
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
Volume 1: Long Papers, pages 12385–12401

July 9-14, 2023 ©2023 Association for Computational Linguistics

Best-k Search Algorithm for Neural Text Generation

Jiacheng Xu Caiming Xiong Silvio Savarese Yingbo Zhou
Salesforce AI Research

{jiacheng.xu,cxiong,ssavarese,yingbo.zhou}@salesforce.com

Abstract

Modern natural language generation paradigms
require a decoding strategy to obtain quality se-
quences out of the model. Beam search yields
high-quality but low diversity outputs; stochas-
tic approaches suffer from high variance and
sometimes low quality. In this work, we pro-
pose a deterministic search algorithm balancing
both quality and diversity. We first investigate
the vanilla best-first search (BFS) algorithm
and then propose the best-k search algorithm.
Inspired by BFS, we greedily expand the top
k nodes, instead of the first node, to boost effi-
ciency and diversity. Upweighting recently dis-
covered nodes accompanied by heap pruning
ensures the completeness of the search proce-
dure. Experiments on four NLG tasks show that
best-k search yields more diverse and natural
outputs compared to strong baselines, while our
approach maintains high text quality. The pro-
posed algorithm is parameter-free, lightweight,
efficient, and easy-to-use.1

1 Introduction

Large-scale pre-trained language models (Devlin
et al. (2019); Raffel et al. (2020); Brown et al.
(2020); Nijkamp et al. (2022), inter alia) has signif-
icantly advanced the field of natural language gen-
eration. Despite the models’ increasing capability
in fluency, expressiveness and domain generaliza-
tion, the generated outputs from these models are
far from perfect (Gehman et al., 2020; Kryscinski
et al., 2020; Fabbri et al., 2021). The decoding
strategy is another crucial piece in this paradigm.
If we form text generation as a search problem, de-
coding strategies are essentially search algorithms
over the space composed by vocabulary V . Beam
search, a heuristic search algorithm, has been the
go-to choice for many years. However, the gener-
ated sequences are usually repetitive because many
diverse hypotheses are pruned at earlier stage of

1The code implementation is available at https://
jiacheng-xu.github.io/.

20 21 22 23 24 25 26 27
Quality (ROUGE-1)

30

40

50

Di
ve

rs
ity

 (D
ist

in
ct

-1
)

BeamSearch
Sample
BS+Sample
Ours

Figure 1: Generated text diversity and quality, measured
by Distinctness-1(↑) and ROUGE-1(↑), on question gen-
eration. The dataset used is QuoRef and the model
applied is MixQG. Our approach, best-k search with
two configurations, beats baseline methods including
beam search variations, sampling and BS+Sample meth-
ods on diversity and quality; see Sec. 4.4 for details.

search (Eikema and Aziz, 2020). Sampling-based
approaches (Fan et al., 2018; Holtzman et al., 2020)
can indeed generate more diverse sequences, but
they are hard to control due to their stochastic na-
ture. Sometimes outputs are duplicate; sometimes
a sampling choice breaks the whole sequence.

We are looking for a decoding algorithm with
high flexibility and controllability while it could
also yield diverse outputs for certain use cases. We
find that best-first search (BFS) algorithm satis-
fies these properties. First, it is a reproducible and
deterministic algorithm. More importantly, since
it theoretically does not prune hypotheses, it pre-
serves a more diverse set of options and allows
simultaneous expansion of hypotheses with differ-
ent lengths. Despite these intriguing features, we
identified two challenges, efficiency and complete-
ness, of directly applying it to text generation.

In this work, we propose the best-k search for
diverse and high-quality text generation. Our ap-
proach re-invents BFS with a few design changes
to overcome the issues mentioned before. Parallel
exploration is designed to explore the top k nodes
from the search frontier each time instead of one

12385

https://jiacheng-xu.github.io/
https://jiacheng-xu.github.io/

in BFS. We also add a temporal decay mechanism
to the algorithm to encourage search completions.
A simple yet effective stateless scoring function as
an alternative to more complicated length-adjusted
counterparts is devised, and we show that it works
well and helps further in finding diverse texts.

To verify the proposed algorithm, we conduct
comprehensive experiments on four tasks, question
generation, commonsense generation, text summa-
rization and machine translation. Our results show
that the proposed algorithm works well with a wide
range of models on six datasets. Our approach
yields high-fidelity, diverse and natural outputs
while maintaining quality. Our contributions are (1)
investigation of best-first search for text generation;
(2) proposing an efficient, simple, and deterministic
decoding algorithm, best-k search; (3) comprehen-
sive experiments and strong results on six datasets
with ablation study and analysis; (4) The algorithm
is lightweight, easy-to-use, and compatible with
any LLM. It is also orthogonal to many decoding
techniques like sampling or rollout.

2 Revisiting Best-First Search

In this section, we will introduce the vanilla best-
first search in the context of natural language gen-
eration as a decoding algorithm, and cover the first
Research Question: Is BFS adequate in searching
hypotheses in text generation?

Setup Text generation can be formulated as a
sequence generation process given input x and a
probabilistic language model2 parameterized by θ.

pθ(y|x; θ) =
T∏

t=1

pθ(yt|y<t,x)

Traditionally, maximum a posteriori (MAP) decod-
ing strategy is deployed to elicit highest-scoring
output sequences argmaxy∗ pθ(y

∗|x). Most pre-
vious work uses the log-likelihood of the sequence
as the proxy for assessing the (partial) sequence
quality. However, recent studies found discrepan-
cies between model likelihood and quality assessed
by humans (Stahlberg and Byrne, 2019; Holtzman
et al., 2020; Eikema and Aziz, 2020; Zhang et al.,
2021). Various approaches including length nor-
malization (Wu et al., 2016), quality-aware decod-
ing (Fernandes et al., 2022), and regularized de-
coding (Meister et al., 2020a) have attempted to

2Language models (LM) discussed in this paper include
unconditional and conditional models, where decoding algo-
rithms could be applied ubiquitously.

modify the objective to mitigate the gap. In this
work, we adopt h(·) as the scoring function, and
h(y1···t) is the score of a hypothesis y1···t.

Graph Notation We frame the derivation of se-
quences as the expansion of a directed search graph,
where BOS is the root node and EOS nodes are the
leaf nodes. Any node n, except the root node, has
exactly one parent node. The score of each node
n is defined as the score of the hypothesis start-
ing with BOS and ending with n. h(·) abstracts
arbitrary scoring function. Each node n can be
represented as a triplet ⟨s, w, t⟩ where the score is
s = h(n), token w ∈ V is the generated token, and
t is the time of discovery. A completed sequence
is defined as ŷ = (BOS, · · · ,EOS), and Ŷ consists
of all completed sequences. The search frontier O
of the graph is a priority queue.3

Best-First Search Best-first search (BFS) is a
greedy search algorithm which explores the graph
according to the scoring function h(·). We describe
the best-first search algorithm in the context of
probabilistic NLG in Algorithm 2. For each iter-
ation, BFS finds the most promising, expands it,
adds newly discovered nodes to O, and repeats
until reaching the budget. is-complete is the con-
ditional function for termination. P contains com-
pleted sequences. T counts the number of explored
nodes. Recent work in decoding strategies (Meister
et al., 2020b; Lu et al., 2022; Xu et al., 2022) was
inspired and motivated by BFS, but none of them
directly adopts BFS as the decoding algorithm.

Advantages & Challenges What are the poten-
tial advantages of using BFS? BFS is a determin-
istic and reproducible search algorithm with low
pruning and no duplication. However, the vanilla
best-first search suffers from efficiency and com-
pleteness issues. We present our preliminary study
and discuss these issues in Appendix A.

3 Our Approach: Best-k Search

In this section, we will introduce best-k search,
a novel search algorithm inspired by the vanilla
best-first search. It features a few components: (1)
parallel exploration enables batch-wise exploration
in the search graph; (2) temporal decay yields a
higher completion rate and fewer dangling nodes;
(3) heap pruning improves the time and space effi-
ciency of our approach. We describe the algorithm

3We use a max-heap for notation simplicity.

12386

What is the fifth largest in

-

largest

city

city

5th

largest

city

BOS

in

Which Oregon city is

town

…

…

…

is

home to Intel …

space of all hypotheses

hypotheses
beam search keeps

the fifth largest …

Figure 2: Pruning in beam search removes diverse hy-
potheses and reduces flexibility of search. This is an
example of question generation and the reference con-
tains the keyword Intel. Hypotheses in blue rectangle
were discovered but pruned. A greedy completion of
Which Oregon city is contains the information we want.

in Algorithm 1 and illustrate it in Figure 3.

3.1 Parallel Exploration

As suggested in Table 10, the wall clock running
time of BFS is one order of magnitude slower than
beam search under similar conditions. Given the
same search budget, BFS is supposed to achieve
similar time efficiency theoretically. However, mul-
tiple step-by-step operations are practically much
slower than a batched one when GPUs are engaged.
Hence, we propose a parallel exploration strategy
to reduce the exploration time cost by popping k
nodes from the priority queue each time and ex-
ecuting them in a batch. Current candidates are
stored in the frontier O. PQ is a priority queue
after applying any scoring function to nodes in O.

