
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
Volume 1: Long Papers, pages 12336–12355

July 9-14, 2023 ©2023 Association for Computational Linguistics

Accelerating Transformer Inference for Translation via Parallel Decoding

Andrea Santilli1, Silvio Severino1, Emilian Postolache1, Valentino Maiorca1,
Michele Mancusi1, Riccardo Marin2,3, Emanuele Rodolà1

1Sapienza University of Rome 2University of Tübingen
3Tübingen AI Center

santilli@di.uniroma1.it

Abstract
Autoregressive decoding limits the efficiency
of transformers for Machine Translation (MT).
The community proposed specific network
architectures and learning-based methods to
solve this issue, which are expensive and re-
quire changes to the MT model, trading infer-
ence speed at the cost of the translation quality.
In this paper, we propose to address the prob-
lem from the point of view of decoding algo-
rithms, as a less explored but rather compelling
direction. We propose to reframe the standard
greedy autoregressive decoding of MT with
a parallel formulation leveraging Jacobi and
Gauss-Seidel fixed-point iteration methods for
fast inference. This formulation allows to speed
up existing models without training or modifi-
cations while retaining translation quality. We
present three parallel decoding algorithms and
test them on different languages and models
showing how the parallelization introduces a
speedup up to 38% w.r.t. the standard autore-
gressive decoding and nearly 2x when scaling
the method on parallel resources. Finally, we
introduce a decoding dependency graph visual-
izer (DDGviz) that let us see how the model has
learned the conditional dependence between to-
kens and inspect the decoding procedure.

1 Introduction

In recent years there have been dramatic improve-
ments in Machine Translation (MT) (Edunov et al.,
2018; Liu et al., 2020) thanks to the transition to
neural models and the advent of the Transformer ar-
chitecture (Vaswani et al., 2017). These models can
produce high-quality translations while being ex-
tremely parallelizable during training. However,
Transformers are used sequentially at inference
time, generating one token per time (i.e., sending
each token as input for the next autoregressive itera-
tion). This process of autoregressive inference ham-
pers the efficiency of neural machine translation
systems in terms of latency, limiting applications
and portability. Considering that these systems are

extensively used in production multiple times to
produce new translations (e.g., Google Translate1,
DeepL Translator2), even a minor speedup would
be beneficial in the long run, especially if the trans-
lation is done on embedded devices.

To address this issue, the community proposed
ad-hoc trained models specific for parallel ma-
chine translation under the umbrella term of Non-
Autoregressive Machine Translation models (NAT)
(Gu et al., 2018). These models produce the trans-
lation in parallel but require (i) a complete reengi-
neering of the MT system, (ii) extensive training
resources and (iii) complex design choices like dis-
tillation from larger autoregressive models. These
requirements are quite demanding and not easily
satisfiable. For example, production systems are
heavily optimized for hardware and software and
even introducing a minimal modification requires
non-trivial human effort (Wu et al., 2016; Kim et al.,
2019). Furthermore, training a new model from
scratch is not always possible due to non-released
training data or low-resource languages having few
or lacking parallel corpora.

In this paper, we propose to address the problem
of parallel machine translation with an orthogo-
nal approach consisting in novel decoding algo-
rithms that work in parallel and can be used on
top of existing autoregressive models for MT. We
overcome previous limitations with a flexible and
generic method that does not require any modifica-
tion to the model or costly retraining. Specifically,
inspired by previous successes in speeding up feed-
forward computation for image generation (Song
et al., 2021b), we reframe the greedy autoregres-
sive decoding for MT as a system of nonlinear
equations solvable in parallel. This simple formu-
lation speeds up the decoding procedure by using
fixed-point iteration methods like Jacobi and Gauss-
Seidel while having mathematical guarantees on

1https://translate.google.com/
2https://www.deepl.com/

12336



Figure 1: On the left, the classical Autoregressive Decoding for MT. The target sentence is produced token-by-token
sequentially, sending the partial result as input for the next autoregressive iteration up to the length m of the target.
On the right Parallel Decoding proposed in this paper. This method changes only the decoding algorithm (orange
block) and is usable on top of any autoregressive model without modifications. Parallel Decoding algorithms resolve
the whole sentence or a block of b tokens in parallel: initial tokens (PAD tokens) are gradually refined with k steps
until a stopping condition is reached. Crucially, k ⩽ m with quality guarantees and overall decoding speedups.

the quality of the translation. A high-level descrip-
tion of the method is available in (Fig. 1). Our
contributions can be summarized as the following:

• We reframe the standard greedy autoregres-
sive decoding procedure in MT with a parallel
formulation, introducing three parallel decod-
ing algorithms (PJ, PGJ, HGJ) and a stopping
condition that preserves translation quality.

• We perform extensive experiments with dif-
ferent transformer sizes (base and large) and
datasets, showing speedups up to 38% in time,
obtaining a nearly 2× speedup when scaling
the model on parallel resources while preserv-
ing quality. To the best of our knowledge,
this is one of the first studies to introduce a
speedup in multilingual machine translation.

• We introduce a decoding dependency graph
visualizer (DDGviz) to inspect the learned to-
kens’ conditional dependence and when paral-
lel decoding is effective.

All the code is publicly released3.

2 Related Work

Gu et al. (2018) first introduced Non-
Autoregressive Translation models (NAT) as
ad-hoc trained models capable of producing the
translation all at once in parallel. With NATs, it
is possible to consistently reduce the latency and
speed up the translation at the expense of a slightly
worse translation quality due to the multimodality
problem (i.e., we lose the dependency between
tokens in the target output). Finding a tradeoff
between translation quality and speed is an active

3https://github.com/teelinsan/
parallel-decoding

research direction, with current methods trying to
fill the gap in terms of translation quality (Geng
et al., 2021; Savinov et al., 2022). Nevertheless,
all proposed NAT models are learning-based and
require different tricks to reach the quality of
autoregressive models (Gu and Kong, 2021). The
most common is the sequence-level knowledge
distillation of large autoregressive models into
parallel models (Kim and Rush, 2016). Other
approaches include defining alternative training
objectives (Ghazvininejad et al., 2020a; Saharia
et al., 2020; Du et al., 2021; Huang et al., 2021),
architectures that model dependencies between
output sentence tokens (Ghazvininejad et al., 2019;
Qian et al., 2021; Song et al., 2021a; Gu and Kong,
2021; Song et al., 2022) or multi-iteration methods
(Ghazvininejad et al., 2020b; Kasai et al., 2020;
Hao et al., 2021; Geng et al., 2021; Savinov et al.,
2022; Huang et al., 2022; Xia et al., 2022) that
apply iterative refinements to a translation, trading
some speed for greater quality. In our approach,
we also employ iterative refinements of solutions
to non-linear equations, but we do not perform
any training or modification to the model. Other
works that require retraining or modifications to
the model add additional decoding heads (Stern
et al., 2018) or use shallow decoders (Kasai et al.,
2021). We refer the reader to Xiao et al. (2022)
for a thorough survey on NAT methods. Further
orthogonal approaches use specialized hardware
(TPU) with low-precision calculations (Wu et al.,
2016) or software optimizations (Kim et al., 2019).
In the context of Grammatical Error Correction,
Sun et al. (2021) recently proposed aggressive
parallel decoding, assuming that the model output
is similar to the input. More recently, inspiring
our work, Song et al. (2021b) showed that it is
possible to parallelize feedforward computations

12337

https://github.com/teelinsan/parallel-decoding
https://github.com/teelinsan/parallel-decoding


PJ PGJ HGJ
Figure 2: Parallel Decoding algorithms: PJ resolves the whole sequence in parallel iteratively. PGJ resolves
blocks in parallel; once a block is finished, it moves on to the next one and decodes it again in parallel (in figure
b = 3). HGJ decodes the sentence in parallel as PGJ up to a certain length h; afterwards, it goes autoregressively
until [EOS] token is generated. Decoding actually happens in sub-word tokens (not depicted here).

by thinking of them as a system of non-linear
equations. They parallelized the backpropagation
of RNNs, feedforward layers and autoregressive
generative models on images. We extend the
approach defined on dense pixel prediction to the
discrete conditional token generation in MT. While
this work was under submission and anonymity
period, Leviathan et al. (2022), Chen et al. (2023)
and Kim et al. (2023) concurrently proposed
decoding approaches that speed up inference
of a large transformer model by using another
smaller model to draft tokens. Compared to these
approaches our method requires just an existing
autoregressive model (no matter the size) and
mathematically guarantees the output quality. In
the next Section we describe the method.

3 Method

In this Section, we introduce notations, develop the
theory behind Parallel Decoding, present three al-
gorithms (Fig. 2), and discuss the initialization and
stopping conditions for the proposed approaches.

3.1 Notation
The goal of MT is to translate a sentence x in a
source language (e.g., Italian) with its translation
y in the target language (e.g., English). Source
and target sentences are generally tokenized in
words or subwords (Kudo and Richardson, 2018;
Schuster and Nakajima, 2012; Sennrich et al., 2016;
Kudo, 2018); here, we use the subfix notation
x = (x1, . . . , xn) and y = (y1, . . . , ym) to in-
dicate specific tokens in the sequence. We also
use the notation x1:n to indicate a slice of a se-
quence as a shorthand of x = (x1, . . . , xn). From
a probabilistic perspective, an MT model estimates
pθ(y | x). Once an MT model has been trained,
the inference phase is traditionally performed by
sampling tokens from the model probability con-
ditioned on the input sequence x and previously
generated tokens (y1, . . . , yi−1):

pθ (yi | y1, . . . , yi−1,x) . (1)

Different sampling strategies are employed (e.g.,
Greedy, Top-K, Top-p (Kool et al., 2020; Holtzman

et al., 2020)) alongside search strategies that esti-
mate the total conditional probability (e.g., Greedy
search, Beam search (Reddy, 1977)). The most
straightforward strategy, Greedy Search, selects
the element yi of a sequence with:

yi = argmax pθ(yi | y1:i−1,x). (2)

Given the formalization above, a standard autore-
gressive setting runs m inference steps sequentially
to generate an output sequence of m elements.

