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Abstract

In many task settings, text classification mod-
els are likely to encounter examples from novel
classes on which they cannot predict correctly.
Selective prediction, in which models abstain
on low-confidence examples, provides a pos-
sible solution, but existing models are often
overly confident on unseen classes. To remedy
this overconfidence, we introduce Contrastive
Novelty-Augmented Learning (CoNAL), a two-
step method that generates OOD examples rep-
resentative of novel classes, then trains to de-
crease confidence on them. First, we generate
OOD examples by prompting a large language
model twice: we prompt it to enumerate rel-
evant novel classes, then generate examples
from each novel class matching the task for-
mat. Second, we train a classifier with a novel
contrastive objective that encourages lower con-
fidence on generated OOD examples than train-
ing examples. When trained with CoNAL, clas-
sifiers improve in their ability to detect and ab-
stain on novel class examples over prior meth-
ods by an average of 2.3% in terms of accuracy
under the accuracy-coverage curve (AUAC)
and 5.5% AUROC across 4 NLP datasets, with
no cost to in-distribution accuracy.'

1 Introduction

Recent progress in NLP has led to text clas-
sification models that are accurate not only
in-distribution (ID), but also on some out-of-
distribution (OOD) data (Arora et al., 2021).
Nonetheless, some categories of real-world dis-
tribution shift still pose serious challenges. For
instance, in open-set label shift (Garg et al., 2022),
the test data includes examples from novel classes
not present in the training data, making it impos-
sible for a standard classifier to predict correctly
(Scheirer et al., 2013). Moreover, novel class exam-
ples can be difficult to detect with conventional
OQOD detection methods, as they typically bear

!Code is available at github.com/albertkx/CoNAL.

a strong surface resemblance to training exam-
ples (Tifrea et al., 2021). In this paper, we frame
open-set label shift as a selective prediction prob-
lem (EI-Yaniv and Wiener, 2010; Geifman and El-
Yaniv, 2017) that we call open-set selective clas-
sification (OSSC). OSSC requires text classifiers
to predict correctly on closed-set examples while
abstaining on novel class examples.

To perform well on OSSC, a classifier must
have lower confidence on novel class examples
than closed-set examples by learning features
which differentiate novel classes from closed-set
classes (Perera et al., 2020). In order to supervise
this representation learning, it is useful to identify
what examples from novel classes might look like.
Prior work has explored automatically generating
OOD images by adding random perturbations to
ID examples (Setlur et al., 2022). Text inputs, how-
ever, are composed of discrete tokens, and modi-
fying even a single token can unpredictably alter
the meaning of a sentence. We seek an automatic
generation method that addresses these limitations,
leveraging the generative ability of large language
models (LLMs) like GPT-3 (Brown et al., 2020).
LLMs are a desirable source for novelty, as their
generation is informed by a broad corpus of ex-
amples seen during pretraining, allowing them to
reliably generate from classes outside a dataset.

We present Contrastive Novelty-Augmented
Learning (CoNAL), a method to improve the OSSC
ability of a classifier by automatically generating
OOD examples, then training to abstain on them.
To generate a diverse set of OOD examples that an-
ticipate different potential test-time shifts, we intro-
duce Novelty Prompting, a method that augments
a source dataset with novel class examples gener-
ated by a LLM. We first perform label generation,
prompting our LLM to extend the closed-set labels
with novel labels. We then prompt the LLM to
generate new examples conditioned on each novel
label to form a large set of probable novel examples.

11778

Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
Volume 1: Long Papers, pages 11778-11801
July 9-14, 2023 ©2023 Association for Computational Linguistics


https://github.com/albertkx/CoNAL

Label Generation

diverse list of news categories: ‘ ] Sports * ; .
1D Label le—} Yankees Unlikely o= = @ World Kyrie Irving e .
i ID Labels - f or] ol :
S, Q0D Labels Dy toGet DRays.. |\ /| g o returns to | :
B / i Business . ~ H
&) i5cience, cri me, travel, auto, food | — ; play in... N :
v : >
Example Generation ;
. ) ) L i
Given a label, generate a corresponding example: A N S The Caraolizal RN
new report ports
world Bush, Kerry Trade Barbs Following N LN d Galaxy Is o
™1 T — H . o
sports Yankees Unlikely to Get D-Rays Doop > from the D'OMN (g i World Y )
business  ECB sees gradual rec Canadian Food... | "~ [ . Business the... o~/
T y T n S—7 : 7

: Generation

food: N in

Novelty Prompting

CCL Training Selective Prediction

Figure 1: Contrastive Novelty-Augmented Learning pipeline. We Novelty Prompt a generator model to produce
a novel set Dogp, then train with a contrastive confidence loss (CCL) on our original train set Dy and Dogp,
ensuring that our classifier is less confident on generated novel examples than closed-set examples. Finally, we

abstain when the model is not very confident on any label.

Finally, we propose a contrastive confidence loss
(CCL) for training, which encourages both high
accuracy on the ID training set and lower relative
confidence on the generated novel examples. We
show that CCL outperforms stricter losses like Out-
lier Exposure (Hendrycks et al., 2019), which can
adversely affect ID accuracy. Our full pipeline is
shown in Figure 1. Our method can be viewed as a
form of “partial” knowledge distillation: we lever-
age an LLM “teacher model” to improve novelty
detection performance without altering the student
model’s ID classification ability.

We evaluate CoNAL against state-of-the-art
OOD detection baselines across 14 splits of 4
datasets—AGNews (Zhang et al., 2015), TREC-
10 (Li and Roth, 2002), TACRED (Zhang et al.,
2017), and Emotion (Saravia et al., 2018)—finding
that it improves both OOD detection and OSSC, by
an average of 5.5% AUROC and 2.3% in terms of
area under the accuracy-coverage curve (AUAC)
over the best prior method. These improvements
come at no cost to ID accuracy, demonstrating that
it is possible to distill novelty detection alone with-
out affecting predictive power. Finally, we analyze
the settings in which CoNAL can improve OSSC
performance. In the data dimension, scale is often
optional: with as few as 1000 generated examples,
our method outperforms vanilla training on all 4
datasets. LLM size has a larger effect on perfor-
mance: on some datasets only a sufficiently large
model can generate useful examples.

2 Problem Setting

2.1 Open-Set Selective Classification

In standard classification, an optimal model f
should predict the ground-truth label y of an in-

put example x from a closed set of known labels
Yip. However, under a more realistic open-set set-
ting, some test examples are drawn from unknown
novel classes Yoop. Without a priori knowledge
of Yoop, a standard discriminative classifier will
never correctly classify a novel example. Instead,
an optimal open-set selective classifier f should
predict y when y € Vip, and abstain otherwise.

For a probabilistic model pg(y | ) and associ-
ated confidence metric, the prediction is given by
f(x) = (9, c), where § = arg maxy,ecyy, po(y | )
and c denotes the model’s confidence. When used
as a selective classifier with threshold v, f predicts
9 when ¢ > ~ and abstains otherwise (Geifman
and El-Yaniv, 2017). This differs from OOD detec-
tion (Hendrycks and Gimpel, 2017) in that f must
abstain on both novel examples and its own errors
and must attain high ID accuracy.