H ← PQ.heappop(g)

where g = min(k,PQ.size()). The strategy
serves as an approximation to best-first search as
we pop the top-k most promising nodes instead of 1.
This technique significantly improves the efficiency
of best-k search compared to BFS, which will be
discussed in Sec. 5.2.

3.2 Temporal Decay

Completion, measured by the number of outputs
from the algorithm, has been another key challenge
for BFS. In Table 10, increasing the search bud-
get helps improve the completion rate but there is
still a non-trivial portion of samples that fails. We
propose a technique to fulfill the completition goal
during the search process. For each node added
to the search frontier O, we keep the time stamp
t. When we pop nodes, we modify the score of
each node by adding an auxiliary score rewarding
recently discovered nodes. The idea is to increase

Algorithm 1 Best-k Search with parallel exploration, heap
pruning, and temporal decay.

Input: Generation model θ with vocabulary V , search budget,
O denotes open set (max priority queue). group size k. T
is the number of explored steps; t is the time stamp.

Output: All completed paths P .
1: O ← {⟨∞, BOS, −1⟩}, T ← 0, t← 0.
2: while T < budget do
3: PQ ← ∅
4: for n ∈ O do
5: PQ ← PQ + ⟨n.score +

decay(n.time, t), n⟩
6: end for
7: g ← min(k,PQ.size())
8: H ← PQ.heappop(g) //H is the group of

candidates to explore.
9: O ← O \H

10: for ⟨score, n⟩ ∈ H do
11: for v ∈ V do
12: if is-complete(n ◦ v) then
13: P ← P ∪ (n ◦ v)
14: continue
15: end if
16: child← ⟨h(n ◦ v), v, t⟩ // Current time t of

adding the node to O.
17: O ← O∪ child
18: end for
19: end for
20: O ← O.prune()
21: T ← T + g
22: t← t+ 1
23: end while

the score of recently discovered nodes so the algo-
rithm prefers to continue them. The decay function
needs to be monotonic. Hence, we define the decay
function as a power function:

decay(n.time, t) = −κ(t− n.time)β

where κ > 0 controls the weight of the term
and β > 0 controls the slope. t is the cur-
rent time step and n.time is a past time step,
so t − n.time > 0. The older the node, the
smaller the value of decay(n.time, t). A more
recent node will receive a higher incentive, so
it’s more likely to be popped and expanded. For
example, a node discovered at t = 1 receives
decay(1, 5) = −4 and a node discovered at t = 4
receives decay(4, 5) = −1, if we set κ = β = 1.
In our experiment, we set β = 0.5 and explore
different values of κ. We leave other forms of the
decay function, i.e. logarithm, as future work, and
discuss some design choices in Appendix F.

3.3 Heap Pruning
The size of the heap grows fast during exploration.
For most of the time, however, our approach only
utilizes top-ranked hypotheses. The temporal de-
cay function is monotonic, so for any node in the

12387

Three

BOS

skiers are

skied

A

There

few

…

…

group

…

…

skiers

…

…

1

0

1

2

2

3

3

…

…

skiing

on

…

…

Three

BOS

skiers are

skied

A few

…

…

group

…

…

skiers

…

…

1

0

1

2

2

3

3
…

…

on

…

…

skiing

4

There

4

…
…

in

…

…

explored
t

unexplored

LEGEND

-3.3

-6.2

-5.4

-5.3

-6.1

score
skiing

-3.3

on

-6.2

group

-6.1

skiers

-5.4

There

-5.3

……

heap top

pop

pop

Search Frontier 𝒪

expand by

t + 1
k

group

-6.4

skiers

-5.8

in

-3.4

……

…

on

-6.6

Updated Search Frontier 𝒪

Figure 3: Illustration of best-k search with an example from CommonGen, where the input is “mountain ski
skier". (left) the search graph before expansion; (right) the search graph after expansion with “skiing” and “There”
expanded; (bottom) the search frontier. The upper left number of explored nodes (blue-bordered rectangle) indicates
the time stamp of expansion. Grey rectangles are unexplored nodes in the frontier. For illustration purposes, we set
k = 2, and only show the top 3 expansions for each node.

search frontier, the final score is always decreas-
ing as the time moves forward. The usage of the
temporal decay could affect the ranking, but we
posit that if the margin of model score between a
candidate node and the k-th highest node from the
heap is larger than ϵ, it is unlikely that it will be
used in future. The choice of the margin ϵ depends
on factors including the intensity of temporal de-
cay, remaining search budget, model calibration,
and resource limitations. In practice, we set a suf-
ficiently large maximum heap size to 500 to avoid
tuning ϵ on different datasets. The expansion of
each node could lead to |V| extension nodes, where
|V| is the size of the vocabulary. As the conditional
probability pθ(yt|y<t,x) is usually long-tailed, we
discard those low-scoring nodes for efficiency. We
set a threshold γ = 0.05 to filter out generations
with probability lower than it.

3.4 Model Score

The depth of a BFS search graph is not aligned
while the that of beam search remains the same
during the search. As the scoring function
plays a crucial role in finding ideal sequences
Ŷ , we investigate whether existing scoring func-
tions are still compatible with the best-k search
algorithm. Here are a few common ways
to define the scoring function h regarding the
length l of the (partial) sequence: 1. original:
h(y) =

∑l
t=0 log pθ(yt|y<t,x). This is the origi-

nal way of defining the score of a sequence with its
sequence log-likelihood. 2. length-adjusted scor-
ing function: h(y) = 1

|y|α
∑l

t=0 log pθ(yt|y<t,x).
The tunable hyper-parameter α controls the pref-

erence of length (Meister et al., 2020a). The hy-
potheses in BFS have different length so it’s tricky
to pick a good hyper-parameter for length-adjusted
functions across samples and datasets. In this work,
we also propose a memoryless scoring function
h(y) = log pθ(yt|y<t,x). It approximates the
score of the whole hypothesis y with the probabil-
ity of the last node. It satisfies the Markov property
that only the last state’s probability is considered
for the next continuation. When we use this scor-
ing function together with best-k search, we term
the approach as BKSlast . We conduct ablation
studies to understand different scoring functions in
Sec. 5.3. We found that the length-biased scoring
function typically works the best while the memo-
ryless function generates more diverse outputs with
slightly lower quality.

4 Evaluation

4.1 Tasks, Models & Datasets
We investigate four conditional text generation
tasks, ranging from more precision-oriented tasks
like machine translation to more open-ended tasks
like commonsense generation and question gener-
ation. MT is a use case where diverse outputs are
not always required, so in Section 6 we devise our
algorithm followed by reranking to see how much
we can benefit from diverse and high-quality out-
puts. We describe the detail of the tasks, models
and datasets in Appendix C.

4.2 Baselines
Beam earch (BS) is the long-standing choice for
decoding sequences for decades (Reddy, 1977) and

12388

Stat Diversity (↑) Oracle (↑) Natural (↑) Quality (↑)
Method S |S| D-1 D-2 D-3 R1 R2 RL MV R1 R2 RL MTR GRM

BS 10 10 44.8 48.7 46.9 32.6 12.9 30.1 59.5 25.9 9.2 23.7 20.9 88.9
DBS 10 9 52.3 52.2 47.6 30.1 9.5 26.4 41.5 24.2 7.3 21.3 18.7 85.2

DBS+ 10 9 55.8 53.1 45.8 26.1 6.8 23.4 13.7 20.3 4.5 17.8 14.9 85.7

BTYP0.2 10 1 29.9 27.8 24.3 24.2 7.0 22.0 53.5 23.5 6.7 21.4 18.3 90.8
BTYP0.5 10 2 30.5 28.4 24.7 25.0 7.5 22.7 48.1 24.7 7.2 22.4 19.2 92.5

BTYP0.95 10 2 30.9 28.9 25.4 26.9 8.6 24.8 61.4 25.0 7.6 23.1 19.5 92.3
BNCLS0.5 10 1 28.1 25.0 21.1 24.9 7.0 22.7 51.2 24.9 7.0 22.8 18.2 92.3
BNCLS0.8 10 2 30.1 28.0 24.4 25.6 7.9 23.7 49.9 25.1 7.3 23.1 19.1 92.5
BNCLS0.9 10 2 30.8 28.7 25.2 26.0 8.2 24.0 58.6 25.1 7.5 23.0 19.3 91.2

TYP0.2 10 5 44.4 46.2 42.4 26.5 7.3 23.9 50.9 23.2 6.3 21.1 18.1 88.3
TYP0.5 10 7 48.5 52.0 47.9 30.1 10.6 27.3 71.0 24.0 6.5 21.9 18.0 91.8

TYP0.95 10 9 54.3 59.4 55.7 31.2 11.2 28.5 84.3 22.1 6.1 20.1 17.1 89.5
NCLS0.5 10 5 40.2 41.4 37.7 29.2 9.9 26.3 58.3 24.9 7.3 22.9 18.6 93.9
NCLS0.8 10 8 50.8 55.1 51.3 30.5 10.2 27.3 47.7 24.3 6.2 21.6 18.2 91.1
NCLS0.9 10 9 53.2 58.2 53.7 31.2 11.5 28.7 46.0 23.6 6.9 21.4 18.0 90.9

