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Abstract
Unsupervised speech recognition (ASR-U) is
the problem of learning automatic speech
recognition (ASR) systems from unpaired
speech-only and text-only corpora. While var-
ious algorithms exist to solve this problem, a
theoretical framework is missing to study their
properties and address such issues as sensitivity
to hyperparameters and training instability. In
this paper, we proposed a general theoretical
framework to study the properties of ASR-U
systems based on random matrix theory and
the theory of neural tangent kernels. Such a
framework allows us to prove various learnabil-
ity conditions and sample complexity bounds
of ASR-U. Extensive ASR-U experiments on
synthetic languages with three classes of transi-
tion graphs provide strong empirical evidence
for our theory (code available at cactuswith-
thoughts/UnsupASRTheory.git).

1 Introduction

Unsupervised speech recognition (ASR-U) is the
problem of learning automatic speech recognition
(ASR) systems from unpaired speech-only and text-
only corpora. Such a system can not only signifi-
cantly reduce the amount of annotation resources
required for training state-of-the-art ASR system,
but serve as a bridge between spoken and written
language understanding tasks in the low-resource
setting. Since its first proposal (Liu et al., 2018), it
has seen remarkable progress and the current best
system (Baevski et al., 2021) has achieved compara-
ble performance to systems trained with paired data
on various languages. However, there are several
mysteries surrounding ASR-U, which potentially
hinder the future development of such systems.
In particular, prior experiments have found that
training the current state-of-the-art ASR-U model,
wav2vec-U (Baevski et al., 2021), requires care-
ful tuning over the weights of various regulariza-
tion losses to avoid converging to bad local op-
tima and that even despite extensive regularization

weight tuning, wav2vec-U may still fail to converge
(Ni et al., 2022). Therefore, it remains a mystery
whether or when unpaired speech and text data in-
deed provide sufficient information for learning an
ASR system. Another mystery is whether the suc-
cess of existing ASR-U models based on generative
adversarial net (GAN) (Goodfellow et al., 2014) is
sufficiently explained by the GAN objective func-
tion per se, or also requires other factors, such as
randomness in training, quirks in the data used and
careful domain-specific hyper-parameter settings,
etc.

In this paper, we provide a theoretical analysis
of ASR-U to investigate the mysteries surrounding
ASR-U. First, we prove learnability conditions and
sample complexity bounds that crucially depend
on the eigenvalue spacings of the transition prob-
ability matrix of the spoken language. Random
matrix theory shows that such learnability condi-
tions are achievable with high probability. Next, we
study the gradient flow of GAN-based ASR-U and
provide conditions under which the generator min-
imizing the GAN objective converges to the true
generator. Finally, to verify our theory empirically,
we perform GAN-based ASR-U experiments on
three classes of synthetic languages. Not only do
we observe phase transition phenomena predicted
by our theory, but we achieve stable training with
lower test word error rate by several modifications
of the existing state-of-the-art ASR-U system in-
spired by our theory.

2 Problem formulation

General formulation The training data comprise
a set of sequences of quantized speech vectors, and
a set of sequences of phoneme labels. The data are
unpaired: there is no label sequence that matches
any one of the speech sequences. The data are,
however, matched in distribution. Let PXi(x) and
PYj (y) be the probability mass functions (pmfs) of
the ith speech vector in a sequence, x ∈ X, and the
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Figure 1: Overview of the ASR-U system for our analy-
sis

jth phoneme in a sequence, y ∈ Y, respectively:
the requirement that they are matched in distri-
bution is the requirement that there exists some
generator function O : (X,Y) → {0, 1} such that

∑

x∈X
PXi(x)O(x, y) = PYi(y) (1)

The problem of ASR-U is to find the generator
function O.

GAN-based ASR-U Eq. (1) leverages sequence
information to remove ambiguity: O must be
an optimal generator not only for the position-
independent distributions of X and Y , but
also for their position-dependent distributions
PXi , PYi∀i ∈ N0. In reality we cannot observe
every possible sequence of speech vectors, or every
possible sequence of phonemes, but instead must
estimate O from samples. To address this issue, a
GAN can be used to reproduce the empirical distri-
bution of the training dataset with minimum error,
subject to the generator’s inductive bias, e.g., sub-
ject to the constraint that the function O is a matrix
of the form O ∈ {0, 1}|X|×|Y|, where |X| and |Y|
are the sizes of the alphabets X and Y, respectively.
As shown in Figure 1, a GAN achieves this goal
by computing O as the output of a neural network,
O = G(x, y; θ), and by requiring G to play a zero-
sum game with another neural network called the
discriminator D with the following general utility
function:

min
G

max
D

J(G,D) := EY∼PY
[a(D(Y ))]−

EX∼PX
[b(D(G(X)))]. (2)

For the original GAN (Goodfellow et al., 2014),
a(D) = log(σ(D)) and b(D) = − log(1−σ(D)),
where σ is the sigmoid function. For the Wasser-
stein GAN (Arjovsky et al., 2017), D(Y ) is a

Lipschitz-continuous scalar function, and a(D) =
b(D) = D. A maximum mean discrepancy
(MMD) GAN (Li et al., 2017) minimizes the squred
norm of Eq. (2), where D(Y ) is an embedding
into a reproducing kernel Hilbert space (RKHS).
In this paper we take the RKHS embedding to be
the probability mass function of a scalar random
variable D(Y ), and assume that the discriminator
is trained well enough to maintain Eq. (2). In this
situation, the MMD GAN minimizes Eq. (2) with
a(D) = b(D) = Y . In practice, Eq. (2) is opti-
mized by alternatively updating the parameters of
the discriminator and the generator using gradient
descent/ascent:

ϕi+1 = ϕi + η∇ϕJ(Gθi , Dϕi
) (3)

θi+1 = θi − ν∇θJ(Gθi , Dϕi+1
). (4)

Theoretical questions of ASR-U The aforemen-
tioned formulation of ASR-U is ill-posed. Intu-
itively, the function O has finite degrees of freedom
(O ∈ {0, 1}|X|×|Y|), while Eq. (1) must be valid for
an infinite number of distributions (PXi and PYi

for i ∈ N), so there is no guarantee that a solution
exists. On the other hand, if the sequence is unim-
portant (PXi = PXj∀i, j ∈ N0), then the solution
may not be unique. One important question is then:
what are the necessary and sufficient conditions for
Eq. (1) to have a unique solution?

Further, it is well-known that gradient-based
training of GAN can be unstable and prior works
on ASR-U (Yeh et al., 2019; Baevski et al., 2021)
have used various regularization losses to stabilize
training. Therefore, another question of practical
significance is: what are the necessary and suffi-
cient conditions for the alternate gradient method
as described by Eq. (3)-(4) to converge to the true
generator for ASR-U? In the subsequent sections,
we set out to answer these questions.

3 Theoretical analysis of ASR-U

3.1 Learnability of ASR-U: a sufficient
condition

A key assumption of our theory is that the distribu-
tion of the speech and the text units can be modeled
by a single hidden Markov model whose hidden
states are N -grams of speech units and whose out-
puts are N -grams of text units, as shown in Fig-
ure 1.

The parameters of this HMM are its initial prob-
ability vector, π, which specifies the distribution
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of the first N speech vectors X0:(N−1) ∈ XN , its
transition probability matrix A, which specifies the
probability of any given sequence of N speech vec-
tors given the preceding N speech vectors, and its
observation probability matrix, which specifies the
distribution of one phone symbol given one speech
vector:

π := PX0:N−1
∈ ∆|X|N

A := PXN :2N−1|X0:N−1
∈ ∆|X|N×|X|N

O := PY |X ∈ ∆|X|×|Y|,

where ∆k is the k-dimensional probability simplex.
The first-order Markov assumption is made plau-

sible by the use of N-gram states, X0:N−1, rather
than unigram states; with sufficiently long N , nat-
ural language may be considered to be approx-
imately first-order Markov. The connection be-
tween the N -gram states and the unigram obser-
vations requires the use of a selector matrix, E =
1|X|N−1 ⊗ I|X|, where ⊗ denotes the Kronecker
product, thus PXkN

= π⊤AkE, and for multiples
of N , Eq. (1) can be written PYkN

= π⊤AkEO.
It turns out that a crucial feature for a spoken lan-
guage to be learnable in an unsupervised fashion is
that it needs to be “complex” enough such that a
simple, symmetric and repetitive graph is not suf-
ficient to generate the language. This is captured
by the following assumptions on the parameters A
and π.

Assumption 1. There exists an invertible matrix
U ∈ R|X|N−1×|X|N−1

= [U1|U2| · · · |UK ], where
the columns of each matrix Uj = [uj1| · · · |ujNj ]
are eigenvectors with the same eigenvalue and a di-
agonal matrix Λ = blkdiag(Λ1, · · · ,ΛK), where
each matrix Λk is a diagonal matrix with all diag-
onal elements equal to the same scalar λk, such
that A = UΛU−1 with |X|N ≥ K ≥ |X| nonzero
eigenvalues λ1 > λ2 > · · · > λK .

Assumption 2. For at least |X| values of j, there
is at least one k s.t. π⊤ujk ̸= 0.

With Assumptions 1 and 2, we can consider the
following algorithm: First, we construct the follow-
ing matrices

PX :=




P⊤
X0

P⊤
XN
...

P⊤
X(L−1)N


, P

Y :=




P⊤
Y0

P⊤
YN
...

P⊤
Y(L−1)N


 , (5)

Then, O satisfies the following matrix equation

PXO = P Y . (6)

The binary matrix O in Eq. (6) is unique if and
only if PX has full column rank. The following
theorem proves that this is indeed the case under
our assumptions.

Theorem 1. Under Assumptions 1 and 2, PX has
full column rank and perfect ASR-U is possible.
Further, the true phoneme assignment function is
O = PX+P Y , where PX+ = (PX⊤PX)−1PX⊤

is the left-inverse of PX .

