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Abstract

Pretrained models are a mainstay in modern
NLP applications. Pretraining requires access
to large volumes of unlabeled text. While
monolingual text is readily available for many
of the world’s languages, access to large quan-
tities of code-switched text (i.e., text with to-
kens of multiple languages interspersed within
a sentence) is much more scarce. Given this re-
source constraint, the question of how pretrain-
ing using limited amounts of code-switched
text could be altered to improve performance
for code-switched NLP becomes important to
tackle. In this paper, we explore different
masked language modeling (MLM) pretraining
techniques for code-switched text that are cog-
nizant of language boundaries prior to mask-
ing. The language identity of the tokens can
either come from human annotators, trained lan-
guage classifiers, or simple relative frequency-
based estimates. We also present an MLM vari-
ant by introducing a residual connection from
an earlier layer in the pretrained model that
uniformly boosts performance on downstream
tasks. Experiments on two downstream tasks,
Question Answering (QA) and Sentiment Anal-
ysis (SA), involving four code-switched lan-
guage pairs (Hindi-English, Spanish-English,
Tamil-English, Malayalam-English) yield rel-
ative improvements of up to 5.8 and 2.7 F1
scores on QA (Hindi-English) and SA (Tamil-
English), respectively, compared to standard
pretraining techniques. To understand our task
improvements better, we use a series of probes
to study what additional information is encoded
by our pretraining techniques and also intro-
duce an auxiliary loss function that explicitly
models language identification to further aid
the residual MLM variants.

*Equal contribution
2Work done while at Indian Institute of Technology Bom-
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1 Introduction

Multilingual speakers commonly switch between
languages within the confines of a conversation or a
sentence. This linguistic process is known as code-
switching or code-mixing. Building computational
models for code-switched inputs is very important
in order to cater to multilingual speakers across the
world (Zhang et al., 2021).

Multilingual pretrained models such as
mBERT (Devlin et al., 2019) and XLM-R (Con-
neau et al., 2020) appear to be a natural choice
to handle code-switched inputs. However, prior
work demonstrated that representations directly
extracted from pretrained multilingual models are
not very effective for code-switched tasks (Winata
et al., 2019). Pretraining multilingual models
using code-switched text as an intermediate task,
prior to task-specific finetuning, was found to
improve performance on various downstream
code-switched tasks (Khanuja et al., 2020a; Prasad
et al., 2021a). Such an intermediate pretraining
step relies on access to unlabeled code-switched
text, which is not easily available in large quantities
for different language pairs. This prompts the
question of how pretraining could be made more
effective for code-switching within the constraints
of limited amounts of code-switched text.1

In this work, we propose new pretraining tech-
niques for code-switched text by focusing on
two fronts: a) modified pretraining objectives
that explicitly incorporate information about code-
switching (detailed in Section 2.1) and b) archi-
tectural changes that make pretraining with code-
switched text more effective (detailed in Sec-
tion 2.2).

1Code-switched text for pretraining can be augmented us-
ing synthetically generated text (Santy et al., 2021a) or text
mined from social media (Nayak and Joshi, 2022). Such
approaches would be complementary to our proposed tech-
niques.
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Pretraining objectives. The predominant objec-
tive function used during pretraining is masked
language modeling (MLM) that aims to reconstruct
randomly masked tokens in a sentence. We will
henceforth refer to this standard MLM objective
as STDMLM. Instead of randomly masking to-
kens, we propose masking the tokens straddling
language boundaries in a code-switched sentence;
language boundaries in a sentence are characterized
by two words of different languages. We refer to
this objective as SWITCHMLM. A limitation of this
technique is that it requires language identification
(LID) of the tokens in a code-switched sentence.
LID tags are not easily obtained, especially when
dealing with transliterated (Romanized) forms of
tokens in other languages. We propose a surrogate
for SWITCHMLM called FREQMLM that infers
LID tags using relative counts from large monolin-
gual corpora in the component languages.

Architectural changes. Inspired by prior work
that showed how different layers of models like
mBERT specifically encode lexical, syntactic and
semantic information (Rogers et al., 2020), we in-
troduce a regularized residual connection from an
intermediate layer that feeds as input into the MLM
head during pretraining. We hypothesize that creat-
ing a direct connection from a lower layer would
allow for more language information to be encoded
within the learned representations. To more explic-
itly encourage LID information to be encoded, we
also introduce an auxiliary LID-based loss using
representations from the intermediate layer where
the residual connection is drawn. We empirically
verify that our proposed architectural changes lead
to representations that are more language-aware by
using a set of probing techniques that measure the
switching accuracy in a code-switched sentence.

With our proposed MLM variants, we achieve
consistent performance improvements on two
natural language understanding tasks, factoid-
based Question Answering (QA) in Hindi-English
and Sentiment Analysis (SA) in four different
language pairs, Hindi-English, Spanish-English,
Tamil-English and Malayalam-English. Sections 3
and 4 elaborate on datasets, experimental setup and
our main results, along with accompanying analy-
ses including probing experiments.

Our code and relevant datasets are available
at the following link: https://github.com/
csalt-research/code-switched-mlm.

2 Methodology

2.1 MLM Pretraining Objectives
In the Standard MLM objective (Devlin et al., 2019)
that we refer to as STDMLM, a fixed percentage
(typically 15%) of tokens in a given sentence are
marked using the [MASK] token and the objective is
to predict the [MASK] tokens via an output softmax
over the vocabulary. Consider an input sentence
X = x1, . . . , xn with n tokens, a predetermined
masking fraction f and an n-dimensional bit vector
S = {0, 1}n that indicates whether or not a token
is allowed to be replaced with [MASK]. A masking
function M takes X , f and S as its inputs and
produces a new token sequence Xmlm as its output

Xmlm = M(X,S, f)

where Xmlm denotes the input sentence X with f%
of the maskable tokens (as deemed by S) randomly
replaced with [MASK].

