual BERT
adapted with vocabulary augmentation methods.
Inoue et al. (2021) worked on assessing the impact
of language variants, data sizes and fine-tuning
tasks with Arabic pretrained TLM. They trained
8 Arabic models, named CAMeLBERT of 6.3B,
3.1B, 1.5B, and 636M words, that were evaluated
on different NLP tasks including NER and POS
tagging. They concluded that the amount of pre-
training data had limited and inconsistent effects

on the performance of the fine-tuned classifiers.
However, note that the size of the datasets in these
experiments were far beyond the 10M that Warstadt
et al. (2020) or Micheli et al. (2020) identified as
the amount from which the model seems unable to
learn more.

The relation of the morphological type and the
robustness of language models because of the size
of the vocabulary is a well known topic. A high
number of words in the vocabulary is a charac-
teristic of languages of a higher morphological
complexity due to inflectional and derivational pro-
cesses. For instance, Quechua, which is a polysyn-
thetic language, typically has 3 morphemes per
word and about 100 different suffixes, while En-
glish has around 1.5 morphemes per word, and
about 35 suffixes. Geutner (1995) was one of the
first works to afford evidence on reducing about
50% perplexity in a statistic language model by us-
ing a morpheme-based n-gram model for the task of
speech recognition of German. German, in addition
to inflection morphology, uses prefixes to create
new verbal tokens: ausgehen ("to go out’), hinein-
gehen (Cto go in’) and noun-noun composition is
extremely frequent with an, in principle, unlimited
number of nouns being concatenated creating new
nouns. According to Geutner (1995), morpheme-
based n-gram models proved to get more robust
probability estimates with smaller training datasets
and also limited the size of the vocabulary.

Mielke et al. (2019) studied whether there are
typological properties that make certain languages
harder to language model than others, and studied
linguistic features that correlated to difficulties for
creating a LM. They reported on language mod-
eling results on 62 languages from 13 language
families using Bible translations, and on the 21
languages used in the European Parliament pro-
ceedings. They conducted a correlational study of
features of a language to find one that is predictive
of modeling difficulty. Their results confirmed that
the type inventory or vocabulary size is a statisti-
cally significant indicator of the modeling difficulty.
Park et al. (2021) revisited these results and per-
formed experiments for 92 languages also from
a corpus of Bibles. Their results confirmed that
number of types or size of the vocabulary of the re-
lated TTR, are statistically correlated to difficulties
for language modeling. Additionally, the research
was extended for assessing how different segmen-
tation methods captured morphological segments
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and the impact of tokenization in the final results.
The results were that subword tokenization meth-
ods outperformed character-level ones. BPE was
reported to fail mitigating the problems created by
languages with high TTR, while other segmenters
that were informed with linguistic information did
better.

The gains achieved by linguistically motivated
tokenization were also observed in other research
areas like Machine Translation. Rust et al. (2021)
empirically compared multilingual pretrained lan-
guage models to their monolingual counterparts on
a set of nine typologically diverse languages. They
concluded that while the pretraining data size is an
important factor, the tokenizer of each monolingual
model plays an equally important role in the perfor-
mance on downstream tasks. The results indicate
that the models trained with dedicated monolingual
tokenizers outperform their counterparts with multi-
lingual tokenizers in most tasks. While the smallest
performance gap is for POS tagging (at most 0.4%
accuracy), performance gap for NER reaches even
1.7 difference in macro-F1 score for Arabic. Ortega
et al. (2020), Chen and Fazio (2021), and Mager
et al. (2022) are works comparing different tok-
enizers for improving translation in low-resource
language pairs. Their results provided evidence
that a linguistically motivated segmentation leads
to significant improvements in translation quality
specially in low-resource contexts.

3 Methodology

In our experiments, we tested 20 RoBERTa
models. We pretrained from scratch LM for
English, German, French, Turkish and Quechua
with different pretraining datasets ranging from
IM to 6M tokens, and we used three differ-
ent tokenizers for each: BPE, Unigram and
DeepSpin. Code and resources are available
on https://github.com/IULATERM-TRL-UPF/
Hints-on-the-data-for-language-modeling

3.1 Pretraining
3.1.1 Pretraining Data

We pretrained RoOBERTa models for the mentioned
five languages, following the same conditions of
Warstadt et al. (2020) trained the miniBERTas mod-
els for English, but further reducing the size of
datasets. The training data used in our pretraining
of RoBERTa are the following.