2.2 Evaluation Protocol

We holistically measure selective classification
performance with the area under the accuracy-
coverage curve (AUAC). The accuracy-coverage
curve plots accuracy as a function of the fraction
of examples on which the model predicts (i.e., cov-
erage) as the confidence threshold ~ varies. For
accuracy computation, we treat predictions on all
novel class examples as incorrect. AUAC measures
the combined ability of a model in ID classification
accuracy, ID calibration, and OOD detection.
Though we deviate from prior work and report
AUAC, to demonstrate that CoNAL is still effective
at OOD detection, we also compute the Area under
the ROC (AUROC). AUROC measures a model’s
ability to detect when a test example x is of a novel
class (y € Yoop). Higher is better: 50% AUROC
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is random, and 100% is perfect.

3 Method: CoNAL

Here we describe Contrastive Novelty-Augmented
Learning, a method for automatically improving
OSSC. At a high level, we generate novel examples
and then train our model to be less confident on
generated novel examples than closed-set examples.
We first describe desiderata for useful novelty, then
introduce a two-phased novel example generation
method, Novelty Prompting, and finally introduce
a contrastive confidence loss for classifier training.
We illustrate the method in Figure 1.

3.1 Novelty Prompting

Desiderata of Novelty Generation Inspired by
previous work which utilize known, representative
OOD data to train selective prediction and OOD
detection models (Kamath et al., 2020; Hendrycks
et al., 2019), we focus on creating an generated
“novel set” that is representative of potential label
shifts at test time. The “novel set” must be (1) plau-
sible, meaning that it should bear a surface resem-
blance to the training data, e.g., we should create
news examples for a news dataset, and (2) seman-
tically novel, meaning that these examples should
be from new classes. In other words, an example
is novel if it demonstrates a semantic shift (Arora
et al., 2021), but shares non-semantic features with
examples in the training set. For example, select-
ing data from an entirely separate dataset, as is
done in Hendrycks et al. (2019), violates plausibil-
ity. Meanwhile simply editing surface features or
recombining examples as is done in mixup (Zhang
et al., 2018) might induce a distribution shift but
would not result in semantic novelty.

To satisfy these desiderata, we propose a two-
stage generation method called Novelty Prompting
(NP). To encourage semantic novelty, we first gen-
erate novel labels given a dataset’s extant labels.
We then show existing examples to a language
model (to encourage plausibility) and ask it to gen-
erate a new example conditioned on one of the new
labels. Figure 1 shows both prompt formats.

Label Generation. Though prompting with large
autoregressive language models (LLMs) like GPT-
3 has typically been explored in the context of few
and zero-shot learning to perform standard NLP
tasks (Brown et al., 2020), we find that LLMs are
also capable of “expanding” a set of topically re-
lated concepts that might realistically co-occur via

sequence continuation.

We leverage this capability to generate novel la-
bels. We prompt the largest GPT-3 model available
(Davinci) with a task-specific instruction and the
concatenation of the normalized known ()p) la-
bels.? Taking the union over continuations of one
or more novel labels [V times, we obtain a diverse
“novel label set.” We combine multiple completions
because in preliminary experiments, we observed
that single completions tend to overgenerate labels
from a narrow subcategory of classes. To remedy
concerns about data leakage due to dataset exam-
ples of the true unknown class possibly appearing
in LLM pretraining, we remove instances of the
gold novel label(s) from this set. In practice, pre-
dicting the true novel test-time labels is both per-
missible and desirable, so our experimental setup
likely underestimates our method’s performance.

Finally, we filter out generated labels that are
closely related to ID labels. For example, if joy
appears in the ID labels, we remove synonyms like
happiness. We use a large online thesaurus® to
remove synonyms from the final novel label set. We
analyze the impact of filtering in Appendix A.10.

Example Generation. To generate each novel
example, we randomly sample a novel label from
our set and prompt a LLM (we use GPT-J*) to gen-
erate an example of that label. We prime this model
with one random sampled label-example pair from
each ID class in the training dataset in the prompt,
resulting in 3-6 in-context examples, varying based
on the dataset. Providing these context pairs en-
sures that our generation is plausible: the model
is encouraged to generate a specific style of text.
We perform this generation procedure repeatedly
to form a novel example set. We show the prompt
we use for this step in Appendix A.3, and several
generated label-example pairs in Figure 2.

3.2 Contrastive Confidence Loss Training

Our second contribution is an improved loss func-
tion for training models to have lower confidence
on OOD examples than ID examples. Prior work
have used the Outlier Exposure (OE; Hendrycks

“Though this requires some human intervention, it both
(1) satisfies the true zero-shot nature of test-time label shift
as it requires no knowledge of the unknown labels and (2)
requires minimal effort, typically only involving converting
an abbreviation label such as LOC into Location.

3https: //moby-thesaurus.org/

*We evaluate GPT-3 for label generation but not example
generation, as the latter would require many more API calls.
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et al., 2019) objective, which encourages the model
f to output a uniform probability distribution over
closed-set classes when given a novel example x.
OE can be successfully applied to train models on
OOD data gathered from a different dataset (e.g.,
Wikitext), as there is very little risk of this data
overlapping with ID data. In contrast, we automat-
ically generate plausible novel examples, which
runs the risk that some novel examples will be in-
distribution. Since OE encourages models to have
the lowest possible confidence on novel examples,
it can hurt predictive accuracy when some exam-
ples x resemble closed-set examples. Instead, we
seek a solution which treats outliers flexibly.

We propose a novel contrastive confidence loss
(CCL) that encourages models to be less confident
on OOD examples than ID examples. This is a less
strict objective as models can achieve minimum
loss without predicting a perfectly uniform distri-
bution for the generated novel examples. For an
input z, let pg(y | =) be the model’s predicted dis-
tribution over Vip. Let ¢p(z) = maxyeyy, po(y |
x), the Maximum Softmax Probability (MaxProb;
Hendrycks and Gimpel, 2017), which we use as
our confidence metric. Finally, let ¢ denote the
cross-entropy loss with a one-hot target vector, and
Dip and Doop denote the training set and novel
set respectively. We define CCL as follows:

ﬁ(e) = E(ximyid)NDlD [g(pe(y | xid)vyid)]+

AE,4~ Dip zo0a~Doon [max (0, cg(Tood) — co(Tia))]-

That is, we penalize the confidence of novel
examples which have higher confidence than any
closed-set example. While this still induces our
model to learn lower confidence on novel examples,
it simultaneously permits our model to learn that
some novel examples should have lower confidence
than others, rather than learn minimal confidence
on all members of the generated novel set. In prac-
tice, we obtain an unbiased estimate of the second
term by sampling a batch of n ID and n OOD ex-
amples at each step and computing the second term
pairwise between each of the n? ID-OOD example
pairs. We arbitrarily choose A = 1.0, weighting
the two terms of the objective equally.

4 Experimental Setup
4.1 Datasets

We construct artificial dataset splits from 4 popular
NLP classification datasets by holding out one or

more labels from training and moving all exam-
ples of that label to the test split, removing classes
that are too small to yield statistical significance
in our evaluations. Specifically, we use a question
intent detection dataset, TREC-10 (Li and Roth,
2002) and construct 5 splits. We also use two pop-
ular topic classification datasets, AGNews (Zhang
etal., 2015), a news classification dataset, and Emo-
tion (Saravia et al., 2018), a tweet classification
dataset. We construct 4 splits for each. Finally, we
use TACRED (Zhang et al., 2017), a strongly class-
imbalanced sentence relation-classification dataset
with 41 possible relations. We construct a single
split where we hold out the 35 smallest classes. Ap-
pendix A.8 contains further dataset details. Results
for each dataset are averaged across all splits.