For STDMLM, S = {1}n which means that
any of the tokens in the sentence are allowed to
be masked. In our proposed MLM techniques, we
modify S to selectively choose a set of maskable
tokens.

2.1.1 SWITCHMLM
SWITCHMLM is informed by the transitions be-
tween languages in a code-switched sentence. Con-
sider the following Hindi-English code-switched
sentence and its corresponding LID tags:

Laptop mere bag me rakha hai
EN HI EN HI HI HI

For SWITCHMLM, we are only interested in
potentially masking those words that surround lan-
guage transitions. S is determined using informa-
tion about the underlying LID tags for all tokens.
In the example above, these words would be "Lap-
top", "mere", "bag" and "me". Consequently, S for
this example would be S = [1, 1, 1, 1, 0, 0].

LID information is not readily available for many
language pairs. Next, in FREQMLM, we extract
proxy LID tags using counts derived from mono-
lingual corpora for the two component languages.

2.1.2 FREQMLM
For a given language pair, one requires access to
LID-tagged text or an existing LID tagger to im-
plement SWITCHMLM. LID tags are hard to in-
fer especially when dealing with transliterated or
Romanized word forms. To get around this de-
pendency, we try to assign LID tags to the tokens
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only based on relative frequencies obtained from
monolingual corpora in the component languages.
S = F(X, Cen, Clg) = {0, 1}n where F assigns 1
to those tokens that straddle language boundaries
and LIDs are determined for each token based on
their relative frequencies in a monolingual corpus
of the embedded language (that we fix as English)
Cen and a monolingual corpus of the matrix lan-
guage Clg.

For a given token x, we define nll_en and nll_-
lg as negative log-likelihoods of the relative fre-
quencies of x appearing in Cen and Clg, respectively.
nll values are set to -1 if the word does not appear
in the corpus or if the word has a very small count
and yields very high nll values (greater than a
fixed threshold that we arbitrarily set to ln 10). The
subroutine to assign LIDs is defined as follows:

def Assign_LID(nll_en , nll_lg):
if nll_en == -1 and nll_lg == -1:

return OTHER
elif nll_en != -1 and nll_lg == -1:

return EN
elif nll_en == -1 and nll_lg != -1:

return LG
elif nll_lg + ln(10) < nll_en:

return LG
elif nll_en + ln(10) < nll_lg:

return EN
elif nll_lg <= nll_en: return AMB -LG
elif nll_en < nll_lg: return AMB -EN
else: return OTHER

Here, AMB-LG, AMB-EN refer to ambiguous
tokens that have reasonable counts but are not suf-
ficiently large enough to be confidently marked
as either EN or LG tokens. Setting AMB-EN to
EN and AMB-LG to LG yielded the best results
and we use this mapping in all our FREQMLM
experiments. (Additional experiments with other
FREQMLM variants by treating the ambiguous to-
kens separately are described in Appendix C.2.)

2.2 Architectural Modifications

In Section 2.1, we presented new MLM objec-
tives that mask tokens around language transitions
(or switch-points) in a code-switched sentence.
The main intuition behind masking around switch-
points was to coerce the model to encode informa-
tion about possible switch-point positions in a sen-
tence. (Later, in Section 4.2, we empirically verify
this claim using a probing classifier with representa-
tions from a SWITCHMLM model compared to an
STDMLM model.) We suggest two architectural
changes that could potentially help further exploit
switch-point information in the code-switched text.

2.2.1 Residual Connection with Dropout

Figure 1: Modified mBERT with Residual Connection
(RESBERT) and Auxiliary LID Loss (Laux).

Prior studies have carried out detailed investiga-
tions of how BERT works and what kind of infor-
mation is encoded within representations in each
of its layers (Jawahar et al., 2019; Liu et al., 2019;
Rogers et al., 2020). These studies have found that
lower layers encode information that is most task-
invariant, final layers are the most task-specific and
the middle layers are most amenable to transfer.
This suggests that language information could be
encoded in any of the lower or middle layers. To
act as a direct conduit to this potential source of lan-
guage information during pretraining, we introduce
a simple residual connection from an intermediate
layer that is added to the output of the last Trans-
former layer in mBERT. We refer to this modified
mBERT as RESBERT. We also apply dropout to
the residual connection which acts as a regularizer
and is important for performance improvements.

We derive consistent performance improvements
in downstream tasks with RESBERT when the
residual connections are drawn from a lower layer
for SWITCHMLM. With STDMLM, we see signif-
icant improvements when residual connections are
drawn from the later layers. (We elaborate on this
further using probing experiments.)
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2.2.2 Auxiliary LID Loss
With RESBERT, we add a residual connection to
a lower or middle layer with the hope of gaining
more direct access to information about potential
switch-point transitions. We can further encourage
this intermediate layer to encode language infor-
mation by imposing an auxiliary LID-based loss.
Figure 1 shows how token representations of an in-
termediate layer, from which a residual connection
is drawn, feed as input into a multi-layer perceptron
MLP to predict the LID tags of each token. To en-
sure that this LID-based loss does not destroy other
useful information that is already present in the
layer embeddings, we also add an L2 regularization
for representations from all the layers to avoid large
departures from the original embeddings. Given a
sentence x1, . . . , xn, we have a corresponding se-
quence of bits y1, . . . , yn where yi = 1 represents
that xi lies at a language boundary. Then the new
loss Laux can be defined as:

Laux = α
n∑

i=1

− logMLP(xi)+β
L∑

j=1

||W̄j−Wj ||2

where MLP(xi) is the probability with which
MLP labels xi as yi, W̄j refers to the original
embedding matrix corresponding to layer j, Wj

refers to the new embedding matrix and α, β are
scaling hyperparameters for the LID prediction and
L2-regularization loss terms, respectively.