For English, a random part of the Wikipedia

corpus of 2.5 billion tokens used by Devlin et al.
(2019) to train BERT. For German, French and
Turkish, we used parts of OSCAR corpora ex-
tracted from the Common Crawl November 2018
snapshot, automatically classified for language
identification and filtered to avoid noise (Ortiz
Suarez et al., 2019). The German OSCAR, with
21 billion tokens, was the one used by Scheible
et al. (2020), the French OSCAR, with 32.7 bil-
lion tokens, the one that was used by Martin et al.
(2020) and the Turkish OSCAR with 11.5 million
documents, the one that was used by Toraman et al.
(2022). Monolingual-quechua-iic? in Quechua (6
million tokens) used by Zevallos et al. (2022). This
Quechua corpus is composed of a wide variety of
sources, including Wikipedia (about 1 million to-
kens) and other resources available on the Internet,
as well as educational materials and legal docu-
ments. For each language, we randomly produced
training sets with a total of 1M, 2M, 3M, and 6M
tokens each.

3.1.2 Tokenization

For our experiments we compared three different
tokenizers: BPE, Unigram and DeepSpin. Similar
to the experiments performed by Liu et al. (2019)
to train RoBERTa, we used BPE (Sennrich et al.,
2016) as a baseline. Moreover, we have used the
methods that have obtained the best results with
languages of different types of morphology. We
used Unigram (Kudo, 2018) because it is consid-
ered the best unsupervised and statistically moti-
vated method, as it has obtained interesting results
for both morphologically complex languages (e.g.
Quechua) and non-complex languages (e.g. En-
glish) (Gow-Smith et al., 2022). In the case of
canonical and linguistically motivated methods, we
chose DeepSpin (Peters and Martins, 2022), which
is the winner of SIGMORPHON 2022 (Batsuren
et al., 2022), achieving very interesting results and
superior to others of the same type of tokenization.

Because DeepSpin is a supervised model, it is
necessary to train a model for each language. The
data used to train the English and French model
were obtained from SIGMORPHON? 2022 itself,
the German data from the experiments performed
by Cotterell et al. (2016). The Turkish and Quechua
training data were created by ourselves for these

’Dataset from https://huggingface.co/datasets/
Llamacha/monolingual-quechua-iic

SDataset from https://github.com/sigmorphon/
2022SegmentationST/tree/main/data
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experiments. The Turkish raw data was obtained
from Alecakir et al. (2022), and the Quechua raw
data was obtained from Melgarejo et al. (2022). All
models were trained with the same hyperparame-
ters as DeepSpin-Base (Peters and Martins, 2022).
In Table 2, we show the data obtained from the
trained DeepSpin models of each language.

Language Annotated words Accuracy
English 458k 0.92
French 382k 0.94
German 8k 0.83
Turkish 2k 0.75
Quechua 1k 0.72

Table 2: Annotated dataset size and DeepSpin tokeniza-
tion accuracy were considered in this study. For each
language, DeepSpin was trained using an 80/10/10 split
for training, validation, and testing, respectively.

3.1.3 Hyperparameters

To replicate what Warstadt et al. (2020) did for
data smaller than 10M tokens, we used the hyper-
parameters from their Med-Small model, which
had 8 attention heads, 512 hidden size, 2048 feed-
forward network dimension, and 45M parameters.
Note that we have also set the vocabulary size to
52,000 tokens just like most experiments in lan-
guage model development with transformers. This
size of 52k tokens is due to a computational lim-
itation when processing the data. In addition, we
adopted the same parameter values for dropout,
attention dropout and learning rate decrease. All
parameters are described in Table 3.

Description Value
Number of attention heads 8
Hidden size 512
Feed-forward network dimension | 2048
Number of parameters 45M
Max Steps 10K
Batch Size 512
Dropout 0.1
Attention dropout 0.1
Learning rate decrease SE-4

Table 3: Common parameters for the pretraining of the
20 models used in our experiments.

