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Abstract

Automated Essay Scoring (AES) aims to score
essays written in response to specific prompts.
Many AES models have been proposed, but
most of them are either prompt-specific or
prompt-adaptive and cannot generalize well
on "unseen" prompts. This work focuses on
improving the generalization ability of AES
models from the perspective of domain gen-
eralization, where the data of target prompts
cannot be accessed during training. Specifi-
cally, we propose a prompt-aware neural AES
model to extract comprehensive representa-
tion for essay scoring, including both prompt-
invariant and prompt-specific features. To im-
prove the generalization of representation, we
further propose a novel disentangled represen-
tation learning framework. In this framework,
a contrastive norm-angular alignment strategy
and a counterfactual self-training strategy are
designed to disentangle the prompt-invariant
information and prompt-specific information
in representation. Extensive experimental re-
sults on datasets of both ASAP and TOEFL11
demonstrate the effectiveness of our method
under the domain generalization setting.

1 Introduction

Automated Essay Scoring (AES), which aims to
score essays written for specific prompts, is helpful
in reducing the burden of scoring staff in various
writing tests (Ke and Ng, 2019). Over the past few
years, supervised deep learning has achieved re-
markable success on the prompt-specific AES task
(Taghipour and Ng, 2016; Farag et al., 2018; Tay
et al., 2018), which assumes that the training and
test data are from the same prompt. However, in
many real-world scenarios, the training and test
data often come from different prompts, which
leads to a performance degradation of prompt-
specific AES model on the out-of-distribution tar-
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Figure 1: Comparison among prompt specific, prompt
adaptation, and prompt generalization settings.

get prompt (Dong and Zhang, 2016; Cozma et al.,
2018).

Many researchers have tried to adapt the AES
model from source prompts to the target prompt,
with limited labeled data (Cozma et al., 2018; Cao
et al., 2020) or only unlabeled data (Jin et al., 2018)
in target prompt. Despite their success, they need
to access the data of target prompts during training
and may fail to work when the target prompt is
unavailable during training.

To this end, in this paper, we focus on the prompt
generalization setting. As shown in Figure 1, we
aim to train the AES model only based on source
prompts and enable it to generalize well on “unseen”
prompt(s). Existing prompt-generalized AES meth-
ods are relatively few, mainly including the generic
method based on non-content handcrafted features
(Yigal et al., 2010) and the prompt-agnostic method
based on non prompt-specific hybrid features (Rid-
ley et al., 2020). These methods discard the prompt-
specific content features to alleviate the negative
impact brought by domain shift, whereas they can-
not score essays comprehensively.

To achieve more comprehensive essay scoring,
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we consider extracting features from perspectives
of both prompt-invariant essay quality and prompt-
specific prompt adherence. Therefore, we propose
a prompt-aware neural AES model, which can ex-
tract the essay quality features based on an essay
encoder such as the pre-trained BERT (Devlin et al.,
2019) and extract the prompt adherence features
based on a text matching module.

Although this AES model can be directly trained
with data of source prompts, there are still two
problems hindering its generalization on unseen
prompts. (1) The essay quality features extracted
by encoder such as BERT may encode both qual-
ity and content information and they are entangled
in the features. How to disentangle independent
quality information from features is the first prob-
lem. (2) Both prompt adherence features and essay
quality features are extracted based on essay. Thus,
from the view of causality (Pearl, 2009), the essay
is a confounder of both features, leading to a spu-
rious correlation between prompt adherence and
essay quality. For example, the model may learn
a correlation that high-quality essays often have
good prompt adherence, whereas this correlation is
spurious since an essay may have different adher-
ence but unchanged quality under different prompts.
Then, how to disentangle the spurious correlation
to make these two kinds of features independently
contribute to the final score is the second problem.

To address the above problems, we propose a dis-
entangled representation learning framework. For
the first problem, we design a contrastive norm-
angular alignment strategy, which addresses the
quality-content disentanglement by reflecting qual-
ity with norm and reflecting content with angu-
lar direction. For the second problem, we design
a counterfactual self-training strategy, which ad-
dresses the quality-adherence disentanglement by
self-training with quality-invariant and adherence-
variant counterfactual data.

The contributions of this paper are as follows:

• We propose a prompt-aware neural network
model for comprehensive essay scoring under
the prompt generalization setting.

• We propose a novel disentangled representa-
tion learning framework to further improve
the generalization ability of the AES model.

• Extensive experiments are conducted on two
public datasets, and the results demonstrate
the effectiveness of our method.