MixQG - - - - - - - - - 24.9 8.0 22.3 - -
BKSmean 20 20 50.8 56.1 54.0 33.9 14.2 31.0 83.0 27.0 8.9 24.5 21.3 86.8

BKSlast 19 19 53.4 59.4 55.9 32.7 13.4 30.1 69.4 26.0 8.4 23.2 19.7 91.7

Table 1: Experiments result on QuoRef question generation. S and |S| stand for the number of sentences and
the unique number of sentences. D-1, -2, and -3 stand for unigram, bigram and trigram distinctness. MV is the
MAUVE score measuring the naturalness of the generated outputs. MTR is METEOR score. GRM measures the
grammaticality. We highlight the best , second best , and the worst for each column. A visualized comparison
with D-1 and R1 is presented in Figure 1.

diverse beam search is a diversity-promoting vari-
ant of beam search (Vijayakumar et al., 2018). We
experiment with different numbers of beam groups
for diverse beam search: 5 for DBS and 10 for
DBS+. Sample is represented by two widely-
adopted strong stochastic sampling methods, nu-
cleus sampling (NCLS) (Holtzman et al., 2020)
and typical sampling (TYP) (Meister et al., 2022a).
Beam sample includes a collection of beam search
multinomial sampling methods. We experiment
with the integration of beam search with typical
sampling and nucleus sampling, denoted as BN-
CLS and BTYP respectively. Implementation of
baseline approaches is available at Transformers/-
GenerationMixin/generate.

Ours We use two typical configurations to repre-
sent our approach: BKSlast where the scoring func-
tion is memoryless, and BKSmean where α = 1.
In BKSmean , the score of the sequence is the av-
erage log-likelihood of individual time steps. We
experiment with k = {5, 10} and the weight of
temporal decay in {0.0, 0.01, 0.05, 0.1, 0.2}, and
report the configuration with the best combination
of diversity (D) and quality (R).

4.3 Metrics
We measure the generated outputs from multiple
aspects including text quality, relevance, diversity,

and naturalness. 1. Statistics: we report the num-
ber of completed strings and the number of unique
completed strings as S and |S|. 2. Diversity: fol-
lowing Li et al. (2016); Yang and Klein (2021), we
report the distinctness of completions, measured
as the number of unique n-grams divided by the
number of words, denoted as D-1, D-2 and D-3.
3. Text quality: we adopted two relevance based
metrics, ROUGE (R1, R2, RL) (Lin, 2004) and
METEOR (MTR) (Banerjee and Lavie, 2005), for
assessing the surface similarity between the gener-
ated strings and the reference. 4. Naturalness: We
measure the naturalness of the generated sequences
with MAUVE (Pillutla et al., 2021), a metric for
open-ended text generation.

4.4 Question Generation

For QuoRef and SQuAD, we present the experi-
ment results in Table 1 and 2. Due to the space
limit, we present the results of SQuAD in 13 in Ap-
pendix E. Our methods achieve significantly higher
MAUVE score than peer methods. To visualize the
trade-off in quality and diversity, we also visualize
these two metrics in Figure 1, which shows our ap-
proach significantly surpasses all baseline methods
on both diversity and text quality, measured by D-1
and R1. There is a typical trade-off curve for diver-
sity and quality by controlling hyper-parameters (p

12389

https://huggingface.co/docs/transformers/main/en/main_classes/text_generation#transformers.GenerationMixin.generate
https://huggingface.co/docs/transformers/main/en/main_classes/text_generation#transformers.GenerationMixin.generate

|S| D OR R MV GRM MTR

BS 10 23.0 34.2 25.1 9.6 88.1 29.8
DBS 9 26.6 32.8 23.1 13.0 82.3 27.9

DBS+ 9 30.9 32.6 19.8 9.0 80.6 23.1

BTYP0.2 1 9.7 25.6 25.1 15.6 88.4 29.7
BTYP0.5 1 10.3 25.8 25.0 36.2 93.4 30.1

BTYP0.95 2 11.0 28.0 26.6 11.9 89.2 31.1
BNCLS0.5 1 9.2 26.7 26.4 13.0 90.2 30.7
BNCLS0.8 2 10.5 27.5 26.5 9.3 89.6 30.9
BNCLS0.9 2 10.8 27.9 26.5 10.0 89.2 30.9

TYP0.2 6 22.6 29.1 23.7 17.0 86.6 28.1
TYP0.5 8 28.0 34.8 24.9 13.3 88.7 29.4

TYP0.95 10 36.2 34.9 23.3 18.8 84.0 27.8
NCLS0.5 5 18.7 32.1 26.5 13.8 89.8 30.8
NCLS0.8 9 30.2 35.4 24.8 16.5 86.6 29.3
NCLS0.9 9 33.8 35.6 24.0 16.2 86.2 28.6

BKSmean 29 30.3 35.8 25.5 16.5 88.6 30.5
BKSlast 24 36.5 36.1 21.7 22.6 86.4 25.8

Table 2: Results of question generation on DROP. D is
the average of D-1, D-2 and D-3. OR and R are the
average of Oracle ROUGE and ROUGE.

value for nucleus sampling, group size for diverse
beam search, etc.), but our approaches go beyond
the established curve by a significant margin. We
posit that 10x more output (2 vs. 29) and substan-
tial gain of diversity (10.8 vs. 30.3) could unlock
tons of applications and choices in many real-world
applications. For example, on DROP, BNCLS0.9
achieves D = 10.8 and R = 26.5 while BKSmean

comes with D = 30.3 and R = 25.5.

4.5 Commonsense Generation

We present the experimental result of common-
sense generation in Table 3. Sampling based ap-
proaches are overall good at diversity but the qual-
ity of generated text is lower than other methods.
For example, TYP0.95 has the best average distinct-
ness score and the worst ROUGE score at the same
time. Our approach BKSlast also has the highest
oracle ROUGE score, which indicates high search
quality over human annotations.

4.6 Text Summarization

As reranking text summarization system outputs
has gained increasing interest, the fruitfulness and
diversity of generated summaries are valuable at-
tributes to look at. We present the result of text
summarization in Table 5. Our approach remains
competitive in quality, diversity, and naturalness.
Our approach achieves an average ROUGE of 31.9
and MAUVE of 99.5, higher than any other meth-
ods. D of our approach is lower than sampling due

|S| D OR R MV GRM MTR

BS 10 40.6 42.1 40.3 23.4 88.3 42.7
DBS 10 48.2 42.6 37.9 21.6 79.2 37.3

DBS+ 10 54.1 42.4 36.4 15.9 77.5 35.8

BTYP0.2 2 27.4 36.3 38.0 27.0 83.8 40.0
BTYP0.5 2 26.7 37.7 40.4 17.1 88.9 43.0

BTYP0.95 2 27.9 38.4 40.7 14.6 89.2 43.3
BNCLS0.5 1 24.3 37.1 40.5 11.9 87.9 43.1
BNCLS0.8 2 27.0 38.5 41.0 16.9 89.5 43.5
BNCLS0.9 2 27.4 38.5 40.9 15.4 89.6 43.6

TYP0.2 9 55.4 40.5 34.9 37.9 79.3 37.8
TYP0.5 10 55.0 42.4 37.1 37.8 82.2 39.3

TYP0.95 10 61.0 39.5 33.7 41.7 74.9 36.1
NCLS0.5 8 44.6 41.1 39.2 24.6 86.2 41.5
NCLS0.8 10 55.7 41.7 36.5 31.7 82.0 38.6
NCLS0.9 10 59.7 41.2 35.6 41.5 79.4 38.0

BKSmean 27 45.7 41.4 38.2 19.2 83.8 41.0
BKSlast 22 51.4 43.3 37.6 34.6 84.7 39.3

Table 3: Results on commonsense generation.

to the longer sequence lengths and more dangling
nodes.

5 Analysis

5.1 Examples

We show one example output of CommonGen in Ta-
ble 4. We list outputs provided by Lu et al. (2022)4

and the outputs from our experiments. The outputs
from our model are more diverse since multiple
types of subjects exists, including a dog, the dogs,
and two dogs.

We also present one example from QuoRef ques-
tion generation in Table 6. In this example, we can
observe the duplication issue rooted in sampling
based methods. Most of the generated questions
from sampling are duplicate, covering the easiest
question to ask. However, our approaches yield di-
verse and high-quality questions, covering broader
spectrum of facts and knowledge like Intel, Silicon
Forest, country seat of Washington County.

5.2 Efficiency

We test the wall-clock running time of our algo-
rithms and the standard beam search. We follow
the same configuration in Sec. 2. The result is pre-
sented in Table 7. Although our approach is still
slower than beam search, due to all the overhead
cost including padding sequences, scoring hypothe-
ses and heap management, the speed is reasonable
for many applications. The heap size could be

4The model we use is different from the ones in Lu et al.
(2022), so their outputs are only for reference.