3.2 Fine-Tuning

From the pretrained RoBERTa models, and still fol-
lowing Zhang et al. (2021), we generated represen-

tations of the token span and trained classifiers that
predict whether a given label correctly describes
the input span for NER and POS.

In order to obtain the best and validated results
in both tasks, we performed a 10-fold macro-F1
score cross-validation. In addition, we chose to
adjust some hyperparameters guided by Zhang et al.
(2021): learning rate € {1E-5, 2E-5, 3E-5, 4E-5}
and batch size € {16, 32, 48}.

In POS tagging, we used a different head with a
classification output for each token, all triggered by
a softmax function just like Delobelle et al. (2020).
Also, when a word consists of multiple tokens, the
first token is used for the word tag. The xtreme*
(Conneau et al., 2018) datasets were used for the
POS task and wikiann® (Rahimi et al., 2019) for the
NER of English, German, French, and Turkish. For
Quechua®, the dataset provided by Zevallos et al.
(2022) was used for both tasks. For evaluating the
NER and POS tasks, we used macro-F1 score.

4 Results

Our research aimed on the one hand at making an
evaluation of the amount of pretraining data and the
role of the tokenizer measured in terms of LM per-
plexity. On the other hand, the POS and NER tasks
were meant to assess the quality of the represen-
tations produced when used in fine-tuning down-
stream tasks. It is important to mention that we
did not perform any normalization in the results as
opposed to Warstadt et al. (2020), because we also
wanted to see a comparison between languages.

4.1 Pretrained models

The results per language plotted in Figure 1 show
that for all cases the DeepSpin tokenization method
substantially improves the perplexity of all LM, but
it is in the case of Turkish and Quechua that it drasti-
cally improves the perplexity from 162.47 to 94.93
and 210.14 to 102.73 respectively. English LM ob-
tained 53.51, being the lowest perplexity in all the
configurations performed in the experiments. Com-
paring BPE and Unigram, only English, German
and French achieved better results, while Turkish
and Quechua also achieved better results using Un-
igram.

We can see that the datasize amounts that are crit-
ical for modeling English (Warstadt et al., 2020)

4https: //huggingface.co/datasets/xtreme

5https: //huggingface.co/datasets/wikiann

6ht’cps: //github.com/Llamacha/QuBERT/tree/main/
resource
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Figure 1: Perplexity for each language model, training data size (1M, 2M, 3M and 6M) and tokenizer. Numeric data

can be found in the Appendix.
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Figure 2: Macro-F1 score NER and POS results for each language and data sizes (1M, 2M, 3M and 6M) of the

pretrained models.

are quite different for other languages. Despite
having the same training data size and using the
same training hyperparameters and vocabulary lim-
itations, the results in terms of LM perplexity are
very different. The perplexity of the Turkish and
Quechua language models is around twice the per-
plexity of the English LM with 6M with all the
tokenizers. In the appendix we show all the re-
sults of the pretrained models according to type of
tokenization.

4.2 Part-of-Speech Tagging

We evaluated POS tagging task for each language
with the different training sizes and different tok-
enization methods. For all models, the same hyper-
parameters mentioned in 3.2 are used. In Table 4
and Figure 2 we can see the results for all dataset
sizes for each language and the different tokeniza-
tion methods.

Zhang et al. (2021) found that POS labelling was
one of the taks whose learning curve rises earlier

and gets around 90% macro-F1 score with less
than 10M of training dataset. Our results, in Table
4, show the same trend, with English, German and
French getting macro-F1 score higher than 90%
with a corpus of 6M and the three tokenizers. For
Turkish and Quechua, BPE tokenization is the only
one that cannot achieve a 90% macro-F1 score.

As can be seen in the Table 4, for all lan-
guages and the 6M dataset, using the DeepSpin
tokenizer delivers statistically significant improve-
ments’ both when compared to BPE, that works
better for English, German and French, and when
compared to Unigram, that, as expected, works bet-
ter for Turkish and Quechua. What is more interest-
ing is that for Turkish and Quechua with DeepSpin
better results are obtained with 3M words than BPE
with 6M, showing the importance of the tokenizer
selection for synthetic languages.