3 Experimental Setup

3.1 Datasets

We aggregate real code-switched text from multi-
ple sources, described in Appendix B, to create
pretraining corpora for Hindi-English, Spanish-
English, Tamil-English and Malayalam-English
consisting of 185K, 66K, 118K and 34K sentences,
respectively. We also extract code-switched data
from a very large, recent Hindi-English corpus
L3CUBE (Nayak and Joshi, 2022) consisting of
52.9M sentences scraped from Twitter. More de-
tails about L3CUBE are in Appendix B.

For FREQMLM described in Section 2.1.2, we
require a monolingual corpus for English and one
for each of the component languages in the four
code-switched language pairs. Large monolingual
corpora will provide coverage over a wider vocabu-
lary and consequently lead to improved LID predic-
tions for words in code-switched sentences. We use

counts computed from the following monolingual
corpora to implement FREQMLM.

English. We use OPUS-100 (Zhang et al., 2020),
which is a large English-centric translation dataset
consisting of 55 million sentence pairs and com-
prising diverse corpora including movie subtitles,
GNOME documentation and the Bible.

Spanish. We use a large Spanish corpus released
by (Cañete et al., 2020) that contains 26.5 million
sentences accumulated from 15 unlabeled Span-
ish text datasets spanning Wikipedia articles and
European parliament notes.

Hindi, Tamil and Malayalam. The Dakshina
corpus (Roark et al., 2020) is a collection of text
in both Latin and native scripts for 12 South
Asian languages including Hindi, Tamil and Malay-
alam. Samanantar (Ramesh et al., 2022) is a large
publicly-available parallel corpus for Indic lan-
guages. We combined Dakshina and Samanatar
2 datasets to obtain roughly 10M, 5.9M and 5.2M
sentences for Hindi, Malayalam and Tamil respec-
tively. We used this combined corpus to perform
NLL-based LID assignment in FREQMLM.

The Malayalam monolingual corpus is quite
noisy with many English words appearing in the
text. To implement FREQMLM for ML-EN, we
use an alternate monolingual source called Aksha-
rantar (Madhani et al., 2022). It is a large publicly-
available transliteration vocabulary-based dataset
for 21 Indic languages with 4.1M words specifi-
cally in Malayalam. We further removed common
English words3 from Aksharantar’s Malayalam vo-
cabulary to improve the LID assignment for FRE-
QMLM. We used this dataset with an alternate LID
assignment technique that only checks if a word
exists, without accumulating any counts. (This is
described further in Section 4.1.)

3.2 SA and QA Tasks
We use the GLUECOS benchmark (Khanuja et al.,
2020a) to evaluate our models for Sentiment Analy-
sis (SA) and Question Answering (QA). GLUECOS

provides an SA task dataset for Hindi-English
and Spanish-English. The Spanish-English SA
dataset (Vilares et al., 2016) consists of 2100, 211

2Samanantar dataset contains native Indic language text,
we use the Indic-trans transliteration tool (Bhat et al., 2015)
to get the romanized sentences and then combine with the
Dakshina dataset

3https://github.com/first20hours/
google-10000-english
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QA HI-EN SA
Method F1

(20 epochs)
F1

(30 epochs)
F1

(40 epochs)
TA-EN HI-EN ML-EN ES-EN

m
B

E
R

T

Baseline 62.1 ±1.5 63.4 ±2.0 62.9 ±2.0 69.8±2.6 67.3±0.3 76.4±0.3 60.8±1.1
STDMLM 64.8 ±2.0 65.4 ±2.5 64 ±3.3 74.9±1.5 67.7±0.6 76.7±0.1 62.2±1.5
SWITCHMLM 69 ±3.7 68.9 ±4.2 67 ±2.5 - 68.4±0.5 - 63.5±0.6
FREQMLM 68.6±4.5 66.7±3.5 67.1±3.2 77.1±0.3 67.8±0.4 76.5±0.2 62.5±1.0

STDMLM + RESBERT 66.89 ± 3.0 64.69 ± 1.7 64.49 ± 2.0 775 ± 0.3 68.49 ± 0.0 76.69 ± 0.2 63.19 ± 1.1
SW/FREQMLM + RESBERT 68.82 ± 3.1 68.92 ± 3.0 68.12 ± 3.0 77.42 ± 0.3 68.92 ± 0.4 77.12 ± 0.2 63.72 ± 1.8
SW/FREQMLM + RESBERT + Laux 682 ± 3.0 68.92 ± 3.2 69.82 ± 3.0 77.62 ± 0.2 69.12 ± 0.4 77.22 ± 0.4 63.72 ± 1.5

X
L

M
-R

Baseline 63.2±3.0 63.1±2.3 62.7±2.5 74.1±0.3 69.2±0.9 72.5±0.7 63.9±2.5
STDMLM 64.4±2.1 64.7±2.8 66.4±2.3 76.0±0.1 71.3±0.2 76.5±0.4 64.4±1.8
SWITCHMLM 65.3±3.3 65.7±2.3 69.2±3.2 - 71.7±0.1 - 64.8±0.2
FREQMLM 60.8±5.3 62.4±4.3 63.4±4.4 76.3±0.4 71.6±0.6 75.3±0.3 64.1±1.1

Table 1: QA and SA scores for primary models and language pairs. Note: For RESBERT results, the subscript near
the F1 scores represents the layer from which the residual connection is drawn for that particular model.

and 211 examples in the training, development
and test sets, respectively. The Hindi-English
SA dataset (Patra et al., 2018) consists of 15K,
1.5K and 3K code-switched tweets in the train-
ing, development and test sets, respectively. The
Tamil-English (Chakravarthi et al., 2020a) and
Malayalam-English (Chakravarthi et al., 2020b)
SA datasets are extracted from YouTube comments
comprising 9.6K/1K/2.7K and 3.9K/436/1.1K ex-
amples in the train/dev/test sets, respectively. The
Question Answering Hindi-English factoid-based
dataset (Chandu et al., 2018a) from GLUECOS con-
sists of 295 training and 54 test question-answer-
context triples. Because of the unavailability of the
dev set, we report QA results on a fixed number of
training epochs i.e., 20, 30, and 40 epochs.