2 Related Work

Automated Essay Scoring Research on auto-
mated essay scoring has spanned the last 50 years
(Ke and Ng, 2019; Klebanov and Madnani, 2020).
From the perspective of essay representation, exist-
ing AES methods can be categorized into the early
handcrafted features based methods (Page, 1994;
Foltz et al., 1999; Persing et al., 2010; Somasun-
daran et al., 2014; Persing and Ng, 2014), recent
neural network based methods (Dong and Zhang,
2016; Tay et al., 2018; Jiang et al., 2021), and
hybrid features based methods (Uto et al., 2020a;
Shibata and Uto, 2022). These methods can be fur-
ther grouped into three scoring paradigms: prompt
specific (Taghipour and Ng, 2016; Farag et al.,
2018; Tay et al., 2018), prompt adaptation (Cozma
et al., 2018; Cao et al., 2020; Jin et al., 2018; Rid-
ley et al., 2021), and prompt generalization (Yigal
et al., 2010; Ridley et al., 2020). While prompt-
specific methods can achieve good performance,
prompt-adaptive and prompt-generalized methods
can reduce the annotation labor in target prompts.
Domain Generalization Domain generalization
(DG) has been intensively studied in recent years
(Wang et al., 2022). Existing DG methods can
be categorized into three groups: (1) data aug-
mentation (Zhao et al., 2020; Reich et al., 2022)
which generates diverse samples to help general-
ization, (2) representation learning (Shen et al.,
2021; Bui et al., 2021) which tries to learn domain-
invariant representation or disentangle the features
into domain-shared and domain-specific parts for
better generalization, and (3) learning strategy
(Segù et al., 2023; Lake, 2019) which tries to learn
general knowledge by ensemble learning or meta-
learning. This work considers improving gener-
alization in terms of both data augmentation and
representation learning.
Disentangled Representation Learning Disen-
tangled representation learning has recently been
used in many NLP tasks, such as style transfer
(John et al., 2019; Nangi et al., 2021), machine
reading comprehension (Wu et al., 2022), and nega-
tion and uncertainty modeling (Vasilakes et al.,
2022). Most of these methods disentangle the un-
derlying explanatory factors by separating features
into several independent low-dimensional spaces,
where commonly-used techniques include adver-
sarial loss (John et al., 2019), information measure
(Cheng et al., 2020), and counterfactual reasoning
(Nangi et al., 2021). This work tries two types of
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representation disentanglements: one disentangles
two factors respectively with norm and angular di-
rection, while the other disentangles the spurious
correlation based on counterfactual reasoning.

3 Proposed Method

3.1 Task Definition

The prompt-generalized AES task can be defined
as follows: given K source prompts (i.e., do-
mains) PS = {P1,P2, ...,PK} as the training set,
where the i-th prompt Pi has Ni labeled instances
{xij , yij}Ni

j=1. Each instance xij is a text pair (eij , p
i
j)

and yij is the holistic score of essay eij under the
prompt pij , where pij is the prompt text of the i-th
source prompt Pi. The objective is to learn a model
from multiple source prompts that can be general-
ized to the target unseen prompt PT with unknown
distribution.

3.2 Overview

We propose a Prompt-Aware Neural Network
(PANN) model for essay scoring, and a Disentan-
gled Representation Learning (DRL) framework
to improve its generalization on unseen prompts.
Specifically, PANN takes both essays and prompts
as inputs and extracts both prompt-invariant essay
quality features and prompt-specific prompt ad-
herence features for comprehensive essay scoring.
DRL is designed in a pre-training and fine-tuning
paradigm. In the pre-training stage, a contrastive
norm-angular alignment strategy is designed to pre-
train the essay quality features, aiming at disen-
tangling the quality information and content in-
formation in features. In the fine-tuning stage, a
counterfactual self-training strategy is employed to
fine-tune the whole PANN, aiming at disentangling
the spurious correlation between essay quality fea-
tures and prompt adherence features. Finally, the
fully-trained PANN is used for essay scoring on
target unseen prompts.

3.3 Model Architecture of PANN

Our PANN contains three main components: the
Essay Quality network (EQ-net) which only takes
essay as input and is expected to extract prompt-
invariant essay quality features, the Prompt Ad-
herence network (PA-net) which takes both essay
and prompt as inputs and is expected to extract
prompt-specific prompt adherence features, and
the Essay Scoring Predictor (ESP) which combines
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Figure 2: Model architecture of PANN

both kinds of features to predict a holistic score.
The architecture of PANN is illustrated in Figure 2.

For EQ-net, we employ a Transformer-based
neural network fϕ(·) to extract features vi of an
input essay ei, where vi = fϕ(ei;ϕ) refers to the
essay quality features and ϕ indicates the network
parameters. This module is not limited to a spe-
cific architecture and can be various existing AES
encoders. Here, we initialize EQ-net with the pre-
trained BERT (Devlin et al., 2019), which has been
proven to be effective and to have good generaliza-
tion in various NLP tasks, including essay scoring
(Mayfield and Black, 2020; Uto et al., 2020a).