"Sign test, p < 0.05
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Language BPE Unigram DeepSpin

M 2M 3M O6M | IM 2M 3M O6M | IM 2M 3M ©6M
English 0.74 079 087 096 |0.70 0.75 0.84 091|082 085 090 0.9
German | 0.70 0.77 0.84 093 | 0.65 070 0.79 090 | 0.79 0.84 0.89 0.98
French 0.70 0.75 0.82 094|066 0.71 079 091|081 0.83 0.87 0.97
Turkish 058 064 071 0.85]0.63 0.69 0.75 090 | 0.75 080 0.85 0.95
Quechua | 0.53 0.59 0.69 0.81|0.60 0.66 0.76 0.89 | 0.73 0.79 0.84 094

Table 4: Macro-F1 score results of the POS tagging task for each language, using the subset of 1M, 2M, 3M and 6M

words and three different tokenization methods.

Language BPE Unigram DeepSpin

M 2M 3M 6M | IM 2M 3M 6M | IM 2M 3M 6M
English 0.79 082 0.85 094|072 0.76 082 091|083 0.87 092 098
German | 0.81 0.83 085 091 |0.77 0.80 0.83 0.87|0.87 089 093 0.97
French 0.74 080 0.85 092069 0.77 084 0.89]0.79 0.83 0.89 0.97
Turkish 0.53 058 0.65 0.80]| 061 0.67 074 0.85]0.70 0.76 0.85 0.92
Quechua | 042 0.61 0.69 0.81|0.51 0.68 0.79 0.85|0.68 0.73 0.84 091

Table 5: Macro-F1 score results of the NER task for each language, using the subset of 1M, 2M, 3M and 6M words

and three different tokenization methods.

4.3 Named Entity Recognition

In Figure 2 we can see the results for all dataset
sizes for each language and the different tokeniza-
tion methods (figures can be found in Table 5).
For NER tasks, Zhang et al. (2021) results showed
that the learning curve still raised between 10M
and 100M datasets before stalling. Our results
show that the learning curve for NER is sharper
than for POS tagging: it needs more data for all
languages, but again Turkish and Quechua having
more difficulties in all cases. However, when us-
ing the DeepSpin tokenizer, statistically significant
improvements are achieved for each language with
all datasizes. In the case of Turkish and Quechua,
DeepSpin achieves the same macro-F1 score results
than Unigram with the 3M dataset, and improves
BPE results with the 6M dataset.

5 Discussion

In order to clarify the amount of data necessary
to achieve robust performance measured by LM
perplexity, we experimented with four training data
sizes: 1M, 2M, 3M and 6M tokens. We were in-
terested in two main issues. First, in the work of
Warstadt et al. (2020) it can be seen that perplexity
improves dramatically when the training data size
is above 10M, however low-resource languages like
Quechua do not even have texts amounting 10M to-
kens. We were interested in finding whether there is

a critical amount of data with which it is worth for
low-resource languages to build a TLM. Second,
we wanted to show to what extent LM perplexity
and the fine-tuning of downstream tasks are influ-
enced by the size of the data and the morphological
typology of languages, and whether tokenization
could mitigate these issues.

From our results it is clear that in spite of being
trained with the same configurations and amount
of training data, there are differences among the
languages we examined. Mielke et al. (2019) sug-
gested that these differences could be due to the
difference in morphological complexity between
these languages. A rich inflectional morphology
increases the vocabulary. As we can see in Table
6, tokenizers that try to identify the compositional
characteristics of morphology can significantly re-
duce the vocabulary size. Therefore, the drastic
improvement in the perplexity results for Quechua,
with perplexity 210 with BPE and 102 with Deep-
Spin, is due to the fact that DeepSpin manages
to reduce the vocabulary thanks to a linguistically
motivated segmentation.