4.2 Experimental Details

For Novelty Prompting, we perform label genera-
tion using the best available GPT-3 model, GPT-3
Davinci (Brown et al., 2020) and example genera-
tion with a smaller GPT-J 6B model (Komatsuzaki,
2021). For the novel set, we perform 5 label gen-
eration iterations, then generate 100,000 examples
(after filtering). We train BERT-base classifiers
with CCL for 5000 steps and batch size n = 40.
On TACRED, we permit only generations contain-
ing exactly two entities, one a subject and the other
an object, filtering out roughly 90% of generations,
as this is a hard constraint for relation extraction.
We detail datasets in Appendices A.8 and A.9.

4.3 Baselines

We evaluate our method against baselines from
prior work, CCL baselines with other novel sets,
and Outlier Exposure (Hendrycks et al., 2019).
Though two methods (kFolden and Constrative)
can address arbitrary distribution shifts, we evalu-
ate them here only on the open-set shift setting. For
all methods, we train a BERT-base model and use
hyperparameters from the original papers unless
otherwise specified. Of the baselines, only CCL
and Outlier Exposure use explicit novel sets.
Vanilla. We evaluate vanilla cross-entropy loss
training, calculating confidence using MaxProb.
kFolden. We evaluate kFolden (Li et al., 2021),
a method that trains an ensemble of £ individual
classifiers, each trained on £ —1 labels. The average
of the ensemble probability distributions is used for
confidence computation.

Contrastive. We evaluate Contrastive OOD Detec-
tion (Zhou et al., 2021), which uses a contrastive
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objective to induce training examples of different
classes to be distant and of the same class to be near.
This sparsifies the embedding space, ensuring that
most OOD examples are far from feature repre-
sentations of ID samples. We use the supervised
constrastive loss and the Mahalanobis distance met-
ric for confidence computation, finding that this
setup performed the best on our evaluation.

CCL + Zero/Few-Shot Data Augmentation. To
measure the impact of explicitly prompting for
novel labels, we generate with an identical pre-
trained GPT-J model, but prompt with only an in-
struction and one (or zero) ID training example
from each class (See Appendix A.3 for the specific
prompt format). Essentially, we perform exam-
ple generation identically but skip label generation
entirely. We perform CCL training and MaxProb
inference. While some resultant generations will
be useful, we expect that many will not be semanti-
cally novel, resulting in strictly worse performance.

CCL + Wikitext. To measure whether plausibility
of examples impacts their usefulness for CCL, we
use an entirely different dataset, Wikitext-103, as
our novel set. Though these examples represent a
distribution shift, they do not accurately reflect the
open-set shift the classifier will encounter.

Outlier Exposure + Novelty Prompting. We
pair our novel set with Outlier Exposure (OE;
Hendrycks et al., 2019) as described in Section 3.2
and compute confidence with MaxProb.

5 Results

5.1 OSSC Results

CoNAL outperforms prior work. We report
comparisons of CoNAL against baselines in Ta-
ble 1. Broadly, we find that while baselines like
kFolden and Contrastive training struggle to con-
sistently outperform vanilla training (e.g., on TA-
CRED), CoNAL improves selective classification
over vanilla across all datasets. We outperform the
best prior method (Contrastive) by 2.3% AUAC,
and on three of four datasets, our method signifi-
cantly outperforms all prior methods. Furthermore,
we outperform kFolden by 3.6% AUAC despite
its ensemble totaling many times the capacity of
our single classifier. CoNAL also results in zero
or little accuracy drop (less than 0.2 points) for
all datasets. In Appendix A.4, we show full ID
accuracy results for all datasets.

Other choices of novel set for CCL training
can still be beneficial. Prompting with only a
task-relevant instruction (zero-shot) generates suf-
ficiently useful novel examples to slightly outper-
form the vanilla baseline by 1.5% AUAC. Using
Wikitext as our novel set performs roughly on par
with zero-shot generation: though Wikitext exam-
ples are less noisy than generations, they also tend
to be less dataset-relevant. Few-shot generation,
which generates more plausible examples, is out-
performs all prior methods, but performs worse
than Novelty Prompting on 3 of 4 datasets.

To further test the importance of novel set se-
lection, we compare with two oracle methods. In
the Gold Data setting, we use CCL with held out
data of the gold novel test class(es) as a strict up-
per bound for both label and example generation.
In the Gold Label setting, we eliminate the label
generation step, performing example generation
using the gold label alone. This setting is overly
optimistic as we cannot know what new labels will
appear at test-time.” CCL in the Gold Label setting
slightly outperforms CoNAL, but using gold novel
data can achieve much stronger OSSC.

Training loss choice matters for generated data.
Although OE training with Novelty Prompting data
improves OOD detection over vanilla, it sharply
decreases accuracy on TREC-10 (96.6% — 71.3%)
and on average by 0.6% on the other three datasets
(see Appendix A.4). In contrast, we find that CCL
training maintains accuracy on all settings (see
Appendix A.4), as it does not enforce a uniform
probability distribution on all novel set examples.
CCL with both zero- and few-shot generation out-
performs all prior methods, and our full CoNAL
method significantly outperforms prior methods on
all but one dataset. OE exhibits this issue only with
generated data: when the novel set is instead sam-
pled from held-out gold OOD data OE outperforms
CCL in AUAC and AUROC, suffering only a small
accuracy drop (an average of 0.4%).

We attribute this behavior to generation noise:
some generated examples are similar to ID exam-
ples, and thus greatly affect the model’s ID predic-
tions when training with OE. To verify this hypoth-
esis, we conduct an experiment where we train clas-
sifiers with synthetic novel sets formed by noising
heldout OOD data with various amounts of heldout

5In practice, expert knowledge of the novelty we expect to
see at test-time is sometimes available, and as shown in our
results, can be leveraged for better performance.
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AUAC (1) | TREC-10 AGNews Emotion TACRED | Average
Vanilla 89.2422 879106 90.311.0 89.640.1 89.3
Baselines kFolden 935106 85.8+1.6 90.640.9 849435 88.7
Contrastive 92.040.4 87.0+0.9 92.240.4 88.840.7 90.0
CCL + Wikitext 91.241.4 88.610.6 92.040.4 89.310.5 90.3
CoNAL CCL + Zero-Shot 92.540.8 89.1+0.4 92.640.2 88.940.4 90.8
variants and CCL + Few-Shot 93.540.3 89.7+0.3 933101 90.840.1 91.8
ablations OE + Wikitext 92.640.8 88.940.4 916106 89.840.1 90.7
OE + Novelty Prompting 83.610.4 90.6+0.2 924101 913103 89.5
Our full method CoNAL | 943102 90.510.3 9340, a0 | 923
CCL + Gold Label 94.840.3 914103 937401 91.0+0.2 92.7
Oracle methods  CCL + Gold Data } 96.640.1 93.5+0.1 94.810.2 943104 94.8
OE + Gold Data 'I' 96.510.2 94.840.0 95.240.0 96.2410.2 95.7

Table 1: OSSC Results of CoNAL. Methods listed below CoNAL are upper bounds. All outlier exposure (OE)
methods are trained on 100K outlier generations. We average over the results of 5 seeds of all splits and report
standard error of the mean in subscript. We report macro-average of all datasets in the rightmost column. Oracle
methods are marked with a 7. We find that CONAL significantly outperforms all prior methods on 3 of 4 datasets,
and both the Novelty Prompting and CCL loss components are important for strong performance.

