Generalizing Backpropagation for Gradient-Based Interpretability
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Abstract

Many popular feature-attribution methods for
interpreting deep neural networks rely on com-
puting the gradients of a model’s output with
respect to its inputs. While these methods can
indicate which input features may be impor-
tant for the model’s prediction, they reveal lit-
tle about the inner workings of the model it-
self. In this paper, we observe that the gradient
computation of a model is a special case of
a more general formulation using semirings.
This observation allows us to generalize the
backpropagation algorithm to efficiently com-
pute other interpretable statistics about the gra-
dient graph of a neural network, such as the
highest-weighted path and entropy. We imple-
ment this generalized algorithm, evaluate it on
synthetic datasets to better understand the statis-
tics it computes, and apply it to study BERT’s
behavior on the subject—verb number agree-
ment task (SVA). With this method, we (a) val-
idate that the amount of gradient flow through
a component of a model reflects its importance
to a prediction and (b) for SVA, identify which
pathways of the self-attention mechanism are
most important.

1 Introduction'

One of the key contributors to the success of deep
learning in NLP has been backpropagation (Lin-
nainmaa, 1976), a dynamic programming algo-
rithm that efficiently computes the gradients of a
scalar function with respect to its inputs (Goodfel-
low et al., 2016). Backpropagation works by con-
structing a directed acyclic computation graph? that
describes a function as a composition of various
primitive operations, e.g., +, X, and exp(-), whose
gradients are known, and subsequently traversing
this graph in topological order to incrementally
compute the gradients. Since the runtime of back-
propagation is linear in the number of edges of

'Code and data available at https://github.com/
kdu4108/semiring-backprop-exps.

2With due care, a computation graph can be extended to
the cyclic case.
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the computation graph, it is possible to quickly per-
form vast numbers of gradient descent steps in even
the most gargantuan of neural networks.

While gradients are arguably most important
for training, they can also be used to analyze and
interpret neural network behavior. For example,
feature attribution methods such as saliency
maps (Simonyan et al., 2013) and integrated gradi-
ents (Sundararajan et al., 2017) exploit gradients to
identify which features of an input contribute most
towards the model’s prediction. However, most
of these methods provide little insight into how
the gradient propagates through the computation
graph, and those that do are computationally
inefficient, e.g., Lu et al. (2021) give an algorithm
for computing the highest-weighted gradient path
that runs in exponential time.

In this paper, we explore whether examining var-
ious quantities computed from the gradient graph
of a network, i.e., the weighted graph whose edge
weights correspond to the local gradient between
two nodes, can lead to more insightful and granu-
lar analyses of network behavior than the gradient
itself. To do so, we note that backpropagation is an
instance of a shortest-path problem (Mohri, 2002)
over the (4, x) semiring. This insight allows us
to generalize backpropagation to other semirings,
allowing us to compute statistics about the gradient
graph beyond just the gradient, all while retaining
backpropagation’s linear time complexity.

In our experiments, the first semiring we con-
sider is the max-product semiring, which allows us
to identify paths in the computation graph which
carry most of the gradient, akin to Lu et al.’s (2021)
influence paths. The second is the entropy semiring
(Eisner, 2002),* which summarizes how dispersed
the gradient graph is, i.e., whether the gradient

3This is analogous to how, in the context of probabilistic
context-free grammars, the inside algorithm can be modified
to obtain the CKY algorithm (Collins, 2013), and, in the con-
text of graphical models, how the sum-product algorithm for
partition functions can be generalized to the max-product al-
gorithm for MAP inference (Wainwright and Jordan, 2008).

*Eisner (2002) refers to this as the expectation semiring.
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flows in a relatively focalized manner through a
small proportion of possible paths or in a widely
distributed manner across most paths in the net-
work. With experiments on synthetic data, we vali-
date that the max-product semiring results in higher
values for model components we expect to be more
critical to the model’s predictions, based on the
design of the Transformer (Vaswani et al., 2017)
architecture. We further apply our framework to an-
alyze the behavior of BERT (Devlin et al., 2019) in
a subject—verb agreement task (SVA; Linzen et al.,
2016). In these experiments, we find that the keys
matrix for subject tokens carries most of the gra-
dient through the last layer of the self-attention
mechanism. Our results suggest that semiring-
lifted gradient graphs can be a versatile tool in
the interpretability researcher’s toolbox.

2 Gradient-based interpretability

Neural networks are often viewed as black
boxes because their inner workings are too
complicated for a user to understand why the
model produced a particular prediction for a given
input. This shortcoming has spawned an active
field of research in developing methods to better
understand and explain how neural networks work.
For example, feature attribution methods aim to
measure the sensitivity of a model’s predictions
to the values of individual input features. Many
of these methods quantify feature attribution as
the gradient of the model’s output with respect
to an input feature (Simonyan et al., 2013;
Smilkov et al., 2017; Sundararajan et al., 2017).
We note that while the general reliability and
faithfulness of gradient-based methods has been
a contentious area of research (Adebayo et al.,
2018; Yona and Greenfeld, 2021; Amorim et al.,
2023), gradient-based methods have nonetheless
continued to be widely used (Han et al., 2020;
Supekar et al., 2022; Novakovsky et al., 2022).
Other works have applied feature attribution
methods to not only highlight sensitive input fea-
tures but also uncover important internal neurons.
Leino et al. (2018) define influence as the gradient
of a quantity of interest with respect to a neuron, av-
eraged across a collection of inputs of interest. Lu
et al. (2020) further define and analyze the notion
of influence paths, i.e., paths in the computation
graph between the neuron of interest and the out-
put that on average carry most of the gradient. By
applying this method to analyze the behavior of Gu-