12390

GBS / DBA / NEUROLOGIC⋆

G: A dog is run over by a ball and mouth agape.
D: A dog is run over by a ball and bites his mouth.
N: A dog running with a ball in its mouth.

NCLS0.8 / TYP0.5 / Ours

A dog running around with a ball in his mouth.
The dog is running with a ball in his mouth.
The dog runs away with the ball out of the mouth.
A dog running on its mouth with a ball
A dog with a ball running around his mouth.

A dog with a ball in its mouth running around the pond.
A dog runs to the door, eating a ball, and another dog in
the mouth.
A dog running away with a ball in its mouth.
A dog running with a ball in his mouth.
A dog is running around its mouth catching a ball.

A dog is running around with a ball in its mouth.
a dog running around with a ball in its mouth
The dogs are running around with balls in their mouths.
Two dogs running around in the same room with a ball in
their mouths.
Two dogs running with balls in their mouths.

Table 4: An example from CommonGen where the input
is “ball dog mouth run”. We first present the outputs
on GBS, DBA, and NEUROLOGIC⋆, provided in Lu
et al. (2022). Then we show five sample outputs from
NCLS0.8, TYP0.5 and BKSlast , respectively.

shrunk and the heap management could be opti-
mized for even better efficiency.

5.3 Choice of Scoring Function

In this paper, we experimented with two families
of scoring functions: length-normalized sequence
log-likelihood and a new memoryless greedy score.
We studied how the scoring function works in prac-
tice. More particularly, we looked into whether
some form of scoring function will cause signifi-
cant incompletion or search failure. We present the
result and discuss the choice of scoring function in
Appendix B.

5.4 Effect of Temporal Decay

We evaluate how temporal decay helps the com-
pletion rate in different settings in Figure 4. As
the result in Table 12 indicates a high incomplete
rate when α = 0, we only evaluate three scoring
schemas, α = 0.5, α = 1 (BKSmean), and the
memoryless setting (BKSlast). Temporal decay
helps the completion when the scoring function it-
self struggles with completion. For example, when
α = 0.5, increasing κ improves the completion
rate from 66% to 92%.

|S| D OR R MV GRM MTR

BS 8 16.3 36.6 31.2 98.0 96.4 36.9
DBS 8 20.5 36.3 28.9 64.6 95.2 32.3

DBS+ 7 21.5 35.6 27.8 22.3 92.0 29.8

BTYP0.2 2 12.3 29.5 27.6 98.8 96.0 34.2
BTYP0.5 3 13.4 33.0 30.4 98.2 96.3 36.5

BTYP0.95 3 13.3 33.7 30.9 98.5 96.4 37.0
BNCLS0.8 3 13.2 33.5 30.8 98.5 96.3 37.1
BNCLS0.9 3 14.0 34.1 31.0 98.5 96.4 37.1

TYP0.2 7 30.9 34.2 26.7 97.8 94.7 31.3
TYP0.5 8 34.7 38.8 28.8 97.9 95.1 32.7

TYP0.95 8 35.7 38.5 28.1 98.4 95.1 32.3
NCLS0.8 8 35.3 38.8 28.7 98.1 95.1 32.9
NCLS0.9 8 37.2 37.7 27.3 98.5 94.4 31.4

BKSmean 22 21.4 39.0 31.9 99.5 95.3 35.9
BKSlast 17 24.3 37.5 28.9 98.5 95.7 33.3

Table 5: Results on XSum with BART-XSum.

=0.5 Memoryless =1
50

60

70

80

90

100
Co

m
pl

et
io

n
Ra

te

0.0
0.01
0.05

0.1
0.2

Figure 4: Evaluation of the weight term κ for temporal
decay. We increase the weight κ in the objective from
0.0 (no decay) to 0.2 and evaluate how it relates to the
completion rate for different scoring functions. In the
case of α = 0.5, increased weight significantly helps
the completion rate.

6 Application: Reranking Diverse
Outputs

Machine translation is typically considered as a
precision-oriented task, where typically only a few
translations are considered as correct. In this sec-
tion, we would like to answer the RQ: Do we ben-
efit by selecting from a pool of high-quality di-
verse outputs, even when the task does not nec-
essarily require such?

Setup We use a popular machine translation
dataset with multiple references (Ott et al., 2018),
based on WMT’14 En-Fr and En-De test sets
(Bojar et al., 2014). The model for this task
is the mBART5 model (Tang et al., 2021). In
order to rerank decoded outputs, we adopt a
state-of-the-art quality estimation model for MT,

5https://huggingface.co/facebook/
mbart-large-50-many-to-many-mmt

12391

https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt
https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt

Sampling BKSlast BKSmean

NCLS0.8

What is the fifth largest city in OR?
(x5)
What is the fifth-largest city in OR?
What is the fifth-largest city in OR?
What is the fifth-largest city in the
State of OR?
What is the fifth-largest city in the
State of OR?
Which city in OR is the county seat
of Washington County?

TYP0.5

What is the fifth largest city in OR?
(x5)
What is the fifth-largest city in OR?
(x3)
Which city in OR is the county seat
of Washington County?
Which city is the county seat of Wash-
ington County?

What city is the fifth largest?
What city is the fifth-largest city in the
State?
What is the 5th largest city in OR?
What is the fifth largest city in [OR / the
State of OR / the State]?
What is the fifth-largest city in the State?
Which city is the fifth largest city in OR?
Which city is the fifth largest city?
Which is the fifth largest city?
Which OR city is the fifth largest in the
state?
Which OR city is the fifth largest?
Which OR town is home to Intel?
Which OR town is home to the tech com-
pany Intel?
Which OR town is known as the Silicon
Forest?
Which OR town is the fifth largest [∅ / city
/ city in the state / in size / in the state]?

What city in OR is the fifth largest in OR?
What city is the fifth largest [∅ / city in OR
/ city in the State / in OR / in the state]?
What city is the fifth-largest in the State?
What is the fifth largest city in OR?
What is the fifth largest city in the State?
Which city in OR has the largest popula-
tion?
Which city in OR hosts Intel?
Which city in OR is known as the Silicon
Forest?
Which city in OR is the fifth largest in OR?
Which city in OR is the fifth largest in the
state?
Which city is the fifth largest [∅ / city in
OR / city / in the state]?
Which OR city is the county seat of Wash-
ington County?
Which OR city is the fifth largest in size?
Which OR city is the fifth largest?

Input (Ans || Context): Hillsboro || Hillsboro is the fifth-largest city in the State of Oregon and is the county seat of Washington
County. Lying in the Tualatin Valley on the west side of the Portland metropolitan area, the city hosts many high-technology
companies, such as Intel, that comprise what has become known as the Silicon Forest. At the 2010 Census, the city’s population
was 91,611.For thousands of years before the arrival of ... Reference Question: What city is Intel located in?

Table 6: Example on QuoRef question generation. The duplication of sampling is high while our model generates a
more diverse set of questions. Some outputs from our approach cover the entity Intel mentioned in the reference.
We manually replace all the occurrences of Oregon with OR and combine some hypotheses due to the layout limit.

Best-k Search BS BTYP0.5

k = 5 k = 10 b = 10 b = 10

Time 1.8s 1.2s 0.7s 1.4s
|S| 18.2 12.8 8.3 3.0

Table 7: Efficiency comparison of our approach and
beam search. Time shows the decoding time used for
each example.

COMET-QE (Rei et al., 2020). The quality esti-
mation model we use to rerank all the outputs is
wmt21-comet-qe-da. The QE model is a ref-
erenceless model Q(s, t) which judges whether the
source input s and the hypothesis translation t form
a matched pair based on regression metrics.

Result We present the result on MT En-De and
En-Fr in Table 8 and 11. Our approach has a
huge gain after reranking and surpasses all of the
sampling based methods and beam search only
methods while maintaining high diversity. BN-
CLS0.8, the approach with best BLEU score, is 9.4
behind BKSlast on D while the human annota-
tion reference is much higher than any of the ma-
chine generated hypothesis sets. The success of
overgeneration-then-reranking paradigm has been
witnessed in summarization (Song et al., 2021;
Ravaut et al., 2022; Pernes et al., 2022) and transla-

tion (Fernandes et al., 2022), where the proposed al-
gorithm could be valuable in searching high-quality
diverse outputs.

7 Related Works

Best-first search BFS was widely used in struc-
tural prediction (Klein and Manning, 2003), sta-
tistical MT (Och et al., 2001), and for searching
hypotheses (Saha et al., 2022). Recent work in de-
coding strategies (Meister et al., 2020b; Lu et al.,
2022; Xu et al., 2022) conceptualized best-first
search as part of their paradigm, but it was not the
dominant component of any of these systems.

Text decoding algorithms Stochastic decoding
algorithms have gained popularity in the past few
years (Fan et al., 2018; Holtzman et al., 2020; Meis-
ter et al., 2022a; Suzgun et al., 2022). Rollout-
based algorithms are capable of satisfying certain
utility functions or constraints at the cost of effi-
ciency (Leblond et al., 2021; Chaffin et al., 2022;
Lu et al., 2022). Recombination-based search al-
gorithm (Xu et al., 2022) can find thousands of
hypotheses despite complicatedness.