For PA-net, we design an interaction-based text
matching model fθ(·) to extract features ui of
an input prompt-essay pair (pi, ei), where ui =
fϑ(pi, ei;ϑ) refers to the prompt adherence fea-
tures and ϑ indicates the network parameters. Since
such interaction-based text matching model can fo-
cus only on the word-level similarities between
essays and prompts, it can avoid encoding informa-
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Figure 3: Illustration of the Contrastive Norm-Angular Alignment strategy for quality-content disentanglement.

tion related to the essay quality, such as syntax and
coherence, thus making the features more specific
to prompt adherence. More details of PA-net are
given in Appendix A.

For ESP, we feed the combined features to sev-
eral fully-connected (FC) layers followed by a lin-
ear layer with sigmoid activation for essay score
prediction:

ŷi = sigmoid(Ws × σ([vi ⊕ ui]) + bs) (1)

where ⊕ represents the concatenation of vectors
and σ(·) refers to the FC transformations.

3.4 Disentangled Representation Learning
In PANN, we design two sub-networks (i.e., PA-net
and EQ-net), and expect them to capture the infor-
mation of prompt adherence and essay quality re-
spectively. However, the EQ-net may encode both
prompt-invariant quality information and prompt-
related content information, and the content infor-
mation often shifts across prompts, which may hin-
der the generalization of EQ-net. Besides, both PA-
net and EQ-net take essay as input, which makes
the essay become a confounder of prompt adher-
ence features and essay quality features, leading to
a spurious correlation between them. In DRL, we
correspondingly design two strategies to address
these representation entanglements.

3.4.1 Quality-Content Disentanglement
We propose a Contrastive Norm-Angular Align-
ment (CNAA) strategy to disentangle the quality
and content information in essay quality features.
This strategy is designed based on the norm invari-
ant and angular shift assumption, which assumes
that the quality and content information can be dis-
entangled by aligning features in terms of norm and
angle respectively. For norm invariant, we expect
that essays of similar quality can be distributed with
similar norms and that these norms may be invari-
ant across prompts. For angular shift, we expect

that essays of similar content (i.e., prompt) can
be distributed with similar angles but these angles
should shift across prompts.

Data Augmentation. To prepare data for con-
trastive norm-angular alignment, as shown in Fig-
ure 3(a), we first extract all high-score and low-
score essays from the training set to form the origi-
nal data Do. Two thresholds δh and δl are used for
essay filtering. For each essay ei ∈ Do, apart from
its score yi, we assign extra quality label qi and
content label ci to it, where qi ∈ {0, 1} denotes
quality type (i.e., qi = 0 when yi ≥ δh and qi = 1
when yi ≤ δl) and ci ∈ {1, ...,K} denotes content
type (i.e., the prompt-ID). Therefore, the original
data can be denoted as Do = {(ei, yi, qi, ci)}No

i=1.
We further construct derived data Dd by synthe-

sizing four kinds of essays based on text concatena-
tion, as shown in Figure 3(a). For each synthesized
essay e′k = ei ⊕ ej (or ei ⊕ pj where pj can be
viewed as a special essay), we decide its score
y′k by randomly reducing the score max(yi, yj)
by a ∼ N (µ, σ) and randomly select a prompt-
ID ci or cj as its content label c′k. Two reasons
motivate us to randomly select a score lower than
max(yi, yj) for a synthesized essay. First, con-
catenating two essays may reduce the quality (e.g.,
coherence and organization) of the higher-score
one. Second, concatenating two essays from differ-
ent prompts may reduce essay’s prompt adherence
to both prompts. The essays with high score or
low score are selected to form the derived data
Dd = {(e′i, y′i, q′i, c′i)}Nd

i=1.
Norm-Invariant & Angular-Shift Alignment.

We implement the norm-angular alignment based
on pairwise contrastive learning, which includes
norm-invariant quality alignment and angular-shift
content alignment.

Specifically, we sample essay pairs (ei, ej) from
augmented data, where ei is sampled from Do and
ej is sampled fromDo∪Dd. Given a pair of essays
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Figure 4: Illustration of the Counterfactual Self-Training (CST) strategy for quality-adherence disentanglement.

(ei, ej), we can first get their essay quality features
(vi, vj) based on EQ-net.

Then, as shown in Figure 3(b), we can align
features in perspective of quality information based
on the Norm-Invariant Alignment (NIA) loss:

LNIA =

{
|‖vi‖ − ‖vj‖|, if qi = qj ;

max (0,m1 − |‖vi‖ − ‖vj‖|), if qi 6= qj ,

(2)

where m1 denotes the margin between two quality
types. Simultaneously, as shown in Figure 3(c),
we can align features in perspective of content in-
formation based on the Angular-Shift Alignment
(ASA) loss:

LASA =

{
1− cos(vi, vj), if ci = cj ;

max (0, cos(vi, vj)−m2), if ci 6= cj ,
(3)

where m2 denotes the margin between any two
content types (i.e., prompts).