lordava et al.’s (2018) LSTM language model on
the SVA task, they draw conclusions about which
internal components of the LSTM are most sensi-
tive to the concept of number agreement based on
the paths with the greatest amount of influence.
However, Lu et al.’s (2020) method exhaustively
enumerates all paths in the computation graph and
ranks them by the amount of influence along each
one. As the number of paths in a computation
graph is usually exponential in the depth of a neu-
ral network, this quickly becomes intractable for
larger networks (Lu et al., 2021). Therefore, this
method is limited to computing influence paths for
networks with very small numbers of paths. Indeed,
while Lu et al. (2020) computed the influence along
40000 paths for a 2-layer LSTM, follow-up work
that attempted to apply this method to BERT had
to use an approximation which might not find the
correct paths (Lu et al., 2021). The method we
propose does not exhibit this issue and scales to
any network one can train using backpropagation.

3 Generalizing backpropagation

In this section, we build toward our generaliza-
tion of backpropagation as a semiring-weighted
dynamic program. At a high level, we observe that
if we replace the addition and multiplication opera-
tions in the typical backpropagation algorithm with
similar operations that satisfy the necessary prop-
erties, then the resulting algorithm will compute
other useful statistics about the network’s gradi-
ent graph in the same runtime as backpropagation.
In the remainder of this section, we make this no-
tion of swapping operations precise by formulating
backpropagation as a semiring algorithm, and later
in §4 we describe how different semirings yield
different, useful, views of the gradient graph.

3.1 Computation graphs

Many classes of functions, e.g., machine learning
models, can be expressed as compositions of differ-
entiable functions. Such functions can described by
a computation graph (Goodfellow et al., 2016). A
computation graph is an ordered’ directed acyclic
graph (DAG) where every node is associated with
the application of a primitive operation, e.g., +, X,
and exp(+), to the parents of that node. These prim-
itives all share the property that their gradients have

>We require that nodes be ordered since primitives might
not be invariant to permutations of their arguments, e.g., % #*

Y in general.
x
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(a) Computation graph of f(x,y)
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Figure 1: Comparison of the computation graph (Fig. 1a) and gradient graph (Fig. 1b) of f(z,y) = €* + (z — y)y.
The expressions and primitives associated with each node in the graphs are shown on the left. Notice that the
gradient graph is a labeled variant of the computation graph. Input nodes are shown in blue, and output nodes in red.

a closed form and are assumed to be computable
in constant time for the sake of analysis. Source
nodes in the graph are called input nodes, and
every computation graph has a designated output
node that encapsulates the result of the function.b
An example computation graph is shown in Fig. 1a.

If all input nodes are assigned a value, then one
can perform a forward pass, which calculates the
value of the function at those inputs by traversing
the graph in a topological order,” evaluating the
values of each node until we reach the output node.
This procedure is shown in Algorithm 1.

Algorithm 1 Forward-propagation

1: def Forwardpropagation(GG, D, 7):

2: > G is a computation graph with topologically-
sorted nodes V = |v1,. .., UN].

3: > D is an ordered dictionary mapping from nodes
to their values, with D[v;] initialized to the input
value associated with v;¥i € [1,. .., m.

4: > 7:(V,V) = Nisa function that maps a parent
node to the index of the argument list of a func-
tion corresponding to a node. That is, given a
node v and parent node u, T maps to an index in
{1,..., | (v)|} forallv € V,u € 7(v).

5:. fork=m+1,...,N:

6: (ak).,.(vbu) — (D[u])u@r(vk) D> Retrieve the value

for each input w and store in the ordered argument tuple a.j,
7: D[Uk] — fk(ak)

8: return D

3.2 Backpropagation

Encoding a function as a computation graph is
useful because it enables the efficient compu-

SFor simplicity, we only consider scalar-valued functions,
but extensions to vector-valued functions are possible and
indeed commonplace in the literature.

A topological ordering of a DAG is an ordering of its
nodes such that node ¢ precedes node j iff ¢ is not a child of j.

tation of its gradients via automatic differentia-
tion (Griewank and Walther, 2008). Let G be a
computation graph with topologically sorted nodes
v1,...,UnN, Where vy is its output node. The goal

of automatic differentiation is to compute %1;1\,’

for some node v; in G. Bauer (1974) shows that
duy

Jop can be expressed as:

d d
d%vzz H% (1)

peP(i,N) (j.k)ep 7

where P(i, N) denotes the set of Bauer paths—
directed paths in the computation graph G from
node v; to node vy.® That is, the gradient of the
output vy with respect to a node v; equals the sum
of the gradient computed along every path between
v; and vy, where the gradient along a path is the
product of the gradient assigned to each edge along
that path. The gradient of each edge is easy to com-
pute, as it corresponds to the gradient of a primitive.
To distinguish the original, unweighted computa-
tion graph from its gradient-weighted counterpart,
we call the latter the gradient graph G(-) of a func-
tion; an example is shown in Fig. 1b. Note that this
is a function of the input nodes, since the edge
gradients are dependent on the input nodes.