Parallel Decoding. Given Equation (2), it is pos-
sible to write the greedy decoding procedure on all
tokens as:





y1 = argmax pθ(y1 | x)
y2 = argmax pθ(y2 | y1,x)
...
ym = argmax pθ(ym | y1:m−1,x)

(3)

Defining f(yi,y1:i−1,x) = yi − argmax pθ(yi |
y1:i−1,x) , we can rewrite the system of Equations
(3) as:





f(y1,x) = 0
f(y2, y1,x) = 0
...
f(ym,y1:m−1,x) = 0

(4)

This system has m non-linear equations (each equa-
tion employ a neural network) with m variables.

3.2 Parallel Decoding Algorithms

The autoregressive decoding implicitly solves the
system of Equations (4) by substitution, i.e., given
the [BOS] token and the input sentence x, it solves
equations from first to last, progressively replacing
the resolved variables. In this paper, we rely on
Jacobi and Gauss-Seidel (GS) fixed-point iteration
methods (Ortega and Rheinboldt, 1970) to solve
in parallel system (4) until a stopping condition is
reached. This formulation is particularly flexible
and has several advantages: Firstly, it is completely
agnostic to the underlying MT model used; Sec-
ondly, it can be analyzed with analytical tools and

12338



has guarantees of convergence to the exact solu-
tion for system (4); Thirdly, it can be potentially
extended by drawing from the numerical methods
literature for non-linear equations solving methods
(Saad, 2003). We see that, with the proper stopping
condition, it is possible to have quality guarantees
over the output. We present here three algorithms
(PJ, PGJ, HGJ) that leverage these fixed-point iter-
ation methods to speedup decoding in MT.

Parallel Jacobi (PJ) Decoding. First, we pro-
pose Algorithm 1. This algorithm works by ini-
tializing a draft translation for the whole target
sentence and then iteratively translating the whole
sentence in parallel until the stopping condition is
triggered. This is equivalent to solving system (4)
with Jacobi, hence the name of the method.

Parallel GS-Jacobi (PGJ) Decoding. Decoding
the whole target sentence in parallel may intro-
duce difficulties in inferring long dependencies be-
tween tokens since the underlying model is trained
to model the conditional distribution of a token
given the previous tokens. In general, we observed
that shorter dependencies are easily predicted since
decoding happens at the sub-word level, and the
model can decode sub-word unities in parallel
rather than the whole sentence. To this end, we
propose Algorithm 2, called GS-Jacobi, that splits
the sentence into contiguous b-dimensional blocks.
Starting from the first one, it decodes in parallel
all its elements. Once a block is finished or the
stopping condition within the block is triggered,
the algorithm performs a sequential (Gauss-Seidel)
step and proceeds with (Jacobi) decoding on the
next one.

Hybrid GS-Jacobi (HGJ) Decoding. Algo-
rithms 1 and 2 assume to know beforehand the num-
ber of equations m (i.e., the target length). This is
not usually the case for MT, where the model dy-
namically controls the length through the emission
of a special end-of-sentence token [EOS]. To over-
come this issue, we propose a flexible Hybrid Algo-
rithm 3 that mixes PGJ computations with standard
autoregressive decoding. This algorithm performs
parallel GS-Jacobi decoding up to a certain prefixed
length h. If the [EOS] token is generated within
a block, then the algorithm stops, returning the
translation up to [EOS]. Otherwise, the algorithm
concludes the translation by reaching the [EOS] to-
ken with standard autoregressive decoding. In this
case, the length h regulates the trade-off between

Algorithm 1 Parallel Jacobi Decoding
Input: x = (x1, . . . , xn), pθ
Output: y = (y1, . . . , ym)

1: y← INITT(x)
2: m← len(y)
3: for i = 1 to m do
4: o← copy(y1:m)
5: y1:m ← argmax(pθ(y1:m|y1:m,x))
6: stop← STOPC(o,y1:m)
7: if stop then
8: break
9: end if

10: end for
11: return y

parallel and sequential computation, limiting the
waste of resources beyond [EOS].

3.3 Initialization and Stopping
Our algorithms share two components: the initial-
ization procedure and the stopping condition.

Initialization INITT(x). The initialization pro-
cedure is a function that inputs the source sentence
and produces an initial draft translation as output.
In this paper we experimented with a simple initial-
ization procedure that initialize the translation with
all [PAD] tokens. This choice is fast and doesn’t
depend on the underlying MT model. We leave as
future work the research of different initialization
procedures to further speedup the decoding.

Stopping Condition STOPC(yk−1, yk). The
stopping condition is a function that takes as in-
put the previous-iteration sentence yk−1 and the
current-iteration sentence yk and decides whether
to stop the algorithm or not. This function is crucial
since it regulates the trade-off between speedup and
translation quality. In this paper we introduce as
stopping condition for MT:

yk−1 − yk = 0 (5)

i.e., the sentence from the previous step has not
changed. This stop condition allows for preserving
quality and quickening translations simultaneously.

3.4 Quality Guarantees
Compared to NAT methods which do not have any
quality guarantee since a novel parallel model is
trained from scratch, our formulation guarantees
to have the same quality of using autoregressive
decoding with the same MT model. System (4)
is known in literature as a triangular system of m
equations with m variables, this characterization
allows to state an important property.

12339



Decoding Algorithm en→de de→en en→ro ro→en
Speed BLEU Speed BLEU Speed BLEU Speed BLEU

Opus
Greedy Autoregressive 1.00× 28.24 1.00× 33.10 1.00× 27.41 1.00× 37.01
Beam Search (beam = 5) 0.71× 28.68 0.72× 33.92 0.70× 27.61 0.72× 37.84
PJ Decoding 0.73× 28.24 0.75× 33.10 0.66× 27.41 0.66× 37.01
PGJ Decoding (b = 5) 1.28× 28.24 1.32× 33.10 1.33× 27.41 1.29× 37.01
PGJ Decoding (b = 3) 1.34× 28.24 1.37× 33.10 1.38× 27.41 1.35× 37.01
HGJ Decoding (b = 3) 1.34× 28.24 1.37× 33.10 1.38× 27.41 1.35× 37.01
MBart50
Greedy Autoregressive 1.00× 23.97 1.00× 31.58 1.00× 24.99 1.00× 34.77
Beam Search (beam = 5) 0.76× 24.93 0.77× 32.61 0.77× 25.31 0.76× 35.16
PJ Decoding 0.88× 23.97 0.88× 31.58 0.86× 24.99 0.85× 34.77
PGJ Decoding (b = 5) 0.98× 23.97 0.98× 31.58 0.97× 24.99 0.99× 34.77
PGJ Decoding (b = 3) 1.06× 23.97 1.08× 31.58 1.03× 24.99 1.04× 34.77
HGJ Decoding (b = 3) 1.05× 23.97 1.07× 31.58 1.01× 24.99 1.02× 34.77

Table 1: Comparison of parallel decoding algorithms (highlighted in grey) with sequential decoding using Opus
(CPU) and MBart50 (GPU) on WMT14 and WMT16. Speed is measured in time w.r.t. the autoregressive baseline.

WMT17 IITB IWSLT15 FLORES
En-Fi En-Hi En-Vi En-It En-Fr

Dec. Algorithm Speed ← → ← → ← → ← → ← →

PJ Iters 1.04× 1.04× 1.04× 1.04× 1.06× 1.03× 1.02× 1.04× 1.03× 1.03×
Time 0.86× 0.88× 0.89× 0.89× 0.87× 0.86× 0.85× 0.86× 0.85× 0.85×

PGJ (b=3) Iters 1.07× 1.09× 1.09× 1.09× 1.10× 1.07× 1.07× 1.08× 1.08× 1.11×
Time 1.01× 1.05× 1.05× 1.07× 1.04× 1.02× 1.02× 1.03× 1.03× 1.05×

HGJ (b=3) Iters 1.05× 1.07× 1.07× 1.07× 1.07× 1.06× 1.07× 1.06× 1.05× 1.07×
Time 1.01× 1.03× 1.04× 1.05× 1.03× 1.01× 1.01× 1.02× 1.01× 1.03×

Table 2: Comparison over different languages in terms of speedup and iterations on MBart50. Arrows indicate the
direction of translation. Qualitative results and BLEU scores are available in the appendix D.

Proposition 1. Algorithms 1, 2, 3 converge and
yield the same results of greedy autoregressive de-
coding in at most m parallel iterations, for any
initialization and providing stopping condition (5).

We refer the reader to Song et al. (2021b) for
a formal proof. Intuitively, with m steps the al-
gorithm used the same number of iterations of au-
toregressive, hence the final solution is the same
regardless the initialization. In this worst case, the
wall-clock time is the same but in general the al-
gorithm reach the stopping condition earlier with a
lower wall-clock time and overall speedup.

3.5 DDGviz

Equation 1 models the dependency between tokens
in the decoding phase. In the classical autoregres-
sive mode, each token depends on all the previous
ones for the generation. However, it is possible to
show that this dependency is actually relaxed (i.e.,
not all tokens depends on all the previous ones),
thus it would be interesting to visualize the actual
distribution pθ (yi | ·,x) learned by an existing MT
model. To this end, we build the Decoding Depen-
dency Graph visualizer (DGGviz) to visualize the
dependency graph of tokens in the decoding phase.
In the standard autoregressive decoding this graph
is a fully-connected chain where the i-th token is

connected to all the previous tokens, starting from
the encoding x: to decode yi you need to decode
first y1, . . . , yi−1. Instead we show that there are
skipping connections between independent tokens
that can be visualized with DGGviz. We detail
DGGviz with an example in section 4.3.