3.3 RESBERT and Auxiliary Loss:
Implementation details

We modified the mBERT architectures for the three
main tasks of masked language modeling, question
answering (QA), and sequence classification by
incorporating residual connections as outlined in
Section 2.2.1. The MLM objective was used during
pretraining with residual connections drawn from
layers x ∈ {1, · · · , 10} and a dropout rate of p =
0.5. The best layer to add a residual connection
was determined by validation performance on the
downstream NLU tasks. Since we do not have a
development set for QA, we choose the same layer
as chosen by SA validation for the QA task. The
training process and hyperparameter details can be
found in Appendix A.

4 Results and Analysis

4.1 Main Results
Table 1 shows our main results using all our pro-
posed MLM techniques applied to the downstream
tasks QA and SA. We use F1-scores as an evalu-
ation metric for both QA and SA. For QA, we re-
port the average scores from the top 8-performing
(out of 10) seeds, and for SA, we report average
F1-scores from the top 10-performing seeds (out
of 12). We observed that the F1 scores were no-
tably poorer for one seed, likely due to the small
test-sets for QA (54 examples) and SA (211 for
Spanish-English). To safeguard against such out-
lier seeds, we report average scores from the top-K
runs. We show results for two multilingual pre-
trained models, mBERT (Devlin et al., 2019) and
XLM-R (Conneau et al., 2020).4

Improvements with MLM pretraining objec-
tives. From Table 1, we note that STDMLM is
always better than the baseline model (sans pre-
training). Among the three MLM pretraining ob-
jectives, SWITCHMLM consistently outperforms
both STDMLM and FREQMLM across both tasks.
We observe statistical significance at p < 0.05
(with p-values of 0.01 and lower for some language
pairs) using the Wilcoxon Signed Rank test when
comparing F1 scores across multiple seeds using
SWITCHMLM compared to STDMLM on both
QA and SA tasks.

As expected, FREQMLM acts as a surrogate
to SWITCHMLM trailing behind it in perfor-

4Results using residual connections and the auxiliary LID
loss during pretraining are shown only for mBERT since the
main motivation to use intermediate layers was derived from
BERTology (Rogers et al., 2020). We leave this investigation
for XLMR as future work.
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mance while outperforming STDMLM. Since
Tamil-English and Malayalam-English pretraining
corpora were not LID-tagged, we do not show
SWITCHMLM numbers for these two language
pairs and only report FREQMLM-based scores.
For QA, we observe that FREQMLM hurts XLM-R
while significantly helps mBERT in performance
compared to STDMLM. We hypothesize that this
is largely caused by QA having a very small train
set (of size 295), in conjunction with XLM-R be-
ing five times larger than mBERT and the noise
inherent in LID tags from FREQMLM (compared
to SWITCHMLM). We note here that using FRE-
QMLM with XLM-R for SA does not exhibit this
trend since Hindi-English SA has a larger train set
with 15K sentences.

Considerations specific to FREQMLM. The
influence of SWITCHMLM and FREQMLM on
downstream tasks depends both on (1) the amount
of code-switched pretraining text and (2) the LID
tagging accuracy. Malayalam-English (ML-EN)
is an interesting case where STDMLM does not
yield significant improvements over the baseline.
This could be attributed to the small amount of
real code-switched text in the ML-EN pretraining
corpus (34K). Furthermore, we observe that FRE-
QMLM fails to surpass STDMLM. This could be
due to the presence of many noisy English words in
the Malayalam monolingual corpus. To tackle this,
we devise an alternative to the NLL LID-tagging
approach that we call X-HIT. X-HIT only considers
vocabularies of English and the matrix language,
and checks if a given word appears in the vocab-
ulary of English or the matrix language to mark
its LID. Unlike NLL which is count-based, X-HIT

only checks for the existence of a word in a vo-
cabulary. This approach is particularly useful for
language pairs where the monolingual corpus is
small and unreliable. Appendix C.1 provides more
insights about when to choose X-HIT over NLL.

We report a comparison between the NLL and
X-HIT LID-tagging approaches for ML-EN sen-
tences in Table 2. Since X-HIT uses a clean dictio-
nary instead of a noisy monolingual corpus for LID
assignment, we see improved performance with X-
HIT compared to NLL. However, given the small
pretraining corpus for ML-EN, FREQMLM still
underperforms compared to STDMLM.

To assess how much noise can be tolerated in the
LID tags derived via NLL, Table 3 shows the label
distribution across true and predicted labels using

Model F1 (max) F1 (avg) Std. Dev.

Baseline (mBERT) 77.29 76.42 0.42
STDMLM 77.39 76.67 0.48
FREQMLM (NLL) 76.61 76.20 0.43
FREQMLM (X-HIT) 77.29 76.46 0.43

Table 2: Comparison of various FREQMLM approaches
for the Malayalam-English SA task.

the NLL LID-tagging approach for Hindi-English.
We observe that while a majority of HI and EN to-
kens are correctly labeled as being HI and EN tags,
respectively, a fairly sizable fraction of tags total-
ing 18% and 17% for HI and EN, respectively, are
wrongly predicted. This shows that FREQMLM
performs reasonably well even in the presence of
noise in the predicted LID tags.