In general, naively computing Eq. (1) term by
term is intractable since P(i, N') can be exponen-
tial in the number of nodes in the computation
graph. By leveraging the distributivity of multipli-
cation over addition, backpropagation’ uses dy-
namic programming and the caching of intermedi-
ate values from the forward pass to compute Eq. (1)
in O(|E|) time, where | E| is the number of edges

A directed path is an ordered set of node pairs, i.e.,
((1,12), (42,23), ..., (ip—1,1p)) Where the second element
of each pair matches the first element of the subsequent pair.

°Also known as reverse-mode automatic differentiation.
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in G (Goodfellow et al., 2016, p. 206). Backprop-
agation can be seen as traversing the computation
graph in reverse topological order and computing
the gradient of the output node with respect to each
intermediate node until v; is reached.'?

3.3 Semiring backpropagation

The crucial observation at the core of this paper
is that backpropagation need not limit itself to ad-
dition and multiplication: If, instead, we replace
those operations with other binary operators that
also exhibit distributivity, say & and &, then this
new algorithm would compute:

® QY o

peP(i,N) (j, k)Ep Yi

—i(@ ®)UN N
T(e,0)vi

Clearly, the interpretation of this resulting quantity
depends on how @ and ® are defined. We discuss
different options in §4, and in the remainder of this
section we focus on how @ and ® have to behave
to make them suitable candidates for replacement.

To make this notion more rigorous, we first need
to introduce the notion of a semiring.

Definition 3.1. A semiring (over a set K) is an
algebraic structure (K, @, ®,0, 1) such that:

1. @: KxK — K is a commutative and associa-
tive operation with identity element 0;

2. ®: KxK — K is an associative operation
with identity element 1;

3. ® distributes over P;

4. 0is an annihilator, i.e., forany k € K, k®0 =
0=0®k.

If we replace the operations and identity ele-
ments in backpropagation according to the semir-
ing identities and operations, we obtain semiring
backpropagation, shown in Algorithm 2. Regular
backprogation amounts to a special case of the al-
gorithm when run on the sum-product semiring
(R, +, x,0,1).

(ED )N

Eq. (2) defines g

for a single node v;. However, often it is useful
to aggregate this quantity across a set of nodes.
For example, when a token is embedded into

Aggregated derivative.

10Another efficient algorithm for computing Eq. (1) is
forward-mode automatic differentiation, which is most useful
when one has more output nodes than input nodes in the net-
work (Griewank and Walther, 2008). Since our formulation
assumes a single output node, we focus solely on backpropa-
gation.

Algorithm 2 Semiring backpropagation
This algorithm is executed after the forward pass
of a computation graph.

1: def Backpropagation(G, D):

2: > G is a computation graph with topologically-
sorted nodes V.= [v1, ..., vn].

3: > D is an ordered dictionary mapping from node
vi to its value, Vi € [1,...,m], computed by the
forward pass

. forveV:
5: B[U] — 6 D> B is a dictionary mapping from v; to %
B[UN] —1
: fori=N,.. 1:
8: for v in 7(v;) :
9: Blu] + Blu] ® <?m ® Bm>
Dlu]

10: return B

For standard backpropagation, let @ be the addition
(+) operator and ® be the times (x) operator.

a d-dimensional vector, each of its dimensions
corresponds to a node in the computation graph
say V = {v1,...,v4}. Then, M
component of the representatlon does not capture
the semiring-derivative with respect to the entire
representation of the token. Hence, we define the
aggregated derivative with respect to a set of
nodes V as:!!

for the 5™

Te®) VN a D T(@,0)VN 3)

Te,e)V ey Te,0)v

4 Interpreting semiring gradients

In §3, we showed how to generalize backpropaga-
tion to the semiring case. For any semiring of our
choosing, this modified algorithm will compute a
different statistic associated with a function’s gra-
dient. We begin by motivating the standard (+, x)
semiring which is common in the interpretability
literature, before discussing the implementation
and interpretation of the max-product and entropy
semirings we focus on in this work.

4.1 Whatisa (+, x) gradient?

We start by reviewing the gradient interpretation
in the (4, x) semiring, which corresponds to the

"This is equivalent to adding a dummy source node vo with
outgoing edges of weight 1 to each node v € V to the gradient
J@.8)"N

graph and computing Toe 0"
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standard definition of the gradient. We explain why
and how the gradient can be useful for interpretabil-
ity. Let f : R” — R be a function differentiable
aty € RP (e.g., a neural network model). The
derivative of f aty, V f(y), can be interpreted as
the best linear approximation of the function at y
(Rudin, 1976), viz., for any unit vector v & RD
and scalar € > 0, we have:

fy+ev)=fy) + Vi) (ev) +o(e) @

As such, one can view gradients as answering coun-
terfactual questions: If we moved our input y in
the direction v for some small distance €, what is
our best guess (relying only on a local, linear ap-
proximation of the function) about how the output
of the model would change?'?