4 Experiments

4.1 Experimental Settings

Datasets. We evaluate our approach using stan-
dard evaluation datasets proposed for parallel MT
(Gu et al., 2018): WMT14 English-German [En-
De], WMT16 English-Romanian [En-Ro] (Bo-
jar et al., 2014, 2016). Additionally, we tested
our method on different language pairs with vary-
ing (low-medium) resources: IWSLT15 (English-
Vietnamese [En-Vi]) (Tran et al., 2015), IITB
(English-Hindi [En-Hi]) (Kunchukuttan et al.,
2018), WMT17 (English-Finnish [En-Fi]) (Bojar
et al., 2017), FLORES-101 (English-Italian [En-It];
English-French [En-Fr]) (Goyal et al., 2022). All
the datasets are evaluated in both directions.

Evaluation. All the evaluations are performed
using the official test split for each dataset, down-
loaded using Huggingface dataset library (Lhoest
et al., 2021). No training or hyperparameters tun-

12340



Method Requirements WMT14 Efficiency
Arch Loss seq-KD Speed ↑ BLEU ↑ Train FLOPs ↓ Total FLOPs ↓ FLOPs / Speed ↓

Parallel Decoding - HGJ (Ours) No No No 1.34× 28.24 0 2.53e+13 1.89e+13
SUNDAE †(Savinov et al., 2022) Yes No No 1.4× 28.46 5.27e+21 5.27e+21 3.77e+21
ShallowDec (12-1) (Kasai et al., 2021) Yes No No 1.4× 26.90 1.02e+19 1.02e+19 7.30e+18
Semi-NAT (Wang et al., 2018) Yes No Yes 1.5× 26.90 1.55e+17 1.55e+17 1.03e+17
DisCo (Kasai et al., 2020) Yes Yes Yes, Big 3.5× 27.34 4.06e+19 4.06e+19 1.16e+19
DSLP (Huang et al., 2021) Yes Yes Yes 14.8× 27.02 1.93e+19 1.93e+19 1.31e+18
F-VAE (Gu and Kong, 2021) Yes Yes Yes, Big 16.5× 27.49 4.06e+19 4.06e+19 2.46e+18

Table 3: Comparison of different methods for parallel MT on WMT14 En-De. Results are ordered by speed,
highlighted in green the two highest BLEU scores, † indicates diffusion models. Existing methods require training,
architecture modifications, additional losses to force parallel translation, and distillation from an additional MT
transformer model ("Big" indicates the size). Details on FLOPs computation are available in the Appendix C.

ing is performed. We use SacreBLEU to evalu-
ate the translation quality (Papineni et al., 2002;
Post, 2018). We measure speedup in wall-clock
time and iterations w.r.t. the same autoregressive
model. GPU times are calculated after calling
torch.cuda.synchronize(). All the ex-
periments were performed by caching the past Keys
and Values of the transformer to further speed up
the computation (Ramachandran et al., 2017) and
in the online inference setting with batch size equal
to 1. For the Jacobi and GS-Jacobi algorithms, we
assume to know beforehand the length m of the
target and measure the speedup in the ideal condi-
tion. For the Hybrid GS-Jacobi algorithm, we set h
equal to the maximum (i.e., the stopping condition
is triggered within a parallel block) to decouple the
effective speedup regardless of the length produced
by the initialization function (see Section 3.2). We
remark that HGJ does not assume to know before-
hand the target length and is applicable to real MT
translation scenarios.

Model Configuration. We tested transformer
models in the two standard configurations: base
(512 model dimension, 6 attention layers for both
encoder and decoder) and big (1024 model dimen-
sion, 12 attention layers for both encoder and de-
coder). We used pretrained models of Opus (Tiede-
mann and Thottingal, 2020) for the former and
MBart50 (Tang et al., 2020) for the latter. Opus is a
transformer base model (74M parameters) trained
on language pairs from the homonymous dataset
(Zhang et al., 2020). MBart50 is a large multilin-
gual transformer model fine-tuned for translation
on 50 languages (610M parameters). We tested the
models on CPU since this is the default environ-
ment for MT models in production, except for the
model MBart50 which runs on GPU. We run the
experiments on a standard 16-core machine, except
for the scaling experiments. Additional specifica-
tions are available in Appendix B

4.2 Algorithms Comparison
In Table 1 we compare the proposed parallel decod-
ing algorithms with the standard sequential autore-
gressive decoding baselines. As we can observe,
the fastest algorithms are PGJ Decoding (b=3) and
HGJ Decoding (b=3) which are up to 34% and 38%
times faster on Opus and up to 5% and 8% faster on
MBart50, depending on the language pair. We note
also that results empirically show that all the paral-
lel decoding algorithms guarantee the same quality
of greedy autoregressive decoding, as evidenced by
the unchanged BLEU scores. This is an experimen-
tal verification of the formal Proposition 1. The
table also shows that the Beam Search algorithm
with a beam size of 5 generally performs better in
terms of BLEU score, although at a cost of speed.
This difference in terms of BLEU is expected, as
beam search is a heuristic search strategy, while
our method is a decoding algorithm. We discussed
better this aspect in the "Beam Search" paragraph.
Nevertheless, beam search is ∼30% slower than
greedy autoregressive and 63% to 68% slower than
PGJ, depending on the model and language pair.
This means that the proposed parallel algorithms
allow trading a little translation quality (e.g., on
en→ro the difference between beam search and
parallel decoding algorithms in BLEU is just 0.20
points) for greater decoding speed.

Another aspect to note is that the algorithms PJ
and PGJ (b=5) are sometimes slower than greedy
autoregressive. There are several factors that can
influence the actual wall-clock time like how the
underlying hardware schedule and execute the vari-
ous operations, which might vary according to the
architecture and the workload. In particular, longer
sequences (e.g., the whole sentence in PJ or blocks
of 5 tokens in PGJ) may require more memory
to store, and the CPU/GPU may have to perform
more memory accesses, which can slow down the
computation (although theoretically it should hap-
pen in parallel). In the end, these computational

12341



overheads slow down the actual execution. This
is also the case for the difference in speedups be-
tween MBart50 and Opus. We better investigated
this aspect in the section "Computational Scaling"
and report in the appendix results on a different
architecture, with also results in terms of iterations
speedups which are architecture agnostic.

4.3 Analysis and Validation

Cross Languages. In order to demonstrate the
robustness of our decoding algorithms with respect
to the translation languages, we leveraged the mul-
tilingual capabilities of the MBart50 model and
selected a diverse range of language pairs for eval-
uation. The results, presented in Table 2, show that
both PGJ and HGJ achieve a consistent speedup in
comparison to the autoregressive decoding method,
with an improvement ranging from 2-7% for PGJ
and 1-5% for HGJ, regardless of the language pair
used. Additionally, we observed a speedup in terms
of iterations of 7-11% for PGJ and 5-7% for HGJ.
These findings indicate that our algorithms have
the potential to match or surpass the speedup in
terms of wall-clock time by fully exploiting this
saving in terms of iterations. We note that, simi-
lar to the previous experiment, PJ suffers from an
overhead problem. To the best of our knowledge,
this is one of the first studies that have achieved a
speedup in multilingual machine translation, con-
current with the work of Song et al. (2022), while
this latter is significantly different in spirit and re-
quirements (NAT model). We leave BLEU scores
in the Appendix D for space constraints together
with qualitative results in different languages.

Computational Scaling. In Figure 3, we present
an analysis of the scalability of our proposed meth-
ods in relation to increasing computational re-
sources. Starting with 8 cores, our methods demon-
strate a slight improvement in terms of wall-clock
time for PGJ and HGJ, with speedups of 1.11 and
1.09 respectively. On the other hand, this amount
of resources is too restricting for PJ which needs to
fit the whole sentence and thus achieve a score of
0.46 due to the aforementioned overhead problem.
As the resources are increased, our method demon-
strates the ability to effectively leverage hardware
and significantly reduce decoding time, while the
autoregressive baseline is constrained by sequential
processing. With 122 cores, a substantial speedup
of 1.98× and 1.99× is achieved for PGJ and HGJ
respectively, while the autoregressive baseline is

Figure 3: Scaling experiments on WMT16 En-De with
PGJ and HGJ blocks = 3. Increasing the number of
available resources (number of CPU cores) allows the
methods to decrease the parallel overheads. As a result,
the speedup increases and the methods scale.

bounded by sequential processing at 1.00×. It is
important to note that this experiment does not
simulate a real production system, but rather it is
meant to show what results can be achieved when
the underlying computation is properly optimized
to run in parallel. In our case, we simulated this
setting with increasing cores, nevertheless similar
results can be achieved with additional software op-
timizations to further reduce latency and overheads
(Ahmed et al., 2022; Kim et al., 2019) and increase
the speed gain with parallel-optimized computa-
tions. Overall this experiment serves as a proof
of concept for the capabilities of parallel decod-
ing in contexts with limited overhead and shows a
promising direction for further improvements.

Comparison with NATs. Table 3 reports the
comparison of our parallel decoding algorithm with
a selection of NAT methods for parallel MT. Fol-
lowing prior works, we report for each method the
speedup relative to the autoregressive transformer
base baseline from their original paper (Xiao et al.,
2022). It is worth noting that, although these meth-
ods can achieve higher speedups, they are very
demanding in terms of computational resources
which must be accounted for in a fair comparison.
To estimate quantitatively this cost, we evaluated
the number of floating point operations (FLOPs)
required for training and inference on WMT14.

Results show that our method HGJ uses the least
number of computational resources, even consid-
ering the additional cost at inference time. Relat-
ing the speedup obtained with the used resources
(FLOPs/speed), our method still achieves the best

12342



cost-benefit ratio. Furthermore, NATs generally de-
grade the translation quality if compared to their au-
toregressive baseline. On the contrary, our method
mathematically guarantees the same quality of au-
toregressive decoding, which is higher than stan-
dard NAT models.

SUNDAE achieves BLEU of 28.46, but requires
more resources than training RoBERTa (Liu et al.,
2019) on 16 TPUs (see Appendix C). Other meth-
ods require further elaborate techniques like pro-
found architectural changes, additional losses to
force parallel translation and sequence-level distil-
lation from large autoregressive transformers (Gu
and Kong, 2021). Our approach is a decoding
method that does not involve any training or modi-
fication to the model and can be used to speed up
existing models on standard desktop hardware.