Further, if we measure how far the matrix PX is
from being singular by its smallest singular value
defined as

σmin(P
X) := min

v∈R|X|

∥PXv∥2
∥v∥2

,

we can see that PX becomes further and further
away from being singular as the sequence length
L gets larger. An equivalent result for a different
purpose has appeared in the Theorem 1 of (Bazán,
2000).

Lemma 1. Under Assumptions 1 and 2 and for sim-
plicity assuming the number of distinct eigenvalues
K = |X| for T , then we have

σmin(P
X) ≥

δ
(|X|−1)/2|X|
min

∑L−|X|−1
l=0 λ2l

min(A)

κ(V|X|(λ1:|X|))
min
j

∥r̂j∥ (7)

where δmin := mini ̸=j |λi(A) − λj(A)|, λmin(A)
is the smallest eigenvalue of square matrix A,
κ(V|X|(λ1:|X|)) is the condition number of the
square Vandermonde matrix created from eigenval-
ues λ1(A), . . . , λ|X|(A), rj = πTUjΩ

⊤
j E, and Ω⊤

j

is the set of rows of U−1 corresponding to eigen-
value λj(A), after orthogonalizing them from every
other block of rows, i.e., U−1 = L[Ω1| · · · |ΩK ]T

such that L is lower-triangular, and the blocks Ωi

and Ωj are orthogonal.

Next, we will show that Assumption 1 can be
easily met using random matrix arguments.

3.2 Finite-sample learnability of ASR-U
Matched setup Now we show that the require-
ment for distinct eigenvalues is a mild one as it can
easily be satisfied with random transition matri-
ces. According to such a result, ASR-U is feasible
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with high probability in the (empirically) matched
setting commonly used in the ASR-U literature,
where the empirical generated and true distribu-
tions can be matched exactly by some generator
in the function class (Liu et al., 2018). Our proof
relies crucially on the seminal work of (Nguyen
et al., 2017) on eigenvalue gaps of symmetric ran-
dom matrices with independent entries.

In the context of ASR-U, it is of particular inter-
est to study the eigenvalue gaps of a Markov ran-
dom matrix, which unlike the symmetric case, is
asymmetric with correlated entries. Fortunately, by
modifying the proof for Theorem 2.6 of (Nguyen
et al., 2017), we can show that if the language
model belongs to a special but rather broad class
of Markov random matrices defined below and the
states are non-overlapping N -gram instead of the
more common overlapping ones, it should have at
least |X| distinct eigenvalues with minimum spac-
ing depending on |X| and the N for the N -gram.

Definition 1. (symmetric Markov random matrix)
A symmetric Markov random matrix is a matrix of
the form A := D−1W , where the adjacency matrix
W is a real, symmetric random matrix with positive
entries and bounded variance and D is a diagonal
matrix with dii =

∑
j Wij > 0.

Intuitively, a symmetric Markov random matrix
is the transition matrix for a reversible Markov
chain formed by normalizing edge weights of a
weighted, undirected graph.

Theorem 2. (simple spectrum of symmetric
Markov random matrix) Let An = D−1

n Wn ∈
Rn×n be a real symmetric Markov random ma-
trix with adjacency matrix Wn. Further, suppose
Wn = Fn + Xn, where Fn is a deterministic
symmetric matrix with eigenvalues of order nγ

and Xn is a symmetric random matrix of zero-
mean, unit variance sub-Gaussian random vari-
ables. Then we have for any C > 0, there exists
B > 4γ′C + 7γ′ + 1 such that

max
1≤i≤n−1

Pr[|λi − λi+1| ≤ n−B] ≤ n−C ,

with probability at least 1 − O(exp(−α0n)) for
some α0 > 0 dependent on B and γ′ =
max{γ, 1/2}.

Corollary 1. Suppose the speech feature tran-
sition probability is a symmetric Markov ran-
dom matrix A := D−1W with entries Wij ∼
Uniform(0, 2

√
3) and D is a diagonal matrix with

dii =
∑

j Wij . Then for any ϵ > 0, there ex-
ists α0 > 0 such that with probability at least
1−O

(
|X|−CN + exp

(
−α0|X|N

))
, the transition

probability matrix A has |X|N distinct eigenvalues
with minimum gap |X|−BN > 0.

The proof of Theorem 2 and Corollary 1 are
presented in detail in the Appendix A.2.

Unmatched setup In the finite-sample, un-
matched setup, the empirical distribution of the
fake text data generated by the GAN does not nec-
essarily match the empirical distribution of the true
text data. Assuming the discriminator is perfect in
the sense that it maintains Eq. (2) non-negative, and
assuming D(Y ) is a scalar random variable, then
minimizing Eq. (2) is equivalent to minimizing a
divergence measure d(·, ·), between the empirical
text distribution, P Y , and the text distribution gen-
erated by Ox(y) = P̂Y |X(y|x):

min
O∈∆|X|×|Y|

dγ(P Y , PXO), (8)

where γ > 0. For example, for the original GAN,
d(·, ·) is the Jensen-Shannon distance and for the
MMD GAN, d(·, ·) is the Lγ distance between the
expectations E[D(Y )] under the distributions P Y

and PXO. In both cases, however, Eq. (8) can
be minimized using a decomposable discriminator
defined to be:

EPY
[a(D(Y ))] =

L−1∑

l=0

EPYl
[a(Dl(Yl))] (9)

EPX
[b(D(G(X)))] =

L−1∑

l=0

EPXl
[b(Dl(Gl(X))],

(10)

with components Dl : |Y| 7→ R, l = 1, · · · , L.
Under the assumption that D is decomposable and
that the MMD GAN is used, we have the following
sample complexity bound on perfect ASR-U.

Theorem 3. The empirical risk minimizer (ERM)
of Eq. (8) recovers the true assignment O perfectly
from nX speech frames and nY text characters with
probability 1− 2δ if

σmin(P
X) ≥

√
4L|Y|(nX + nY ) + L|X|nX

nXnY
+

10

√
L log 1

δ

nX ∧ nY
,

where nX ∧ nY := min{nX , nY }.
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(a) Circulant graph (b) De Bruijn graph (c) Hypercube

Figure 2: Various types of Markov transition graphs

3.3 Training dynamic of GAN-based ASR-U
So far, we have assumed the GAN training is able
to find the optimal parameters for the discriminator
and the generator. However, there is no guarantee
that this is indeed the case with gradient updates
such as Eq. (3). To analyze the behaviour of the
GAN training dynamic for ASR-U, we follow prior
works on neural tangent kernel (NTK) (Jacot et al.,
2018) to focus on the infinite-width, continuous-
time regime, or NTK regime, where the generator
and the discriminator are assumed to be neural
networks with an infinite number of hidden neurons
trained with gradient descent at an infinitely small
learning rate. Though highly idealized, studying
such a regime is practically useful as results from
this regime can often be converted to finite-width,
discrete-time settings (See, e.g., (Du et al., 2019)).

For simplicity, denote fτ := Dϕτ and gt := Gθt

and define Lt(f) := J(gt, f), then in the NTK
regime, between each generator step, the training
dynamic of the discriminator can be described by
the following partial differential equation (PDE):

∂τϕτ = ∇ϕτLt(fτ ). (11)

Let f∗
Pt

= limτ→∞ fτ be the limit of Eq. (11). If
the limit exists and is unique, the generator loss is
well-defined as Ct(gt) := J(gt, f

∗
Pt
). Note that the

output of the ASR-U generator is discrete, which
is not a differentiable function per se, but we can
instead directly parameterize the generated text
distribution as Pgt := PX ◦ Ot for some softmax
posterior distribution Ot:

Ot,x(y) :=
L∏

l=1

exp(hθ,yl(xl))∑
y′l
exp(hθ,y′l(xl))

, (12)

where hθ is a neural network, and is assumed to be
one layer in our analysis, though it can be extended
to multiple layers with slight modifications using
techniques similar to those in (Du et al., 2019).

Using such a generator, the generator dynamic
can be then described by the following PDE:

∂tθt =
∑

y∈YL

b(f∗
gt(y))∇θtPgt(y), (13)

where the right-hand side is the term in the gradient
of Ct with respect to θt ignoring the dependency
of the discriminator f∗

gt . Define the NTKs of the
discriminator and the generator (distribution) as

Kfτ (y, y
′) = Eϕ0∼W

[
∂fτ (y)

∂ϕτ

⊤∂fτ (y
′)

∂ϕτ

]
(14)

Kgt(y, y
′) = Eθ0∼W

[
∂Pgt(y)

∂θt

⊤∂Pgt(y
′)

∂θt

]
,

(15)

where W is the initialization distribution (usually
Gaussian).

Note that the NTKs are |Y|L×|Y|L matrices for
ASR-U due to the discrete nature of the generator.
A key result in (Jacot et al., 2018) states that as the
widths of the hidden layers of the discriminator and
generator go to infinity, Kfτ → KD,Kgt → KG

stay constant during gradient descent/ascent and
we have

∂τfτ = KD (diag(PY )∇fτa

−diag(Pgt)∇fτ b) , (16)

∂tPgt = KGbfgt
, (17)

where ∇f{a, b} =
[
∂{a,b}(f(y))

∂f(y)

]
y∈YL

and bf =

(bf (y))y∈YL .
However, Eq. (16)-(17) is in general highly non-

linear and it remains an open problem as to their
convergence properties. Instead, we focus on the
case when the discriminator ft is decomposable
with components ft,l, l = 1, · · · , L, and simplify
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Eq. (16) and Eq. (17) into PDEs involving only
samples at a particular time step:

∂τfτ,l =KD,l

(
diag(P Y

l )∇fτ,lafτ,l

− diag(P gt
l )∇fτ,lbfτ,l

)
, (18)

∂tO
⊤
t,x =

L∑

l=1

PX
l (x)KOt,xbfgt,l

, (19)

for all l = 1, · · · , L, x ∈ X in terms of the step-
wise NTKs defined as:

KD,l(y, y
′) := Eϕ0∼W

[
∂fτ (y)

∂ϕτ

⊤∂fτ (y
′)

∂ϕτ

]

KOt,x(y, y
′) := Eθ0∼W

[
∂Ot,x(y)

∂θτ

⊤∂Ot,x(y
′)

∂θτ

]
.