Gradient-based methods (as discussed in §2) are
useful to interpretability precisely because of this
counterfactual interpretation. In using gradients
for interpretability, researchers typically implicitly
consider v = e;, i.e., the i natural basis vector,
which approximates the output if we increment the
model’s i input feature by one. We can then in-
terpret the coordinates of the gradient as follows:
If its 4 coordinate is close to zero, then we can
be reasonably confident that small changes to that
specific coordinate of the input should have little
influence on the value of f. However, if the gradi-
ent’s i" coordinate is large in magnitude (whether
positive or negative), then we may conclude that
small changes in the i coordinate of the input
should have a large influence on the value of f.

The subsequent two sections address a shortcom-
ing in exclusively inspecting the gradient, which is
fundamentally an aggregate quantity that sums over
all individual Bauer paths. This means, however,
that any information about the structure of that path
is left out, e.g., whether a few paths’ contributions
dominate the others. The semiring gradients that
we introduce in the sequel offer different angles of
interpretation of such counterfactual statements.

4.2 Whatis a (max, x) gradient?

While the (4, x) gradient has a natural interpreta-
tion given by calculus and has been used in many
prior works (Simonyan et al., 2013; Bach et al.,
2015; Sundararajan et al., 2017) to identify in-
put features that are most sensitive to a model’s
output, it cannot tell us how the gradient flows

"Indeed, this locality is a common source of criticism for
gradient-based interpretability metrics as discussed in §2.

through a gradient graph, as discussed in §4.1.
One way to compute a different quantity is to
change the semiring. The max-product semir-
ing (RU{—00, o0}, max, x, —o0, 1) is an enticing
candidate: In contrast to the (4, X ) semiring, com-
puting the gradient with respect to the (max, X)
semiring can help illuminate which components
of the network are most sensitive or critical to the
model’s input. The (max, x) gradient specifically
computes the gradient along the Bauer path that has
the highest value. We term this path the top gra-
dient path in the sequel. Formally, the (max, X)
gradient between v; and vy is:

Tmax, x)UN s

—i(max,x)vi PpEP(i,N)

(J.k)ep
Note that variants of this definition are possible,
e.g., we could have considered the absolute val-

ues of the gradients ’%’;’ if we did not care about
the overall impact as opposed to the most positive
impact on the output vy.

The top gradient path can be used to examine
branching points in a model’s computation graph.
For example, in Transformer (Vaswani et al., 2017)
models, the input to an attention layer branches
when it passes through both the self-attention mech-
anism and a skip connection. The input further
branches within the self-attention mechanism be-
tween the keys, values, and queries (see Fig. 3 for
an illustration). By examining the top gradient
path at this branching point, we can identify not
only whether the skip connection or self-attention
mechanism is more critical to determining input
sensitivity, but also which component within the
self-attention mechanism itself (keys, queries, or
values) carries the most importance.

Implementation. By using the max-product
semiring in the backpropagation algorithm, we
can compute the top gradient path in O(| E|) time,
where |E)| is the number of edges in the computa-
tion graph (Goodfellow et al., 2016, p. 206). See
App. A for more details.

4.3 What is an entropy gradient?

In addition to identifying the single top gradient
path, it is also helpful to have a more holistic view
of the gradient paths in a graph. In particular, we
may be interested in the path entropy of the gradient
graph, i.e., the dispersion of the magnitudes of
the path weights. Formally, for an input y and
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its corresponding gradient graph G(y) with nodes
v1,...,UnN, the entropy of all paths between v;
and vy is defined as:

-IEntUN A ’
-IEntUi B Z )

peP(i,N

log

&

where g(p) = Iiwep %’; is the gradient of path p
and Z =} p; Ny |9(p)| is a normalizing factor.

Intuitively, under this view, the gradient graph
G(-) encodes an (unnormalized) probability distri-
bution over paths between v; and vy where the
probability of a given path is proportional to the
absolute value of the product of the gradients along
each edge. The entropy then describes the disper-
sion of the gradient’s flow through all the possible
paths in the graph from v; to vy. For a given graph,
the entropy is greatest when the gradient flows uni-
formly through all possible paths, and least when
it flows through a single path.

Implementation. Eisner (2002) proposed to ef-
ficiently compute the entropy of a graph by lift-
ing the graph’s edge weights into the expectation
semiring (R x R, ®,®,0,1) where 0 = (0, 0),
1=(1,0) and:

* ®: (a,b) ® (c,d) =
* ®: {(a,b) ® (c,d) =

(a+c,b+d)
(ac, ad + be)

To leverage the expectation semiring, we first lift
the weight of each edge in the gradient graph from
wto (|w]|, |w|log |w|) (Where w is the local deriva-
tive between two connected nodes in the gradient
graph). Then, by computing:

= lglp

pE'P(z N)

@®<

peP(i,N) (j,k)E€p

) og[g(p)]) ()