Speedup Analysis. We provide here a prelim-
inary analysis of the factors responsible for the
observed speedup in our method. We first distin-
guish between two types of speedup: wall-clock
speedup and iterations speedup. The former is
primarily driven by the parallelization capability
of our method, as demonstrated in the "Compu-
tational Scaling" section. With parallel decoding,
underlying operations can be optimized and fused
to be executed fastly. Compared to Sheng et al.
(2023), our method allows parallelizing sequence
operations ("row-by-row" setting). The latter in-
stead may vary consequently to several factors
(e.g., model/vocabulary size, training data, lan-
guage, etc). For this reason, we experimented with
several variations of these factors (models Trans-
former Base vs. Big, vocabularies 58K Marian vs.
250K MBart50, languages, and hardware). While
it is challenging to decouple different elements,
our analysis point out several interesting insights.
For example, we observed that iteration results on
MBart50 are generally higher compared to Marian
(Tables 2-6), possibly due to the finer-grained to-
kenization of MBart50. We also hypothesize that
language and linguistic features, such as inflection-
ally rich or agglutinative/gendered languages, may
influence iteration speedups. To facilitate this type
of analysis, we developed DDGviz, which we be-
lieve will be useful for research in this area.

Visualizing Parallel Decoding. In previous ex-
periments, we demonstrated that parallel decod-
ing is feasible. This suggests that the dependency
learned by the model between certain tokens is re-
laxed, as some tokens can be decoded in parallel.

Figure 4: DDGviz. Visualization of the translation En-
Ro: "How satisfied are the Romanian couples: men
versus women"→"Cât de satisfacuti sunt cuplurile ro-
manes, ti: bărbat,ii împotriva femeilor". (Highlighted to-
kens decoded in parallel). On top: the Decoding Depen-
dency Graph, omitting redundant edges on non-parallel
tokens to ease visualization. On bottom: DDGviz
shows at each Parallel Jacobi iteration (vertical axis)
which tokens have been generated in parallel (horizontal
axis) with the corresponding probability (cell number).

Analyzing and understanding when this happens
allows shedding light on the behavior of existing
models and a separate study focused on this is-
sue would be needed. In this work, we lay the
ground for a such study introducing the necessary
inspection tools. While we have already introduced
DDGviz in Section 3.5, in this experiment we show
how it works and how it can be used with a prac-
tical example. In summary, the DDGviz visual-
izer allows to show the real decoding distribution
pθ (yi | ·,x) learned by a MT model. This decod-
ing distribution is plotted as a graph, where a con-
nection indicates the dependency pθ(yi | ·), by
using Parallel Jacobi decoding. At each PJ decod-
ing iteration (vertical axis of Figure 4), DDGviz
keeps track of which tokens have been correctly
decoded w.r.t. the gold autoregressive reference of
the model, showing the tokens correctly decoded
and the probability of each one (horizontal axis).
Figure 4 shows DDGviz applied on an example.
The example shows that for y4 = _sa it is possible
to decode more than one token in parallel y5 = tis,
y6 = fa, hence here the decoding of y6 does not
depend on the decoding of y5 - pθ (y6 | y1:4,x).
We observed this phenomenon frequently, explain-
ing the speedups in the previous experiments. The

12343



example also shows that the model is able to decode
five tokens in parallel after y7 = _cu. This is a pe-
culiar case since the model, given "How satisfi_",
is generating all at once "_ed are the Romanian
couples" (proposed here in English for better read-
ability, original version in Romanian is available in
Figure). This example indeed shows how DDGviz
can be used to highlight possible biases encoded in
the model as it is not clear how the model can be
so confident (see cell probability) that after "satis-
fied" the most straightforward tokens to decode are
"Romanian couples" (Chang et al., 2019; Savoldi
et al., 2021). We leave other use cases for future
works and show in Appendix D several visualiza-
tions with equally interesting phenomena.

5 Conclusions

In this paper, we showed that is possible to speed
up existing machine translation models by simply
changing the decoding algorithm with a parallel
formulation. We introduced three parallel decod-
ing methods which achieve consistent speedups
without requiring any training, modifications, or
quality loss. Our solution is orthogonal to previ-
ous approaches proposed in literature which often
entail demanding requirements in terms of data,
computational resources, and engineering effort.
Although our method is not without shortcomings,
it is a first valuable step toward integrating paral-
lel decoding algorithms into any model. This is
particularly relevant in limited-resource scenarios
where NATs are not a viable option and to speed
up any transformer model, especially fine-grained
or character-level models (Edman et al., 2023). We
believe that further advancements in this area, in-
cluding the exploration of optimal initialization
procedures and stopping conditions, as well as the
use of alternative parallel solvers for non-linear
equations, will close the gap with learning-based
techniques and continue to improve the efficiency
and effectiveness of parallel decoding algorithms.

Acknowledgements

We would like to thank Sébastien Bratières for
his throughout feedback provided on this project.
This work is supported by Translated with an
Imminent Research Grant, ERC Starting Grant
No. 802554 (SPECGEO), and PRIN 2020 project
n.2020TA3K9N "LEGO.AI". Riccardo Marin is
also supported by an Alexander von Humboldt
Foundation Research Fellowship.

Limitations

The proposed algorithms allow to speed up an exist-
ing model out-of-the-box, without any modification
or retraining. However, there are some considera-
tions to bear in mind when using parallel decoding
in order to have a speedup in terms of wall-clock
time. Firstly, as the name implies, the method ex-
ecutes the decoding phase in parallel. Therefore,
to appreciate the speedup one should be able to
run computations in parallel. Using parallel decod-
ing without parallel resources or parallel-optimized
software may increase wall-clock time due to over-
heads, leading to a waste of computation. This is
further discussed in Section 4.3 "Computational
Scaling". The reported wall-clock time results are
thus to be considered within the scope of the exper-
imental setup proposed in this paper and they may
vary depending on the underlying hardware and
software. Secondly, the method allows speedup of
the decoding by scaling on parallel resources. This
implies an additional computational cost during the
inference phase to achieve a speedup. While using
parallel decoding, one should consider a trade-off
between the desired acceleration and the utiliza-
tion of computational resources. Thirdly, since our
method performs the decoding in parallel, as for
NAT systems, it is difficult to combine it with Beam
Search. Beam Search is inherently a dynamic pro-
gramming algorithm and it is not possible to effi-
ciently maximize the joint probability of the large
search space without using sequential intermediate
computations. We better explain this aspect in the
next paragraph.

Beam Search. Beam search is widely employed
to enhance the translation quality in MT (Sutskever
et al., 2014; Bahdanau et al., 2015) as well as in
other domains such as audio (Reddy, 1977; Pos-
tolache et al., 2023). However, it is an inherently
sequential procedure that stores partial joint prob-
abilities of the entire sequence (beams) while pro-
gressing with autoregressive decoding. Determin-
ing the maximal joint probability of all sequences
in parallel is a challenging task, equivalent to a
full maximum a posteriori (MAP) estimation. This
is an open research problem and it is also an is-
sue for NAT methods. NAT methods patch up this
limitation with sequence-level KD which has the
advantage of "not requiring any beam search at
test-time" (Kim and Rush, 2016) thanks to learn-
ing and distillation from large models. Since our

12344



method is a decoding algorithm, we cannot use the
same approach without learning. Nevertheless, the
quality guarantee allows our methods to have per-
formance on par with greedy autoregressive and
generally better than a NAT model. We think of
our method, not as a replacement for beam search,
but rather as a way to obtain a speedup at inference
time that is a middle ground between autoregressive
greedy decoding (high quality, no requirements, no
speed) and NATs (quality compromises, increasing
requirements with increasing speed). Future works
might address the quality gap with beam search
by combining parallel decoding with alternative
techniques like Minimum Bayes Risk (Eikema and
Aziz, 2020).

Ethics Statement

Increasing the inference speed of MT can positively
impact society by giving people a fast and good
translation. This will enable people from differ-
ent language backgrounds to communicate with
each other and help remove cultural and trade bar-
riers. As demonstrated by comparing the number
of FLOPs in Table 3, our method uses fewer re-
sources compared to alternatives and thus has a
smaller carbon footprint, making it a more sustain-
able choice (Strubell et al., 2019). Furthermore,
since our method does not involve training proce-
dures or change the quality of results, we do not
introduce any societal bias (e.g. racism, sexism,
homophobia) into the translations. The latter, how-
ever, can be introduced through data in the training
of the backbone autoregressive models and NATs.
It is the task of those who train these models to
mitigate this problem. DDGviz can also help inves-
tigate and visualize some potential harmful biases
encoded in the model like in Figure 4.

References
Ibrahim Ahmed, Sahil Parmar, Matthew Boyd, Michael

Beidler, Kris Kang, Bill Liu, Kyle Roach, John
Kim, and Dennis Abts. 2022. Answer fast: Ac-
celerating bert on the tensor streaming processor.
In 2022 IEEE 33rd International Conference on
Application-specific Systems, Architectures and Pro-
cessors (ASAP), pages 80–87. IEEE.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In 3rd International
Conference on Learning Representations, ICLR 2015,
San Diego, CA, USA, May 7-9, 2015, Conference
Track Proceedings.

Ondřej Bojar, Christian Buck, Christian Federmann,
Barry Haddow, Philipp Koehn, Johannes Leveling,
Christof Monz, Pavel Pecina, Matt Post, Herve Saint-
Amand, Radu Soricut, Lucia Specia, and Aleš Tam-
chyna. 2014. Findings of the 2014 workshop on
statistical machine translation. In Proceedings of the
Ninth Workshop on Statistical Machine Translation,
pages 12–58, Baltimore, Maryland, USA. Associa-
tion for Computational Linguistics.

Ondřej Bojar, Rajen Chatterjee, Christian Federmann,
Yvette Graham, Barry Haddow, Shujian Huang,
Matthias Huck, Philipp Koehn, Qun Liu, Varvara
Logacheva, Christof Monz, Matteo Negri, Matt Post,
Raphael Rubino, Lucia Specia, and Marco Turchi.
2017. Findings of the 2017 conference on machine
translation (wmt17). In Proceedings of the Sec-
ond Conference on Machine Translation, Volume 2:
Shared Task Papers, pages 169–214, Copenhagen,
Denmark. Association for Computational Linguis-
tics.