We further focus on the special case that fτ,l is
parameterized by a two-layer neural network with
ReLU activation, though the framework can be
extended to network of arbitrary depths:

fτ,l(y) = lim
m→∞

1√
m

m∑

r=1

vlr max{W l
ry, 0}. (20)

In this case, under mild regularity conditions, we
can show that the generator trained with the al-
ternate gradient method minimizes Eq. (8), which
under the same condition as in Section 3.2, implies
ASR-U is feasible.

Theorem 4. Suppose the following assumptions
hold:

1. The discriminator is decomposable and pa-
rameterized by Eq. (20), whose parameters
are all initialized by standard Gaussian vari-
ables;

2. The generator is linear before the softmax
layer;

3. The GAN objective is MMD;

4. The linear equation PXO = P Y has at least
one solution.

Then we have for any solution Ot of Eq. (19),
limt→∞ PXOt = P Y .

4 Experiments

Synthetic language dataset To allow easy con-
trol of the eigenvalue spacings of the transition

matrix T and thus observe the phase transition phe-
nomena predicted by our theory, we design six
synthetic languages with HMM language models
as follows. First, we create the HMM transition
graph by treating non-overlapping bigrams as hid-
den states of the HMM. The hidden state of the
HMM will henceforth be referred to as the “speech
unit”, while the observation emitted by the HMM
will be referred to as the “text unit”. For the asymp-
totic ASR-U, we control the number of eigenvalues
of the Markov transition graph by varying the num-
ber of disjoint, identical subgraphs. The number of
distinct eigenvalues of the whole graph will then
be equal to the number of eigenvalues of each sub-
graph. For the finite sample setting, we instead
select only Hamiltonian graphs and either gradu-
ally decrease the degrees of the original graph to its
Hamiltonian cycle or interpolate between the graph
adjacency matrix and that of its Hamiltonian cycle.
Thus, we can increase σmin(P

X) by increasing w.
For both the subgraph in the former case and the
Hamiltonian graph in the latter, we experiments
with circulant, de Bruijn graphs (de Bruijn, 1946)
and hypercubes, as illustrated in Figure 2. Next, we
randomly permute the hidden state symbols to form
the true generator mapping from the speech units
to text units. To create matched speech-text data,
we simply sample matched speech and text unit
sequences using a single HMM. For unmatched
datasets, we sample the speech and text data inde-
pendently with two HMMs with the same parame-
ters. Please refer to Appendix B for more details.

Model architecture For finite-sample ASR-U,
we use wav2vec-U (Baevski et al., 2021) with
several modifications. In particular, we experi-
ment with various training objectives other than
the Jensen-Shannon (JS) GAN used in the original
wav2vec-U, including the Wasserstein GAN (Liu
et al., 2018) and the MMD GAN. All additional
regularization losses are disabled. Moreover, we
experimentally manipulate two hyperparameters:
(1) the averaging strategy used by the generator,
and (2) whether to reset the discriminator weights
to zero at the beginning of each discriminator train-
ing loop. More details can be found in Appendix B.

Phase transition of PER vs. eigenvalue gaps:
asymptotic case The phoneme error rate (PER)
as a function of the number of eigenvalues of A for
the asymptotic ASR-U on the synthetic datasets are
shown in Figure 3. For all three graphs, we observe
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(a) Circulant graph (b) De Bruijn graph (c) Hypercube

Figure 3: Asymptotic ASR-U PER vs number of distinct nonzero eigenvalues for various Markov transition graphs

(a) Circulant graph (b) De Bruijn graph (c) Hypercube

Figure 4: Finite-sample ASR-U PER vs σmin(P
X) for various Markov transition graphs

Figure 5: Effect of discriminator resetting at every up-
date

clear phase transitions as the number of eigenval-
ues exceeds the number of speech units, and an
increase of the number of distinct, nonzero eigen-
values required for perfect ASR-U as the number
of speech units increases.

Phase transition of PER vs. eigenvalue gaps:
finite-sample case The PER as a function of the
least singular value σmin(P

X) for the finite-sample
ASR-U on the synthetic datasets are shown in Fig-
ure 4. As we can see, the ASR-U exhibit the phase
transition phenomena in all three graphs, albeit
with differences in the critical point and their rate of

Figure 6: Effect of different type of averaging for the
generator

approaching the perfect ASR-U regime. While the
PER generally decreases as σmin(P

X) gets larger,
we found a dip in PER in the circulant graph case
as σmin(P

X) moves from 10−31 to 10−15. Though
unexpected, this observation is not contradictory
to our theory since our theory does not make ex-
plicit predictions about the rate of phase transi-
tion for ASR-U. Across different GAN models, we
found that JSD generally approaches perfect ASR-
U at a faster rate than MMD in all three graphs,
suggesting the use of nonlinear dynamic may be
beneficial. Nevertheless, the overall trends for dif-
ferent GANs remain in large part homogeneous.
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Between Wasserstein and MMD, we observe very
little difference in performance, suggesting the reg-
ularization effect of NTK is sufficient to control the
Lipschitz coefficient of the network. Finally, for
the MMD GAN in the matched setting, we found
the network is able to achieve perfect ASR-U re-
gardless of the spectral properties of the Markov
transition graphs, which confirms our theory that
a symmetric Markov random matrix tends to have
simple eigenvalue spectrum suitable for ASR-U.

Effect of discriminator reset As pointed out by
(Franceschi et al., 2021), a discriminator may suffer
from residual noise from previous updates and fail
to approximate the target divergence measure. We
analyze such effects for MMD and JSD as shown in
Figure 5. We observed consistent trends that mod-
els whose weights are reset to the initial weights
every discriminator loop outperform those without
resetting. The effect is more pronounced for JSD
GAN than MMD GAN and for smaller σmin(P

X).

Effect of generator averaging strategy The
original wav2vec-U (Baevski et al., 2021) directly
feeds the text posterior probabilities O into the dis-
criminator, which we refer to as the “soft input”
approach. Alternatively, we can instead calculate a
weighted average of the gradient form over the sam-
ples y ∈ YL as in Eq. (13), which we refer to as the

“outside cost” approach. The comparison between
the two approaches are shown in Figure 6. We
observed mixed results: for MMD GANs, the soft-
input approach outperforms the outside-cost ap-
proach and performs best among the models in the
high-σmin(P

X) setting; for JSD GANs, we found
that the outside-cost approach performs slightly
better than the soft-input approach. Such inconsis-
tencies may be another consequence of the regular-
ization effect predicted by the GANTK. We leave
the theoretical explanation as future work.

5 Related works

(Glass, 2012) first proposed the challenging task of
ASR-U as a key step toward unsupervised speech
processing, and framed it as a decipherment prob-
lem. (Liu et al., 2018) takes on the challenge by
developing the first ASR-U system with ground-
truth phoneme boundaries and quantized speech
features as inputs, by training a GAN to match the
speech-generated and real text distributions. (Chen
et al., 2019) later replaced the ground truth bound-
aries with unsupervised ones refined iteratively by

an HMM, which also incorporates language model
information into the system. (Yeh et al., 2019)
explored the cross entropy loss for matching the
generated and real text distribution, but it is prone
to mode collapse and needs the help of additional
regularization losses such as smoothness weight.
More recently, (Baevski et al., 2021; Liu et al.,
2022) proposed another GAN-based model using
continuous features from the last hidden layer of
the wav2vec 2.0 (Baevski et al., 2020) model and
additional regularization losses to stabilize training.
Their approach achieves ASR error rates compara-
ble to the supervised system on multiple languages,
making it the current state-of-the-art system.

To better understand the learning behavior of
ASR-U systems, (Lin et al., 2022) analyze the ro-
bustness of wav2vec-U against empirical distribu-
tion mismatch between the speech and text, and
found that N -gram language model is predictive
of the success of ASR-U. Inspired by the original
framework in (Glass, 2012), (Klejch et al., 2022)
proposed a decipher-based cross-lingual ASR sys-
tem by mapping IPA symbols extracted from a
small amount of speech data with unpaired pho-
netic transcripts in the target language.

Our analysis on the sufficient condition of ASR-
U is based on previous work on the asymptotic
behaviour of GAN objective functions (Goodfel-
low et al., 2014; Arjovsky et al., 2017). Our finite-
sample analysis takes inspiration from later work
extending the asymptotic analysis to the finite-
sample regimes (Arora et al., 2017; Bai et al.,
2019). Such frameworks, however, do not account
for the alternate gradient optimization method of
GANs and inevitably lead to various inconsisten-
cies between the theory and empirical observa-
tions of GAN training (Franceschi et al., 2021).
Building upon prior works (Mescheder et al., 2017,
2018; Domingo-Enrich et al., 2020; Mroueh and
Nguyen, 2021; Balaji et al., 2021), (Franceschi
et al., 2021) proposed a unified framework called
GANTK based on NTK (Jacot et al., 2018) to de-
scribe the training dynamic of any GAN objectives
and network architectures. Our analysis on the
training dynamic of ASR-U adopts and extends the
GANTK framework to handle discrete, sequential
data such as natural languages.

6 Conclusion

In this paper, we develop a theoretical framework
to study the fundamental limits of ASR-U as well
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as the convergence properties of GAN-based ASR-
U algorithms. In doing so, our theory sheds light
on the underlying causes of training instability for
such algorithms, as well as several new directions
for more reliable ASR-U training.