)

in linear time using Algorithm 2, we obtain

(Z, > pep(in 19(p)[log|g(p)]), which are the
normalizing factor and the unnormalized entropy

of the graph, respectively. As shown by Li and
Eisner (2009) we can then compute -_'[Em”N =

EntV;
08 Z — 4 ey l9®) g |9 (D).

dug
& de

dug
dvj

dvg|
d’Uj’

5 Experiments

To demonstrate the utility of semiring backpro-
pogation, we empirically analyze their behavior
on two simple transformer models (1-2 layers) on

Gradient flow through keys, s

values and connection
|
0 b .
First token Other token Repeat token
Token type
Figure 2: High gradient flow through the for

the first token and keys of the repeat token match the
expected important components of self-attention for
each token type, respectively.

well-controlled, synthetic tasks. We also explore
semiring backpropogation on a larger model, BERT
(Devlin et al., 2019), on the popular analysis task
of subject—verb agreement to understand how our
method can be useful for interpreting language
models in more typical settings.

To implement semiring backpropagation, we de-
veloped our own Python-based reverse-mode au-
tomatic differentiation library, building off of the
pedagogical library Brunoflow (Ritchie, 2020) and
translating it into JAX (Bradbury et al., 201 8).13

5.1 Validation on a synthetic task

Setup. In this experiment, we test the hypothesis
that most of the gradient should flow through the
components that we judge a priori to be most crit-
ical to the model’s predictions. We are particularly
interested in whether the gradient flow through a
Transformer matches our expectation of the self-
attention mechanism’s components. So, while we
compute the top gradient path from the output to the
input representations, we only inspect the top path
at a Transformer’s main branching point, which is
when the hidden state is passed into the skip con-
nection and the keys, values, and queries of the self-
attention mechanism (Fig. 3). If we observe higher
levels of gradients flowing through one branch, a
natural interpretation is that this component is more
critical for the model’s prediction. To test whether
this interpretation is justified, we construct a task
where we can clearly reason about how a well-
trained Transformer model ought to behave and
identify how well the top gradient flow aligns with
our expectations of a model’s critical component.

BLibrary available at https://github.com/kdu4108/
brunoflow.
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Transformer layer

. Self-attention mechanism
h; — N —C O—CD

\‘ Queries

h; 4

Figure 3: Simplified computation graph for the i layer
of a Transformer (Vaswani et al., 2017) encoder at the
key branching point where a hidden state is passed into
the and the keys, values, and of
the self-attention mechanism. We use h; to denote the
hidden representations returned by layer ¢ — 1, and use
“...” to denote others parts of the computation graph.

Model. We use a 1-layer Transformer model with
hidden layer size of 16 and 2 attention heads to min-
imize branching points and increase interpretability.
We train this model to achieve 100% validation ac-
curacy on the task described below.

Task. We design the FirstTokenRepeatedOnce
task to target the utility of this method for inter-
preting the self-attention mechanism. In this task,
an input consists of a sequence of numbers, which
is labeled according to whether the first token ap-
pears again at any point in the sequence, e.g., [ 1,
4, 6, 11 — True, whereas [ 3, 4, 6, 2]
— False. Furthermore, the inputs are constrained
such that the first token will be repeated at most
once, to isolate the decision-making of the model
to the presence (or lack thereof) of a single token.
We randomly generate a dataset of 10 000 points
with sequence length 10 and vocab size 20. The
correct decision-making process for this task en-
tails comparing the first token to all others in the
sequence and returning True if there is a match.
This is, in fact, analogous to how queries and keys
function within the self-attention mechanism: A
query ¢; is compared to the key ky of each token
t' in the sequence and the greater the match, the
greater attention paid to token ¢’ by query token ¢.
We would therefore expect that the self-attention
mechanism relies heavily on the query representa-
tion of the first token and key representations of the
remaining tokens and, in particular, the key repre-
sentation of the repeated token, if present. In turn,
we hypothesize the max-product gradient value will
primarily originate from the queries branch for the
first token and keys for the remaining tokens, and
be especially high for the repeat token.

Results. The results, summarized in Fig. 2, pro-
vide strong evidence for our hypothesis that the
behavior of the (max, x) gradient reflects the im-
portance of the different model components. We
observe all expected gradient behaviors described
in the previous paragraph, and especially that the
highest gradient flow (for any token) is through the
keys of the repeat token.

5.2 Top gradient path of BERT for
subject—verb agreement

Setup. We now apply this method to understand
the self-attention mechanism of a larger model
(BERT) for the more complex NLP task of SVA.
We subsample 1000 examples from the dataset
from Linzen et al. (2016) and use spaCy (Matthew
et al., 2020) to identify the subject and attractors
within each sentence. We then filter down to 670
sentences after removing sentences where BERT to-
kenizes the subject or attractors as multiple tokens.
Using the max-product semiring, we then compute
the top gradient path through the different branches
(skip connection, keys, values, and queries) for (a)
the subject of a sentence, (b) the attractors of a
sentence, and (c) all tokens of a sentence.