Ondřej Bojar, Rajen Chatterjee, Christian Federmann,
Yvette Graham, Barry Haddow, Matthias Huck, An-
tonio Jimeno Yepes, Philipp Koehn, Varvara Lo-
gacheva, Christof Monz, Matteo Negri, Aurelie
Neveol, Mariana Neves, Martin Popel, Matt Post,
Raphael Rubino, Carolina Scarton, Lucia Specia,
Marco Turchi, Karin Verspoor, and Marcos Zampieri.
2016. Findings of the 2016 conference on machine
translation. In Proceedings of the First Conference
on Machine Translation, pages 131–198, Berlin, Ger-
many. Association for Computational Linguistics.

Kai-Wei Chang, Vinodkumar Prabhakaran, and Vicente
Ordonez. 2019. Bias and fairness in natural language
processing. In Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Process-
ing and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP):
Tutorial Abstracts, Hong Kong, China. Association
for Computational Linguistics.

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving,
Jean-Baptiste Lespiau, Laurent Sifre, and John
Jumper. 2023. Accelerating large language model
decoding with speculative sampling.

Cunxiao Du, Zhaopeng Tu, and Jing Jiang. 2021. Order-
agnostic cross entropy for non-autoregressive ma-
chine translation. In International Conference on
Machine Learning, pages 2849–2859. PMLR.

Lukas Edman, Gabriele Sarti, Antonio Toral, Gert-
jan van Noord, and Arianna Bisazza. 2023. Are
character-level translations worth the wait? compar-
ing character- and subword-level models for machine
translation.

Sergey Edunov, Myle Ott, Michael Auli, and David
Grangier. 2018. Understanding back-translation at
scale. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 489–500, Brussels, Belgium. Association for
Computational Linguistics.

12345

http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
http://www.aclweb.org/anthology/W/W14/W14-3302
http://www.aclweb.org/anthology/W/W14/W14-3302
http://www.aclweb.org/anthology/W17-4717
http://www.aclweb.org/anthology/W17-4717
http://www.aclweb.org/anthology/W/W16/W16-2301
http://www.aclweb.org/anthology/W/W16/W16-2301
https://aclanthology.org/D19-2004
https://aclanthology.org/D19-2004
http://arxiv.org/abs/2302.01318
http://arxiv.org/abs/2302.01318
http://arxiv.org/abs/2302.14220
http://arxiv.org/abs/2302.14220
http://arxiv.org/abs/2302.14220
http://arxiv.org/abs/2302.14220
https://doi.org/10.18653/v1/D18-1045
https://doi.org/10.18653/v1/D18-1045


Bryan Eikema and Wilker Aziz. 2020. Is MAP decoding
all you need? the inadequacy of the mode in neural
machine translation. In Proceedings of the 28th Inter-
national Conference on Computational Linguistics,
pages 4506–4520, Barcelona, Spain (Online). Inter-
national Committee on Computational Linguistics.

Xinwei Geng, Xiaocheng Feng, and Bing Qin. 2021.
Learning to rewrite for non-autoregressive neural ma-
chine translation. In Proceedings of the 2021 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pages 3297–3308, Online and Punta Cana,
Dominican Republic. Association for Computational
Linguistics.

Marjan Ghazvininejad, Vladimir Karpukhin, Luke
Zettlemoyer, and Omer Levy. 2020a. Aligned cross
entropy for non-autoregressive machine translation.
In Proceedings of the 37th International Conference
on Machine Learning, volume 119 of Proceedings
of Machine Learning Research, pages 3515–3523.
PMLR.

Marjan Ghazvininejad, Omer Levy, Yinhan Liu, and
Luke Zettlemoyer. 2019. Mask-predict: Parallel de-
coding of conditional masked language models. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 6112–
6121, Hong Kong, China. Association for Computa-
tional Linguistics.

Marjan Ghazvininejad, Omer Levy, and Luke Zettle-
moyer. 2020b. Semi-autoregressive training im-
proves mask-predict decoding. arXiv preprint
arXiv:2001.08785.

Naman Goyal, Cynthia Gao, Vishrav Chaudhary, Peng-
Jen Chen, Guillaume Wenzek, Da Ju, Sanjana Kr-
ishnan, Marc’Aurelio Ranzato, Francisco Guzmán,
and Angela Fan. 2022. The Flores-101 evaluation
benchmark for low-resource and multilingual ma-
chine translation. Transactions of the Association for
Computational Linguistics, 10:522–538.

Jiatao Gu, James Bradbury, Caiming Xiong, Victor O.K.
Li, and Richard Socher. 2018. Non-autoregressive
neural machine translation. In International Confer-
ence on Learning Representations.

Jiatao Gu and Xiang Kong. 2021. Fully non-
autoregressive neural machine translation: Tricks of
the trade. In Findings of the Association for Com-
putational Linguistics: ACL-IJCNLP 2021, pages
120–133, Online. Association for Computational Lin-
guistics.

Yongchang Hao, Shilin He, Wenxiang Jiao, Zhaopeng
Tu, Michael Lyu, and Xing Wang. 2021. Multi-task
learning with shared encoder for non-autoregressive
machine translation. In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 3989–3996, Online.
Association for Computational Linguistics.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and
Yejin Choi. 2020. The curious case of neural text de-
generation. In International Conference on Learning
Representations.

Chenyang Huang, Hao Zhou, Osmar R. Zaïane, Lili
Mou, and Lei Li. 2021. Non-autoregressive transla-
tion with layer-wise prediction and deep supervision.
CoRR, abs/2110.07515.

Xiao Shi Huang, Felipe Perez, and Maksims Volkovs.
2022. Improving non-autoregressive translation mod-
els without distillation. In International Conference
on Learning Representations.

Jungo Kasai, James Cross, Marjan Ghazvininejad, and
Jiatao Gu. 2020. Non-autoregressive machine trans-
lation with disentangled context transformer. In Pro-
ceedings of the 37th International Conference on Ma-
chine Learning, volume 119 of Proceedings of Ma-
chine Learning Research, pages 5144–5155. PMLR.

Jungo Kasai, Nikolaos Pappas, Hao Peng, James Cross,
and Noah Smith. 2021. Deep encoder, shallow
decoder: Reevaluating non-autoregressive machine
translation. In International Conference on Learning
Representations.

Sehoon Kim, Karttikeya Mangalam, Jitendra Malik,
Michael W. Mahoney, Amir Gholami, and Kurt
Keutzer. 2023. Big little transformer decoder.

Yoon Kim and Alexander M. Rush. 2016. Sequence-
level knowledge distillation. In Proceedings of the
2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1317–1327, Austin,
Texas. Association for Computational Linguistics.

Young Jin Kim, Marcin Junczys-Dowmunt, Hany Has-
san, Alham Fikri Aji, Kenneth Heafield, Roman
Grundkiewicz, and Nikolay Bogoychev. 2019. From
research to production and back: Ludicrously fast
neural machine translation. In Proceedings of the
3rd Workshop on Neural Generation and Transla-
tion, pages 280–288, Hong Kong. Association for
Computational Linguistics.

Wouter Kool, Herke van Hoof, and Max Welling. 2020.
Ancestral gumbel-top-k sampling for sampling with-
out replacement. Journal of Machine Learning Re-
search, 21(47):1–36.

Taku Kudo. 2018. Subword regularization: Improv-
ing neural network translation models with multiple
subword candidates. In Proceedings of the 56th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 66–75,
Melbourne, Australia. Association for Computational
Linguistics.

Taku Kudo and John Richardson. 2018. Sentencepiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing.
CoRR, abs/1808.06226.

12346

https://doi.org/10.18653/v1/2020.coling-main.398
https://doi.org/10.18653/v1/2020.coling-main.398
https://doi.org/10.18653/v1/2020.coling-main.398
https://doi.org/10.18653/v1/2021.emnlp-main.265
https://doi.org/10.18653/v1/2021.emnlp-main.265
https://proceedings.mlr.press/v119/ghazvininejad20a.html
https://proceedings.mlr.press/v119/ghazvininejad20a.html
https://doi.org/10.18653/v1/D19-1633
https://doi.org/10.18653/v1/D19-1633
https://doi.org/10.1162/tacl_a_00474
https://doi.org/10.1162/tacl_a_00474
https://doi.org/10.1162/tacl_a_00474
https://openreview.net/forum?id=B1l8BtlCb
https://openreview.net/forum?id=B1l8BtlCb
https://doi.org/10.18653/v1/2021.findings-acl.11
https://doi.org/10.18653/v1/2021.findings-acl.11
https://doi.org/10.18653/v1/2021.findings-acl.11
https://doi.org/10.18653/v1/2021.naacl-main.313
https://doi.org/10.18653/v1/2021.naacl-main.313
https://doi.org/10.18653/v1/2021.naacl-main.313
https://openreview.net/forum?id=rygGQyrFvH
https://openreview.net/forum?id=rygGQyrFvH
http://arxiv.org/abs/2110.07515
http://arxiv.org/abs/2110.07515
https://openreview.net/forum?id=I2Hw58KHp8O
https://openreview.net/forum?id=I2Hw58KHp8O
https://proceedings.mlr.press/v119/kasai20a.html
https://proceedings.mlr.press/v119/kasai20a.html
https://openreview.net/forum?id=KpfasTaLUpq
https://openreview.net/forum?id=KpfasTaLUpq
https://openreview.net/forum?id=KpfasTaLUpq
http://arxiv.org/abs/2302.07863
https://doi.org/10.18653/v1/D16-1139
https://doi.org/10.18653/v1/D16-1139
https://doi.org/10.18653/v1/D19-5632
https://doi.org/10.18653/v1/D19-5632
https://doi.org/10.18653/v1/D19-5632
http://jmlr.org/papers/v21/19-985.html
http://jmlr.org/papers/v21/19-985.html
https://doi.org/10.18653/v1/P18-1007
https://doi.org/10.18653/v1/P18-1007
https://doi.org/10.18653/v1/P18-1007
http://arxiv.org/abs/1808.06226
http://arxiv.org/abs/1808.06226
http://arxiv.org/abs/1808.06226


Anoop Kunchukuttan, Pratik Mehta, and Pushpak Bhat-
tacharyya. 2018. The IIT Bombay English-Hindi
parallel corpus. In Proceedings of the Eleventh In-
ternational Conference on Language Resources and
Evaluation (LREC 2018), Miyazaki, Japan. European
Language Resources Association (ELRA).