7 Limitations

Our theory currently assumes that input speech fea-
tures are quantized into discrete units, as in (Chen
et al., 2019), while preserving all the linguistic in-
formation in the speech. As a result, our theory
does not account for the loss of linguistic infor-
mation during the quantization process, as often
occurred in realistic speech datasets. Further, more
recent works (Baevski et al., 2021; Liu et al., 2022)
have shown that continuous features, with the help
of additional regularization losses, can achieve al-
most perfect ASR-U. Such phenomena is beyond
explanations based on our current theory and re-
quire generalizing our theory to continuous speech
features. Further, our model assumes that suffi-
ciently reliable phoneme boundaries are fed to the
ASR-U system, and kept fixed during training. It
will be interesting to extend our framework to sys-
tems with trainable phoneme boundaries, such as
the wav2vec-U systems, to better understand its
effect on training stability.
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A Proofs of theoretical results

A.1 Learnability of ASR-U: a sufficient
condition

Proof. (Theorem 1)

For simplicity, we assume that the eigenvalues
of A are real though a similar argument applies to
complex eigenvalues as well. By Assumptions 1
and 2, it can be verified that

PXkN
= π⊤AkE

= π⊤UΛkU−1E,

where E = 1|X|N−2 ⊗ I|X|, where ⊗ denotes the
Kronecker product. Define cjk = π⊤ujk. Define
r⊤jk to be the kth row of the jth block of the matrix

U−1E, i.e., UU−1E =
∑K

j=1

∑Nj

k=1 ujkr
⊤
jk. De-

fine the matrix RK as RK = [r1, · · · , rK ], where
rj =

∑Nj

k=1 cjkrjk. Then we have:

P⊤
XkN

=

K∑

j=1

λk
j r

⊤
j

PX = VL(λ1:K)⊤R⊤
K ,

where VL(λ1:K) is the Vandermonde matrix
formed by nonzero eigenvalues λ1, · · · , λK and
with L columns, K ≥ |X| by Assumption 1. RK

has full column rank of K ≥ |X| by Assumption 2,
therefore it is possible to write RK = R̂KL, where
R̂K = r̂1, . . . , r̂K ] is a matrix with orthogonal
columns, and L is lower-triangular. As a result, we
have PX is full rank iff VL(λ1:K) has full row rank
of at least |X|, which holds by Assumption 1.

Proof. (Lemma 1)

Use the Rayleigh-characterization of eigenvalues
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of the matrix PX⊤PX , we have

σmin(P
X)

=
√
λmin(PX⊤PX)

=
√

min
∥w∥=1

w⊤PX⊤PXw

=
√

min
∥w∥=1

w⊤RKVLV ⊤
L R⊤

Kw

≥

√√√√
L−|X|−1∑

l=0

λ2l
min min

∥w∥=1
w⊤RKV|X|V ⊤

|X|R
⊤
Kw

= σmin(P
X
1:|X|)

√√√√
L−|X|−1∑

l=0

λ2l
min,

where λmin is the eigenvalue of A with minimum
absolute value, and PX

1:|X| is the first |X| rows of
PX . Therefore, to lower bound σmin(P

X), it suf-
fices to lower bound σmin(P

X
1:|X|). But note that

σmin(P
X
1:|X|)

= min
∥w∥=1

∥V T
|X|R

T
Kw∥

≥σmin(V
T
|X|) min

∥w∥=1
∥RT

Kw∥

≥
σmax(V|X|)

κ(V|X|)
min
j

∥r̂j∥

≥
| det(V|X|)|1/|X|

κ(V|X|)
min
j

∥r̂j∥

=
|∏1≤i<j≤|X| |λi − λj |1/|X|

κ(V|X|)
min
j

∥r̂j∥

≥δ
(|X|−1)/2|X|
min

κ(V|X|)
min
j

∥r̂j∥

where the last equality uses the closed-form for-
mula of the determinant of a square Vandermonde
matrix, and where the behaviour of κ(V|X|), the
condition number of the Vandermonde matrix, has
been studied in depth in (Bazán, 2000).

A.2 Finite-sample learnability of ASR-U:
matched setup

Theory of small ball probability The proof of
Theorem 2 makes extensive use of the theory of
small ball probability. Therefore, we briefly pro-
vide some background on the subject. First, we
define the small ball probability of a vector x as
follows.

Definition 2. (Small ball probability) Given a fixed
vector x = (x1, · · · , xn), and i.i.d random vari-
ables ξ = (ξi, · · · , ξn), the small ball probability
is defined as

ρδ(x) := sup
a∈R

Pr[|ξ⊤x− a| ≤ δ].

Intuitively, small ball probability is the amount
of “additive structure” in x: for example, if the
coordinates of x are integer multiples of each other
and ξi’s are symmetric Bernoulli variables, the
product ξ⊤x tends to have small magnitude as
terms cancel out each other very often. Since
sparser vectors tend to have less additive structure,
small ball probability can also be used to measure
how sparse the weights of x are. Another way to
look at this is that, if the L2 norm of x is fixed and
most of the weight of x is gathered in a few coordi-
nates, the product ξ⊤x has higher variance and is
thus less likely to settle in any fixed-length intervals.
This is quantitatively captured by the celebrated
Offord-Littlewood-Erdös (OLE) anti-concentration
inequality (and its inverse) for general subgaussian
random variables:

Lemma 2. (Erdös, 1945; Rudelson and Vershynin,
2008; Tao and Vu, 2009) Let ϵ > 0 be fixed, let
δ > 0, and let v ∈ Rm be a unit vector with

ρδ(v) ≥ m− 1
2
+ϵ.

Then all but at most ϵm of the coefficients of v have
magnitude at most δ.

Note that here we use a slight generalization of
the notion of sparsity called compressibility defined
as follows.

Definition 3. ((α, δ)-compressible) A vector v ∈
Rn is (α, δ)-compressible if at most ⌊αn⌋ of its
coefficients have magnitude above δ.

Note that a sparse vector with a support of size
at most ⌊αn⌋ is (α, 0)-compressible.

A more generally applicable anti-concentration
inequality requires the following definition of gen-
eralized arithmetic progression, which is used to
quantify the amount of additive structure of a vec-
tor.

Definition 4. (Generalized arithmetic progression)
A generalized arithmetic progression (GAP) is a
set of the form

Q = {a⊤w : a ∈ Zr, |ai| ≤ Ni, 1 ≤ i ≤ r},
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where r ≥ 0 is called the rank of the GAP and
w1, · · · , wr ∈ R are called generators of the GAP.
Further, the quantity

vol(Q) :=

r∏

i=1

(2Ni + 1)

is called the volume of the GAP.

Lemma 3. (Continuous inverse Littlewood-Offord
theorem, Theorem 2.9 of (Nguyen and Vu, 2011))
Let ϵ > 0 be fixed, let δ > 0 and let v ∈ Rn be a
unit vector whose small ball probability ρ := ρδ(v)
obeys the lower bound

ρ ≫ n−O(1).

Then there exists a generalized arithmetic progres-
sion Q of volume

vol(Q) ≤ max

(
O

(
1

ρ
√
αn

)
, 1

)

such that all but at most αn of the coefficients
v1, · · · , vn of v lie within δ of Q. Furthermore, if
r denotes the rank of Q, then r = O(1) and all
the generators w1, · · · , wr of Q have magnitude
O(1).

While applicable for any ρ ≫ n−ϵ rather than
only those with ρδ(v) ≥ n−1/2+ϵ as required by
Lemma 2, Lemma 3 is weaker than Lemma 2 in
the sense that rather than showing that the vector
is compressible with high probability and thus cov-
ered by the set of compressible vectors, it proves
that the vector is covered by a small set with high
probability.

A related notion that is often more convenient for
our analysis is the segmental small ball probability,
which is simply small ball probability computed on
a segment of the vector:

ρδ,α(x) = inf
I⊆{1,··· ,n}:|I|=⌊αn⌋

ρδ(xI),

From the definition, it is not hard to see that
ρδ,α(x) ≥ ρδ(x).

Eigen-gaps of symmetric Markov random ma-
trix Armed with tools from the theory of small
ball probability, we will establish guarantees of
eigenvalue gaps for a symmetric Markov random
matrix. First, we shall show that Theorem 2 implies
Corollary 1.

Proof. (Proof of Corollary 1) Using Theorem 2
and union bound, the probability that a symmetric
Markov random matrix has at least |X| distinct
eigenvalues can be bounded as

Pr

[
min

1≤i≤|X|
|λi − λi+1| ≤ |X|−BN

]
≤

|X|max
i

Pr
[
|λi − λi+1| ≤ |X|−BN

]

= O(|X|−CN ),

with probability at least 1 − O(exp(−α0|X|N )).

It turns out that a symmetric Markov random ma-
trix enjoys various properties analogous to a sym-
metric matrix. First, we can show that its eigenval-
ues are real. This can be proved by noting that for a
symmetric Markov random matrix An := D−1

n Wn

and for any of its eigenvalues λ with eigenvector v,

D−1
n Wnv = λv

⇐⇒D−1/2
n WnD

−1/2
n (D1/2

n v) = λD1/2
n v, (21)

which implies An has the same spectrum as
D

−1/2
n WnD

−1/2
n , which is symmetric and thus has

a real spectrum. Further, we can prove a variant of
Cauchy’s interlace theorem for symmetric Markov
random matrix.

Lemma 4. Suppose An = D−1
n Wn ∈ Rn×n is a

symmetric Markov random matrix with adjacency
matrix Wn and eigenvalues λ1 ≥ · · · ≥ λn and
Am = D−1

m Wm with adjacency matrix Wm−1 and
eigenvalues ν1 ≥ · · · ≥ νm,m < n is formed by
successively deleting i-rows and i-columns, then

λi ≤ νi ≤ λi+n−m.

Proof. Using the previous observation in Eq. 21,
we can apply the standard Cauchy’s interlacing
theorem on A′

n := D
−1/2
n WnD

−1/2
n and A′

m :=

D
−1/2
m WmD

−1/2
m , then we have

λi(An) = λi(A
′
n) ≤ λi(A

′
m) = λi(Am)

≤ λi+n−m(A′
n) = λi+n−m(An).

Next, we can show that the eigenvalues of a
symmetric Markov random matrix and its adja-
cency matrix are simultaneously distributed within
the bounded intervals [−10nγ−1, 10nγ−1] and
[−10nγ , 10nγ ] with high probability. For this and
subsequent proofs, we will assume γ′ = γ > 1/2.
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Lemma 5. Let An = D−1
n Wn be a symmetric

Markov random matrix with adjacency matrix Wn

and properties defined in Theorem 2, then we have
with probability at least 1−O(exp(−α0n)),

λi(An) ∈ [−10nγ−1, 10nγ−1],

λi(Wn) ∈ [−10nγ , 10nγ ],

for any 1 ≤ i ≤ n and some α0 > 0.