Model. BERT (Devlin et al., 2019) is a pop-
ular encoder-only Transformer model for many
NLP tasks. BERT’s architecture consists of multi-
ple Transformer encoder layers stacked atop each
other, along with a task-specific head. We use
the google/bert_uncased_L-6_H-512_A-8 pre-
trained model from Huggingface (Wolf et al.,
2020), which has 6 attention layers, hidden size
of 512, and 8 attention heads.

Task. We consider the subject—verb number
agreement task in our experiments. Variants of this
task in English have become popular case studies in
neural network probing. Notably, this phenomenon
has been used to evaluate the ability for models
to learn hierarchical syntactic phenomena (Linzen
et al., 2016; Gulordava et al., 2018). It has also
served as a testing ground for interpretability stud-
ies which have found evidence of individual hidden
units that track number and nested dependencies
(Lakretz et al., 2019), and that removing individual
hidden units or subspaces from the models’ repre-
sentation space have a targeted impact on model
predictions (Finlayson et al., 2021; Lasri et al.,
2022). Our formulation of the task uses BERT’s
native masked language modeling capability by re-
casting it as a cloze task: We mask a verb in the
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Figure 4: Each plot depicts the top gradient path behavior of BERT for different tokens in a sentence, averaged

across the 670 sentences. Notably, for subjects (middle plot), the

contains the top gradient path for

all layers except the final layer, which is consistent with findings from (Lu et al., 2021). In the final layer, most of
the gradient for both the subject and attractors flows through the keys of the self-attention mechanism. This differs
from the gradient flow averaged across all tokens, indicating this behavior is specific to the nouns of the sentence.

sentence and compare the probabilities with which
BERT predicts the verb forms with correct and in-
correct number marking. For example, given the
input “all the other albums produced by this band
[MASK] their own article,” we compare the probabil-
ities of “have” (correct) and “has” (incorrect). We
compute the gradient with respect to the difference
between the log probability of the two inflections.

The data for this experiment is from Linzen et al.
(2016). All the examples in their dataset also in-
clude one or more attractors. These are nouns
such as “band” in the example above, which (a)
are not the subject, (b) precede the verb, and (c)
disagree with the subject in number. Furthermore,
all masked verbs are third person and present tense,
to ensure that number agreement is non-trivial.

Results. From Fig. 4, we highlight key differ-
ences between the (max, x) gradient behavior for
subject tokens and all tokens in general. Most
saliently, for subject tokens only, the max-product
gradient flows entirely through the self-attention
mechanism in the last layer and mostly through the
skip connection in earlier layers, which is consis-
tent with findings from Lu et al. (2021). Moreover,
within the self-attention mechanism, most (76%)
of the gradient in the last layer for the subject flows
through the keys matrix. In contrast, across all
tokens, the top gradient paths mostly through the
skip connection for all layers, and otherwise is
more evenly distributed between keys and values.
We also note similarities and differences be-
tween the gradient flows of the subject and pre-
ceding attractors. Both exhibit a similar trend in
which the gradient flows primarily through the keys

Entropy vs. MDL for synthetic datasets
(high-accuracy runs only)

xx
2300 x
2 x xx X
2
[52200 x X
2100
20 30 40 50
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Figure 5: Each point represents the entropy and MDL
of a model trained on a given dataset (3 seeds per
dataset). We denote the BinCountOnes datasets with
the X marker and other tasks (ContainsTokenSet and
tasks from Lovering et al., 2021) with the ® marker. The
hue corresponds to the number of classes of the task; the
lightest hue indicates a binary problem while the darker
hues indicate more classes (max of 36).

(and entirely through the self-attention mechanism)
in the last layer. However, the top gradient has a
greater magnitude for the subject than the attractors
(especially in the keys). Since self-attention uses a
token’s keys to compute the relative importance of
that token to the [MASK] token, we speculate that
the max-product gradient concentrating primarily
on the keys (and more so for the subject than attrac-
tors) reflects that a successful attention mechanism
relies on properly weighting the importances of the
subject and attractors.

5.3 Gradient graph entropy vs. task difficulty

Setup. This experiment tests the hypothesis that
the entropy of a model’s gradient graph is positively
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correlated with the difficulty of the task that the
model was trained to solve. We construct a variety
of synthetic tasks and compare the average gradi-
ent entropy of a 2-layer transformer on examples
in each of these tasks. We measure the difficulty of
a task with the minimum description length (MDL;
Rissanen, 1978).!* Following the approach used by
Lovering et al. (2021) and Voita and Titov (2020),
we measure MDL by repeatedly training the model
on the task with increasing quantities of data and
summing the loss from each segment. The higher
the MDL, the more difficulty the model had in ex-
tracting the labels from the dataset, and therefore
the more challenging the task. We hypothesize that
a model will have higher entropy for more difficult
tasks because it will require using more paths in its
computation graph. During our analysis, we drop
runs where the model was unable to achieve a vali-
dation accuracy of > 90%, to avoid confounding
results with models unable to learn the task.

Model. For all tasks, we use the same 2-layer
transformer architecture with a hidden layer size
of 64, 4 attention heads, and always predicts a
distribution over 36 classes (with some possibly
unused); this ensures our results are comparable
across tasks with different numbers of classes.
We train the models for 50 epochs on each of the
synthetic datasets.