Diversity in text generation The diversity of
text generation has been a key challenge for appli-
cations like dialogue (Li et al., 2016; Zhang et al.,

12392

BLEU
|S| D ORIGIN COMET ∆

Reference 11 36.9 - - -

BS 10 15.4 30.4 32.3 1.9
DBS 10 18.7 25.0 27.8 2.8

DBS+ 10 24.6 20.8 22.9 2.1

BTYP0.2 3 11.0 26.5 26.1 -0.4
BTYP0.5 3 10.2 34.3 34.6 0.3

BTYP0.95 3 10.7 32.9 33.4 0.5
BNCLS0.5 2 9.0 33.0 33.3 0.3
BNCLS0.8 3 10.2 34.9 34.9 0.0
BNCLS0.9 3 10.4 32.6 33.8 1.2

TYP0.2 9 27.2 19.9 19.5 -0.3
TYP0.5 9 28.6 25.6 27.0 1.4

TYP0.95 10 36.5 19.2 22.1 2.9
NCLS0.5 8 18.6 31.1 32.2 1.1
NCLS0.8 10 30.2 25.9 27.0 1.0
NCLS0.9 10 35.0 23.2 25.8 2.6

BKSmean 35 19.6 30.1 33.3 3.2
BKSlast 33 20.5 26.1 31.1 5.0

Table 8: Machine translation from English to German.
ORIGIN and COMET are the BLEU score before and
after reranking; ∆ indicates the change of BLEU score
from reranking.

2020; Stasaski and Hearst, 2022), MT (Shen et al.,
2019) and conditional text generation (Yang and
Klein, 2021). Beam search has also been devel-
oped to generate more diverse outputs (Vijayaku-
mar et al., 2018; Anderson et al., 2017; Post and
Vilar, 2018). Prior work also studies the trade-off
between diversity and quality in text generation
(Zhang et al., 2021).

Degeneration of beam search Welleck et al.
(2020b); Holtzman et al. (2020) addressed the de-
generation issue in neural text generation and Co-
hen and Beck (2019) studies the beam search per-
formance degradation in neural sequence models.
The gap between high probability and quality has
been observed and studied (Meister et al., 2022b;
Freitag et al., 2022).

8 Conclusion

In this work, we propose best-k search, a novel de-
coding algorithm for text generation based on best-
first search. The algorithm features a few technical
components, and generates natural and diverse text
while maintaining high quality. We conduct com-
prehensive experiments on four tasks to verify the
approach. The algorithm is orthogonal to sampling
methods and it is parameter-free, lightweight, and
efficient.

Acknowledgements

We thank Greg Durrett, Tong Niu, Chen Xing,
Hiroaki Hayashi, Katie Stasaski, Philippe Laban,
Semih Yavuz and Shafiq Rayhan Joty for helpful
proofreading and comments on this work. We also
thank the Salesforce AI Research team for gener-
ous support and feedback.

Limitations

In this work, we propose a decoding algorithm for
text generation. We present the algorithm with
comprehensive discussion on design choices and
mechanisms. We further verified our algorithm on
four tasks and six datasets. However, we acknowl-
edge the following limitations. First, we mainly
apply the method to English data although we cover
German and French in MT experiments. In future
work, we could verify the approach on non-English
languages, especially CJK, due to the possible gap
of tokenization. Second, we did not cover open-
ended generation tasks like story generation and
long-form generation tasks in this paper. Third, we
could conduct more experiments and analysis on
the mechanism of our approach, and examine the
outputs with human judgement and feedback.

References
Peter Anderson, Basura Fernando, Mark Johnson, and

Stephen Gould. 2017. Guided open vocabulary im-
age captioning with constrained beam search. In
Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, pages 936–
945, Copenhagen, Denmark. Association for Compu-
tational Linguistics.

Satanjeev Banerjee and Alon Lavie. 2005. METEOR:
An automatic metric for MT evaluation with im-
proved correlation with human judgments. In Pro-
ceedings of the ACL Workshop on Intrinsic and Ex-
trinsic Evaluation Measures for Machine Transla-
tion and/or Summarization, pages 65–72, Ann Arbor,
Michigan. Association for Computational Linguis-
tics.

Ondřej Bojar, Christian Buck, Christian Federmann,
Barry Haddow, Philipp Koehn, Johannes Leveling,
Christof Monz, Pavel Pecina, Matt Post, Herve Saint-
Amand, Radu Soricut, Lucia Specia, and Aleš Tam-
chyna. 2014. Findings of the 2014 workshop on
statistical machine translation. In Proceedings of the
Ninth Workshop on Statistical Machine Translation,
pages 12–58, Baltimore, Maryland, USA. Associa-
tion for Computational Linguistics.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind

12393

https://doi.org/10.18653/v1/D17-1098
https://doi.org/10.18653/v1/D17-1098
https://aclanthology.org/W05-0909
https://aclanthology.org/W05-0909
https://aclanthology.org/W05-0909
https://doi.org/10.3115/v1/W14-3302
https://doi.org/10.3115/v1/W14-3302

Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Antoine Chaffin, Vincent Claveau, and Ewa Kijak. 2022.
PPL-MCTS: Constrained textual generation through
discriminator-guided MCTS decoding. In Proceed-
ings of the 2022 Conference of the North Ameri-
can Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
2953–2967, Seattle, United States. Association for
Computational Linguistics.

Eldan Cohen and Christopher Beck. 2019. Empirical
analysis of beam search performance degradation
in neural sequence models. In Proceedings of the
36th International Conference on Machine Learn-
ing, volume 97 of Proceedings of Machine Learning
Research, pages 1290–1299. PMLR.

Pradeep Dasigi, Nelson F. Liu, Ana Marasović, Noah A.
Smith, and Matt Gardner. 2019. Quoref: A read-
ing comprehension dataset with questions requir-
ing coreferential reasoning. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 5925–5932, Hong Kong,
China. Association for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel
Stanovsky, Sameer Singh, and Matt Gardner. 2019.
DROP: A reading comprehension benchmark requir-
ing discrete reasoning over paragraphs. In Proceed-
ings of the 2019 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1
(Long and Short Papers), pages 2368–2378, Min-
neapolis, Minnesota. Association for Computational
Linguistics.

Bryan Eikema and Wilker Aziz. 2020. Is MAP decoding
all you need? the inadequacy of the mode in neural
machine translation. In Proceedings of the 28th Inter-
national Conference on Computational Linguistics,
pages 4506–4520, Barcelona, Spain (Online). Inter-
national Committee on Computational Linguistics.

Alexander R. Fabbri, Wojciech Kryściński, Bryan Mc-
Cann, Caiming Xiong, Richard Socher, and Dragomir
Radev. 2021. SummEval: Re-evaluating summariza-
tion evaluation. Transactions of the Association for
Computational Linguistics, 9:391–409.

Angela Fan, Mike Lewis, and Yann Dauphin. 2018.
Hierarchical neural story generation. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 889–898, Melbourne, Australia. Association
for Computational Linguistics.

Patrick Fernandes, António Farinhas, Ricardo Rei, José
De Souza, Perez Ogayo, Graham Neubig, and Andre
Martins. 2022. Quality-aware decoding for neural
machine translation. In Proceedings of the 2022
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 1396–1412, Seattle,
United States. Association for Computational Lin-
guistics.

Markus Freitag, David Grangier, Qijun Tan, and Bowen
Liang. 2022. High quality rather than high model
probability: Minimum Bayes risk decoding with neu-
ral metrics. Transactions of the Association for Com-
putational Linguistics, 10:811–825.

Samuel Gehman, Suchin Gururangan, Maarten Sap,
Yejin Choi, and Noah A. Smith. 2020. RealToxi-
cityPrompts: Evaluating neural toxic degeneration
in language models. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages
3356–3369, Online. Association for Computational
Linguistics.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and
Yejin Choi. 2020. The curious case of neural text de-
generation. In International Conference on Learning
Representations.

Dan Klein and Christopher D. Manning. 2003. A* pars-
ing: Fast exact Viterbi parse selection. In Proceed-
ings of the 2003 Human Language Technology Con-
ference of the North American Chapter of the Associ-
ation for Computational Linguistics, pages 119–126.

Wojciech Kryscinski, Bryan McCann, Caiming Xiong,
and Richard Socher. 2020. Evaluating the factual
consistency of abstractive text summarization. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 9332–9346, Online. Association for Computa-
tional Linguistics.