Proof. First, by definition, we can let Wn = Fn +
Xn, where Fn is a deterministic matrix with eigen-
values of order nγ and Xn is a symmetric matrix
whose elements are independent zero-mean unit-
variance subgaussian random variables. Using stan-
dard results from random matrix theory (Anderson
et al., 2009), we have

{λ1(Xn), · · · , λn(Xn)} ⊂ [−10nγ−1, 10nγ−1],

with probability at least 1−O(exp(−α0n)). There-
fore, Weyl’s matrix perturbation inequality then
ensures that

{λ1(Wn), · · · , λn(Wn)} ∈ [−10nγ , 10nγ ],

with probability at least 1−O(exp(−α1n)). Sup-
pose this event occurs and use Lemma 4 and the
variational characterization of eigenvalues, we have

λi(An) = min
Vi−1

max
v∈V ⊥

i−1
∥v∥2=1

v⊤D−1/2
n WnD

−1/2
n v

= min
Vi−1

max
v∈V ⊥

i−1

v⊤Dv=1

v⊤Wnv

= min
Vi−1

max
v∈V ⊥

i−1

v⊤Wnv

v⊤Dnv
,

where Vi−1 is a subspace of dimension i− 1. Com-
bining the two results, we have with probability at
least 1−O(exp(−α1n)),

max
v∈V ⊥

i−1

∣∣∣∣
v⊤Wnv

v⊤Dnv

∣∣∣∣ ≤
maxv:∥v∥=1 |v⊤Wnv|
minv:∥v∥=1 |v⊤Dnv|

=
λ1(W )

mini |dii|

Recall that dii =
∑n

j=1wij =
∑n

j=1(fij + xij),
where wij , fij , and xij are the (i, j)th elements
of Wn, Fn, and Xn respectively. Since An =
D−1

n Wn is a Markov matrix we assume that fij
and the distribution of xij are selected to guarantee
that wij ≥ 0, e.g., it must be true that fij ≥ 0.

We also know that xij is a zero-mean unit-variance
sub-Gaussian random variable, therefore

Pr {wij < δ} = Pr {xij < −fij + δ}

≤ 2 exp

(
−1

2
(fij − δ)2

)

Pr {dii < nδ} = Pr





n∑

j=1

wij < nδ





≤ 2 exp (−α2n)

where α2 = −1
2(f̄i − δ)2, and f̄i =

1
n

∑
j fij . Therefore, with probability at least

1−O(exp(−α0n)) where α0 = α1 + α2,

λi(An) ∈ [−10nγ−1, 10nγ−1], 1 ≤ i ≤ n (22)

Remark. Lemma 5 ensures that for any symmet-
ric Markov random matrix An = D−1

n Wn with
properties defined in Theorem 2, we can focus our
attention on any eigenvector v whose eigenvalue is
no greater than O(nγ−1) and whose ∥Wnv∥2 is of
order nγ with high probability. Therefore, we will
assume such conditions in later proofs.

Using Lemmas 4-5, we can reduce Theorem 2 to
the following statement on small ball probability of
the eigenvectors of Xn, analogous to the arguments
for symmetric random matrices in (Nguyen et al.,
2017).

Lemma 6. Let An = D−1
n Wn ∈ Rn×n be a sym-

metric Markov random matrix with adjacency ma-
trix Wn. Let λi(An) and w = [u⊤, b]⊤ ∈ Rn be
the i-th eigenvalue and eigenvector of the matrix
An, respectively, where u ∈ Rn−1 and b ∈ R.
Then we have

Pr[|λi(An)− λi+1(An)| ≤ δ] ≤
nPr[ρδnγ+1(v) ≥ c0n

γ+1δ] + c0n
γ+2δ

+O(exp(−α0n)),

for some c0, α0 > 0.

Proof. Let Wn−1 and Dn−1 be the (n − 1)-
dimensional minors of Wn and Dn, respectively,
then
[
Wn−1 wn

w⊤
n wnn

] [
u
b

]
= λ

[
Dn−1 0n
0⊤n dnn

] [
u
b

]
,
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where wn is the last column of Wn. Let v be the
i-th eigenvector of matrix An−1 := D−1

n−1Wn−1,
we have

v⊤Wn−1u+ v⊤Wb = λi(An)v
⊤Dn−1u

=⇒|(λi(Xn−1)− λi(Xn))| max
1≤i≤n

dii ≥

|(λi(An−1)− λi(An))v
⊤Dn−1u| = |v⊤wnb|.

Therefore,

Pr[|λi(An)− λi(An−1)| ≤ δ]

≤Pr

[ |v⊤wn|
max1≤i≤n dii

≤ δ

b

]
.

By Lemma 4, λi+1(An) ≤ λi(An−1) ≤ λi(An)
and we have

Pr[|λi(An)− λi+1(An)| ≤ δ] ≤
Pr[|λi(An−1)− λi(An)| ≤ δ] ≤

Pr

[ |v⊤wn|
max1≤i≤n dii

≤ δ

b

]
.

dii is typically O(n), but we have been unable to
prove that it is necessarily O(n). Consider that
wij = fij + xij , where Fn is a symmetric matrix
with eigenvalues λi(Fn) = O(nγ), therefore

n∑

j=1

fij = (Fn1n)i ≤ ∥Fn1n∥2 = ∥Fn∥1

≤ n1/2∥Fn∥2 = O
(
nγ+ 1

2

)
.

Wn = Fn +Xn, therefore

Pr
{
dii ̸= O

(
nγ+ 1

2

)}

≤ Pr





n∑

j=1

xij >

n∑

j=1

fij − nδ





≤ O(exp(−α2n))

Now, by the law of total probability,

Pr

[ |v⊤wn|
max1≤i≤n dii

≤ δ

b

]

≤Pr

[ |v⊤wn|
max1≤i≤n dii

≤ δ

b
, max
1≤i≤n

dii ≤ O(nγ+ 1
2 )

]

+ Pr

[
max
1≤i≤n

dii ̸= O
(
nγ+ 1

2

)]

≤Pr

[
|v⊤wn| = O

(
δnγ+ 1

2

b

)]
+O(exp(−α2n)).

By symmetry, we can choose any row and the
corresponding column to split the matrix and de-
rive inequality of the same form. Further, sup-
pose for some b1 > 0, with probability at least
1 − exp(−c1n), there are at least nT coordinates
of w that are at least b1 and suppose we choose the
split index J uniformly at random. Let the J-th
column of Wn be W and the J-th coefficient of the
eigenvector of Wn be wJ , then we have

Pr[|λi(An)− λi+1(An)| ≤ δ]

≤Pr

[
|v⊤W | ≠ O

(
δnγ+ 1

2

wJ

)
|Nb ≥ nb

]

+O(exp(−c1n)) +O(exp(−α2n))

≤ n

nT
Pr

[
|v⊤W | ≠ O

(
δnγ+ 1

2

b1

)
|Nb ≥ nb

]

+O(exp(−c1n)) +O(exp(−α2n)),

where the second inequality can be proved as fol-
lows. Define

E = {Nb ≥ nb} ,
F = {wJ ≥ b1} ,

G =

{
|v⊤W | ≠ O

(
δnγ+1/2

wJ

)}
,

H =

{
|v⊤W | ≠ O

(
δnγ+1/2

b1

)}
.

Then use the above definitions and the fact that F
and G are conditionally independent given Nb, we
have

Pr

[
|v⊤W | ≠ O

(
δnγ+ 1

2

b1

)
|Nb ≥ nb

]

=Pr(H|E) ≥ Pr(F ∩ G|E) ≥ nT

n
Pr(G|E)

=
nT

n
Pr

[
|v⊤W | ≠ O

(
δnγ+1/2

wJ

)
|Nb ≥ nb

]
.

Further, to remove the dependency on Nb, notice
that

Pr(H|E) ≤ Pr(H)

Pr(E) = Pr(H) +O(exp(−c1n)).

Next, by the pigeonhole principle, at least one
coordinate of the unit eigenvector w is at least
n−1/2, and thus we can let c1 = ∞, nb = 1 and
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b1 = n−1/2 and arrive at

Pr [|λi(An)− λi+1(An)| ≤ δ]

≤nPr
[
|v⊤W | ≠ O

(
δnγ+1

)]
+O(e−α0n)

≤nρδO(1)nγ+1(v) +O(exp(−α0n)), (23)

where α0 = c1 + α2. Finally, recall the definition
of small ball probability, we have

Pr
[
|v⊤W | ≤ δ

]
≤ Pr

[
|v⊤W | ≤ δ|ρδ(v) ≤ ϵ

]

+ Pr[ρδ(v) > ϵ]

≤ Pr[ρδ(v) > ϵ] + ϵ,

and thus applying this inequality with δ :=
c0δn

γ+1 on Eq. (23) yields the result.

Remark. We can sharpen the bound in Lemma 6
by extending the delocalization theorem for a
symmetric Wigner matrix (see Theorem 4.2 of
(Nguyen et al., 2017)) to a symmetric Markov ran-
dom matrix and using it to choose a larger nb in
the proof. This will be left as future work.

With the help of Lemma 6, we can reduce Theo-
rem 2 to the following theorem.

Theorem 5. Let An ∈ Rn×n be a symmetric
Markov random matrix matrix and v be an eigen-
vector with eigenvalue λ = O(nγ−1), then for any
fixed C > 0, there exists some B > max{4γC +
3γ, 4γ + 1} such that

ρn−B (v) ≤ n−C ,

with probability at least 1 − O(exp(−α0n)) for
some α0 depending on B.

Similar to the proof for the perturbed symmet-
ric matrices in (Nguyen et al., 2017), we reduce
Theorem 5 to the following.