We also wanted to get evidence about the qual-
ity of the representations obtained by our differ-
ent TLM for fine-tuning downstream tasks. The
results shown in Table 4 and Table 5 show that rep-
resentations get better with more data, but a TLM
trained with dataset of 6M tokens and a using a
linguistically motivated tokenizer can deliver very
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BPE Unigram DeepSpin

Language M 6M M 6M M 6M

Voc. TTR Voc. TTR | Voc. TTR Voc. TTR | Voc. TTR Voc. TITR
English 203 0.203 51 0.084 | 30.1 0.301 51.3 0.085| 14.1 0.141 16.2 0.027
French 209 0209 52 0.085|30.7 0.307 51.6 0.086 | 142 0.142 22.8 0.038
German 215 0215 52 0.085 | 314 0314 51.6 0.086 | 147 0.147 252 0.042
Turkish 219 0219 52 0.086 | 32.1 0.321 52 0.086 | 15.1 0.151 282 0.047
Quechua | 22.1 0.221 52 0.086 | 33.4 0.334 52 0.086 | 153 0.153 322 0.053

Table 6: Vocabulary size (Voc.) and Type-Token Ratio (TTR) of each language according to the size of the training
data and the tokenization method. TTR is multiplied by 103 and Voc. is divided by 10 to better appreciate the

results.

competitive results for tasks like POS tagging and
NER.

6 Conclusions

In this paper we have related the quality of TLM
with the training data size. We have approached
the topic from the point of view of low-resource
languages that need to maximize the available data.
We have demonstrated how different methods, in
this case tokenizers, apply to languages other than
English. We have evaluated intrinsically and extrin-
sically the impact of datasize and tokenization with
the aim of giving some hints for the building of
TLM for low-resource languages, in particular for
those whose morphology processes produces large
vocabularies. These hints are explaining below.

6.1 How much data is enough?

In our experiments, all languages show a continu-
ous reduction of perplexity when from 1M to 6M
tokens, with no stagnation. Regardless of language
type, the decrease in perplexity progresses as the
model is trained with more data, suggesting that
it can still improve more with more data. How-
ever, we provide evidence on the fact that with
6M all the languages in our experiments, but Turk-
ish and Quechua, could reach a perplexity below
100, and macro-F1 score higher than 0.9 in the two
downstream tasks. With a linguistically motivated
and canonical tokenizer like DeepSpin, Turkish and
Quechua could also attain these competitive results,
as explained below.

6.2 Which tokenizer to use?

Tokenization methods play an important role in
building pretrained models (Rust et al., 2021). As
seen in our experiments, canonical and linguisti-
cally motivated tokenizers achieve astonishing re-

sults compared to other types of tokenizers. The re-
duction by almost 50% of the perplexity of the pre-
entangled models of Turkish and Quechua when
using DeepSpin instead of BPE is impressive. Lan-
guages morphologically different from Turkish and
Quechua also showed significant benefits, e.g., En-
glish, French and German showed an improvement
of 15%, 31% and 24% respectively.

On the other hand, it can also be seen that using
DeepSpin results in significant improvements in
tasks such as NER and POS tagging. Both Turk-
ish and Quechua manage to increase the macro-F1
score by 0.1 and 0.14 respectively. English, French
and German also manage to increase the macro-F1
score by 0.03 in most cases.

Finally, we can say that canonical and linguisti-
cally motivated tokenization methods present sta-
tistically significant improvements when working
with morphologically complex languages com-
pared to statistically motivated methods such as
BPE and Unigram.

7 Limitations

We have limited ourselves to experimenting with
only five languages due to lack of data for both
the pretrained models and the DeepSpin tokenizer
models. Although there are annotated data for
some low-resource polysynthetic languages such
as Nahuatl, Raramuri, Wixarika, Shipibo-Konibo
(Mager et al., 2020) and Kunwinjku (Pimentel et al.,
2021), the available data was below 1M and there-
fore not enough to create pretrained models for our
experiments.