Finally, the overall loss of this strategy is:

LCNAA = LNIA + LASA (4)

3.4.2 Quality-Adherence Disentanglement
We propose a Counterfactual Self-Training (CST)
strategy to disentangle the spurious correlation be-
tween essay quality features and prompt adherence
features. While we do not call upon the mathemati-
cal machinery of causality (Pearl, 2009), we draw
inspiration from the underlying philosophy to con-
struct counterfactual data, where we try to ask and
answer: “What would the final score have been if
the essay had a different prompt adherence, while
its essay quality remained the same?” As shown
in Figure 4, with the counterfactual data, PANN
can be fine-tuned based on our desinged pre-score
guided self-training.

Counterfactual Data Construction. Due to
the disentangled structure of PA-net and EQ-net,
we can easily change the prompt adherence features

by controlling the input of PA-net while maintain-
ing the essay quality features unchanged. As shown
in Figure 4(a), for each instance (pi, ei, ei, yi)
with the input form of PANN (i.e., first two in-
puts pi and ei for PA-net while the third input
ei for EQ-net), we can generate three counter-
factual instances (pi, p̃

20
i , ei, ỹ

20
i ), (pi, p̃

30
i , ei, ỹ

30
i ),

and (pi, p̃
50
i , ei, ỹ

50
i ), where pi is constructed by

randomly replacing 50% tokens of pi with random
tokens, p̃zi is constructed by randomly replacing
z% tokens of pi with random tokens, and ỹzi is the
pre-score of the text pair (pi, p̃

z
i ). Here we make

an empirical guess for these pre-scores to highlight
their differences in the degree of matching, where
ỹ20i = yi × 1.1, ỹ30i = yi × 1, and ỹ50i = yi × 0.9.

Pre-Score Guided Self-Training. Unlike con-
ventional self-training strategies that directly pre-
dict the pseudo-labels for unlabeled data, we com-
bine both the pre-score and the predicted pseudo-
score of each counterfactual instance as its final
score. In this way, the prior knowledge we pro-
vide in the pre-scores and the model’s knowledge
encoded in the pseudo-scores can be well merged.

Specifically, we first warm up PANN on the orig-
inal training set for several epochs based on the
MSE (Mean Squared Error) loss function:

LAES = − 1

m

m∑

i=1

(yi − ŷi)2, (5)

where yi and ŷi denote the ground-truth and the
predicted score of essay ei respectively. Then, we
employ the trained PANN to infer a pseudo-score
ŷi for each counterfactual instance (pi, p̃i, ei, ỹi),
and calculate its score y′i:

y′i = αỹi + (1− α)ŷi, (6)

where α is a tradeoff parameter. Finally, we con-
tinue to train PANN on the combination of the orig-
inal training set and these counterfactual instances.
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4 Experiments

4.1 Datasets and Experiment Settings
We use two public datasets for the experiments
of prompt-generalized essay scoring. The first is
the ASAP (Automated Student Assessment Prize)
dataset1, which contains 12,978 essays from eight
prompts of different genres (i.e., ARG, RES, and
NAR) scored in various ranges. The second is the
TOEFL11 (Blanchard et al., 2013), which contains
12,100 essays sampled from eight prompts and
scored by three levels (low/medium/high). These
two datasets are widely used by current studies
on AES (Dong and Zhang, 2016; Jin et al., 2018;
Nguyen and Litman, 2018). The detailed statistics
of these two datasets are listed in Table 1.

For prompt-generalized essay scoring, we design
experiments on two datasets using prompt-wise
leave-one-out validation. One prompt is used as
test set, while the remaining seven prompt are ran-
domly divided into training set and validation set
by a ratio of 4 to 1. The model achieving the best
performance on validation set is used for testing.
To measure the performance of essay scoring, we
adopt the widely-used Quadratic Weighted Kappa
(QWK) (Dong and Zhang, 2016; Jin et al., 2018).
To reduce randomness, under each case, 5 runs are
performed, and the average results are reported.

4.2 Implementation Details
In our PANN model, for PA-net, the number of
kernels is set to 8. The µk of eight kernels is uni-
formly selected from [−1, 1] with equal interval,
while the kernel width σk is set to 0.1. For EQ-net,
the essay encoder is initialized with the weights of
the ‘uncased BERT-based model’2. For the essay
scoring predictor, the number of FC layers is set
to 2. For the data augmentation in CNAA strat-
egy, the µ and σ of random score reduction is set
to 0.4 and 1 respectively. For the ASAP dataset,
we select thresholds δl and δh with grid search
(δl ∈ [0.2, 0.5] and δh ∈ [0.6, 0.9]) and finally
set δl = 0.3 and δh = 0.8. For the TOEFL11
dataset, we directly use the three-level interval di-
vision defined by the dataset, without the need to
set specific δl and δh values. For score merging
in CST strategy, the tradeoff parameter α is set to
0.8. For model training, the Adam optimizer is
adopted, and the learning rate is set to 5 × 10−5.
For the training of AES models, the ground-truth