Theorem 6. Let v be the eigenvector and B be
the constant defined in Theorem 5. Then for any
n−B ≤ δ ≤ n−B/2, we have with probability
O(exp(−α0n)),

n−C ≤ ρnγδ(v) ≤ n0.49ρδ(v). (24)

To show that Theorem 6 implies Theorem 5, we
prove the contrapositive of the statement, that is,
if ρn−B (v) > n−C , then there exists n−B ≤ δ ≤
n−B/2 such that Eq. 24 holds with probability at
least 1−O(exp(−α0n)). To construct such δ, let

δ0 := n−B

δj+1 := nγδj ,

for j = 0, · · · , J − 1 with J = ⌊B/2γ⌋. By
construction, we have

n−B = δ0 ≤ δj ≤ δJ ≤ n−B/2

ρδj (v) ≥ ρδ0(v) ≥ n−C .

Suppose Eq. 24 does not hold for any δ := δj , or
otherwise the result follows, we have

ρδJ (v) ≥ n0.49Jρn−B (v) ≥ n0.49⌊B/2γ⌋−C > 1,

if B ≥ 4γC + 3γ, which contradicts the fact that
ρδJ (v) ≤ 1. As a result, there has to exist some j
such that Eq. 24 holds.

Again similar to the perturbed symmetric matrix
case in (Nguyen et al., 2017), we divide the proof
of Theorem 6 into the compressible case and the
non-compressible case. For the compressible case,
we first prove the following lemma.
Lemma 7. Suppose v is an eigenvector of a sym-
metric Markov random matrix An := D−1

n Wn with
adjacency matrix Wn and the same properties de-
fined in Theorem 2, and suppose there exists δ ∈
[n−B, n−B/2] such that ρδ,α(v) ≥ (αn)−1/2+ϵ, we
have with probability O(exp(−α0n)),

n−C ≤ ρnγδ(v) ≤ n0.49ρδ(v).

Proof. Using concentration inequalities, we have
with probability at least 1 − O(exp(−α2n)) for
some α2 > 0,

dii = O
(
nγ+ 1

2

)
, 1 ≤ i ≤ n (25)

Further, since ρδ,α(v) ≥ (αn)−1/2+ϵ, by Lemma 2,
we have v is (O(α), δ) compressible, and thus
there exists I of of size O(αn) such that vi > δ
only if i ∈ I . Without loss of generality, let I =
{n − k, · · · , n} for k = O(αn) and E[Aij ] = 1.
Further, split v = [v′⊤, v′′⊤]⊤, then by definition
of eigenvalues and eigenvectors,
[
Wn−k F
F⊤ Wk

] [
v′

v′′

]
= λ

[
Dn−k 0
0⊤ Dk

] [
v′

v′′

]
.

Reading off the first line of the matrix equation, we
have

∥Fv′′∥2 = ∥(Wn−k − λDn−k)v
′∥2

≤ ∥Wn−kv
′∥2 + ∥λDn−kv

′∥2.
Notice that assuming Eq. 25 and Eq. 22 occur, we
have that all elements v′i of v′ have |v′i| < δ, there-
fore ∥v′∥2 ≤ δn−1/2, therefore

∥Wn−kv
′∥2 ≤ δn1/2 max

v:∥v∥2=1
∥Wv∥2

= O(n−B/2+1/2+γ)
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Furthermore, if we assume that Eq. (22) and
Eq. (25) occur, then

∥λDn−kv
′∥2 = O(nγ−1 · nγ+1/2 · δn1/2)

= O(n−B/2+2γ).

Thus, using the fact that B ≥ 4γ + 1,

∥Fv′′∥2 = O(n−B/2+2γ) = O(n−1/2).

On the other hand, using a standard epsilon-
net argument, with probability at least 1 −
O(exp(−α3n)),

inf
w∈Rk:∥w∥=1

∥Fw∥2 ≥ n−1/2.

Now, define the events

E := {v is an eigenvector of A}
Eα,δ := {v is (O(α), δ)-compressible}
EI := {∥WIc,IvI∥2 ≫ O(n−1/2)},

then by the previous discussion, we have

Pr(EI |E ∩ Eα,δ) = O(exp(−α2n))

Pr(Ec
I |E) = O(exp(−α3n)).

Note that to prove the lemma, it suffices to
show that the eigenvector v is not (O(α), δ)-
compressible with high probability, or Pr(Eα,δ|E)
is small, since that will lead to ρδ,α(v) <
(αn)−1/2+ϵ with high probability and thus a con-
tradiction with high probability. Indeed, we have

Pr(Eα,δ|E) ≤ Pr(Eα,δ ∩ EI |E) + Pr(Eα,δ ∩ Ec
I |E)

≤ Pr(EI |E ∩ Eα,δ) + Pr(Ec
I |E)

= O(exp(−α0n))

for some α0 > 0.

For the incompressible case, we apply the con-
tinuous inverse Offord-Littlewood theorem to dis-
cretize the set of eigenvectors, and prove the fol-
lowing result analogous to the symmetric case in
(Nguyen and Vu, 2011).

Lemma 8. Suppose v is an eigenvector of a sym-
metric Markov random matrix An := D−1

n Wn

with adjacency matrix Wn and the same prop-
erties defined in Theorem 2, and suppose there
exists δ ∈ [n−B, n−B/2] such that q :=
ρδ,α(v) < (αn)−1/2+ϵ, we have with probability
O(exp(−α0n)),

n−C ≤ ρnγδ(v) ≤ n0.49ρδ(v).

To prove this result, we need the following useful
lemmas.

Lemma 9. For any eigenvector-eigenvalue pair
(v, λ) and α > 0 with |λ| = O(nγ−1), sup-
pose n−C < ρδ,α(v) =: q ≤ (αn)−1/2+ϵ,
then with probability at least 1 − O(exp(−α0n))
there exists a subset N of Rn × R of size
O(n−n/2+O(αn)q−n+O(αn)) such that, there exists
(ṽ, λ̃) ∈ N with the properties:

1. |vj − ṽj | ≤ δ for 1 ≤ j ≤ n;

2. |λ− λ̃| ≤ nγδ.

Proof. Split {1, · · · , n} into sets of length differ-
ing by at most 1, I1, · · · , Im, m =

⌊
1
α

⌋
+ 1, then

we have the length of each set is greater than or
equal to ⌊αn⌋, and its small ball probability is

ρδ(vIi) ≥ ρδ,α(v) = q, 1 ≤ i ≤ m.

Therefore, since q ≤ (αn)−
1
2
+ϵ and n−C < q,

there exists a GAP

Qi =





ri∑

j=1

aijwij :
aj ∈ Z,
|aij | ≤ Nij ,
1 ≤ j ≤ ri





such that

sup
j∈Ii\S

inf
ṽj∈Qi

|vj − ṽj | ≤ δ,

with volume

vol(Qi) ≤ O((αn)−1/2+ϵ/q), 1 ≤ i ≤ m,

for all except at most O(α2n) indices from some
exceptional set S. Further, for each Qi, we can
quantize its generators wi1, · · · , wiri to the closest
multiple of qδ, w̃i1, · · · , w̃iri . This introduces an
additional approximation error of at most

∣∣∣∣∣∣

ri∑

j=1

aijwij −
ri∑

j=1

aijw̃ij

∣∣∣∣∣∣
≤vol(Qi) · qδ ≤ (αn)−1/2+ϵ/q · qδ
=(αn)−1/2+ϵδ = O(δ).

Next, for the coefficients from the exceptional set
S, we also round them to the closest multiple of qδ
and let the set of such values be R, which ensures
that

sup
j∈S

inf
v′∈R

|vj − v′| = O(δ).

1207



Therefore, for fixed generators wij’s and a given S,
we can construct a finite set of vectors

{ṽ : ṽj ∈ ∪m
i=1Qi, ∀j ̸∈ S and v′j ∈ R, ∀j ∈ S}

of size at most

(
m sup

i
vol(Qi)

)n−|S|
|R||S|

≤O

(
1

α

(αn)−1/2+ϵ

q

)n

·O((1/qδ)O(αn))

≤O
(
n−n

2
+ϵnq−n+O(αn)

)
O
(
nBαn

)

=O(n−n/2+O(αn)q−n+O(αn)),

=O(n−n/2+O(αn)q−n),

that approximates v within O(δ) for every coeffi-
cients. The third line uses δ > n−B and α = O(1);
the fourth line assumes ϵ = O(α). Further, if we
allow the generators to be variable and assume S
to be unknown, the quantization mentioned previ-
ously and the crude bound of the number of possi-
ble S by 2n enlarges the set of vectors by a factor
of

O
(
(1/qδ)

∑m
i=1 ri

)
·O(2n) = O(nO(m)) ·O(2n)

= O(nO(1/α)) ·O(2n) = O(nO(αn)).

For the eigenvalue, we also have there exists a set
that covers its domain to be within δnγ with a set
of size

O

(
nγ−1

nγδ

)
= O(nB−1) ≤ O(nO(αn)).

with probability at least 1−O(exp(−α0n)). Com-
posing the sets, we find the set N has size
O(n−n/2+O(αn)q−n+O(αn)).

Lemma 10. For any eigenvector-eigenvalue pair
(v, λ) of an symmetric Markov random matrix
An = D−1

n Wn with adjacency matrix Wn and
the same properties defined in Theorem 2 and let
(ṽ, λ̃) ∈ N be the tuple that well approximates it
as defined in Lemma 9, we have

∥AIc,I ṽI − u∥2 = O(δnγ),

where AI,J is the matrix formed by row indices
from I and column indices from J and u := (λ̃−
AIc,Ic)ṽIc .