Label Generated Example

CURIOSITY i am still interested but more in-
terested to visit the pyramids and
learn more

DESPAIR i love my friends but sometimes i
feel like im not good enough

DISAPPOINTMENT i am a human nothing is going to

keep me from flying away

Figure 2: Example novel generations for Emotion. In
this split, the gold novel label is “sadness”. Though we
remove the gold novel label before example generation,
many generations are still relevant to this label. More
generation examples are shown in Appendix A.6.

ID data. In Figure 3, we show that as the simulated
ID noise ratio increases, OE training hurts accuracy
whereas CCL models retain accuracy.

Smaller datasets suffer more. The ID accuracy
drop is most salient on TREC-10 because it is by
far the smallest dataset we consider, making it easy
for generation noise to overwhelm signal from the
train set. We conduct two experiments to show that
TREC-10 is not unique, but instead exemplifies an
inherent pitfall of OE. First, to test whether OE
noise sensitivity applies on other datasets, we con-
sider a smaller training set from another dataset.
In the first experiment of Appendix A.12, we sub-
sample AGNews training sets to smaller sizes. As
the training set becomes smaller, the ID accuracy
gap between OE and Vanilla training increases to
more than 35%. Meanwhile the ID accuracy gap
between CCL and Vanilla is less than 10% even
at small training set sizes. Our finding here is that
TREC-10 is not unique — OE can suffer from gen-
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Figure 3: Noisy novel sets hurt accuracy for OE. We
plot the ID accuracy of classifiers trained with OE and
CCL on mixtures of heldout TREC-10 OOD and ID
data as an novel set. ID accuracy with OE decreases as
we introduce more noise, while CCL stays stable.

eration noise on other datasets when the training
set size is not large enough.

Second, we show that this ID accuracy drop in-
creases as the novel set size grows, i.e., the larger
the novel set, the more noise the classifier sees in
OE training and the worse its ID predictive ability.
The second experiment in Appendix A.12 shows
that when the TREC-10 novel set (100K examples)
is much larger than the training set (2.8K exam-
ples), accuracy decreases drastically. We generally
find a negative correlation between the novel set
size and ID accuracy with OE training. In contrast,
CCL maintains ID accuracy at all novel set sizes.

CCL improves ID-OOD separability. In Ap-
pendix A.13, we show that CCL is effective at
OOD detection because it improves the confidence-
based separability of ID and OOD examples.
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AUROC (1) | TREC-10 AGNews Emotion TACRED | Average
Vanilla 76.644.4 76.411.0 85.042.4 46.310.1 71.1
Baselines kFolden 847120 7254922 853418 53.116.2 739
Contrastive 79.841.3 76.5+1.8 89.141.7 45.7+1.2 72.3
CCL + Wikitext 81.04126 78.1+0.8 90.310.8 452419 74.1
CoNAL CCL + Zero-Shot 84.841.4 78.840.8 90.7+0.7 442410 74.6
variants and CCL + Few-Shot 88.410.6 80.510.7 928105 49.7+0.3 77.9
ablations OE + Wikitext 85.041.7 783408 88.841.1 46.240.5 74.6
OE + Novelty Prompting 742405 855103 91.010.3 53.510.7 76.0
Our full method CoNAL | 908106 82.6+0.6 93.440.3 509105 | 794
CCL + Gold Label 92.040.8 84.940.4 942403 512406 80.6
Oracle methods ~ CCL + Gold Data } 98.310.3 91.7410.3 98.840.1 63.110.2 88.0
OE + Gold Data T 99.110.2 98.810.3 99.710.0 89.010.5 96.7

Table 2: OOD Detection Results of Contrastive Novelty-Augmented Learning. Methods same as in Table 1. We find
that CoNAL significantly improves OOD detection AUROC over all prior methods on 3 of 4 datasets. While OE
training results in better AUROC on some datasets, it hurts ID accuracy.
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Figure 4: Smaller generators can also help. We perform
generation with variously sized generator models, from
125M to 6B parameters. Larger generators seem to yield
better results, but even our smallest generator does well.

5.2 OOD Detection Results

To confirm that CoONAL improves a classifier’s
ability to disambiguate novel class examples, we
compare CoNAL against the same baselines on
OQOD detection in Table 2. We find similar im-
provements, outperforming the best prior method
(kFolden) by 5.5% AUROC. We interpret this result
in Appendix A.13, showing that CONAL improves
ID/OOD separability. Unlike other datasets, TA-
CRED exhibits strong OOD overconfidence: all
baselines except kFolden yield worse-than-random
OOD detection (below 50% AUROC). We hypoth-
esize that this could be due to models incorrectly
assuming that an NER tag pair seen at training time
in only a single class could not belong to a novel
relation. OOD detection on TACRED remains a
challenging goal for future work, as the strong per-
formance of CCL training with gold heldout data
indicates significant remaining headroom. In fact,
on all three other datasets, models achieve greater

98
[ Vanilla BERT-base
[ Vanilla RoBERTa
[ Vanilla DeBERTa-base
96 1 =1 Vanilla RoBERTa-large
% [ Vanilla DeBERTa-large
M 3 CoNAL BERT-base

04 | [Z3 CoNAL RoBERTa
A CoNAL DeBERTa-base
E—1 CoNAL RoBERTa-large
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Figure 5: Larger classifiers can also benefit. We addi-
tionally train ROBERTa-base and RoBERTa-large with
and without Novelty Prompted training. We find that
both classifiers improve over vanilla with CoNAL.

TREC-10

than 90% AUROC when trained with gold heldout
data. While OE results in better AUROC perfor-
mance on AGNews, ID accuracy also decreases.

5.3 Performance Analysis

Label Generator Model We investigate whether
a smaller, open-source model can suffice as the
label generator. Specifically, we replace the label
generator with GPT-J and use 100 label generation
iterations. We find that GPT-J performs on-par with
GPT-3 on 3 of 4 datasets in all metrics, except on
AGNews where it performs within 1 point AUAC.
We provide full details in Appendix A.S.

Example Generator Size. Since model scale of-
ten affects prompting performance (Sanh et al.,
2021; Brown et al., 2020), we compare genera-
tor models ranging in size from 125M parameters
to 6B parameters. For each, we generate 100K ex-
amples, and compare CoNAL results in Figure 4.
All generators improve over the Vanilla baseline.
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GPT2-Neo 125M is competitive with GPT2-Large
despite being roughly 5x smaller, suggesting that
its larger pretraining corpus (the Pile) aids genera-
tion ability. Novel generation is easier on simpler
tasks: on Emotion, where labels (or synonyms)
can appear directly in the example, inter-generator
differences are small. We posit that even larger
generators such as GPT-3 could yield better per-
formance on abstract tasks. In Appendix A.7, we
analyze the quality of generated examples.