Yaniv Leviathan, Matan Kalman, and Yossi Matias.
2022. Fast inference from transformers via spec-
ulative decoding.

Quentin Lhoest, Albert Villanova del Moral, Yacine
Jernite, Abhishek Thakur, Patrick von Platen, Suraj
Patil, Julien Chaumond, Mariama Drame, Julien Plu,
Lewis Tunstall, Joe Davison, Mario Šaško, Gun-
jan Chhablani, Bhavitvya Malik, Simon Brandeis,
Teven Le Scao, Victor Sanh, Canwen Xu, Nicolas
Patry, Angelina McMillan-Major, Philipp Schmid,
Sylvain Gugger, Clément Delangue, Théo Matus-
sière, Lysandre Debut, Stas Bekman, Pierric Cis-
tac, Thibault Goehringer, Victor Mustar, François
Lagunas, Alexander Rush, and Thomas Wolf. 2021.
Datasets: A community library for natural language
processing. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Process-
ing: System Demonstrations, pages 175–184, Online
and Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Xiaodong Liu, Kevin Duh, Liyuan Liu, and Jianfeng
Gao. 2020. Very deep transformers for neural ma-
chine translation. arXiv preprint arXiv:2008.07772.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

J.M. Ortega and W.C. Rheinboldt. 1970. Iterative So-
lution of Nonlinear Equations in Several Variables.
Classics in Applied Mathematics. Society for Indus-
trial and Applied Mathematics (SIAM, 3600 Market
Street, Floor 6, Philadelphia, PA 19104).

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. Pytorch:
An imperative style, high-performance deep learning
library. In Advances in Neural Information Process-
ing Systems 32, pages 8024–8035. Curran Associates,
Inc.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186–
191, Belgium, Brussels. Association for Computa-
tional Linguistics.

Emilian Postolache, Giorgio Mariani, Michele Mancusi,
Andrea Santilli, Cosmo Luca, Emanuele Rodola, et al.
2023. Latent autoregressive source separation. In
Proceedings of the AAAI Conference on Artificial
Intelligence.

Lihua Qian, Hao Zhou, Yu Bao, Mingxuan Wang, Lin
Qiu, Weinan Zhang, Yong Yu, and Lei Li. 2021.
Glancing transformer for non-autoregressive neural
machine translation. In Proceedings of the 59th An-
nual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 1993–2003, Online. Association
for Computational Linguistics.

Prajit Ramachandran, Tom Le Paine, Pooya Khor-
rami, Mohammad Babaeizadeh, Shiyu Chang, Yang
Zhang, Mark A. Hasegawa-Johnson, Roy H. Camp-
bell, and Thomas S. Huang. 2017. Fast genera-
tion for convolutional autoregressive models. CoRR,
abs/1704.06001.

Raj Reddy. 1977. Speech understanding systems: A
summary of results of the five-year research effort.
Carnegie Mellon University.

Yousef Saad. 2003. Iterative methods for sparse linear
systems. SIAM.

Chitwan Saharia, William Chan, Saurabh Saxena, and
Mohammad Norouzi. 2020. Non-autoregressive ma-
chine translation with latent alignments. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
1098–1108, Online. Association for Computational
Linguistics.

Nikolay Savinov, Junyoung Chung, Mikolaj Binkowski,
Erich Elsen, and Aaron van den Oord. 2022. Step-
unrolled denoising autoencoders for text generation.
In International Conference on Learning Representa-
tions.

Beatrice Savoldi, Marco Gaido, Luisa Bentivogli, Mat-
teo Negri, and Marco Turchi. 2021. Gender Bias in
Machine Translation. Transactions of the Associa-
tion for Computational Linguistics, 9:845–874.

Mike Schuster and Kaisuke Nakajima. 2012. Japanese
and korean voice search. In 2012 IEEE International
Conference on Acoustics, Speech and Signal Process-
ing, ICASSP 2012, Kyoto, Japan, March 25-30, 2012,
pages 5149–5152. IEEE.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1715–1725,

12347

https://aclanthology.org/L18-1548
https://aclanthology.org/L18-1548
http://arxiv.org/abs/2211.17192
http://arxiv.org/abs/2211.17192
http://arxiv.org/abs/2109.02846
http://arxiv.org/abs/2109.02846
https://books.google.es/books?id=GA1P9UNnrmMC
https://books.google.es/books?id=GA1P9UNnrmMC
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://www.aclweb.org/anthology/W18-6319
https://www.aclweb.org/anthology/W18-6319
https://doi.org/10.18653/v1/2021.acl-long.155
https://doi.org/10.18653/v1/2021.acl-long.155
http://arxiv.org/abs/1704.06001
http://arxiv.org/abs/1704.06001
https://doi.org/10.18653/v1/2020.emnlp-main.83
https://doi.org/10.18653/v1/2020.emnlp-main.83
https://openreview.net/forum?id=T0GpzBQ1Fg6
https://openreview.net/forum?id=T0GpzBQ1Fg6
https://doi.org/10.1162/tacl_a_00401
https://doi.org/10.1162/tacl_a_00401
https://doi.org/10.1109/ICASSP.2012.6289079
https://doi.org/10.1109/ICASSP.2012.6289079
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162


Berlin, Germany. Association for Computational Lin-
guistics.

Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuohan
Li, Max Ryabinin, Daniel Y Fu, Zhiqiang Xie, Beidi
Chen, Clark Barrett, Joseph E Gonzalez, et al. 2023.
High-throughput generative inference of large lan-
guage models with a single gpu. arXiv preprint
arXiv:2303.06865.

Jongyoon Song, Sungwon Kim, and Sungroh Yoon.
2021a. AligNART: Non-autoregressive neural ma-
chine translation by jointly learning to estimate align-
ment and translate. In Proceedings of the 2021 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1–14, Online and Punta Cana, Do-
minican Republic. Association for Computational
Linguistics.

Yang Song, Chenlin Meng, Renjie Liao, and Stefano
Ermon. 2021b. Accelerating feedforward computa-
tion via parallel nonlinear equation solving. In In-
ternational Conference on Machine Learning, pages
9791–9800. PMLR.

Zhenqiao Song, Hao Zhou, Lihua Qian, Jingjing Xu,
Shanbo Cheng, Mingxuan Wang, and Lei Li. 2022.
switch-GLAT: Multilingual parallel machine transla-
tion via code-switch decoder. In International Con-
ference on Learning Representations.

Mitchell Stern, Noam Shazeer, and Jakob Uszkoreit.
2018. Blockwise parallel decoding for deep autore-
gressive models. In Advances in Neural Information
Processing Systems, volume 31. Curran Associates,
Inc.

Emma Strubell, Ananya Ganesh, and Andrew McCal-
lum. 2019. Energy and policy considerations for
deep learning in NLP. In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics, pages 3645–3650, Florence, Italy. Asso-
ciation for Computational Linguistics.

Xin Sun, Tao Ge, Furu Wei, and Houfeng Wang. 2021.
Instantaneous grammatical error correction with shal-
low aggressive decoding. In Proceedings of the 59th
Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 5937–5947, Online. Association
for Computational Linguistics.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural networks.
Advances in neural information processing systems,
27.

Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Na-
man Goyal, Vishrav Chaudhary, Jiatao Gu, and An-
gela Fan. 2020. Multilingual translation with exten-
sible multilingual pretraining and finetuning. CoRR,
abs/2008.00401.

Jörg Tiedemann and Santhosh Thottingal. 2020. OPUS-
MT — Building open translation services for the
World. In Proceedings of the 22nd Annual Confer-
enec of the European Association for Machine Trans-
lation (EAMT), Lisbon, Portugal.

Viet Hong Tran, Huyen Vu Thong, Nguyen Van-Vinh,
and Trung Le Tien. 2015. The English-Vietnamese
machine translation system for IWSLT 2015. In Pro-
ceedings of the 12th International Workshop on Spo-
ken Language Translation: Evaluation Campaign,
pages 80–83, Da Nang, Vietnam.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Chunqi Wang, Ji Zhang, and Haiqing Chen. 2018. Semi-
autoregressive neural machine translation. In Pro-
ceedings of the 2018 Conference on Empirical Meth-
ods in Natural Language Processing, pages 479–488,
Brussels, Belgium. Association for Computational
Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le,
Mohammad Norouzi, Wolfgang Macherey, Maxim
Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al.
2016. Google’s neural machine translation system:
Bridging the gap between human and machine trans-
lation. arXiv preprint arXiv:1609.08144.

Heming Xia, Tao Ge, Furu Wei, and Zhifang Sui. 2022.
Lossless speedup of autoregressive translation with
generalized aggressive decoding.

Yisheng Xiao, Lijun Wu, Junliang Guo, Juntao Li,
Min Zhang, Tao Qin, and Tie-yan Liu. 2022. A
survey on non-autoregressive generation for neural
machine translation and beyond. arXiv preprint
arXiv:2204.09269.

Biao Zhang, Philip Williams, Ivan Titov, and Rico Sen-
nrich. 2020. Improving massively multilingual neu-
ral machine translation and zero-shot translation. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 1628–
1639, Online. Association for Computational Linguis-
tics.