1https://www.kaggle.com/c/asap-aes/data
2https://huggingface.co/BERT-base-uncased

Dataset Prompt #Essay Genre Avg Len Range

ASAP

1 1,783 ARG 350 2-12
2 1,800 ARG 350 1-6
3 1,726 RES 150 0-3
4 1,772 RES 150 0-3
5 1,805 RES 150 0-4
6 1,800 RES 150 0-4
7 1,569 NAR 250 0-30
8 723 NAR 650 0-60

TOEFL11

1 1656 ARG 332 l/m/h
2 1562 ARG 331 l/m/h
3 1396 ARG 283 l/m/h
4 1509 ARG 302 l/m/h
5 1648 ARG 349 l/m/h
6 960 ARG 203 l/m/h
7 1686 ARG 335 l/m/h
8 1683 ARG 340 l/m/h

Table 1: Statistics of the ASAP and TOEFL11 datasets.
For column Genre, ARG denotes argumentative essays,
RES denotes response essays, and NAR denotes narra-
tive essays. The last column lists the score ranges.

scores of essays are rescaled into [0, 1]. For the
results evaluation, the predicted scores are rescaled
to the original score range of the corresponding
prompts. Our model is implemented in PyTorch1.4
and trained on 1 NVIDIA Tesla V100 GPU. The
number of parameters in our model is 112.52M.
The computational budget for running PANN and
PANN+DRL with one epoch is 0.036 and 0.059
GPU hours, respectively.

4.3 Comparison with Other Methods

We compare our method with the following meth-
ods under prompt-generalized setting, including
three types of methods: handcrafted features based,
neural network based, and hybrid.
• BLRR (Phandi et al., 2015) and RankSVM

(Jin et al., 2018) are based on handcrafted features,
where correlated Bayesian linear regression and
rankSVM are used for prediction respectively.
• Neural AES models: 2L-LSTM (Alikanio-

tis et al., 2016), HCNN (Dong and Zhang, 2016),
CNN-LSTM-MoT (Taghipour and Ng, 2016), and
CNN-LSTM-Att (Dong et al., 2017).
• BERT has recently been used for AES (May-

field and Black, 2020; Cao et al., 2020; Uto et al.,
2020b), which is also used to initialize our EQ-
net. BERT-Dual indicates the BERT with essay-
prompt text pair as dual input.
• PAES (Ridley et al., 2020) is a prompt-

generalized hybrid model, but it needs to use the
available target-prompt essays to normalize feature
values of the entire test set. We denote the ratio of
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Dataset Method Target Unseen Prompt

P1 P2 P3 P4 P5 P6 P7 P8 Avg.

ASAP

BLRR 0.472 0.45 0.325 0.507 0.663 0.563 0.492 0.257 0.466
RankSVM† 0.737 0.467 0.464 0.511 0.669 0.529 0.586 0.408 0.546

PAES-Target40%
† 0.798 0.628 0.659 0.653 0.756 0.626 0.724 0.64 0.686

PAES-Target20%
† − − − − − − − − 0.650

2L-LSTM 0.432 0.390 0.473 0.647 0.622 0.494 0.495 0.337 0.486
HCNN 0.479 0.403 0.532 0.576 0.604 0.543 0.349 0.433 0.490

CNN-LSTM 0.473 0.367 0.506 0.620 0.609 0.485 0.454 0.313 0.478
CNN-LSTM-ATT 0.418 0.314 0.473 0.589 0.556 0.566 0.517 0.330 0.470

BERT 0.609 0.499 0.666 0.681 0.724 0.637 0.699 0.537 0.632
BERT-Dual 0.270 0.484 0.578 0.529 0.542 0.671 0.232 0.586 0.487

PANN (Ours) 0.762 0.686 0.637 0.673 0.778 0.664 0.742 0.677 0.702

TOEFL11

BLRR 0.273 0.388 0.462 0.441 0.413 0.398 0.388 0.406 0.396
RankSVM 0.575 0.524 0.645 0.607 0.548 0.558 0.56 0.549 0.571

2L-LSTM 0.483 0.348 0.500 0.483 0.508 0.565 0.451 0.469 0.476
HCNN 0.457 0.509 0.619 0.463 0.569 0.587 0.480 0.558 0.530

CNN-LSTM 0.510 0.530 0.606 0.557 0.586 0.582 0.458 0.549 0.547
CNN-LSTM-ATT 0.525 0.503 0.612 0.555 0.634 0.612 0.501 0.511 0.557

BERT 0.592 0.645 0.656 0.593 0.662 0.685 0.633 0.613 0.635
BERT-Dual 0.683 0.658 0.706 0.685 0.672 0.680 0.661 0.673 0.677

PANN (Ours) 0.701 0.662 0.722 0.686 0.697 0.705 0.700 0.685 0.695

Table 2: QWK measures achieved in target unseen prompts on both ASAP and TOEFL11 datasets. The best
measures are in bold. † denotes that the data is referenced from its original paper.