Task. We design a variety of synthetic tasks in
order to control for difficulty more directly. In
the ContainsTokenSet family of tasks, an input
is a sequence of S numbers and labeled True or
False based on whether the input contains all to-
kens in a pre-specified token set. Different tasks
within ContainsTokenSet are defined by the pre-
specified token set. The BinCountOnes family of
tasks is parameterized by a number of classes C.
In this task, an input z is a sequence of S num-
bers. The label y is determined by the number
of 1s in the sequence according to the following

function: y(z) = {%1 — 1, i.e., in the 2-
class instance of BinCountOnes, an input is la-
beled 0 if it contains < S/2 1s and 1 if it contains
> S/2 1s. Finally, we also evaluate on the syn-

thetic datasets Contains1, AdjacentDuplicate,

“The MDL of a dataset under a model measures the num-
ber of bits required to communicate the labels of the dataset,
assuming the sender and receiver share both the unlabeled
data and a model, which can be used to reduce the information
the sender must transmit. Alternatively, MDL can be thought
of as the area under the loss curve as a function of dataset size.

FirstTokenRepeatedImmediately, and First-
TokenRepeatedLast from (Lovering et al., 2021).
For more details, see App. C.

Results. The results show clear evidence against
our initial hypothesis that gradient entropy in-
creases as a function of task difficulty, as mea-
sured by MDL. While there appears to be some pat-
terns evident between entropy and MDL in Fig. 5,
their interpretation is unclear. From observing the
lightest-hued points there appears to be a nega-
tive linear relationship between entropy and MDL
for the binary tasks. However, confusingly, the X
points seem to suggest a quadratic-like relationship
between entropy and MDL for the BinCountOnes
tasks. We speculate that this could be explained by
a phase-change phenomena in the model’s learning
dynamics. That is, for sufficiently easy tasks, the
model need not focalize much in order to solve
the task. Incrementally more difficult tasks may
require the model to focalize more, thus resulting
in the decreasing entropy for tasks below a certain
MDL threshold. Then, once a task is sufficiently
difficult, the model is required to use more of the
network to solve the task. Therefore, we see this
increase in entropy as the MDL increases past a
certain threshold for the BinCountOnes task. The
presence of these clear (although somewhat mys-
tifying) patterns indicates that there exists some
relationship between entropy and MDL. More ex-
perimentation is needed to understand the relation-
ship between entropy and MDL for task difficulty.

6 Conclusion

We presented a semiring generalization of the
backpropagation algorithm, which allows us to
obtain an alternative view into the inner workings
of a neural network. We then introduced two
semirings, the max-product and entropy semirings,
which provide information about the branching
points of a neural network and the dispersion of
the gradient graph. We find that gradient flow
reflects model component importance, gradients
flowing through the self-attention mechanism for
the subject token pass primarily through the keys
matrix, and the entropy has some relationship with
the difficulty of learning a task. Future work will
consider semirings outside the scope of this work,
e.g., the top-k semiring (Goodman, 1999) to track
the top-k gradient paths, as well as computing
semirings online for control during training.
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7 Limitations

While our approach inherits the linear runtime com-
plexity of the backpropagation algorithm, runtime
concerns should not be fully neglected. Firstly,
the linear runtime is only an analytical result, not
an empirical measure. This means that the actual
runtime of the backpropagation and thus our al-
gorithm depend heavily on their implementation.
For instance, some deep learning frameworks do
a better job at reusing and parallelizing computa-
tions than others (Goodfellow et al., 2016). Indeed,
our code is optimized for good readability and ex-
tensibility at the expense of speed, which hints at
another limitation of our approach: Our approach
requires deep integration with the framework as it
needs access to all model weights and the compu-
tation graph. For this reason, our approach cannot
be easily packaged and wrapped around any exist-
ing model or framework and we instead developed
our own JAX-based reverse-mode autodifferentia-
tion library, based on the numpy-based Brunoflow
library (Ritchie, 2020). While we release our li-
brary to enable other researchers to analyze models
through their gradient graphs, it faces some com-
putational and memory constraints. In our exper-
iments, running the three semirings together on a
single sentence can take several minutes (depend-
ing on sentence length) using google/bert_un-
cased_L-6_H-512_A-8, the 6-layered pretrained
BERT from Huggingface (Wolf et al., 2020), to-
taling our experimentation time on our datasets at
about 10 CPU-hours. For improved adoption of
this method, we encourage the direct integration
of semiring implementations into the most popular
deep learning frameworks. Our final point pertains
not only to our study but to most interpretability
approaches: One has to be careful when drawing
conclusions from gradient paths. Cognitive biases,
wrong expectations, and omitted confounds may
lead to misinterpretation of results.
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A Implementation of Top Gradient Path

In practice, we implement the top gradient path by storing 4 additional fields to each node in the graph:
the most positive gradient of the node, a pointer to the child node which contributed this most positive
gradient, the most negative gradient of the node, and a pointer to the child node which contributed this
most negative gradient. In this way, each node tracks the paths containing the most positive gradient
(top_pos) and most negative gradient (top_neg) from itself to the output node. To dynamically extend
the path from vy, to v; (j < k):

vi.top_pos - %’; if %’; >0

v;j.top_pos = . do, h .
Ug-top_neg - - otherwise
t dog e due >

vg-top_neg - g, - if g~ =

vj.top_neg = ‘ duy, herwi
Vg.top_pos - dv; otherwise

B Additional Entropy Sanity Checks and Experiments
B.1 Sanity Checks with Synthetic Data

To build intuition about the entropy of a model’s computation graph, we run two sanity check experiments.
First, we evaluate the entropy of a pretrained BERT model as the sentence length increases. Since larger
sentence lengths result in more paths in the computation graph, we expect the entropy of the model to
increase with sentence length. Our findings confirm this (Fig. 6a).