True/Pred HI AMB-HI EN AMB-EN OTHER
HI 71.75 10.26 6.05 7.36 4.58
EN 7.69 5.97 63.41 19.64 3.29
OTHER 25.07 10.11 7.76 6.51 50.56

Table 3: Distribution of predicted tags by the NLL
approach for given true tags listed in the first column.
Note: Here the distribution is shown as percentages.

Improvements with Architectural Modifications.
As shown in Table 1, we observe consistent im-
provements using RESBERT particularly for SA.
STDMLM gains a huge boost in performance when
a residual connection is introduced. The best layer
to use for a residual connection in SA tasks is cho-
sen on the basis of the results on the dev set. We
do not have a dev set for the QA HI-EN task. In
this case, we choose the same layers used for the
SA task to report results on QA.

While the benefits are not as clear as with
STDMLM, even SWITCHMLM marginally bene-
fits from a residual connection on examining QA
and SA results. Since LID tags are not available for
TA-EN and ML-EN, we use FREQMLM pretrain-
ing with residual connections. Given access to LID
tags, both HI-EN and ES-EN use SWITCHMLM
pretraining with residual connections. SW/FRE-
QMLM in Table 1 refers to either SWITCHMLM
or FREQMLM pretraining depending on the lan-
guage pair.

We observe an interesting trend as we change
the layer x ∈ {1, · · · , 10} from which the resid-
ual connection is drawn, depending on the MLM
objective. When RESBERT is used in conjunc-
tion with STDMLM, we see a gradual performance
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Model F1 (max) F1 (avg) Std. Dev.

STDMLM 69.01 68.18 0.56
SWITCHMLM 70.71 69.19 1.06
FREQMLM 69.41 68.81 0.58
STDMLM + RESBERT9 69.48 68.99 0.60
SWMLM + RESBERT2 69.76 69.23 0.64
SWMLM + RESBERT2 + Laux 69.66 69.29 0.25

HINGMBERT 72.36 71.42 0.70

Table 4: HI-EN SA task scores with L3CUBE -185k
pretraining corpus. The subscript with RESBERT rep-
resents the residual connection layer for that particular
setting.

gain as we go deeper down the layers. Whereas we
find a slightly fluctuating response in the case of
SWITCHMLM— here, it peaks at some early layer.
The complete trend is elaborated in Appendix D.
The residual connections undoubtedly help. We see
an overall jump in performance from STDMLM to
RESBERT + STDMLM and from SWITCHMLM
to RESBERT + SWITCHMLM.

The auxiliary loss over switch-points described
in Section 2.2.2 aims to help encode switch-point
information more explicitly. As with RESBERT,
we use the auxiliary loss with SWITCHMLM pre-
training for HI-EN and ES-EN, and with FRE-
QMLM pretraining for TA-EN and ML-EN. As
shown in Table 1, SW/FREQMLM + RESBERT
+ Laux yields our best model for code-switched
mBERT consistently across all SA tasks.

Results on Alternate Pretraining Corpus. To
assess the difference in performance when using
pretraining corpora of varying quality, we extract
roughly the same number of Hindi-English sen-
tences from L3CUBE (185K) as is present in the
Hindi-English pretraining corpus we used for Ta-
ble 1. Roughly 45K of these 185K sentences have
human-annotated LID tags. For the remaining sen-
tences, we use the GLUECOS LID tagger (Khanuja
et al., 2020a).

Table 4 shows the max and mean F1-scores for
HI-EN SA for all our MLM variants. These num-
bers exhibit the same trends observed in Table 1.
Also, since the L3CUBE dataset is much cleaner
than the 185K dataset we used previously for Hindi-
English, we see a notable performance gain in Ta-
ble 4 for HI-EN compared to the numbers in Ta-
ble 1. Nayak and Joshi (2022) further provide an
mBERT model HINGMBERT pretrained on the
entire L3CUBE dataset of 52.93M sentences. This
model outperforms all the mBERT pretrained mod-
els, confirming that a very large amount of pretrain-

ing text, if available, yields superior performance.

4.2 Probing Experiments

We use probing classifiers to test our claim that
the amount of switch-point information encoded in
the neural representations from specific layers has
increased with our proposed pretraining variants
compared to STDMLM. Alain and Bengio (2016)
first introduced the idea of using linear classifier
probes for features at every model layer, and Kim
et al. (2019) further developed new probing tasks to
explore the effects of various pretraining objectives
in sentence encoders.

Linear Probing. We first adopt a standard lin-
ear probe to check for the amount of switch-point
information encoded in neural representations of
different model layers. For a sentence x1, . . . , xn,
consider a sequence of bits y1, . . . , yn referring
to switch-points where yi = 1 indicates that xi
is at a language boundary. The linear probe is a
simple feedforward network that takes layer-wise
representations as its input and is trained to predict
switch-points via a binary cross-entropy loss. We
train the linear probe for around 5000 iterations.

Conditional Probing. Linear probing cannot de-
tect when representations are more predictive of
switch-point information in comparison to a base-
line. Hewitt et al. (2021) offer a simple extension
of the theory of usable information to propose con-
ditional probing. We adopt this method for our task
and define performance in terms of predicting the
switch-point sequence as:

Perf(f [B(X), ϕ(X)])− Perf(f([B, 0]))

where X is the input sequence of tokens, B is the
STDMLM pretrained model, ϕ is the model trained
with one of our new pretraining techniques, f is a
linear probe, [·, ·] denotes concatenation of embed-
dings and Perf is any standard performance metric.
We set Perf to be a soft Hamming Distance be-
tween the predicted switch-point sequence and the
ground-truth bit sequence. To train f , we follow the
same procedure outlined in Section 4.2, except we
use concatenated representations from two models
as its input instead of a single representation.