Other Classifier Models. We investigate the gen-
eralizability of CoNAL to two other classifier archi-
tectures, ROBERTa (Liu et al., 2019) and DeBERTa-
v3 (He et al., 2021), of both base and large sizes,
with results in Figure 5. Averaged over datasets,
CoNAL improves AUAC for all classifiers, though
these improvements are most apparent with the
smaller base models. Larger classifiers are better
at OSSC: vanilla RoBERTa-large improves over
BERT-base by 2.8% AUAC. Vanilla RoBERTa-
base slightly outperforms vanilla BERT-base, but
after CoONAL training, the two perform on-par, sug-
gesting that learning from generated examples can
make up for BERT’s smaller pretraining corpus.

Generation Quota. Since large-scale LLM
prompting is costly, we analyze the performance
tradeoff of shrinking the generation quota, the num-
ber of novel examples that we can generate. In
Figure 6, we show that on some datasets, using
orders of magnitude smaller novel sets can still
improve selective prediction. For example, 1000
generations is sufficient to improve AUAC across
all datasets, and for most datasets we require far
fewer. In cases where a low quota is sufficient,
CoNAL is nearly as efficient as vanilla training.

Generation Analysis. To evaluate the remaining
errors in OOD generation, we perform two types of
manual analysis on Novelty Prompting (NP). First,
we categorize the labels generated by NP after fil-
tering, finding that 70%+ of GPT-3 generated labels
are novel on all datasets except TREC-10, where
only 40% are novel, and the vast majority of the
others are valid closed-set labels. This highlights
one source of generation noise in our pipeline. Sec-
ond, we categorize the examples generated by NP
and a strong baseline method, Few-shot data aug-
mentation (FS). Specifically, for each of the 4 splits
of AGNews, we annotate 100 NP and 100 FS ex-
amples. On average, 41% of NP generations come
from novel classes, compared to only 26% of FS

generations, explaining CoNAL’s stronger perfor-
mance over CCL + Few-Shot. We provide further
analysis in Appendix A.7. Our method performs
well despite the high fraction (50.5%) of closed-set
examples generated in NP, showing that CCL is
robust to noise in the example generation process.

6 Related Work

6.1 Identifying OOD Data

OOD Detection. Prior work on OOD detection
uses models to detect test examples that come
from a new distribution (Hendrycks and Gimpel,
2017). Many of these introduce new training ob-
jectives, e.g., with a contrastive objective (Winkens
et al., 2020; Sehwag et al., 2021; Zhou et al., 2021).
When the nature of the distribution shift is known,
the model can directly be trained to be uncertain
on known OOD examples (Dhamija et al., 2018;
Hendrycks et al., 2019). We draw on the success of
these known-shift methods, but eliminate the need
for known OOD data by using generative models.

Other works on OOD detection have explored
alternative modeling paradigms. Ensembles of
neural networks can yield useful confidence esti-
mates (Tifrea et al., 2021; Li et al., 2021; Lakshmi-
narayanan et al., 2017), as can simple methods like
deep nearest-neighbors (Sun et al., 2022; Bergman
et al., 2020). Further performance improvements
can be achieved by modifying the confidence met-
ric. Podolskiy et al. (2021) find that Mahalanobis
distance better exploits the geometry of the learned
embedding space, explaining strong performance
achieved by replacing probability-based scoring
mechanisms (Lee et al., 2018; Ren et al., 2021).
We show that standard models are sufficient: Max-
Prob scoring with a standard classifier can perform
well when given proper OOD demonstrations.

OOD Selective Prediction. Selective prediction
work focuses on a different paradigm altogether,
fusing abstention (detection) with prediction (El-
Yaniv and Wiener, 2010; Geifman and El-Yaniv,
2017). External calibrators popularized by Kamath
et al. (2020) have become popular as a selective
prediction framework (Zhang et al., 2021; Ye and
Durrett, 2021; Varshney et al., 2022). However, cal-
ibrators are typically smaller than classifier mod-
els (Tajwar et al., 2021); we instead update the
higher-capacity classifier model to better leverage
of our large set of generated outliers.
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Figure 6: Selective prediction performance is positively correlated with generation quota. We measure selective
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datasets, even a low quota can meaningfully improve AUAC.

6.2 Open-Set Classification

Open-set classification is well-explored in the im-
age classification space, as tasks like CIFAR-100
tend towards large label spaces (Scheirer et al.,
2013; Geng et al., 2021). Some methods for detect-
ing open-set examples build on the classifier, e.g.,
by classifying over the model’s activations (Ben-
dale and Boult, 2016) or adding an additional recon-
struction model (Oza and Patel, 2019). Our work
is most closely related to methods that generate
near-OOD examples and regularize confidence on
them (Ge et al., 2017; Du et al., 2022; Kong et al.,
2020; Vernekar et al., 2019; Moller et al., 2021;
Setlur et al., 2022). However, methods like pertur-
bation and embedding space sampling align poorly
with the discrete nature of text, prompting us to
investigate powerful generative language models.
Esmaeilpour et al. (2022) is closely related to our
work in that they also generate novel labels, but
directly use these labels as input to a classifier.
Open-set classification for text has been less ex-
plored. Early works built upon the k-way, 1-vs-
rest paradigm of SVMs, classifying an example as
“novel” if all k scores fall below a threshold (Fei
and Liu, 2016; Shu et al., 2017; Doan and Kalita,
2017). Some works explore similar methods as
prior vision work, but focus on the intent detection
setting, as task-oriented dialogue models should ab-
stain on unknown intents (Zeng et al., 2021; Zheng
et al., 2020; Lin and Xu, 2019). To the best of our
knowledge, we are the first work to generate novel
examples for open-set text classification.

6.3 Data Augmentation

Finally, our generation method, Novelty Prompting,
relates to prior work in using pretrained language
models for data augmentation. Kumar et al. (2021)
proposes directly conditioning on class labels to

generate relevant class examples, which forms a
component of our prompting approach. Anaby-
Tavor et al. (2020) finetunes a class-conditional
generator on a given dataset to yield more relevant
generations, though we consider prompting instead
of finetuning as a method to prime for relevance.

7 Discussion and Future Work

In this work, we introduce CoNAL, a method for
generating novel examples which simulate open-
set shift and training to abstain on them. Through
extensive experiments, we demonstrate that by pre-
senting generated examples to a classifier, we can
significantly improve its ability to abstain on exam-
ples from novel classes against state-of-the-art base-
lines. Our work provides a generalizable frame-
work for improving OSSC and OOD detection: in
fact, we show through CCL training’s strong per-
formance with gold data that there remains head-
room for novel example generation. Additionally,
CoNAL is modular, as it provides additional su-
pervision signal but does not alter the classifier’s
architecture. It thus remains extensible with other
training objectives or classification metrics. Fi-
nally, automatically diagnosing dataset issues and
improving them is an important step towards mak-
ing NLP safer and easier to apply. CoNAL al-
lows practitioners to deal with noise introduced
by LLM-generated data and apply these generated
datasets in settings like open-set selective classifi-
cation. The success of our method indicates that
LLMs can be used to improve datasets with min-
imal human intervention. Given interest in the
emergent capabilities of LL.Ms, we hope that fu-
ture work on classification in the presence of dis-
tribution shifts can better leverage large language
models to both directly identify shifts and improve
the abstention ability of smaller classifiers.
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Limitations

Despite the fact that we demonstrate strong OSSC
performance with low generation quotas in Ap-
pendix 5.3, CoNAL still is slightly more compu-
tationally expensive than vanilla training. It also
requires access to a pretrained LLM with which
to generate novel examples. To achieve optimal
performance, usage of the OpenAl API is required,
which poses some concerns around transparency, as
details around GPT-3 training and data are not pub-
licly released. Finally, performance varies across
datasets, suggesting that types of outliers that are
unexpected to LLMs might still confuse a CoNAL-
trained model.
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A Appendix
A.1 Computational Budget

As we did not closely track the total amount of com-
putational resources used, we provide our best es-
timate. All experiments were completed on 12GB
1080Ti and 48GB RTX8000 GPUs. We did not
perform any hyperparameter search.