12348

https://doi.org/10.18653/v1/2021.emnlp-main.1
https://doi.org/10.18653/v1/2021.emnlp-main.1
https://doi.org/10.18653/v1/2021.emnlp-main.1
https://openreview.net/forum?id=5HvpvYd68b
https://openreview.net/forum?id=5HvpvYd68b
https://proceedings.neurips.cc/paper/2018/file/c4127b9194fe8562c64dc0f5bf2c93bc-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/c4127b9194fe8562c64dc0f5bf2c93bc-Paper.pdf
https://doi.org/10.18653/v1/P19-1355
https://doi.org/10.18653/v1/P19-1355
https://doi.org/10.18653/v1/2021.acl-long.462
https://doi.org/10.18653/v1/2021.acl-long.462
http://arxiv.org/abs/2008.00401
http://arxiv.org/abs/2008.00401
https://aclanthology.org/2015.iwslt-evaluation.12
https://aclanthology.org/2015.iwslt-evaluation.12
https://doi.org/10.18653/v1/D18-1044
https://doi.org/10.18653/v1/D18-1044
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
http://arxiv.org/abs/2203.16487
http://arxiv.org/abs/2203.16487
https://doi.org/10.18653/v1/2020.acl-main.148
https://doi.org/10.18653/v1/2020.acl-main.148


Algorithm 2 Parallel GS-Jacobi Decoding
Input: x = (x1, . . . , xn), pθ, b
Output: y = (y1, . . . , ym)

1: y← INITT(x)
2: m← len(y)
3: i← 1
4: while i ⩽ m do
5: o← copy(yi:i+b)
6: yi:i+b ← argmax(pθ(yi:i+b|y1:i+b,x))
7: stop← STOPC(o, yi:i+b)
8: if stop then
9: i← i+ b

10: break
11: end if
12: end while
13: return y

A Algorithms details

We propose here the pseudocode of Algorithms 2
and 3 due to space limitations in the main body of
the paper.

The function copy(yi:i+b) creates a copy of the
tensor in input detached from the source. This
is done in practice to avoid the overwriting of
pointers to the same memory location. Function
CHECKEOS(yi:i+b) returns the index of the token
EOS in the block if present, else −1. Function
CHECKEOS(yi) returns True if the tokes in ex-
actly the token EOS, else False. The function
argmax selects from the model distribution over
the vocabulary the index (token) with maximum
probability. This procedure is done for all the to-
kens in parallel, in the case of parallel decoding, or
for just a single token in the case of autoregressive
decoding. Generally, the output is the prediction
for the next token; hence it should be shifted left
before the reassignment to a variable. We omitted
this implementation detail for clarity.

B Additional implementation details

We run Opus experiments in table 1 on an AMD
EPYC Milan with 16 cores at 2.45 GHz and
64GB of RAM (accessible on Google Cloud
- c2d-standard-16). For the scalability
experiment in figure 3, we also used Google Cloud
instances with an increasing number of cores
(referred to as c2d-standard-XX, where XX
is the number of used cores). Experiments with
MBart50 on table 1, 2 and 6 are performed on a
Desktop machine with Ubuntu 20.04.4 LTS, AMD

Dataset # Test
WMT 14 De-En (Bojar et al., 2014) 3003
WMT 16 Ro-En (Bojar et al., 2016) 1999
WMT 17 Fi-En (Bojar et al., 2017) 3002
IWSLT 15 En-Vi (Tran et al., 2015) 1046
IITB En-Hi (Kunchukuttan et al., 2018) 2507
FLORES-101 En-It (Goyal et al., 2022) 1012
FLORES-101 En-Fr (Goyal et al., 2022) 1012

Table 4: Data Statistic

Ryzen 9 3900X 12-Core Processor, 32GB of RAM,
and a Palit Nvidia 3090 GPU. Additional experi-
ments with Opus in table 6 are also performed on
this machine. Models are implemented in Pytorch
1.11.0 (Paszke et al., 2019) and the Huggingface
Transformer library (Wolf et al., 2020). We used
python 3.8 and NVIDIA-SMI Drivers 510.73.05
with CUDA version 11.6. For OPUS we used Hug-
gingface models available on the hub under the tag
Helsinki-NLP/opus-mt-{src}-{tgt}
except for the language pair Ro-
En where we used the model
Helsinki-NLP/opus-mt-roa-en and
the pair En-De where we used the check-
point opus-2021-02-22 4. For the model
MBart50, we used the facebook pre-trained
model available on the hub with the tag
mbart-large-50-many-to-many-mmt.
Since this is a multilingual model, we prepend
the source and target language tag corresponding
properly to the language pair to be translated.
We report results for a single run over the test
dataset since we found low variance in estimates
with multiple runs which can be calculated by
simply varying the corresponding parameter in the
config.yaml file. For each dataset, we used
the official test split via the Huggingface dataset
library (Lhoest et al., 2021). Datasets statistics are
reported in table 4.

C FLOPs calculation details

We measured computational complexity using float-
ing point operations (FLOPs), which, as the name
imply, counts the number of floating point opera-
tion performed by a model. This is a standard met-
ric used in literature to measure hardware-agnostic
complexity. This means that hardware and soft-
ware optimizations are not counted in the score
(Wu et al., 2016; Kim et al., 2019). We used the

4https://object.pouta.csc.fi/Tatoeba-MT-models/eng-
deu/opus-2021-02-22.zip

12349



Algorithm 3 Hybrid GS-Jacobi Decoding
Input: x = (x1, . . . , xn), pθ, b
Output: y = (y1, . . . , ym)

1: y← INITT(x)
2: h← len(y)
3: i← 1
4: eos_cond← False
5: while i ⩽ h do
6: o← copy(yi:i+b)
7: yi:i+b ← argmax(pθ(yi:i+b|y1:i+b,x))
8: stop← STOPC(o,yi:i+b)
9: eos_ind← CHECKEOS(yi:i+b)

10: if stop and eos_ind > −1 then
11: y← y1:eos_ind
12: eos_cond← True
13: break
14: end if
15: if stop then
16: i← i+ b
17: break
18: end if
19: end while
20: while eos_cond ! = True do
21: yi ← argmax(pθ(yi|yi−1,x))
22: i← i+ 1
23: eos_cond← ISEOS(yi)
24: end while
25: return y

ELECTRA flops calculator5 inserting the number
of parameters and the number of training step per-
formed for each model analyzed in table 3 accord-
ing to the training specification in each paper. For
inference FLOPs, we computed the decoding cost
of each sentence in the testset of WMT14 En-De
for each model. For a scale reference, we report
in here Table 5 training flops of other well-known
architecture. The code package contains the scripts
to replicate all the experiments.

D Additional results

We propose here additional results to the experi-
ments in the paper that were omitted due to limita-
tions constraints. Table 6 shows the same experi-
ments of Table 1 in the main paper, proposed here
on a standard desktop CPU with also the speedup
in terms of iterations. It is possible to observe that
in the case of MBart50 and PGJ there is a speedup

5https://github.com/google-
research/electra/blob/master/flops_computation.py

Model Train FLOPs Infer. FLOPs Total FLOPs
Semi-NAT 1.55e17 2.08e13 1.55e17

Shallow Dec. 1.02e19 1.15e13 1.02e19
DSLP 1.93e19 1.58e13 1.93e19
F-VAE 4.06e19 1.58e13 4.06e19
DisCo 4.06e19 1.58e13 4.06e19

SUNDAE 5.27e21 1.58e14 5.27e21
BERT base 6.43e19 - -
BERT large 1.92e20 - -
RoBERTa 3.19e21 - -

Table 5: FLOPs comparison with other models.

of 8 − 11% in terms of iterations compare to a
time speedup of 3 − 8%. This means that there
is room for improvement for our algorithm. Fur-
thermore, results show that the time speedups are
consistent also with standard desktop hardware. Ta-
ble 7 shows the BLEU scores for the cross-lingual
experiment. It is possible to observe that parallel
decoding algorithms guarantee quality compared
to greedy autoregressive and are not so distant from
beam search. We show also here in table 5 some
qualitative results for the experiments in table 2.
Finally, we propose additional visualizations using
DGGviz in Figure 6.

12350



Decoding Algorithm en→de de→en en→ro ro→en
Time Iters Time Iters Time Iters Time Iters

Opus
Greedy Autoregressive 1.00× 1.00× 1.00× 1.00× 1.00× 1.00× 1.00× 1.00×
Beam Search (beam = 5) 0.71× 1.00× 0.71× 1.00× 0.70× 1.00× 0.72× 1.00×
PJ Decoding 0.72× 1.03× 0.74× 1.04× 0.69× 1.04× 0.67× 1.03×
PGJ Decoding (b = 3) 1.16× 1.04× 1.19× 1.07× 1.17× 1.05× 1.17× 1.03×
HGJ Decoding (b = 3) 1.16× 1.04× 1.19× 1.06× 1.17× 1.05× 1.17× 1.03×
MBart50
Greedy Autoregressive 1.00× 1.00× 1.00× 1.00× 1.00× 1.00× 1.00× 1.00×
Beam Search (beam = 5) 0.76× 1.00× 0.77× 1.00× 0.77× 1.00× 0.76× 1.00×
PJ Decoding 0.88× 1.03× 0.88× 1.03× 0.86× 1.04× 0.85× 1.03×
PGJ Decoding (b = 3) 1.06× 1.10× 1.08× 1.11× 1.03× 1.08× 1.04× 1.11×
HGJ Decoding (b = 3) 1.05× 1.07× 1.07× 1.01× 1.01× 1.02× 1.02× 1.08×

Table 6: Comparison of parallel decoding algorithms (highlighted in grey) with sequential decoding using Opus
(CPU) and MBart50 (GPU) on WMT14 and WMT16. Speed is showed here both in Time and Iterations w.r.t. the
greedy autoregressive baseline.

WMT17 IITB IWSLT15 FLORES
En-Fi En-Hi En-Vi En-It En-Fr

Dec. Algorithm ← → ← → ← → ← → ← →
Autoregressive 17.55 25.34 16.50 24.70 31.92 33.94 22.78 26.38 39.51 38.90
Beam Search 18.39 26.04 16.87 25.24 32.14 34.59 23.52 26.80 39.59 39.21
PJ 17.54 25.35 16.50 24.69 31.92 33.94 22.78 26.38 39.50 38.90
PGJ (b=3) 17.55 25.35 16.50 24.70 31.93 33.94 22.78 26.38 39.51 38.90
HGJ (b=3) 17.55 25.35 16.50 24.70 31.93 33.94 22.78 26.38 39.51 38.90

Table 7: BLEU scores on MBart50.