Second, we expect that the entropy of a trained model ought to increase with the model complexity,
as measured by hidden size. In this experiment, we create a 4-featured artificial dataset with randomly
generated values in the range [0, 1], labeled by whether the first feature is greater than 0.5. We train
multilayer perceptrons with varying hidden sizes on this dataset and find that the entropy of the input
features increases with model complexity as expected (see Fig. 6b).
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Figure 6: Fig. 6a shows that the more tokens a sentence contains, the more gradient paths are naturally involved and
consequently the higher the overall entropy. Fig. 6b shows that as the hidden size of the MLP increases, so too does
the model entropy. By comparing the entropy of the relevant feature line and the irrelevant features line, it also
appears that the entropy is consistently higher for the relevant feature than irrelevant features, especially as model
complexity increases.
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B.2 Entropy vs Example Difficulty in Subject—Verb Agreement

Setup. We investigate the relationship between the entropy of the gradient graph of BERT and input
sentences in the task of subject—verb number agreement. In this task, we measure example difficulty by
the number of attractors in a sentence (more attractors corresponds to greater difficulty). We sub-sample
the dataset from Linzen et al. (2016) to 1000 sentences, balanced evenly by the number of attractors per
sentence (ranging from 1 to 4 attractors). Then, using the entropy semiring, we compute the entropy of
BERT’s gradient graph for each sentence.

Results. Since sentences with more tokens will naturally have a higher entropy due to a larger computa-
tion graph (see Fig. 6a), we control by sentence length. We bin sentences of similar length for (10-20,
20-30, 3040, and 40-50 tokens) before analyzing the effect that the number of attractors has on entropy.
We present the results in Fig. 7 and additionally run a Spearman correlation test between the entropy of
the input representations (averaged across all tokens in the sentence) and the number of attractors. For
each group of sentence lengths, we find minimal correlation between number of attractors and entropy.
Therefore, there is little evidence to support a relationship between entropy and example difficulty as
measured by number of attractors. However, number of attractors is not necessarily a strong indicator
of example difficulty, and recommend more rigorous comparison of entropy against a stronger metric of
example difficulty in future work.
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Figure 7: For all sentence length bins, there appears to be little to no correlation between number of attractors and
entropy.

C Synthetic Datasets
C.1 Binary Datasets

We list in Tab. 1 descriptions and examples of all binary tasks constructed for our experiments.
C.2 BinCountOnes Datasets
We construct one family of multiclass classification datasets, BinCountOnes.

Parameterization. A BinCountOnes task is parameterized by the number of classes C, between 2 to S,
such that C divides S. For example, when .S = 6, C' could be 3.
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Task Name Parameterized Description Positive Example Negative Example
by:

ContainsTokenSet A set of to- Labeled True if X con- [1,3,4,2,5,2] [1,5,9,2,2,4]
kens, T', e.g., tains every token in 7" and
{1,2,3} False otherwise

Containsl N/A Labeled True if X con- [1,3,4,2,5,2] [6,5,9,2,2,4]
tains the token 1 and
False otherwise

FirstToken- N/A Labeled True if the first [3,3,2,6,7,8] [5,3,2,6,7,8]
RepeatedImmediately two tokens in X are the
same and False otherwise

FirstToken- N/A Labeled True if the first [8,3,2,6,7,8] [8,3,2,6,7,4]
RepeatedLast and last tokens in X are

the same and False other-

wise
AdjacentDuplicate  N/A Labeled True if two adja- [1,3,6,6,7,8] [1,3,6,8,7,8]

cent tokens in X are the
same at any point in the
sequence and False other-

wise
FirstToken- N/A Labeled True if the firstto- [1,3,6,1,7,8] [1,3,6,7,7,8]
RepeatedOnce ken in X is repeated at any

point in the sequence and
False otherwise. X is fur-
ther constrained to have at
most one repeat of the first
token in X.

Table 1: Binary synthetic datasets used in §5.1 and §5.3. For all tasks, the input X is a sequence of .S numbers
(valued from 1 to vocab size). While for the examples in this table we use S = 6 to save space, in the actual
experiments we use S = 10 (§5.1) and S = 36 (§5.3).

Description. Each example X is labeled between [0, C' — 1] by the following formula: label(X) =

[%é(x)w — 1, where CCount1(X) is the number of 1s that appear in X.

Examples. See Tab. 2.

Input Label

NN == O O

Table 2: Example inputs and labels for the BinCountOnes task where sequence length .S = 6 and number of classes

C=3.
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