Regarding the aforementioned limitation, Deep-
Spin which has proven to be a good option to miti-
gate the problem of high TTR languages in closed
vocabulary environments is a supervised method
that requires the availability of training data. As
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can be seen in Table 2, to achieve 90% to better
accuracy DeepSpin requires around 350K anno-
tated words. This can be a major drawback for
low-resource languages, although the results with
less annotated data are still competitive. We have
not studied another source of differences in the vo-
cabulary size that could be due to the texts used in
pretraining. Ortiz Sudrez et al. (2019) found that, in
general, the OSCAR samples contain more vocab-
ulary words than the Wikipedia ones. Additionally,
the Quechua corpus we have used also consists of
educational and legal texts that can increase the
number of different types, compared to Wikipedia
texts.

On the other hand, we believe it is important to
mention that for the Quechua language the train-
ing, evaluation, and testing data for NER and POS
tasks were obtained from the same corpus used for
training the language model. Note that, due to the
scarcity of available digital and physical texts in
that language, it is difficult to do it otherwise. The
limited availability of texts leads to the use of the
same corpus for multiple tasks, which could have
implications on the evaluation of the obtained re-
sults. For instance, if the training corpus contains
an unequal proportion of certain types of gram-
matical structures, it might negatively affect the
performance of POS classifiers. Furthermore, if
the corpus does not adequately reflect the linguistic
variability and diversity of Quechua, the resulting
models are likely to be less accurate and less gen-
eralizable.
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The datasets used in this paper for the training and
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A Appendices
Al

To train language models for each language, we fol-
lowed the choices by Warstadt et al. (2020) for their
RoBERTa Med-Small model with 45M parameters,
based on the amount of training data (<10M).

We ran all training in parallel on five servers,
with each language on a separate server. All servers
were equipped with an Intel Xeon E5-2650 v4 CPU
(12 cores, 2.2GHz 30MB Cache 2400MHz 105W)

Model and training procedure: details
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and a Gigabyte Geforce GTX 1080 Ti TURBO
11.72GB GPU. We trained each model for 10k
steps, and the training time varied depending on
the amount of training data. The models trained
on 1M, 2M, 3M, and 6M took 16 hours, 1 day,
2 days, and 3 days, respectively. The entire LM
creation experiment took approximately 7 days.
Fine-tuning the POS and NER models for Quechua
took 2 days; for Turkish, it took 4 days; for French
and German took 5 days each, and for English,
it took 10 days. We performed each fine-tuning
process using 1k steps and each fine-tuning process
was carried out on the same server that was used to
train the language model.

A.2 Experiment results

The following Tables show the perplexity of the
different language models trained with different to-
kenization methods and amount of training tokens.
Table 7 shows perplexity of the language mod-
els that used Unigraman as a tokenization method,
while Table 8 shows perplexity with BPE and Table
9 with DeepSpin.
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Language Tokens (Millions) Perplexity | Language Tokens (Millions) Perplexity
English 153.38 English 109.07
German 194.62 German 125.83
French 1 231.03 French 3 147.15
Turkish 328.91 Turkish 205.83
Quechua 375.17 Quechua 297.29
English 121.14 English 62.15
German 143.33 German 73.21
French 2 199.80 French 6 91.72
Turkish 267.22 Turkish 162.47
Quechua 335.41 Quechua 210.14

Table 7: Perplexity for each language and training data size using the BPE tokenization method.

Language Tokens (Millions) Perplexity | Language Tokens (Millions) Perplexity
English 165.72 English 133.37
German 225.13 German 168.11
French 1 242.15 French 3 161.5
Turkish 302.24 Turkish 178.61
Quechua 343.61 Quechua 264.82
English 158.91 English 115.82
German 193.06 German 106.62
French 2 208.35 French 6 110.80
Turkish 241.77 Turkish 131.09
Quechua 301.09 Quechua 182.35

Table 8: Perplexity for each language and training data size using the Unigram tokenization method.

Language Tokens (Millions) Perplexity | Language Tokens (Millions) Perplexity
English 141.77 English 85.42
German 164.39 German 92.61
French 1 193.16 French 3 128.19
Turkish 227.11 Turkish 146.38
Quechua 250.18 Quechua 164.25
English 111.13 English 53.51
German 138.28 German 55.53
French 2 170.03 French 6 63.28
Turkish 191.88 Turkish 94.93
Quechua 203.15 Quechua 102.73

Table 9: Perplexity for each language and training data size using the DeepSpin tokenization method.
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