We note that computation time for CoNAL is
divided into two components, example generation
and classifier training. We provide two examples
of the computational budget for generation. When
using GPT-3 as a label generator, label generation
costs several cents using the text-davinci-002
endpoint, and example generation with GPT-J 6B
takes several hours on a 48GB RTX8000 GPU.
We show in Appendix 5.3 that we can generate
many fewer examples and still achieve strong per-
formance, in which case generation would require
orders of magnitude less time.

Classifier training for a bert-base-cased
model takes approximately 30 minutes on a 12GB
1080 Ti GPU. For reference, vanilla training takes
about half this time, as CoNAL must compute
losses for a pair of batches at each training step.

A.2 Code Release

Code for replicating all experiments is released on
Github at github.com/albertkx/CoNAL under an
MIT license.

A.3 Prompt Format

We use the same format for label generation for
all datasets, shown in Figure 7, but customize the
instruction for each dataset, as shown in Figure 8.

For example generation, we prompt with an ex-
ample sampled from each class and a random novel
label. We use the same instruction for all datasets.
An example prompt is shown in Figure 9.

Few-shot prompting is done with a task-specific
instruction, but does not include labels, as shown
in Figure 10. Zero-shot prompting is done with the
task-specific instruction only.

A.4 Full Accuracy Results

CoNAL improves AUAC on all datasets without
any cost to ID accuracy, as shown in Figure 11. We
show full ID accuracy results in Table 3. CCL
training maintains accuracy across all datasets,
while OE training decreases accuracy on 3 of 4
datasets, with a very sharp drop on TREC-10. In
Appendix A.12, we show thorough analyses on
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Instruction

Generate a diverse list of news genres:

ID Labels [World, Sports, Sci/Tech,
Figure 7: Label Generation prompt for AGNews.
Dataset Instruction
Emotion  Generate a diverse list of emotions
AGNews Generate a diverse list of news genres
TREC-10 Generate a diverse list of entity types
TACRED Generate a diverse list of relations between entities

Figure 8: Label Prompts for each Dataset.

two datasets that this steep accuracy drop is not
an anomaly: when paired with generated data, OE
training is sensitive to the sizes of the novel set and
training set, and can signficantly hurt ID accuracy
when the novel set is much larger than the training
set. Additionally, despite improving selective pre-
diction performance, training with gold held-out
data curiously hurts accuracy on TACRED.

A.5 CoNAL performs well without GPT-3

In our main experiments, we use GPT-3 as the label
generator and GPT-J 6B as the example generator.
In Section 5.3, we show that smaller models can be
used as example generators. Here we investigate
whether a smaller, open-source language model can
be used as a label generator. In Table 12, we show
that GPT-J 6B also performs well at label genera-
tion. We empirically observe that GPT-J generates
shorter and noisier completions, requiring us to in-
crease the number of model calls from 5 to 100 and
filter out all labels containing punctuation marks.
After applying these tweaks, we find that the differ-
ence between GPT-J and GPT-3 label generation in
AUAC is small on 3 of 4 datasets, and differs by
only 0.7 on AGNews, suggesting that CONAL with
GPT-J only can still work well.

A.6 Generation Examples

We show examples of the generations from Novelty
Prompting for AGNews in Table 4. Recall that we
do not allow the gold novel label to be generated
to hedge against data leakage from LLM pretrain-
ing. However, we observe that our generator is
still capable of producing relevant examples to the
gold novel label due to signal from similar novel
labels. Despite many generations not being directly
relevant to the gold novel label, we observe that the
generated novel labels are sufficiently distinct from

the closed-set labels that most generated examples
still provide useful “novelty” supervision signal to
the classifier.

A.7 Novelty Prompting Error Analysis

Though CoNAL improves OSSC ability on all
datasets, we still find headroom between Novelty
Prompting generated data and gold OOD data (92.3
— 94.8) in Table 1. To understand the remaining
failure modes of Novelty Prompting, we manually
inspect the generated labels and examples from
our method. Broadly, we seek to attribute “gen-
eration noise,” or the frequency with which the
purported novel sets which we generate instead
contain closed-set class examples.

First, we manually annotate GPT-3 generated la-
bels from all dataset splits, categorizing a label into
“implausible” if it does conform to the dataset’s
format, “closed-set” (ID) if it is synonymous with
a class seen in training, and “novel” (OOD) if it
describes a class distinct from all closed-set classes.
In Figure 13, we perform this analysis for all four
datasets. Across all datasets, less than 15% of gen-
erations are implausible, suggesting that the model
is usually able to generate reasonable additional
labels given only 3-6 ID classes. We also observe
that while on 3 of 4 datasets less than 15% of gener-
ated classes are closed-set, on TREC-10 more than
half of generated labels are closed-set. One reason
for this label generation noise is that the TREC-10
labels are very broad (e.g., “entity” describes ques-
tions about any subcategory of an entity, including
all objects and events), so while a generated label
might differ in definition, it could still overlap with
or fall into a subcategory of a closed-set class.

Second, we manually annotate GPT-J generated
examples to understand whether example genera-
tion is a source of generation noise. In Figure 14,
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Instruction Given a label, generate a corresponding example:

ID Label 1 business

ID Example | Starwood Names New Chief Executive SEPTEMBER 21, 2004

1 - White Plains, NY - Former Coca-Cola Company president
Steven Heyer today was named the new chief executive of
Starwood Hotels, effective Oct. 1. Heyer succeeds Starwood
founder Barry

ID Label 2 sports

ID Example | Marino, Young Considered for Hall of Fame Dan Marino and

2 Steve Young highlighted a list Friday of 25 candidates for
the Pro Football Hall of Fame.

ID Label 3 world

ID Example | Afghan warlords ’threaten poll’ Afghan warlords are

3 involved in intimidation which could threaten October’s
elections, Human Rights Watch says.

Novel Label | entertainment

Figure 9: Example Generation prompt for AGNews.

Instruction Generate a news headline:

ID Example | Starwood Names New Chief Executive SEPTEMBER 21, 2004

1 - White Plains, NY - Former Coca-Cola Company president
Steven Heyer today was named the new chief executive of
Starwood Hotels, effective Oct. 1. Heyer succeeds Starwood
founder Barry

ID Example | Marino, Young Considered for Hall of Fame Dan Marino and

2 Steve Young highlighted a list Friday of 25 candidates for
the Pro Football Hall of Fame.

ID Example | Afghan warlords ’threaten poll’ Afghan warlords are

3 involved in intimidation which could threaten October’s
elections, Human Rights Watch says.