Example 1 - Wmt16 En-Ro

TARGET
Dl Corbyn va adresa primele dintre cele s, ase întrebări la care are dreptul la scurt timp după prânz; prestat,ia
sa va fi probabil analizată îndeaproape de mass-media s, i parlamentarii laburis, ti.

Times (s) BLEU

A
Dl Corbyn va ridica pentru a adresa prima dintre cele şase întrebări alocate la scurt timp după miezul zilei, iar
performanţa sa va fi probabil examinată îndeaproape de presă şi de parlamentarii laburişti.

0.51 19.71

PJ
Dl Corbyn va ridica pentru a adresa prima dintre cele şase întrebări alocate la scurt timp după miezul zilei, iar
performanţa sa va fi probabil examinată îndeaproape de presă şi de parlamentarii laburişti.

0.56 19.71

PGJ
Dl Corbyn va ridica pentru a adresa prima dintre cele şase întrebări alocate la scurt timp după miezul zilei, iar
performanţa sa va fi probabil examinată îndeaproape de presă şi de parlamentarii laburişti.

0.45 19.71

HGJ
Dl Corbyn va ridica pentru a adresa prima dintre cele şase întrebări alocate la scurt timp după miezul zilei, iar
performanţa sa va fi probabil examinată îndeaproape de presă şi de parlamentarii laburişti.

0.44 19.71

Example 2 - Flores En-It

TARGET

Quando un piccolo gruppo di esseri viventi (una piccola popolazione) si separa dalla popolazione principale
alla quale appartiene (per esempio se si sposta oltre una catena montuosa o un fiume, o si sposta su una nuova
isola, rendendo quindi difficile un eventuale ritorno), esso si ritroverà probabilmente in un ambiente diverso da
quello in cui si trovava prima.

Times (s) BLEU

A
Quando un piccolo gruppo di esseri viventi si separa dalla popolazione principale da cui provengono, come se
si muovano su una catena di montagne o su un fiume o se si trasferiscono su una nuova isola per non poter tornare
facilmente, si troveranno spesso in un ambiente diverso da quello in cui erano prima.

0.61 31.69

PJ
Quando un piccolo gruppo di esseri viventi si separa dalla popolazione principale da cui provengono, come se
si muovano su una catena di montagne o su un fiume o se si trasferiscono su una nuova isola per non poter tornare
facilmente, si troveranno spesso in un ambiente diverso da quello in cui erano prima.

0.73 31.69

PGJ
Quando un piccolo gruppo di esseri viventi si separa dalla popolazione principale da cui provengono, come se
si muovano su una catena di montagne o su un fiume o se si trasferiscono su una nuova isola per non poter tornare
facilmente, si troveranno spesso in un ambiente diverso da quello in cui erano prima.

0.58 31.69

HGJ
Quando un piccolo gruppo di esseri viventi si separa dalla popolazione principale da cui provengono, come se
si muovano su una catena di montagne o su un fiume o se si trasferiscono su una nuova isola per non poter tornare
facilmente, si troveranno spesso in un ambiente diverso da quello in cui erano prima.

0.59 31.69

12351



Example 3 - Wmt14 En-De

TARGET

Bei der diesjährigen Veranstaltung gibt es Auftritte von Wanda Sykes, Kathy Griffin und Bill Maher sowie auch
von „Stand Up for Heroes“, einer jährlichen Musik- und Comedy-Benefizveranstaltung für Armeeveteranen im
Madison Square Garden, bei der unter anderem Bruce Springsteen, Jon Stewart, Roger Waters und Bill Cosby auftreten.

Times (s) BLEU

A
Zu den diesjährigen Veranstaltungen gehören Auftritte von Wanda Sykes, Kathy Griffin und Bill Maher sowie
"Stand Up for Heroes", ein jährlicher Musik- und Komödie-Vorteil für Militärveteranen, im Madison Square Garden, mit
u.a. Bruce Springsteen, Jon Stewart, Roger Waters und Bill Cosby.

1.30 47.04

PJ
Zu den diesjährigen Veranstaltungen gehören Auftritte von Wanda Sykes, Kathy Griffin und Bill Maher sowie
"Stand Up for Heroes", ein jährlicher Musik- und Komödie-Vorteil für Militärveteranen, im Madison Square Garden, mit
u.a. Bruce Springsteen, Jon Stewart, Roger Waters und Bill Cosby.

2.43 47.04

PGJ
Zu den diesjährigen Veranstaltungen gehören Auftritte von Wanda Sykes, Kathy Griffin und Bill Maher sowie
"Stand Up for Heroes", ein jährlicher Musik- und Komödie-Vorteil für Militärveteranen, im Madison Square Garden, mit
u.a. Bruce Springsteen, Jon Stewart, Roger Waters und Bill Cosby.

1.09 47.04

HGJ
Zu den diesjährigen Veranstaltungen gehören Auftritte von Wanda Sykes, Kathy Griffin und Bill Maher sowie
"Stand Up for Heroes", ein jährlicher Musik- und Komödie-Vorteil für Militärveteranen, im Madison Square Garden, mit
u.a. Bruce Springsteen, Jon Stewart, Roger Waters und Bill Cosby.

1.08 47.04

Example 4 - Flores En-Fr

TARGET

Cinq minutes après le début de l’exposition, un vent se met à souffler pour atteindre, environ une minute
plus tard, la vitesse de 70km/h... puis la pluie arrive, mais si forte et si grosse qu’elle frappe votre peau
comme une aiguille, puis la grêle tombe du ciel, les gens paniquent, crient et se roulent dessus.

Times (s) BLEU

A
Cinq minutes après l’exposition, le vent commence à tourner, environ un minute plus tard, le vent atteint
70 km/h, puis la pluie arrive, mais si forte et si grande qu’elle vous frappe la peau comme une aiguille, puis
le hail tombe du ciel, les gens paniquent, s’expriment et se courent l’un sur l’autre.

0.82 39.90

PJ
Cinq minutes après l’exposition, le vent commence à tourner, environ un minute plus tard, le vent atteint
70 km/h, puis la pluie arrive, mais si forte et si grande qu’elle vous frappe la peau comme une aiguille, puis
le hail tombe du ciel, les gens paniquent, s’expriment et se courent l’un sur l’autre.

0.94 39.90

PGJ
Cinq minutes après l’exposition, le vent commence à tourner, environ un minute plus tard, le vent atteint
70 km/h, puis la pluie arrive, mais si forte et si grande qu’elle vous frappe la peau comme une aiguille, puis
le hail tombe du ciel, les gens paniquent, s’expriment et se courent l’un sur l’autre.

0.73 39.90

HGJ
Cinq minutes après l’exposition, le vent commence à tourner, environ un minute plus tard, le vent atteint
70 km/h, puis la pluie arrive, mais si forte et si grande qu’elle vous frappe la peau comme une aiguille, puis
le hail tombe du ciel, les gens paniquent, s’expriment et se courent l’un sur l’autre.

0.72 39.90

Table 7: Translation examples generated with the autoregressive (A) and the different decoding algorithms proposed
(PJ, PGJ, HGJ) on Opus (WMT datasets) and MBart50. The decoding time is shown in seconds.

12352



(a) En-De: "Lack of Scots title race bores Dutch - de
Boer"→"Fehlende Schottentitelrennen bohrt Niederlan-
disch - de Boer"

(b) De-En: "Private Fachgeschafte und auch den Großhan-
del gibt es fast nicht mehr."→"Private specialist shops and
wholesale trade are almost no longer available."

(c) Ro-En: "Un prim contract de lucrări a fost reziliat în
aprilie 2012, după ce se efectuaseră lucrări de 4,5 milioane
lei."→ "A first contract of employment was terminated in
April 2012, after a work of 4.5 million lei."

(d) En-Ro: "‘Shot in Joburg’: Homeless youth trained
as photographers"→ "“Fotografii in Joburg”: Tineri fără
adăpost formaţi ca fotografi"

(e) De-En: "Einige sind nach der Installation auf Prob-
leme gestoßen, da sie eine Fehlermeldung erhalten, die
mitteilt, dass die “Software-Aktualisierung fehlgeschla-
gen” ist."→"Some have encountered problems after instal-
lation, as they receive an error message that tells us that
“software update has failed”."

(f) Ro-En: "Se pare că va fi acuzat de fugă de la locul
accidentului, neoferirea primului ajutor s, i alte infract,iuni
rutiere."→ "Apparently he’ll be charged with running
from the scene of the accident, the first aid and other road
crimes."

Figure 6: DGGviz additional visualizations

12353



ACL 2023 Responsible NLP Checklist

A For every submission:
�3 A1. Did you describe the limitations of your work?

Limitations section

�3 A2. Did you discuss any potential risks of your work?
Ethics Statements

�3 A3. Do the abstract and introduction summarize the paper’s main claims?
Abstract

�3 A4. Have you used AI writing assistants when working on this paper?
We used ChatGPT to rephrase some sentences in the final camera-ready version in sections 4.3 and
5.

B �3 Did you use or create scientific artifacts?
Code to reproduce the experiments (zip)

�3 B1. Did you cite the creators of artifacts you used?
Section 4 and Appendix B

�3 B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
License file in the code repository

�3 B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
License file in the code repository

� B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
Not applicable. No data was collected

� B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
Not applicable. Left blank.

�3 B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
Data is automatically downloaded with standard train/test/dev splits via the Huggingface datasets
library. Additional statistics in Appendix B

C �3 Did you run computational experiments?
Section 4 - Experiments

�3 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
Section 4.1

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

12354

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/


�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
Section 4.1

�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
Section 4

�3 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
Section 4.1 and Appendix B

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
Not applicable. Left blank.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
Not applicable. Left blank.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
Not applicable. Left blank.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
Not applicable. Left blank.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
Not applicable. Left blank.

12355