4.2.1 Probing Results
Figure 2 shows four salient plots using linear prob-
ing and conditional probing. In Figure 2a, we ob-
serve that the concatenated representations from
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Figure 2: Probing results comparing the amount of language boundary information encoded in different layers of
different models. Note: (1) If not mentioned, assume final layer representations (2) RESBERT9,STDMLM represents
the mBERT model having a residual connection from layer 9 and trained with STDMLM pretraining.

models trained with STDMLM and SWITCHMLM
carry more switch-point information than using
STDMLM alone. This offers an explanation for
the task-specific performance improvements we ob-
serve with SWITCHMLM. With greater amounts
of switch-point information, SWITCHMLM mod-
els arguably tackle the code-switched downstream
NLU tasks better.

From Figure 2c, we observe that the interme-
diate layer (9) from which the residual connec-
tion is drawn carries a lot more switch-point in-
formation than the final layer in STDMLM. In
contrast, from Figure 2d, we find this is not true
for SWITCHMLM models, where there is a very
small difference between switch-point information
encoded by an intermediate and final layer. This
might explain to some extent why we see larger
improvements using a residual connection with
STDMLM compared to SWITCHMLM (as dis-
cussed in Section 4.1).

Figure 2b shows that adding a residual connec-
tion from layer 9 of an STDMLM-trained model,
that is presumably rich in switch-point information,
provides a boost to switch-point prediction accu-
racy compared to using STDMLM model alone.

We note here that the probing experiments in
this section offer a post-hoc analysis of the effec-
tiveness of introducing a skip connection during
pretraining. We do not actively use probing to
choose the best layer to add a skip connection.

5 Related Work

While not related to code-switching, there has been
prior work on alternatives or modifications to pre-
training objectives like MLM. Yamaguchi et al.
(2021) is one of the first works to identify the
lack of linguistically intuitive pretraining objec-
tives. They propose new pretraining objectives
which perform similarly to MLM given a similar
pretrain duration. In contrast, Clark et al. (2020)
sticks to the standard MLM objective, but questions
whether masking only 15% of tokens in a sequence
is sufficient to learn meaningful representations.
Wettig et al. (2022) maintains that higher masking
up to even 80% can preserve model performance on
downstream tasks. All of the aforementioned meth-
ods are static and do not exploit a partially trained
model to devise better masking strategies on the fly.
Yang et al. (2022) suggests time-invariant masking
strategies which adaptively tune the masking ratio
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and content in different training stages. Ours is the
first work to offer both MLM modifications and
architectural changes aimed specifically at code-
switched pretraining.

Prior work on improving code-switched NLP
has focused on generative models of code-switched
text to use as augmentation (Gautam et al., 2021;
Gupta et al., 2021; Tarunesh et al., 2021a), merging
real and synthetic code-switched text for pretrain-
ing (Khanuja et al., 2020b; Santy et al., 2021b),
intermediate task pretraining including MLM-style
objectives (Prasad et al., 2021b). However, no prior
work has provided an in-depth investigation into
how pretraining using code-switched text can be
altered to encode information about language tran-
sitions within a code-switched sentence. We show
that switch-point information is more accurately
preserved in models pretrained with our proposed
techniques and this eventually leads to improved
performance on code-switched downstream tasks.

6 Conclusion

Pretraining multilingual models with code-
switched text prior to finetuning on task-specific
data has been found to be very effective for
code-switched NLP tasks. In this work, we focus
on developing new pretraining techniques that
are more language-aware and make effective
use of limited amounts of real code-switched
text to derive performance improvements on
two downstream tasks across multiple language
pairs. We design new pretraining objectives for
code-switched text and suggest new architectural
modifications that further boost performance with
the new objectives in place. In future work, we will
investigate how to make effective use of pretraining
with synthetically generated code-switched text.
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Limitations

Our current FREQMLM techniques tend to fail
on LID predictions when the linguistic differences
between languages are small. For example, English
and Spanish are quite close: (1) they are written

in the same script, (2) English and Spanish share
a lot of common vocabulary. This can confound
FREQMLM.

The strategy to select the best layer for drawing
residual connections in RESBERT is quite tedious.
For a 12-layer mBERT, we train 10 RESBERT
models with residual connections from some in-
termediate layer x ∈ {1, · · · , 10} and choose the
best layer based on validation performance. This is
quite computationally prohibitive. We are consid-
ering parameterizing the layer choice using gating
functions so that it can be learned without having
to resort to a tedious grid search.

If the embedded language in a code-switched
sentence has a very low occurrence, we will have
very few switch-points. This might reduce the num-
ber of maskable tokens to a point where even mask-
ing all the maskable tokens will not satisfy the over-
all 15% masking requirement. However, we never
faced this issue. In our experiments, we compen-
sate by masking around 25%-35% of the maskable
tokens (calculated based on the switch-points in
the dataset).
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A Training details

We employed the mBERT and XLM-R models for
our experiments. The mBERT model has 178 mil-
lion parameters and 12 transformer layers, while the
XLM-R model has 278 million parameters and 24
transformer layers. AdamW optimizer (Loshchilov
and Hutter, 2019) and a linear scheduler were used
in all our experiments, which were conducted on a
single NVIDIA A100 Tensor Core GPU.