Proof. By symmetry, we can let I = {1, · · · , k}
for k = ⌊αn⌋. Notice by definition we can split A
as

[
Ak G
F⊤ An−k

] [
w
v′

]
= λ

[
w
v′

]
,

where v = [w⊤, v′⊤]⊤, and as a result,

∥F⊤ṽI − (λ̃−An−k)ṽIc∥2
≤∥F⊤w − (λ−An−k)v

′∥2+
∥F⊤(ṽI − w)∥2 + ∥(λ̃− λ)ṽIc∥2+
∥(λ−An−k)(ṽIc − v′)∥2

=∥F⊤(ṽI − w)∥2 + |(λ̃− λ)ṽIc∥2
+ ∥(λ−An−k)(ṽIc − v′)∥2

=O(nγ−1 · δn1/2) +O(nγδ)

+O(nγ−1 · δn1/2) = O(nγδ).

Now we are ready to prove Lemma 8.

Proof. Let E be the event that there exists some
δ ∈ [n−B, n−B/2] such that

n−C ≤ ρnγδ(v) ≤ n0.49ρδ(v) =: n0.49q

with q := ρδ(v) and G be the event that

∥AIc,I ṽI − u∥2 = O(δnγ),

where u := (λ̃ − AIc,Ic)ṽIc and (ṽ, λ) well ap-
proximates (v, λ) as defined in Lemma 10. Let
k := |I| = O(αn), from Lemma 9, we have

Pr(Gc) = O(exp(−α0n)).

On the other hand, if E occurs, define AIc,I =
[ak+1, . . . , an]

⊤, u = [uk+1, . . . , un]
⊤, then we

have

Pr(G|E) ≤
∑

(w′,ṽ,λ̃)∈N

Pr

[
n∑

i=k+1

|a⊤i w′ − ui|2 = O(δ2n2γ+1)

]

≤ |N |(ρnγδ(v))
n−k ≤ |N |(n0.49q)n−k

= O(n−0.01n+O(αn)),

which is O(exp(−α0n)) if α is chosen small
enough. As a result, we have

Pr(E) ≤ Pr(G|E) + Pr(Gc) = O(exp(−α0n)).
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A.3 Finite-sample learnability of ASR-U:
Unmatched setup

Proof. (Theorem 3) Under the assumptions that the
discriminator is perfect and decomposable and the
GAN objective is MMD with a linear kernel over
the embeddings D(Y ) = P̂ Y , Eq. (8) becomes the
following least squares regression problem

min
O′∈R|X|×|Y|

∥P̂XO′ − P̂ Y ∥2F . (26)

Let Ô be the ERM of Eq. (26) and O be the true
assignment matrix, by definition and triangle in-
equality,

∥P̂XÔ − P̂ Y ∥F
≤ ∥P̂XO − P̂ Y ∥F
≤ ∥P̂XO − P Y ∥F + ∥P̂ Y − P Y ∥F .

Apply the triangle inequality again, we have

∥P̂X(Ô −O)∥F
≤ ∥P̂XÔ − P̂ Y ∥F + ∥P̂XO − P̂ Y ∥F
≤ 2∥P̂XO − P Y ∥F + 2∥P̂ Y − P Y ∥F

Note that if we replace any X(i) → X(i)′ and let
the resulting empirical distribution be P̂X′

,
∣∣∣∥P̂XO − P Y ∥F − ∥P̂X′

O − P Y ∥F
∣∣∣

≤∥(P̂X − P̂X′
)O∥F ≤

√
2L

nX
,

and similarly for P̂X and P̂ Y ,

∣∣∣∥P̂X − PX∥F − ∥P̂X′ − PX∥F
∣∣∣ ≤

√
2L

nX

∣∣∣∥P̂ Y − P Y ∥F − ∥P̂ Y ′ − P Y ∥F
∣∣∣ ≤

√
2L

nY
.

Therefore, we can apply McDiarmid’s inequality
to obtain

Pr

[
∥P̂X − PX∥F ≥

√
L|X|√
nX

+ ϵ

]
≤ e−

nXϵ2

L

Pr

[
∥P̂XO − P Y ∥F ≥

√
L|Y|√
nX

+ ϵ

]
≤ e−

nXϵ2

L

Pr

[
∥P̂ Y − P Y ∥F ≥

√
L|Y|√
nY

+ ϵ

]
≤ e−

nY ϵ2

L .

Moreover, let ϵXX :=

√
L|X|√
nX

+ ϵ, ϵY X :=

√
L|Y|√
nX

+

ϵ, ϵY Y =

√
L|Y|√
nY

+ ϵ, then by a union bound, we

have

Pr
[
∥P̂X(Ô −O)∥F ≥ ϵY X + ϵY Y

]
≤

Pr
[
∥P̂XÔ − P Y ∥F + ∥P̂ Y − P Y ∥F ≥

ϵY X + ϵY Y

2

]

≤ Pr

[
∥P̂ Y XÔ − P Y Y ∥F ≥ ϵY X

2

]
+

Pr

[
∥P̂ Y − P Y ∥F ≥ ϵY Y

2

]
≤ e−

nXϵ2

4L +e−
nY ϵ2

4L .

Therefore, we have with probability at least 1 −
e−

nXϵ2

4L − e−
nY ϵ2

4L ,

ϵY X + ϵY Y ≥ ∥P̂X(Ô −O)∥F
≥ ∥PX(Ô −O)∥F − ∥P̂X − PX∥F ∥Ô −O∥F
≥ (σmin(P

X)− ∥P̂X − PX∥F )∥Ô −O∥F ,

and combined with the bound on ∥P̂X − PX∥F ,

we obtain with probability at least (1− e−
nXϵ2

4L −
e−

nY ϵ2

4L )(1− e−
nXϵ2

4L ),

∥Ô −O∥F ≤ ϵY X + ϵY Y

σmin(PX)− ϵXX
.

Assume the correct mapping is deterministic, so
that Oxy ∈ {0, 1} and each row has only one
nonzero element, then to achieve perfect ASR-U,
we need for any x ∈ X and y ̸= G(x),

|ÔxG(x) − Ôxy| > 0

⇐= 1− |ÔxG(x) −OxG(x)| − |Ôxy −Oxy| > 0

⇐= 1− 2∥Ô −O∥∞ > 0 ⇐⇒ ∥Ô −O∥F <
1

2
,

which occurs if

σmin(P
X) > ϵXX + 2ϵY X + 2ϵY Y .

A.4 Training dynamic of ASR-U
To prove Theorem 4, we need the following lemma
on the properties of the gradient of the softmax
function based on (Gao and Pavel, 2017).

Lemma 11. Let H(x) be the Jacobian matrix of
the softmax function σ : Rd 7→ Rd with σi(x) =

exi∑d
j=1 e

xj
, then we have H(x) = diag(σ(x)) −

σ(x)σ(x)⊤ and H(x) is positive semi-definite
(PSD) with the null space span{1d}.
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Proof. Apply product rule of calculus, we have

Hij(x) =
∂σi(x)

∂xj

= δijσi(x)−
exiexj

(
∑d

j=1 e
xj )2

= δijσi(x)− σi(x)σj(x),

and therefore H(x) = diag(σ(x)) − σ(x)σ(x)⊤.
To show that H(x) is PSD, notice that

v⊤H(x)v = v⊤diag(σ(x))v − (v⊤σ(x))2

= EI∼σ(x)[v
2
I ]− E2

I∼σ(x)[vI ]

= Var(vI) ≥ 0,

where by Jensen’s inequality, achieves “=” if and
only if vi = σ⊤v = C, ∀i for some constant C.

Next, we shall establish explicit formula for
NTKs of the discriminator and the generator. For
clarity, we will copy the formula for the discrimi-
nator and the generator used in our analysis:

fτ,l(y) = lim
m→∞

1√
m

m∑

r=1

vτ,lr max{W τ,l
ry , 0},

(27)

P gt
l (y) = EX∼PX

l
[Ot(y|X)]

:= EX∼PX
l

[
exp(U t⊤

y x)∑
y′∈Y exp(U t⊤

y′ x)

]
. (28)

Lemma 12. For the NTKs of the discriminators
defined by Eq. (27), we have KD,l ≡ KD,1, 1 ≤
l ≤ L and 1|Y| is an eigenvector of KD,1.

Proof. For simplicity, we ignore the dependency
on τ for the terms in the proof. First, by definition,
we have

∂fl(y)

∂W l
r

= lim
m→∞

1√
m

m∑

r=1

vlrey1[W
l
ry ≥ 0],

∂fl(y)

∂vlr
= lim

m→∞
=

1√
m

max{W l
ry, 0}

and therefore

Evl,W l∼N (0,I)

[
∂fl(y)

∂W l
r

⊤∂fl(y)

∂W l
r

]
=

lim
m→∞

1

m
Evl,W l∼N (0,I)

m∑

r=1

δyy′v
2
r1[W

l
ry ≥ 0]

= δyy′
1

m

m∑

r=1

EW l
ry∼N (0,1)[1[W

l
ry ≥ 0]]

=
1

2
δyy′ .

On the other hand,

Evl,W l∼N (0,I)

[
∂fl(y)

∂vl

⊤∂fl(y
′)

∂vl

]

=
1

m
Evl,W l

[
m∑

r=1

max{W l
ry, 0}max{W l

ry′ , 0}
]

=

{
Ev11 ,W

1
1

[
max{W 1

11, 0}2
]

if y = y′,

Ev11 ,W
1
1

[
max{W 1

11, 0}
]2 otherwise.

Therefore,

KD,l(y, y
′) =




(
1
2 + Ev11 ,W

1
1

[
max{W 1

11, 0}2
])

if y=y’,

Ev11 ,W
1
1

[
max{W 1

11, 0}
]2 otherwise.

Notice that the sum of every row in KD,l is

(
1

2
+ Ev11 ,W

1
1

[
max{W 1

11, 0}2
])

+

(|Y| − 1)Ev11 ,W
1
1

[
max{W 1

11, 0}
]2

,

and thus 1|Y| is an eigenvector of KD,l.

Lemma 13. For the generator defined by Eq. (28),
we have

KOt,x =

EU1:|Y|∼N (0,I)

[
(diag(Ox)−OxO

⊤
x )

2
]
. (29)

Further, the null space of KOt,x is span{1|Y|}.