Figure 10: Few-Shot Generation prompt for AGNews.

we annotate 100 examples of each split of AGNews
for both Few-shot data augmentation and Novelty
Prompting. We observe that Novelty Prompting
generates novel class examples more frequently
across 3 of 4 splits. Both methods generate im-
plausible (e.g., agrammatical, non-news) examples
rarely, as ID demonstrations sufficiently prime the
model to generate text in the style of news. Addi-
tionally, under Novelty Prompting, we find that the
fraction of novel class examples (41.3%) is much
lower than the fraction of novel labels generated
(81.7%), suggesting that GPT-J can easily adhere
to the dataset format, but struggles to extrapolate
to the novel label. Future work should thus focus
on better specifying the example generation step to
leverage the generated labels.

A.8 Dataset Split Details

TREC-10: We remove the Abbreviation class
as it is too small to yield statistically significant
metrics in our task setting, leaving 5 remaining
classes.

Emotion (Saravia et al., 2018): We remove two
small classes, love and surprise, leaving 4 re-
maining classes.

TACRED (Zhang et al., 2017): We process the
data for training following Joshi et al. (2019). This
dataset is particularly challenging due to its class-
imbalanced nature. We evaluate a single split where
we keep the 6 largest classes as ID data, and hold
out the other 35. This is the largest class, and thus
results in approximately 80% of examples being
OOD at test time.
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Figure 11: CoNAL training maintains ac-
curacy. Training with novelty prompted
examples does not significantly alter ID
accuracy, but improves selective predic-
tion across all datasets.

@) | TREC-10  AGNews  Emotion  TACRED | Avg
é AUAC 89-2i2.2 87-910,6 90-3i1.0 89.610.1 89.3
‘E AUROC | 76.614.4 76.441.0 85.042.4 463401 | 71.1
> ID Acc 96.640.2 96.140.0 97.7+0.1 95.040.1 96.4
o AUAC 94.340.2 90.5+0.3 934401 91.140.2 92.3
E AUROC 90.840.6 82.610.6 9344103 50.940.5 79.4
O ID Acc 96.410.2 96.210.0 97.840.1 9494101 96.3
- AUAC 942403 89.840.3 93.54+0.1 91.040.2 | 92.1
£ AUROC | 90.010.6 80.8+0.6 93.510.3 50.440.4 78.7
O IDAcc 96.410.1 96.240.0 97.940.1 94.940.0 96.4

Figure 12: GPT-J is also a strong label generator. We compare
label generation using GPT-3 and GPT-J, using GPT-J as the example
generator for both methods. GPT-J performs within a negligible
margin of GPT-3 on TREC-10 and Emotion, but slightly worse on
AGNews and TACRED.

Dataset Label Type Frequency \ Example Label = mf:y";mmmg = gf;vif;:scm
Implausible 7.8% August 27 2 00] — - T e
TREC-10  Novel 40.0% | time N7 . ]
Closed-Set 52.2% person & 80 % -
Implausible  14.9% | ology 3ol | K
AGNEWS  Novel 81.7% food s -
Closed-Set 3.3% technology g 0 /1 V]
Implausible 5.1% app “ 2 % =
EMOTION  Novel 83.9% serenity -
Closed-Set 11.1% frustration 0 World Sports Business Sci/Tech
Implausible 14.3% uvalifications Pt
TACRED  Novel 73.6% parent company ) .
Closed-Set 12.1% current location Figure 14: Error Analysis on Example Gener-
ation. For each split of AGNews, we manually
Figure 13: Error Analysis on Label Generation. We manually annotate 100 generations each for two gener-
annotate generated label sets across all splits of each dataset, ation methods and compute the frequency of

recording the frequency of novel and plausible labels.

novel class examples, closed-set class exam-
ples, and implausible examples.
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ID Acc (1) TREC-10 AGNews Emotion TACRED
Vanilla 96.6i0,2 96. lio,g 97-7i0.1 95-0i0.1
kFolden 96.540.1 96.010.1 972102 88.3410.0
Contrastive 953401 96.010.9 98.040.1 94.81 0.9
CCL + Wikitext 96.610.1 96.110.1 97.640.1 94901
CCL + Zero-Shot 96.510.2 96.3100 97.640.1 949409
CCL + Few-Shot 96.340.2 96.1400 97.840.1 94.840.2
OE + Wikitext 96.610.2 96.110.0 97.6101 94.8401
OE + Novelty Prompting 71.3109 95.640.0 96.41 .9 94.81 0.9
CoNAL | 96440, 96.2+0.0 97.840.1 94.940.1
CCL + Gold Label t 96.510.2 96.119.0 97. 74101 949401
CCL + Gold Data "' 96.0:|:0,2 95.8:|:0,1 97.6:|:0,1 93.8:|:0,1
OE + Gold Data 96.4401 958400 979101 93.640.2

Table 3: Full Accuracy Results of Contrastive Novelty-Augmented Learning

A.9 TACRED Processing Details

We perform label normalization, removing
underscores and prefixes, e.g., converting
per : employee_of into employee of. This both
helps the label generator model understand our
label space and generate more relevant novel
labels and ensures that generated novel labels
are well-formatted for downstream example
generation.

For examples, we normalize the Subject and Ob-
ject token tags into a standard English equivalent
containing the subject or object indicator and the
NER tag, e.g., [subject : person]|. To ensure that
generated examples satisfy the task format, we fil-
ter out examples that do not contain exactly one
subject and one object (many generations contain
partial or malformed indicator/NER spans). Finally,
we denormalize tags back into original model input
tokens.

A.10 Label Filtering

After label generation, we perform synonym filter-
ing to reduce occurrences of ID synonyms. We
find this step to have a large impact on datasets for
which labels are common English words which ap-
pear in our thesaurus, and less where label names
are more abstract. For example, for Emotion and
TREC-10 , where dataset names are words such
as “fear” or “human,” filtering removes 21% and
20% of generated labels respectively. Meanwhile
on both AGNews and TACRED, label filtering re-
moves only 2% of labels. In the case of AGNews,
news genre overlaps are not easily captured by syn-

onyms, and even after normalization, many TA-
CRED labels such as “employee of” do not appear
in our thesaurus.

A.11 Label Smoothing performs poorly.

We evaluate label smoothing (LS) (Miiller et al.,
2019) as an additional baseline for improving
OSSC, which mirrors vanilla training but alters
the one-hot target vector to a “smoother” version,
incentivizing uncertainty. Label smoothing has
been shown to be effective in domain shift detec-
tion (Kong et al., 2020). We use label smoothing
factor a = 0.1 and calculate confidence with Max-
Prob. In Table 5, we show that label smoothing
performs poorly in our setting. While it does not
affect classifiers’ ID accuracy, it significantly de-
creases AUROC on all but one dataset (TREC-10),
where it still remains worse than CoNAL and all of
our data generation baselines.