For the pretraining step, we utilized a batch size of
4, a gradient accumulation step of 20, and 4 epochs
for the mBERT base model. For the XLM-R base
model, we set the batch size to 8 and the gradient
accumulation step to 4. For the Sentiment Analysis
task, we used a batch size of 8, a learning rate of
5e-5, and a gradient accumulation step of 1 for the
mBERT base model. Meanwhile, we set the batch
size to 32 and the learning rate to 5e-6 for the XLM-
R base model. For the downstream task of Question
Answering, we used the same hyperparameters for
both mBERT and XLM-R: a batch size of 4 and
a gradient accumulation step of 10. Results were
reported for multiple epochs, as stated in Section 4.1.
All the aforementioned hyperparameters were kept
consistent for all language pairs.

In the auxiliary LID loss-based experiments men-
tioned in Section 3.3, we did not perform a search
for the best hyperparameters. Instead, we set α to
5e-2 and β to 5e-4, where α and β are defined in
Section 2.2.2.

B Pretraining Dataset

We use the ALL-CS (Tarunesh et al., 2021b) corpus,
which consists of 25K Hindi-English LID-tagged
code-switched sentences. We combine this corpus
with code-switched text data from prior work Singh
et al. (2018); Swami et al. (2018); Chandu et al.
(2018b); Patwa et al. (2020); Bhat et al. (2017); Patro
et al. (2017) resulting in a total of 185K LID-tagged
Hindi-English code-switched sentences.

For Spanish-English code-switched text data, we
pooled data from prior work Patwa et al. (2020);
Solorio et al. (2014); AlGhamdi et al. (2016); Aguilar
et al. (2018); Vilares et al. (2016) to get a total of 66K
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CS Sentence: Maduraraja trailer erangiyapo veendum kaanan vannavar undel evide likiko

NLL LID tags: OTHER EN OTHER ML ML OTHER ML ML ML
X-HIT LID tags: ML EN ML ML ML ML ML ML ML

Table 5: LID assignment comparison for NLL and X-HIT

sentences. These sentences have ground-truth LID
tags associated with them.

We pooled 118K Tamil-English code-switched sen-
tences from Chakravarthi et al. (2020b, 2021); Baner-
jee et al. (2018); Mandl et al. (2021) and 34K
Malayalam-English code-switched sentences from
Chakravarthi et al. (2020a, 2021); Mandl et al. (2021).
These datasets do not have ground-truth LID tags
and high-quality LID tagger for TA-EN and ML-
EN are not available. Hence, we do not perform
SWITCHMLM experiments for these language pairs.

We will refer to the combined datasets for Hindi-
English, Spanish-English, Malayalam-English, and
Tamil-English code-switched sentences as HI-EN
COMBINED-CS , ES-HI COMBINED-CS , ML-HI
COMBINED-CS , and TA-EN COMBINED-CS re-
spectively.

Nayak and Joshi (2022) released the L3Cube-
HingCorpus and HingLID Hindi-English code-
switched datasets. L3Cube-HingCorpus is a code-
switched Hindi-English dataset consisting of 52.93M
sentences scraped from Twitter. L3Cube-HingLID
is a Hindi-English code-switched language identifi-
cation dataset which consists of 31756, 6420, and
6279 train, test, and validation samples, respectively.
We extracted roughly 140k sentences from L3Cube-
HingCorpus with a similar average sentence length
as the HI-EN COMBINED-CS dataset, assigned LID
tags using the GLUECOS LID tagger (Khanuja et al.,
2020a), and combined it with the 45k sentences of
L3Cube-HingLID to get around 185K sentences in to-
tal. We use this L3CUBE -185k dataset in Section 4.1
to examine the effects of varying quality of pretrain-
ing corpora.

C FREQMLM

C.1 X-HIT LID assignment

The Malayalam-English code-switched dataset (ML-
EN COMBINED-CS ) has fairly poor Roman translit-
erations of Malayalam words. This makes it difficult
for the NLL approach to assign the correct LID to
these words since it is based on the likelihood scores
of the word in the monolingual dataset. Especially
for rare Malayalam words in the sentence, the NLL
approach fails to assign the correct LID and instead
ends up assigning a high number of “OTHER” tags.

The X-HIT approach described in Section 4.1 ad-
dresses this issue. X-HIT first checks the occurrence
of the word in Malayalam vocabulary, then checks if
it is an English word. Since we have a high-quality
English monolingual dataset, we can be confident that

the words that are left out are rare or poorly translit-
erated Malayalam words, and hence are tagged ML.
As an illustration, we compare the LID tags assigned
to the example Malayalam-English code-switched
sentence Maduraraja trailer erangiyapo veendum
kaanan vannavar undel evide likiko in Table 5 using
NLL and X-HIT, with the latter being more accurate.

C.2 Masking strategies for ambiguous
tokens

In the NLL approach of FREQMLM described in
Section 2.1.2, we assign ambiguous (AMB) LID to-
kens to words when it is difficult to differentiate be-
tween nll scores with confidence. To make use of
AMB tokens, we introduce a probabilistic masking
approach that classifies the words based on their am-
biguity at the switch-points.