Proof. For simplicity, we ignore the dependency
on t for the terms in the proof. By chain rule,

∂Ox(y)

∂Ux′y′
=

∂hy′(x)

∂Uxy′

∂Ox(y)

∂hy′(x)

= δxx′(O(y|x)δyy′ −O(y|x)O(y′|x))
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As a result,

∑

d,y′

∂Ox(y)

∂Udy′

⊤∂Ox(y
′′)

∂Udy′

=
∑

y′
(Ox(y)δyy′ −Ox(y)Ox(y

′))

(Ox(y
′′)δy′′y′ −Ox(y

′′)Ox(y
′))·

= ((diag(Ox)−OxO
⊤
x )

2)yy′′

Take the expectation over U and put everything in
matrix form, we obtain

KOx = EU∼N (0,I)

[
(diag(Ox)−OxO

⊤
x )

2
]
.

Next we shall study the null space of KOx . From
Lemma 11, we have Hx := diag(Ox)−OxO

⊤
x is

PSD with null space span{1|Y|}, and thus

v⊤KOxv = EU∼N (0,I)

[
∥Hxv∥2

]
≥ 0,

with equality achieved if and only if

Hxv = 0, ∀x ∈ X ⇔ v ∈ span(1|Y|).

We are now ready to prove Theorem 4.

Proof. (Theorem 4) When the objective is MMD,
the discriminator can be decomposed as

afτ (y) = fτ (y) =

L∑

l=1

fτ,l(yl),

we have

Lt(f) =
L∑

l=1

EYl∼PY
l
[fl(Yl)]− EY ′

l ∼PX
l Ot

[fl(Y
′
l )],

(30)

and the discriminator dynamic PDE Eq. (18) be-
comes:

∂τfτ,l = KD,l(P
Y
l − PX

l Ot)
⊤.

Without much loss of generality, suppose we initial-
ize f0,l(y) ≡ 0 and stop training the discriminator
after τmax steps. The solution for the discriminator
PDE is then simply

fgt,l = τmaxKD,l(P
Y
l − PXOt)

⊤. (31)

Plug this expression into the generator loss and
apply Lemma 12, we obtain

Ct(gt) := τmax

L∑

l=1

∥P Y
l − PX

l Ot∥2KD,l

= τmax∥P Y − PXOt∥2KD,1
,

where ∥A∥K =
√
Tr(AKA⊤) is the kernelized

norm of A by kernel K.
Further, plug Eq. (31) into the generator PDE

Eq. (19), we obtain

∂tO
⊤
t,x = KOt,x

L∑

l=1

PX
l (x)KD,l(P

Y
l − PX

l Ot)
⊤

= KOt,xKD,1(P
Y − PXO)⊤P̃X

x ,

where P̃X
x is the x-th column of PX . Next, notice

that

∂Ct
∂Ot,xy

=2τmaxKD,1(y, ·)(PXO − P Y )⊤P̃X
x

=⇒ ∂Ct
∂Ot

= PX⊤(PXO − P Y )KD,1.

Then apply the chain rule,

∂tCt = Tr

(
∂Ct
∂Ot

⊤∂Ot

∂t

)

=
∑

x∈X
Tr

(
∂Ct
∂Ot,x

∂Ot,x

∂t

⊤
)

=

−τmax

∑

x∈X
∥P̃X⊤

x (P Y −PXOt)∥2KD,lKG,lKD,l
.

Now, apply Lemma 12, we have

∂τf
⊤
τ,l1|Y|

=(P Y
l − PX

l Ot)KD,l1|Y|

=λ(P Y
l − PX

l Ot)1|Y| = 1− 1 = 0

=⇒1|Y| ⊥ KD,l(P
Y
l − PX

l Ot)
⊤,

where λ is the eigenvalue of KD,l associated with
1|Y|, and thus

KD,l(P
Y − PXOt)

⊤P̃X
x ⊥ 1|Y|.

As a result, using Lemma 13, we conclude that the
kernelized residual vector ∂τfτ,l is always perpen-
dicular to the null space of the stepwise generator
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NTK KOt,x for all 1 ≤ l ≤ L, x ∈ X, and thus

∥KD,l(P
Y − PXOt)

⊤P̃X
x ∥KG,l

≥λG∥KD,l(P
Y − PXOt)

⊤P̃X
x ∥2

≥λGλD∥P Y − PXOt∥KD,1
,

where

λG ≥ min
1≤l≤L

λ|Y|−2(KG,l) > 0,

λD ≥ λmin(KD,1) > 0.

Summing over x, we obtain

∂tCt ≤ −τmaxλGλD∥PX⊤(P Y − PXOt)∥2KD,1
.

Under the assumption that PXO = P Y has at least
one solution, we have P Y − PXO is in the range
space of PX , which implies

∥PX⊤(P Y − PXOt)∥2KD,1
≥

λX∥P Y − PXOt∥2KD,1
,

for some λX > 0. Put together the results, we can
bound the convergence rate of the generator loss
by

∂tCt ≤ −τmaxλGλDλXCt
=⇒Ct ≤ C0e−τmaxλGλDλX t t→∞−−−→ 0,

which implies that limt→∞ PXOt = P Y .

B Reproducibility checklist

Synthetic language creation To create a syn-
thetic HMM language, we need to specify the ini-
tial probability vector π, the transition probability
matrix T , the generator matrix O and the maximal
length of the utterances L.

Initial probability: we create π by first uniformly
randomly sampling each coefficient between [0, 1]
and then normalizing the resulting vector by its
sum.

Transition probability: for the asymptotic set-
ting, for all three languages, we control the num-
ber of eigenvalues m of its transition matrix using
a disjoint union of identical sub-graphs with m
eigenvalues, with the remainder of the nodes being
self-loops. The parameters and the procedure used
to determine them are as follows:

• Circulant graph: only undirected cycles or
equivalently, circulant graph with the action
set {−1, 1}, are used. Since the distinct
eigenvalues of an undirected n-cycle Cn are
− cos

(
2πk
n

)
, k = 0, · · · , ⌊n−1

2 ⌋+ 1, we can
create a Markov graph with |X|N nodes and
n ± 1 eigenvalues by a disjoint union of
⌊ |X|N
2n−1⌋ C2n−1 graphs. In our phase transi-

tion experiment, we fix N = 2 and vary
10 ≤ |X| ≤ 14 and 2 ≤ n ≤ 20;

• De Bruijn graph: an undirected de Bruijn
graph DB(k,m) is a graph with km nodes
such that node i connects to any node j
whose k-ary numerals v(i) and v(j) satis-
fies v2:m(i) = v1:m−1(j). Clearly, m is the
in/out-degree of the graph. The eigenvalues
of DB(k,m) are known to be cos

(
iπ
j

)
, 0 ≤

i < j ≤ m + 1 (Delorme and Tillich,
1998). Therefore, we can create a Markov
graph with |X|N nodes and at most n, n ≤
(⌊logk |X|N⌋+ 1)2/2 distinct eigenvalues by
a disjoint union of |X|N

k
√

2m−1
DB(k,

√
2n − 1)

graphs. For the phase transition experiment,
we set the in/out-degree of the de Bruijn sub-
graphs to be 2 and the N -gram size N = 3,
and we vary 8 ≤ |X| ≤ 11 and 2 ≤ n ≤ 32
with a step size of 2 for the latter.

• Hypercube: an n-cube Qn is a graph with
2n nodes such that node i connects to any
node j with Hamming distance between their
binary numerals dH(b(i), b(j)) = 1. The
eigenvalues of the adjacency matrix of Qn

is 1 − 2k
n , k = 0, · · · , n. Therefore, we can

create a Markov graph with |X|N nodes and
n ≤ ⌊N log2 |X|⌋ eigenvalues by a disjoint
union of ⌊ |X|N2n ⌋ n-cubes. For the phase tran-
sition experiment, we fix N = 4, and vary
5 ≤ |X| ≤ 8 and 2 ≤ n ≤ 9.

In the finite-sample setting, we create transition
matrices for phase transition experiments using two
different setups:

• For the circulant graph, we vary its action set
to be {1, · · · , d}, where d takes values from
2 to 81 with a step size of 8;

• For the other two graphs, we linearly interpo-
late between the underlying graph TG and its
Hamiltonian cycle TC as

T = (1− w)TG + wTC , (32)
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with a weight w ∈ [0, 1]. In particular, for
the de Bruijn graph, the weight for the cycle
w takes 10 different values equally spaced
between [0, 1]; for the n-cube, the weight w
takes 10 different values equally spaced be-
tween [0.98, 1].

Generator matrix O: set by assuming |X| = |Y|
and randomly permuting the rows of the |X| × |X|
identity matrix.

Sampling: in the asymptotic case, no sampling is
needed and we simply set maximal length L = 20
for cycle graph and 10 for the other two graphs.
For the finite-sample case, the synthetic speech and
text datasets are created independently by sampling
from the same HMM twice. For all three graphs,
we sample nX = nY = 2560 utterances for both
text and speech with L = 40 for the de Bruijn
graph and L = 80 for the other two graphs.

Model architecture We use a one-layer linear
generator with |X| input nodes and |Y| output
nodes, with no bias. Next, for all experiments
except the experiment on different generator av-
eraging strategies, we use a one-layer CNN with
|Y| input channels, 1 output channel and a 1 × L
kernel with no bias. For the experiment on different
averaging strategies, we use instead a sequence of
2-layer MLPs with 128 hidden nodes and ReLU
activation function, one at each time step, as the
discriminators. For all experiments, we disable
the logits for special tokens and silences during
training and testing.

Training setting SGD with a learning rate of 1.0
is used to train the discriminator, while Adam with
a learning rate of 0.005 is used to train the gener-
ator. The dataset is used as a single batch for all
experiments, though we do not observe any signifi-
cant drop in performance using smaller batch sizes.
No weight decays or dropouts is used. Further, we
alternatively train the generator and discriminator
1 epoch each, and reset the discriminator weight
to 0 for the linear case and to random Gaussian
weights using Xavier initialization in the nonlinear
case. All experiments are conducted on a single
12GB NVIDIA GeForce GTX 1080Ti GPU.
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