target data it uses for feature normalization.
The results are listed in Table 2. As shown, our

PANN model can outperform most baseline meth-
ods by a large margin and achieve the best over-
all performance on both datasets (i.e., 0.702 on
ASAP and 0.695 on TOEFL11). This indicates
that our method is effective for prompt-generalized
essay scoring. Besides, BERT performs good and
stably on both datasets, but BERT-Dual performs
significantly different on two datasets (i.e., 0.487
on ASAP and 0.677 on TOEFL11). This may be
because, compared with BERT, which only takes
essays as input, BERT-Dual takes both prompt and
essay as its inputs, making its performance easily
affected by the prompt-specific information. While
all eight prompts of TOEFL11 are of the same
genre (i.e., argumentative essay) and their prompt
are of the same template, ASAP contains three gen-
res and the templates of different prompts vary a
lot. This may make BERT-Dual easier to gener-
alize well on TOEFL11, but harder to generalize
on ASAP. This also indicates that prompt-specific
information is useful for essay scoring, but is easily
entangled with the prompt-invariant information
and thus affects the generalizability.

By observing other baseline methods, we can
find that the neural models without pre-training
perform significantly worse than BERT. The hand-
crafted features based methods (e.g. RankSVM )
perform stably on both datasets and can outper-
form many neural AES models. PAES-Target40%

achieves good performance on ASAP, but it needs
40% of essays from the target prompt for feature
normalization and cannot work well when only a
handful of target prompt essays are given.

4.4 Ablation Study

We then explore the effect of the components (i.e.,
PA-net and EQ-net) and the disentangled represen-
tation learning framework (i.e., NIA, ASA, and
CST) on the performance of PANN, by adding
each of them one by one. As shown in Table 3,
the performance of combining the two components
(i.e., PA-net+EQ-net) is better than the individual
performance of either PA-net or EQ-net. This in-
dicates that both PA-net and EQ-net can provide
useful information for essay scoring. By observ-
ing the disentangled representation learning frame-
work, we can find that the performance of EQ-net is
improved when EQ-net is pre-trained with NIA and
ASA together (i.e., 0.632 to 0.664 on ASAP and
0.635 to 0.666 on TOEFL11). But when EQ-net is
pre-trained only with one of them, the performance
is degraded on TOEFL11. Similar phenomenon
can be observed for PA-net+EQ-net. This may
be because these two losses need to be used si-
multaneously to disentangle quality and content
information. Besides, CST strategy also needs to
be used together with CNAA strategy to achieve
better performance. In summary, all components
and disentanglement strategies contribute to the
final performance of PANN.
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Dataset Model Setting Target Unseen Prompt

P1 P2 P3 P4 P5 P6 P7 P8 Avg.

ASAP

PA-net 0.719 0.370 0.484 0.408 0.709 0.650 0.635 0.523 0.562

EQ-net 0.609 0.499 0.666 0.681 0.724 0.637 0.699 0.537 0.632
+ NIA 0.618 0.599 0.596 0.677 0.751 0.653 0.645 0.586 0.641
+ ASA 0.565 0.587 0.658 0.682 0.763 0.659 0.608 0.555 0.635
+ NIA&ASA 0.646 0.616 0.651 0.706 0.727 0.668 0.692 0.607 0.664

PA-net + EQ-net 0.698 0.592 0.616 0.645 0.731 0.610 0.576 0.579 0.631
+ NIA 0.705 0.623 0.623 0.652 0.734 0.625 0.588 0.588 0.642
+ ASA 0.694 0.597 0.598 0.622 0.725 0.609 0.552 0.607 0.626
+ NIA&ASA 0.772 0.657 0.630 0.697 0.776 0.651 0.707 0.691 0.698
+ CST 0.727 0.580 0.630 0.658 0.758 0.606 0.624 0.610 0.649
+ NIA&ASA&CST 0.762 0.686 0.637 0.673 0.778 0.664 0.742 0.677 0.702

TOEFL11

PA-net 0.500 0.294 0.543 0.488 0.474 0.429 0.475 0.463 0.458

EQ-net 0.592 0.645 0.656 0.593 0.662 0.685 0.633 0.613 0.635
+ NIA 0.684 0.377 0.655 0.676 0.574 0.580 0.526 0.563 0.579
+ ASA 0.661 0.289 0.657 0.680 0.605 0.659 0.580 0.447 0.572
+ NIA&ASA 0.633 0.658 0.688 0.700 0.677 0.680 0.647 0.643 0.666

PA-net + EQ-net 0.650 0.636 0.678 0.635 0.654 0.628 0.682 0.631 0.649
+ NIA 0.642 0.649 0.676 0.658 0.675 0.576 0.647 0.614 0.642
+ ASA 0.547 0.645 0.668 0.666 0.678 0.484 0.612 0.624 0.616
+ NIA&ASA 0.685 0.661 0.682 0.705 0.717 0.666 0.671 0.654 0.680
+ CST 0.558 0.596 0.688 0.652 0.580 0.715 0.606 0.640 0.629
+ NIA&ASA&CST 0.701 0.662 0.722 0.686 0.697 0.705 0.700 0.685 0.695

Table 3: Ablation study of our method on both datasets. ‘NIA’ and ‘ASA’ indicate two losses in CNNA strategy for
the pre-training of EQ-net. ‘CST’ indicates the counterfactual self-training strategy for the fine-tuning of PANN.
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Figure 5: Effect of different components and factors on the essay scoring performance of our method.