• Type 0: If none of the words at the switch-point
are marked ambiguous, mask them with prob.
p0

• Type 1: If one of the words at the switch-point
is marked ambiguous, mask it with prob. p1

• Type 2: If both the words are marked ambigu-
ous, mask them with prob. p2

We try out different masking probabilities, which
sum up to p = 0.15. Say we mask tokens of the
words of Type 0, 1, and 2 in the ratio r0, r1, r2 and
the counts of these words in the dataset are n0, n1, n2

respectively, then the masking probabilities p0, p1, p2
are determined by the following equation:

p0n0 + p1n1 + p2n2 = p(n0 + n1 + n2)

It is easy to see that the probabilities should be in the
same proportion as our chosen masking ratios, i.e.,
p0 : p1 : p2 :: r0 : r1 : r2. We report the results we
obtained for this experiment in Table 6.

r0 : r1 : r2 F1 (max) F1 (avg) Std. Dev.
1 : 1 : 1 72.22 67.09 3.43
1 : 1.5 : 2 68.27 64.16 2.74
2 : 1.5 : 1 65.1 61.71 2.23

Table 6: FREQMLM QA scores (fine-tuned on 40
epochs) for experiments incorporating AMB tokens
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Test Results Val Results

Method Max Avg Stdev Avg Stdev
S

T
D

M
L

M
+

R
E

S
B

E
R

T

layer 1 68.2 67.7 0.4 63.3 0.3
layer 2 68.5 67.9 0.8 63.6 0.3
layer 3 69.3 68.2 1 63.6 0.5
layer 4 68.8 68.2 0.6 63.6 0.4
layer 5 69.6 68.7 0.7 63.3 0.5
layer 6 68.9 68.3 0.5 63.6 0.2
layer 7 69.5 68.3 1.1 63.9 0.1
layer 8 69.5 68.5 0.7 63.8 0.2
layer 9 68.4 68.4 0 64.1 0.3
layer 10 69.4 68.8 0.4 64 0.2

S
W

IT
C

H
M

L
M

+
R

E
S
B

E
R

T layer 1 68.8 68 0.6 63.2 0.4
layer 2 69.4 68.9 0.5 63.8 0.5
layer 3 69 68.4 0.4 63.4 0.3
layer 4 68.6 68.1 0.4 63.7 0.6
layer 5 68.6 68.2 0.3 63.8 0.4
layer 6 68.5 67.8 0.5 63.6 0.4
layer 7 69.9 68.1 1.3 63.6 0.5
layer 8 68.9 68.2 0.8 63.6 0.2
layer 9 69.5 68.6 0.7 62.9 0.1
layer 10 68.8 68 0.6 63.7 0.2

Table 7: RESBERT results for COMBINED-CS (HI-
EN language pair). We choose the best layer to draw a
residual connection based on the results achieved on the
Validation set of the SA Task.

D RESBERT results

Table 7 presents our results for STDMLM and
SWITCHMLM for RESBERT on all layers x ∈
{1, · · · , 10} with a dropout rate of p = 0.5.

The trend of results achieved with RESBERT clearly
depends on the type of masking strategy used. In the
case of STDMLM + RESBERT, we see a gradual
improvement in test performance as we go down the
residually connected layers, eventually peaking at
layer 10. On the other hand, we do not see a clear
trend in the case of SWITCHMLM + RESBERT. In
both cases, we select the best layer to add a residual
connection based on its performance on the SA vali-
dation set. We do a similar set of experiments for the
TA-EN language pair to choose the best layer, which
turns out to be layer 5 for STDMLM and layer 9 for
SWITCHMLM pretraining. For the language pairs
ES-EN, HI-EN (L3CUBE ), and ML-EN, we do not
search for the best layer for RESBERT. As a general
rule of thumb, we use layer 2 for SWITCHMLM and
layer 9 for STDMLM pretraining of RESBERT for
these language pairs.

1189



ACL 2023 Responsible NLP Checklist

A For every submission:
�3 A1. Did you describe the limitations of your work?

We discussed the limitations of work in section 7 of the paper.

�7 A2. Did you discuss any potential risks of your work?
Our work does not have any immediate risks as it is related to improving pretraining techniques for
code-switched NLU.

�3 A3. Do the abstract and introduction summarize the paper’s main claims?
Abstraction and Introduction in Section 1 of the paper summarize the main paper’s claim.

�7 A4. Have you used AI writing assistants when working on this paper?
Left blank.

B �3 Did you use or create scientific artifacts?
Yes, we use multiple datasets that we described in Section 3.1. Apart from the dataset, we use pretrained

mBERT and XLMR models described in Section 1. In section 3, we cite the GLUECoS benchmark to test
and evaluate our approach and the Indic-trans tool to transliterate the native Indic language sentences in
the dataset.

�3 B1. Did you cite the creators of artifacts you used?
We cite the pretrained models in section 1, the GLUECos benchmark, the Indic-trans tool, and the
datasets in section 3 of the paper.

�7 B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
No, we used open-source code, models and datasets for all our experiments. Our new code will be
made publicly available under the permissive MIT license.

�3 B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
Yes, the usage of the existing artifacts mentioned above was consistent with their intended use. We use
the mBERT and XLMR pretrained models as the base model, the dataset mentioned to train and test
our approach, GLUECoS as the fine-tuning testing benchmark, and Indic-trans for transliteration of
the native Indic language sentences.

�7 B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
We used publicly available code-switched datasets containing content scraped from social media. We
hope that the dataset creators have taken steps to check the data for offensive content.

�7 B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
No, we did not create any artifacts.

�3 B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
Yes, we report these relevant statistics for the dataset that we use in section 3.

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

1190

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/


C �3 Did you run computational experiments?
Yes, we ran computational experiments to improve the pretraining approach for Code-Switched NLU.

The description, setup, and results are described in sections 2, 3, and 4.

�3 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
Yes, we reported all these details in Appendix section A.

�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
Yes, we reported all these details in Appendix section A.

�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
We report the average F1 scores for our major experiments over multiple seeds, which we mentioned
in the result section 4. We report max, average, and standard deviation for various other experiments
in section 4 over multiple seeds. Probing tasks described in sections 4.2 and 4.3 are reported on a
single run as they involve training a small linear layer and not the full BERT/XLMR model.

�3 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
We used multiple existing packages, viz. GLUECoS, HuggingFace Transformers, and Indic-Trans.
We report the parameter settings and models in Appendix section A. We plan to release the code after
acceptance.

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
No response.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
No response.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
No response.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No response.

1191