Rémi Leblond, Jean-Baptiste Alayrac, Laurent Sifre,
Miruna Pislar, Lespiau Jean-Baptiste, Ioannis
Antonoglou, Karen Simonyan, and Oriol Vinyals.
2021. Machine translation decoding beyond beam
search. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 8410–8434, Online and Punta Cana, Domini-
can Republic. Association for Computational Lin-
guistics.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training

12394

https://doi.org/10.18653/v1/2022.naacl-main.215
https://doi.org/10.18653/v1/2022.naacl-main.215
https://proceedings.mlr.press/v97/cohen19a.html
https://proceedings.mlr.press/v97/cohen19a.html
https://proceedings.mlr.press/v97/cohen19a.html
https://doi.org/10.18653/v1/D19-1606
https://doi.org/10.18653/v1/D19-1606
https://doi.org/10.18653/v1/D19-1606
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1246
https://doi.org/10.18653/v1/N19-1246
https://doi.org/10.18653/v1/2020.coling-main.398
https://doi.org/10.18653/v1/2020.coling-main.398
https://doi.org/10.18653/v1/2020.coling-main.398
https://doi.org/10.1162/tacl_a_00373
https://doi.org/10.1162/tacl_a_00373
https://doi.org/10.18653/v1/P18-1082
https://doi.org/10.18653/v1/2022.naacl-main.100
https://doi.org/10.18653/v1/2022.naacl-main.100
https://doi.org/10.1162/tacl_a_00491
https://doi.org/10.1162/tacl_a_00491
https://doi.org/10.1162/tacl_a_00491
https://doi.org/10.18653/v1/2020.findings-emnlp.301
https://doi.org/10.18653/v1/2020.findings-emnlp.301
https://doi.org/10.18653/v1/2020.findings-emnlp.301
https://openreview.net/forum?id=rygGQyrFvH
https://openreview.net/forum?id=rygGQyrFvH
https://aclanthology.org/N03-1016
https://aclanthology.org/N03-1016
https://doi.org/10.18653/v1/2020.emnlp-main.750
https://doi.org/10.18653/v1/2020.emnlp-main.750
https://doi.org/10.18653/v1/2021.emnlp-main.662
https://doi.org/10.18653/v1/2021.emnlp-main.662
https://doi.org/10.18653/v1/2020.acl-main.703

for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7871–7880, Online. Association for Computa-
tional Linguistics.

Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao,
and Bill Dolan. 2016. A diversity-promoting ob-
jective function for neural conversation models. In
Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 110–119, San Diego, California. Association
for Computational Linguistics.

Bill Yuchen Lin, Wangchunshu Zhou, Ming Shen, Pei
Zhou, Chandra Bhagavatula, Yejin Choi, and Xiang
Ren. 2020. CommonGen: A constrained text gen-
eration challenge for generative commonsense rea-
soning. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2020, pages 1823–1840,
Online. Association for Computational Linguistics.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain.
Association for Computational Linguistics.

Ximing Lu, Sean Welleck, Peter West, Liwei Jiang,
Jungo Kasai, Daniel Khashabi, Ronan Le Bras, Lian-
hui Qin, Youngjae Yu, Rowan Zellers, Noah A. Smith,
and Yejin Choi. 2022. NeuroLogic a*esque decoding:
Constrained text generation with lookahead heuris-
tics. In Proceedings of the 2022 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, pages 780–799, Seattle, United States. Associa-
tion for Computational Linguistics.

Clara Meister, Ryan Cotterell, and Tim Vieira. 2020a.
If beam search is the answer, what was the question?
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 2173–2185, Online. Association for Computa-
tional Linguistics.

Clara Meister, Tiago Pimentel, Gian Wiher, and Ryan
Cotterell. 2022a. Locally typical sampling.

Clara Meister, Tim Vieira, and Ryan Cotterell. 2020b.
Best-first beam search. Transactions of the Associa-
tion for Computational Linguistics, 8:795–809.

Clara Meister, Gian Wiher, Tiago Pimentel, and Ryan
Cotterell. 2022b. On the probability–quality paradox
in language generation. In Proceedings of the 60th
Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 36–45,
Dublin, Ireland. Association for Computational Lin-
guistics.

Lidiya Murakhovs’ka, Chien-Sheng Wu, Philippe La-
ban, Tong Niu, Wenhao Liu, and Caiming Xiong.
2022. MixQG: Neural question generation with
mixed answer types. In Findings of the Association

for Computational Linguistics: NAACL 2022, pages
1486–1497, Seattle, United States. Association for
Computational Linguistics.

Shashi Narayan, Shay B. Cohen, and Mirella Lapata.
2018. Don’t give me the details, just the summary!
topic-aware convolutional neural networks for ex-
treme summarization. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1797–1807, Brussels, Bel-
gium. Association for Computational Linguistics.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan
Wang, Yingbo Zhou, Silvio Savarese, and Caiming
Xiong. 2022. A conversational paradigm for program
synthesis. arXiv preprint arXiv:2203.13474.

Franz Josef Och, Nicola Ueffing, and Hermann Ney.
2001. An efficient A* search algorithm for statisti-
cal machine translation. In Proceedings of the ACL
2001 Workshop on Data-Driven Methods in Machine
Translation.

Myle Ott, Michael Auli, David Grangier, and
Marc’Aurelio Ranzato. 2018. Analyzing uncertainty
in neural machine translation. In Proceedings of the
35th International Conference on Machine Learn-
ing, volume 80 of Proceedings of Machine Learning
Research, pages 3956–3965. PMLR.

Diogo Pernes, Afonso Mendes, and André FT Mar-
tins. 2022. Improving abstractive summariza-
tion with energy-based re-ranking. arXiv preprint
arXiv:2210.15553.

Krishna Pillutla, Swabha Swayamdipta, Rowan Zellers,
John Thickstun, Sean Welleck, Yejin Choi, and Zaid
Harchaoui. 2021. Mauve: Measuring the gap be-
tween neural text and human text using divergence
frontiers. Advances in Neural Information Process-
ing Systems, 34:4816–4828.

Matt Post and David Vilar. 2018. Fast lexically con-
strained decoding with dynamic beam allocation for
neural machine translation. In Proceedings of the
2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long Pa-
pers), pages 1314–1324, New Orleans, Louisiana.
Association for Computational Linguistics.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, Peter J Liu, et al. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21(140):1–67.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383–2392, Austin,
Texas. Association for Computational Linguistics.

12395

https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/N16-1014
https://doi.org/10.18653/v1/N16-1014
https://doi.org/10.18653/v1/2020.findings-emnlp.165
https://doi.org/10.18653/v1/2020.findings-emnlp.165
https://doi.org/10.18653/v1/2020.findings-emnlp.165
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://doi.org/10.18653/v1/2022.naacl-main.57
https://doi.org/10.18653/v1/2022.naacl-main.57
https://doi.org/10.18653/v1/2022.naacl-main.57
https://doi.org/10.18653/v1/2020.emnlp-main.170
https://doi.org/10.48550/ARXIV.2202.00666
https://doi.org/10.1162/tacl_a_00346
https://doi.org/10.18653/v1/2022.acl-short.5
https://doi.org/10.18653/v1/2022.acl-short.5
https://doi.org/10.18653/v1/2022.findings-naacl.111
https://doi.org/10.18653/v1/2022.findings-naacl.111
https://doi.org/10.18653/v1/D18-1206
https://doi.org/10.18653/v1/D18-1206
https://doi.org/10.18653/v1/D18-1206
https://aclanthology.org/W01-1408
https://aclanthology.org/W01-1408
https://proceedings.mlr.press/v80/ott18a.html
https://proceedings.mlr.press/v80/ott18a.html
https://doi.org/10.18653/v1/N18-1119
https://doi.org/10.18653/v1/N18-1119
https://doi.org/10.18653/v1/N18-1119
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264

Mathieu Ravaut, Shafiq Joty, and Nancy Chen. 2022.
SummaReranker: A multi-task mixture-of-experts
re-ranking framework for abstractive summarization.
In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 4504–4524, Dublin, Ireland.
Association for Computational Linguistics.

Raj Reddy. 1977. Speech understanding systems: A
summary of results of the five-year research effort at
carnegie mellon university. Pittsburgh, Pa.

Ricardo Rei, Craig Stewart, Ana C Farinha, and Alon
Lavie. 2020. COMET: A neural framework for MT
evaluation. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 2685–2702, Online. Association
for Computational Linguistics.

Swarnadeep Saha, Shiyue Zhang, Peter Hase, and Mo-
hit Bansal. 2022. Summarization programs: Inter-
pretable abstractive summarization with neural mod-
ular trees. arXiv preprint arXiv:2209.10492.

Tianxiao Shen, Myle Ott, Michael Auli, and
Marc’Aurelio Ranzato. 2019. Mixture models for
diverse machine translation: Tricks of the trade. In
International conference on machine learning, pages
5719–5728. PMLR.

Kaiqiang Song, Bingqing Wang, Zhe Feng, and Fei Liu.
2021. A new approach to overgenerating and scoring
abstractive summaries. In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 1392–1404, Online.
Association for Computational Linguistics.

Felix Stahlberg and Bill Byrne. 2019. On NMT search
errors and model errors: Cat got your tongue? In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 3356–
3362, Hong Kong, China. Association for Computa-
tional Linguistics.

Katherine Stasaski and Marti Hearst. 2022. Semantic
diversity in dialogue with natural language inference.
In Proceedings of the 2022 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 85–98, Seattle, United States. Association for
Computational Linguistics.

Mirac Suzgun, Luke Melas-Kyriazi, and Dan Jurafsky.
2022. Follow the wisdom of the crowd: Effective
text generation via minimum bayes risk decoding.
arXiv preprint arXiv:2211.07634.

Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Na-
man Goyal, Vishrav Chaudhary, Jiatao Gu, and An-
gela Fan. 2021. Multilingual translation from de-
noising pre-training. In Findings of the Association
for Computational Linguistics: ACL-IJCNLP 2021,

pages 3450–3466, Online. Association for Computa-
tional Linguistics.

Ashwin Vijayakumar, Michael Cogswell, Ramprasaath
Selvaraju, Qing Sun, Stefan Lee, David Crandall,
and Dhruv Batra. 2018. Diverse beam search for
improved description of complex scenes. Proceed-
ings of the AAAI Conference on Artificial Intelligence,
32(1).

Sean Welleck, Ilia Kulikov, Jaedeok Kim,
Richard Yuanzhe Pang, and Kyunghyun Cho.
2020a. Consistency of a recurrent language model
with respect to incomplete decoding. In Proceedings
of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages
5553–5568, Online. Association for Computational
Linguistics.

Sean Welleck, Ilia Kulikov, Stephen Roller, Emily Di-
nan, Kyunghyun Cho, and Jason Weston. 2020b.
Neural text generation with unlikelihood training. In
ICLR.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le,
Mohammad Norouzi, Wolfgang Macherey, Maxim
Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al.
2016. Google’s neural machine translation system:
Bridging the gap between human and machine trans-
lation. arXiv preprint arXiv:1609.08144.

Jiacheng Xu, Siddhartha Jonnalagadda, and Greg Dur-
rett. 2022. Massive-scale decoding for text gener-
ation using lattices. In Proceedings of the 2022
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 4659–4676, Seattle,
United States. Association for Computational Lin-
guistics.

Kevin Yang and Dan Klein. 2021. FUDGE: Controlled
text generation with future discriminators. In Pro-
ceedings of the 2021 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
3511–3535, Online. Association for Computational
Linguistics.

Hugh Zhang, Daniel Duckworth, Daphne Ippolito, and
Arvind Neelakantan. 2021. Trading off diversity and
quality in natural language generation. In Proceed-
ings of the Workshop on Human Evaluation of NLP

12396

https://doi.org/10.18653/v1/2022.acl-long.309
https://doi.org/10.18653/v1/2022.acl-long.309
https://doi.org/10.18653/v1/2020.emnlp-main.213
https://doi.org/10.18653/v1/2020.emnlp-main.213
https://doi.org/10.18653/v1/2021.naacl-main.110
https://doi.org/10.18653/v1/2021.naacl-main.110
https://doi.org/10.18653/v1/D19-1331
https://doi.org/10.18653/v1/D19-1331
https://doi.org/10.18653/v1/2022.naacl-main.6
https://doi.org/10.18653/v1/2022.naacl-main.6
https://arxiv.org/abs/2211.07634
https://arxiv.org/abs/2211.07634
https://doi.org/10.18653/v1/2021.findings-acl.304
https://doi.org/10.18653/v1/2021.findings-acl.304
https://ojs.aaai.org/index.php/AAAI/article/view/12340
https://ojs.aaai.org/index.php/AAAI/article/view/12340
https://doi.org/10.18653/v1/2020.emnlp-main.448
https://doi.org/10.18653/v1/2020.emnlp-main.448
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2022.naacl-main.344
https://doi.org/10.18653/v1/2022.naacl-main.344
https://doi.org/10.18653/v1/2021.naacl-main.276
https://doi.org/10.18653/v1/2021.naacl-main.276
https://aclanthology.org/2021.humeval-1.3
https://aclanthology.org/2021.humeval-1.3

Property Det. No Dup. Low Pruning Completeness

BS ✓ ✓ ✗ ✓

Sample ✗ ✗6 ✗ ✓
BFS ✓ ✓ ✓ ✗

Table 9: Property comparison of search algorithms and
approaches. Det. stands for deterministic search with
reproducibility. No Dup. indicates the approach could
guarantee no duplication of output sequences.

Algorithm 2 Best-First Search
Input: Language model abstracted as pθ, search

budget, and frontier O.
Output: All completed paths P

1: O ← {⟨∞, BOS, −1⟩}, T ← 0, t← 0.
2: while T < budget do
3: n← O.pop()
4: for v ∈ V do
5: if is-complete(n ◦ v) then
6: P ← P ∪ (n ◦ v)
7: continue
8: end if
9: child← ⟨h(n ◦ v), v, t⟩

10: O ← O ∪ child
11: end for
12: T ← T + 1
13: t← t+ 1
14: end while

Systems (HumEval), pages 25–33, Online. Associa-
tion for Computational Linguistics.

Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen,
Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing
Liu, and Bill Dolan. 2020. DIALOGPT : Large-scale
generative pre-training for conversational response
generation. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics:
System Demonstrations, pages 270–278, Online. As-
sociation for Computational Linguistics.

A Best-First Search Algorithm

We describe the best-first search algorithm in the
context of probabilistic NLG in Algorithm 2.

A.1 Setup for investigating BFS

We use XSum (Narayan et al., 2018) and a BART
model BART-large-XSum7 (Lewis et al., 2020)
fine-tuned on it as the testbed of our preliminary

6Duplication of sampling methods depend on the choice
of hyper-parameter.

7https://huggingface.co/facebook/
bart-large-xsum

study. We sample 100 examples from the test set
to measure the decoding quality. We set the beam
size to 10 and the max sequence length to 30. For
the machine configuration, we use Intel Xeon CPU
@ 2.20GHz for CPU and NVIDIA A100-SXM4-
40GB for GPU. We use Transformers (v4.23.1)
(Wolf et al., 2020) and pytorch (v1.9.0) for baseline
implementation and model calls.

A.2 Advantages & Challenges
What are the potential advantages of using BFS,
compared to beam search and sampling ap-
proaches? We enumerate the inherent property
of beam search, sampling, and best-first search in
Table 9. BFS has many strengths to satisfy desired
properties like diversity, quality, and controllability
in text generation.

Deterministic BFS is a deterministic search algo-
rithm with lower variance and higher controllability
than stochastic sampling methods. This also indi-
cates that BFS is compatible with sampling on top,
similar to beam search.

No duplication BFS comes with no duplication,
so it’s guaranteed that the more search budget used,
the more unique outputs there will be. Sampling
methods with low truncation thresholds suffer from
this issue.

No Pruning We illustrate the pruning issue in
beam search in Figure 2. BS prunes the desired hy-
potheses. Unlike beam search, BFS never prunes,8

and preserves all explored nodes. This also brings
great flexibility that the generation could switch
between different branches of search.

Diversity BFS yields diverse outputs with decent
quality. The diversity of generated sequences is
based on empirical lens, which will be covered in
our experiments.

As we have discussed many strengths BFS en-
joys, why has it not been the dominant approach?
We implement a standard BFS algorithm, as de-
scribed in Algorithm 2, and look into how it works
on decoding text summaries from BART-XSum.
We also define a notion of equivalent beam size9

8In practice, due to the large vocabulary V , we only keep
the highest k out of |V| ranked options for each expansion
for efficiency. We posit that the long-tail low probability
continuations won’t be prioritized by the priority queue and
it’s fine to discard them anyway.

9Beam size and equivalent beam size are interchangeable
for the rest of the paper for simplicity. We follow Xu et al.
(2022) for the definition of equivalent beam size.

12397

https://doi.org/10.18653/v1/2020.acl-demos.30
https://doi.org/10.18653/v1/2020.acl-demos.30
https://doi.org/10.18653/v1/2020.acl-demos.30
https://huggingface.co/facebook/bart-large-xsum
https://huggingface.co/facebook/bart-large-xsum

Beam Size 1 2 5 10

Incomplete Rate 58.1% 23.8% 3.9% 3.0%
Time (s) 1.0 1.9 5.6 13.7

Table 10: Search incomplete rate and speed for the
vanilla BFS. Beam size denotes the equivalent beam
size, which is a reflection of the total search budget.
Incomplete rate measures how often a search does not
reach any completed state (EOS). Time denotes the run-
ning time for running the search algorithm per example.

to calibrate the search budget for all methods. For
beam search, we set a beam size b and a max decod-
ing length T , and the total search cost is C = bT ,
which means there will be C times forward passes
through LM. BFS also calls the LM for C times
and discover C nodes.

While beam search iteratively gains depth, best-
first search does not. Hence, we investigate how
often BFS could (not) reach the search goal, which
is at least one EOS token. In Table 10, we show
that the vanilla BFS has a pretty high chance of fail-
ure when the search budget is very limited. Even
in the case of beam size b = 10, there is a 3% of
chance that the method won’t reach any completed
sequence, a sequence ending with EOS or other
pre-defined termination tokens. This indicates that
the vanilla BFS struggles with the completeness.
Efficiency is another crucial factor for practical us-
age. We measure the time consumed for running
the search for each example and report it in Ta-
ble 10. For reference, beam search with b = 10 can
be completed in 0.7s per example. The vanilla BFS
is slower than BS since the step-wise exploration
in BFS is not batched.