4.5 Further Analysis

We further analyze the effects of more designs and
factors on the performance of our method.

Effect of Data Augmentation We first analyze
whether the data augmentation in CNAA strategy
can boost the generalization ability of our method
by plotting performance with and without using
data augmentation. As shown in Figure 5(a), we
can find that both PANN and EQ-net can benefit
from data augmentation on most prompts of both
datasets, especially on P3 of the ASAP dataset
(left figure) and P5 of the TOEFL11 dataset (right
figure).

Effect of PA-net We are also interested in
whether PA-net can independently influence the fi-
nal score prediction. For each target unseen prompt
on ASAP, we select all high-scoring essays and pre-
dict their scores under their original prompt and
another prompt. As shown in Figure 5(b), PANN

predicts a lower average score for high-scoring es-
says under an unmatched prompt. While EQ-net
output unchanged features under both settings, PA-
net can be aware of the change in prompt.
Effect of Data Size We then analyze the ef-
fect of data size on performance by selecting one
prompt as test set and adding remaining prompts
for training one by one. Experiments are conducted
on TOEFL11, since it contains essays of the same
genre (i.e., ARG). As shown in Figure 5(c), the
prediction performance of our PANN is on the rise
with the growth of the data size, while BERT shows
a trend of first rising and then falling. This indi-
cates that our representation disentanglement strate-
gies can deal well with the entangled information
brought by the growth of prompts, so that the model
can benefit from the data growth.
Feature Visualization To further analyze the
learned latent space of CNAA strategy, we visu-
alize the distributions of essay quality features with
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Figure 6: Feature visualization for EQ-net with (a) direct training and (b) our CNAA strategy on TOEFL11 dataset.
Three colors for score indicate low/medium/high and eight colors for prompt (pink indicates the unseen prompt).

t-SNE in Figure 6. For better comparison, we show
feature distributions of EQ-net with and without
using CNAA strategy. From Figure 6(a), we can
find that scores of three levels are relatively well
separated (left), but essays of different prompts
are not completely separated, especially the essays
with medium and low score (right). In contrast,
as shown in Figure 6(b), when using our CNAA
strategy, scores can be separated well according to
different norms, and prompts can be separated well
according to different angular directions.

5 Conclusion

In this paper, we focus on the prompt-generalized
AES task. We propose the prompt-aware neural
network model PANN to comprehensively evaluate
the essays in terms of both prompt adherence and
writing quality. To improve its generalization, we
further propose a disentangled representation learn-
ing framework, including two representation disen-
tanglement strategies. Experimental results demon-
strate the effectiveness of the proposed method for
prompt-generalized essay scoring.

Limitations

A major limitation of our work may be that our
disentangled representation learning framework
adopts some heuristic assumptions and designs
in data augmentation and counterfactual data con-
struction, and it remains to be seen whether they
are applicable to other datasets and other languages.
In particular, for the data augmentation of CNAA
strategy, we assume that more data can be synthe-
sized by text concatenation and we heuristically
decide the quality and content label of synthesized
data by some random strategies. Besides, for the
counterfactual data generation, we mainly gener-
ate counterfactual samples and scores heuristically
through our intuition and experience, rather than
building a generation model based on counterfac-
tual reasoning. Considering that some researchers

have already developed some counterfactual data
generation models for NLP tasks such as neural
dialogue generation (Zhu et al., 2020), we are
interested in whether it is possible and better to
build a counterfactual data generation model for
our method.
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A Details of PA-net

PA-net aims to generate a prompt adherence feature
vector u for an input prompt p = {w1

p, w
2
p, ·, wmp }

and essay e = {w1
e , w

2
e , ·, wne } pair. As shown

in Figure 2, PA-net achieves this goal via three
main operations: PE matching matrix construction,
kernel pooling, and prompt attention.

PE matching matrix refers to a matrix which
represents the semantic matching information of
word pairs from a prompt and essay pair. To con-
struct the PE matching matrix, PA-net first uses
an embedding layer to map each word wi into
an L-dimension word embedding ti: wi ⇒ ti.
Then, a matching layer is used to construct a
PE matching matrix M ∈ Rm×n based on the
mapped prompt p = {t1p, t2p, · · · , tmp } and essay
e = {t1e, t2e, · · · , tne }. Each element Mi,j is the se-
mantic similarity between a prompt word tip and
an essay word tje, which is measured by cosine
similarity (Yang et al., 2016):

Mi,j = cos (tip, t
j
e).

Kernel pooling (Xiong et al., 2017) is an opera-
tion used to convert a vector u to a value φ(u) by
applying a kernel function on vector u. For the
row Mi of a PE matching matrix corresponding to
the i-th prompt word, PA-net applies K kernels on
Mi to pooling and maps it into a K-dimensional
feature vectors φ(Mi):

φ(Mi) = {φ1(Mi), φ2(Mi), · · · , φK(Mi)}.

The effect of kernel function φ depends on the
kernel used. To measure the matching degree of
prompt word wip with all the essay words, we use
the RBF kernel:

φk(Mi) =

n∑

j=1

exp

(
−(Mij − µk)2

2σ2k

)

where µk and σk represent the mean and width of
the kernel. We can infer from the equation that the
more word pairs with similarities Mij ∈Mi close
to the mean µk, the higher the value of φk(Mi)
can reach. Compared to exact matching which
is equivalent to term frequency, the RBF kernel
function defines a soft term frequency (soft-TF),
which allows words that related but not exactly
matched contribute to the final matching result.

Prompt attention is an attention mechanism
which converts mK-dimensional soft-TF vectors
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Figure 7: Effect of hyper-parameters.

φ(Mi) into a K-dimensional prompt adherence
feature vector vp. Other pooling functions (e.g.,
average, min, and max pooling) that treat all words
in the prompt with equal importance, are used
as simultaneously. In practice, we find that only
part of the key words in the prompt should be
paid attention when measuring the prompt adher-
ence of essays. Therefore, it is necessary to quan-
tify the contributions of each word in the prompt.
Unlike the general attention mechanism (Dong
et al., 2017), prompt attention generates the at-
tention weights based on the word embedding of
prompt words, and apply the attention weights to
the combination of soft-TF vectors. Given a prompt
p = {t1p, t2p, · · · , tmp }, the attention weight αi for
soft-TF can be defined as:

αi =
exp (u>i up)∑m
j=1 exp (u

>
j up)

,

ui = tanh(Wp · tip + bp)

where up is a context vector, ui is the hidden state
of the i-th word in the prompt, Wp and bp are the
weight matrix and the bias vector respectively. For-
mally, the prompt adherence feature vector vp is a
weighted sum of soft-TF vectors φ(Mi) as:

vp =

m∑

i=1

αiφ(Mi).

B Effect of Hyper-parameters

For the hyper-parameter search, we use grid search
to search for the best values and select the value
that performs the best on the validation set. For
example, we study the effect of the tradeoff param-
eter α by varying it from 0.2 to 1 with a step of 0.2.
We take the experiments on the TOEFL11 dataset
as an example and report the average performance
of all eight prompts. As shown in Figure 7(a), the
overall fluctuation of the line is not dramatic, and
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Setting δl = 0.2 δl = 0.3 δl = 0.4 δl = 0.5
δh = 0.9 δh = 0.8 δh = 0.7 δh = 0.6

QWK 0.695 0.762 0.723 0.687

Table 4: Effect of the thresholds δl and δh.

the maximum difference is within 0.02. The best
performance is achieved at α = 0.8. This indicates
that our method is robust to this parameter, and our
guessed pre-score needs a larger weight than the
predicted score, which implies that our guessed pre-
score can provide more counterfactual information
for the improvement of prompt generalization.

We then explore the effect of training epochs. As
shown in Figure 7(b), we select P6 of the TOEFL11
dataset as the test prompt and list the performance
of five randomly-initilized models. We can see that
all models can coverage in about 5 epochs on the
validation set. Therefore, in our experiments, we
only run each model for 5 epochs and select the
epoch with best performance on the validation set
for testing. For each case, we run the experiments
five times and report the average results.

Finally, we explore the effect of the thresholds
δl and δh. We define δl ∈ [0, 1], δh ∈ [0, 1], and
δh > δl. Thus, the score range of essays can be
divided into three intervals: [0, δl], (δl, δh), and
[δh, 1]. Since the score range of the TOEFL11
dataset is naturally divided into three intervals, we
only set thresholds for the ASAP dataset. To ob-
serve the effect of interval changes on performance
more clearly, we consider choosing the values of
thresholds δl and δh symmetrically. As shown in
Table 4, we select P1 of the ASAP dataset as the
test prompt and list four different interval divisions.
We can see that the combination of δl = 0.3 and
δh = 0.8 achieves the best performance, while
other more extreme divisions resulted in poorer
performance. This may be because extreme divi-
sions lead to an insufficient or excessive number of
essays with low or high scores, resulting in insuffi-
cient training or inadequate discrimination between
high-score and low-score essays, respectively.
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