B Choice of Scoring Function

We test the incompletion rate in a very strict use
case: decoding a summary with at most T = 30
tokens with a total budget C = bT = 300. If the
model does not reach any EOS token before depth
of 30, we consider it as a case of incompletion.
We show the comparison of the incompletion rate
in Table 12. The length-normalized sequence log-
likelihood is formed as 1

lα
∑l

t=0 log pθ(yt|y<t,x).
The original definition of scoring function, α = 0,
is a failure in the context of best-first search. The
reason behind is the monotonic relation of the hy-
pothesis score and the length. Since shorter se-
quences always have higher score, the greedy prop-
erty of best-first search will hinder the exploration
of longer sequences. Although the weight of tem-

BLEU
|S| D Original COMET ∆

Reference 11 29.2 - - -

BS 10 14.6 39.6 38.4 -1.2
DBS 10 18.4 32.1 32.1 0.0

DBS+ 10 21.7 32.0 33.3 1.3

BTYP0.2 2 10.2 35.4 35.4 -0.1
BTYP0.5 2 9.2 44.3 44.2 0.0

BTYP0.95 3 9.9 39.9 39.7 -0.2
BNCLS0.5 2 8.9 40.6 40.6 -0.1
BNCLS0.8 2 9.5 38.5 38.4 -0.1
BNCLS0.9 3 9.8 39.5 38.9 -0.6

TYP0.2 8 26.4 23.9 25.0 1.1
TYP0.5 9 27.0 31.2 32.6 1.4

TYP0.95 10 37.2 24.1 24.1 0.0
NCLS0.5 8 17.1 35.6 36.3 0.7
NCLS0.8 10 28.9 28.9 28.7 -0.2
NCLS0.9 10 33.4 25.4 26.6 1.2

BKSmean 18 16.8 38.0 39.0 1.0
BKSlast 26 18.1 33.5 37.2 3.6

Table 11: Machine translation from English to French.
We highlight the best BLEU score after reranking and
the improvement ∆ for each sector. Numbers are
rounded after calculation for display simplicity.

α = 0 α = 0.5 α = 1.0 BKSlast

Rate 79.5% 8.8% 1.8% 2.1%

Ref. BS DBS BS+Sample Sample

Rate 5.0% 1.1% 6.4% 0.8%

Table 12: Incomplete rate (↓) with different choices of
scoring function in best-k search (top) and reference
baselines (bottom). α = 0 stands for sequential log-
likelihood without length adjustment; α = 1.0 repre-
sents BKSmean . We show the lowest incomplete rate
under various configurations of temporal decay. See
Sec. 5.3 for the definition and discussion.

poral decay could be increased, it will change the
foundation of the algorithm if the decay is over-
whelming the hypothesis score.

Performance of BKSlast and BKSmean is over-
all good across all datasets. We also notice an
interesting difference that BKSmean prioritizes the
quality slightly more than BKSlast while BKSlast

enjoys more diversity. For example, BKSlast on
QuoRef achieves higher distinctness score but a
slightly lower ROUGE score. The difference of
scoring function will definitely impact the search
strategy and we treat it as a handle of controllability
for our algorithm.

12398

C Experiment Setup

Question Generation We adopt a state-of-the-art
question generation model, MixQG (Murakhovs’ka
et al., 2022), as the testbed to verify whether our
approach could elicit more diverse, larger number
and high-quality questions compared to baseline
approaches. We use the variant mixqg-large
in this paper. For datasets, we select a range of
seen and unseen QA datasets, including SQuAD
(Rajpurkar et al., 2016), DROP (Dua et al., 2019),
and QuoRef (Dasigi et al., 2019). We set the maxi-
mum decoding length to 25 BPEs for SQuAD and
QuoRef, and 20 for DROP.

Commonsense Generation CommonGen is a
dataset for generative commonsense reasoning (Lin
et al., 2020). The input is a few keywords and the
target is a sentence satisfying commonsense and
covering these keywords. We adopt a T5-based
model10 fine-tuned on the training set of Common-
Gen. Since CommonGen has multiple references
for each input, we utilize multiple references for
each example by evaluating outputs against them.
The maximum decoding length is set to 20.

Text Summarization We use XSum (Narayan
et al., 2018) as the dataset for abstractive text sum-
marization. The model we use for this task is the
BART11 model (Lewis et al., 2020) fine-tuned on
XSum. The maximum decoding length is 30.

D Experiment: Machine Translation
En→Fr

We present the machine translation result from En-
glish to French in Table 11. The dataset we use
here is an extended version of newstest2014. We
can see a significant improvement over BLEU in
our approach after using COMET-QE reranking.

We obtained similar results on En-Fr compared
to En-De in Table 8. Our approach achieves a
good combination of diversity and quality com-
pared to baseline methods. One of the beam search
+ sampling method, BTYP0.5, achieves 44.2 af-
ter COMET-QE reranking, which surpasses any
other methods by a decent margin. Our approach,
BKSmean , beats strong baselines including beam
search and sampling-only approaches. What worth
noticing is the significant jump after reranking,

10The model is available at https://huggingface.
co/mrm8488/t5-base-finetuned-common_gen.

11https://huggingface.co/facebook/
bart-large-xsum

which shows a great success of overgeneration +
reranking as a paradigm.

|S| D OR R MV GRM MTR

BS 10 21.8 55.7 41.3 91.4 87.0 48.5
DBS 9 25.1 50.7 36.5 72.1 80.9 42.1

DBS+ 9 29.6 50.5 31.9 37.7 81.3 35.6

BTYP0.2 1 9.8 41.9 41.2 96.8 87.6 46.8
BTYP0.5 1 10.2 46.1 44.9 94.3 88.7 50.2

BTYP0.95 2 10.7 46.6 44.7 95.0 88.5 50.4
BNCLS0.5 1 9.2 44.8 44.5 97.0 88.7 49.6
BNCLS0.8 1 10.2 46.3 44.6 94.8 88.4 49.9
BNCLS0.9 2 10.7 46.8 44.7 96.0 88.1 50.4

TYP0.2 5 21.1 45.8 37.7 94.2 87.1 43.4
TYP0.5 7 26.2 54.3 40.6 97.1 88.1 45.7

TYP0.95 9 34.8 55.6 39.2 97.8 86.5 44.6
NCLS0.5 9 31.9 55.6 39.0 95.1 86.3 44.3
NCLS0.8 8 28.3 55.4 40.8 98.4 87.8 46.1
NCLS0.9 9 31.6 55.9 39.0 97.7 85.9 44.3

BKSmean 19 29.5 54.8 38.2 99.0 86.0 44.0
BKSlast 18 32.8 54.2 35.8 98.8 84.4 40.6

Table 13: Results of question generation on SQuAD.

E Experiment: Question Generation on
SQuAD

We present the result of question generation on
SQuAD in Table 13. Our approach achieves the
best MAUVE score and a good combination of
diversity and quality metrics. Our approach outper-
forms baseline models in either diversity or quality
on SQuAD.

F Design Choice for Completion

In our paper, we design a temporal decay func-
tion to encourage the completion of our search
algorithm. We have also considered a depth-based
auxiliary term to encourage the completion. For
instance, we can define aux(n) = n.length()
where a longer sequence will receive a higher score
if we assume a longer sequence is more likely to ter-
minate (Welleck et al., 2020a). The problem of this
function is that it always prefer longer sequences.
Once there exists one single long sequence, the rest
of the search will focus on this string because it
is longer than any other strings. The search will
be shaped into a depth-first search while what we
expect is to discover a diverse set of strings with
various length and prefix.

12399

https://huggingface.co/mrm8488/t5-base-finetuned-common_gen
https://huggingface.co/mrm8488/t5-base-finetuned-common_gen
https://huggingface.co/facebook/bart-large-xsum
https://huggingface.co/facebook/bart-large-xsum

ACL 2023 Responsible NLP Checklist

A For every submission:
�3 A1. Did you describe the limitations of your work?

Sec. Limitations after Sec. Conclusion.

�7 A2. Did you discuss any potential risks of your work?
We do not see a substantial risk of our work. Although the output could contain toxic or biased
content, we posit that it does not attribute to the search algorithm we propose.

�3 A3. Do the abstract and introduction summarize the paper’s main claims?
Abstract and Section 1.

�7 A4. Have you used AI writing assistants when working on this paper?
Left blank.

B �3 Did you use or create scientific artifacts?
We create scientific artifacts. See Section 4 and Appendix.

� B1. Did you cite the creators of artifacts you used?
Not applicable. Left blank.

�3 B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
It is currently under discussion and processing and we will release the code.

� B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
Not applicable. Left blank.

� B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
Not applicable. Left blank.

� B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
Not applicable. Left blank.

�3 B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
Section 4, Section 5 and Appendix.

C �3 Did you run computational experiments?
Section 4, 5 and 6, and Appendix.

�3 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
We develop an inference algorithm, which does not require substantial computational resource. We
provide related information in Appendix.

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

12400

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/

�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
We discuss the experimental setup in Section 4 and Appendix A.

�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
We report the descriptive statistics in Section 4, 6 and Appendix.

�3 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
We report the usage of existing packages in Section 4 and Appendix. There are also some footnotes
providing instructions and details throughout the paper.

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
No response.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
No response.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
No response.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No response.

12401