A.12 Outlier Exposure is sensitive to
generated data

In the setting where Outlier Exposure is origi-
nally evaluated, access to some known OOD data
(e.g., Wikitext) is assumed (Hendrycks et al., 2019).
However in our setting, where we generate a poten-
tial novel set, there is no guarantee that the gener-
ated examples are indeed OOD. For example, we
show in Appendix A.7 that less than 50% of NP
generations for AGNews come from novel classes.
Without this guarantee, more generated data is not
always better when training with OE. One risk of
using more generated novel data is that the model
will see a large number of ID examples in the novel
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Generated Label

Generated Example

WORLD

HEALTH

TRAVEL

POLITICS

The Top 5 Places to Take a Break From the Rat Race This
summer could be the best one in years to take a break and
recharge the ol’ batteries.

U.S. Airlines Say They Won’t Raise Rates to Pay for the New
Security Fee and The government, for its part, has set a deadline
for some of the other fees at the beginning of this month.

The Real Reason Republicans Cautiously Endorse the *Obscure’
Paul Ryan - CNN Politics If we’re going to pick fights with the
other party, we might as well pick fights with the right people.

SPORTS

ENTERTAINMENT

FASHION

CRIME

David Beckham And Victoria Beckham Are Exiting The London
Home They Have Shared With The NBA Star. LONDON (AP) -
David Beckham has been kicked out of the house that he shared
with his British soccer team, the Los Angeles Galaxy. The couple
and the couple’s kids are moving into an apartment

In search of fashion in South Africa What will the fashion world
be wearing next year? Will the world need another white wed-
ding dress?

The Police Are Going To Find You a Lot Easier in the Future:
Security Advances of 2008 (Video) The police are going to find
you a lot easier in the future: Security advances of 2008

BUSINESS

FOOD/DRINK

WEATHER

RELATIONSHIPS

How to Make a Fried Sausage Slider (Fast) - YouTube A couple
of weeks ago, I made a fried sausage slider and they’re awesome!
A few friends have asked me to go through this again but in a
shorter time to make up a batch quickly for them.

Snowstorm Blasts Northeast with Another Round of Winter
Storms to Leave Snow, Ice and Blowdowns A big nor’easter is
expected to bring sleet, ice and another round of dangerous wind
gusts around New Year’s Eve. Winter storms are expected to roll
through Wednesday and Thursday in the

AP - Michael Phelps and his wife will be moving back to Wash-
ington State from Arizona while he finishes his Olympic career.

SCI/TECH

LIFESTYLE

ENTERTAINMENT

TECHNOLOGY

A new batch of Apple iPhone 3Gs have gone up for sale in the
UK, with all six major networks now having a network price.
Apple unveiled the 3Gs on Wednesday, making a number of
changes to the device, which is expected to be hugely popular in
the market.

THE FILM: JERSEY GIRL "Jersey Girl" tells the story of the
love-hate relationship between an Irish-American girl from New
Jersey and a native New Jerseyan. Directed by Elizabeth Swados.
Yahoo Japan to buy a majority stake in Nikkei Corp Yahoo Japan
Corporation announced it plans to buy a 69.8 per cent stake of
Nikkei for 1.43billion, the two companies said Friday.

Table 4: Example novel generations for AGNews.

set relative to in the training set. We conduct two
experiments to analyze the impact of novel set size
relative to training set size.

First, we vary the novel set size relative to the
training set size. In Figure 15, we train with novel
sets on TREC-10 from size 0 to 100K using both
OE and CCL. We observe that training with OE
hurts accuracy and AUROC when the novel set is
larger than 100 examples, whereas CCL continues
to improve as the novel set size grows, and main-
tains accuracy for all novel set sizes. As the novel
set becomes larger than the size of the training set
(to the right of the dashed line), both OOD detec-
tion AUROC and ID accuracy quickly decrease.
This result suggests as the ID noise the classifier

sees in OE training outsizes the training set, its ID
predictive ability worsens.

Of the datasets in our experiments, TREC-10 is
by far the smallest, with only about 2800 training
examples per split. To determine whether OE is
also sensitive to the size of the ID set, we subsam-
ple the AGNews dataset into smaller training sets
and perform OE and CCL training with 100K-sized
novel sets. We compare the results against Vanilla
training with the same ID sets in Figure 16. Al-
though reducing the training set size decreases the
ID accuracy even for vanilla training, CCL training
achieves similar accuracy for all subsampling sizes.
We do observe that a sub-10% accuracy margin ap-
pears between vanilla and CCL at extremely small
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@) | TREC-10  AGNews Emotion ~ TACRED | Avg
=  AUAC 89.242.2 8794106 90.311.0 89.640.1 89.3
'g AUROC | 76.6414.4 764410 85.042.4 46.310.1 71.1
> ID Acc 96.640.2 96.110.0 9774101 95.040.1 96.4
AUAC 90.6+1.6 83.541.4 82.041.7 87.1+1.0 85.8
Y AUROC | 805437  729+117 751103 412404 | 674
ID Acc 96.7+0.2 96.2410.0 97.7+0.1 95.040.1 96.4

Table 5: Label Smoothing (LS) hurts AUROC and AUAC on all but one dataset.

training set sizes, though this margin disappears at
1000 or more training examples. OE, meanwhile,
decreases ID accuracy by as much as 35% when the
dataset is subsampled to 30 examples, and 25%+
at 300 examples. OE-trained classifiers are also
worse OOD detectors given limited training data:
they underperform vanilla classifiers for all training
sets smaller than 3000 examples. Finally, we find
that OE does yield better OOD detectors than CCL
for sufficiently large AGNews training sets. This
expands on our findings in Table 2, suggesting that
when there is access to a large amount of training
data, in this case 10000 examples are more, OE can
learn from noisy novel sets (though ID accuracy
still decreases). Our results indicate that TREC-10
is not alone: As training set size becomes smaller,
the ID classes becomes less well-specified, and ID
examples present in the novel set induce the model
to make incorrect predictions (and poor confidence
estimates) on true ID test examples.

A.13 CoNAL and Separability

To understand why CoNAL improves AUROC, we
compare the confidence profiles of a vanilla fine-
tuned classifier against those of a CoNAL trained
classifier. Specifically, in Figure 17, we select 50
random ID examples and 50 random OOD exam-
ples from each dataset split and compute MaxProb
confidences. We find that CoONAL decreases confi-
dence on OOD examples, though not to the same
extent on all examples. In datasets like TREC-10
and Emotion where CoNAL achieves stronger AU-
ROC gains, the decrease in OOD confidence is
more pronounced. Though ID test examples also
decrease in confidence on all dataset splits, this
decrease is less pronounced and is likely due to the
confidence contrastive objective term incentivizing
the model’s confidence distributions to be generally
less peaked.

The shifts reflected in the confidence distribu-
tions directly impact the separability of OOD and
ID examples. On the Vanilla model confidence axis,

it is difficult to identify a threshold above which
most examples are ID and below which most exam-
ples are OOD. Given CoNAL confidences, OOD
and ID examples are more separable. This visual
separability is reflected in the OOD Detection AU-
ROC metric.

To demonstrate the strictness of the OE objec-
tive, we plot the confidences of the same examples
without (Vanilla) and with OE training in Figure 18.
First, we observe that the vast majority of OOD ex-
amples have similar confidence after OE training,
as they are all pushed towards minimum confidence
(maximum entropy). Second, we observe that OE
affects the confidence of ID test examples, decreas-
ing the confidence of some examples lower than
that of OOD test examples.

A.14 Measuring Data Leakage in Generation

In our experiments, we explicitly forbid the gold
novel class from being generated, such that the
LLM is disincentivized from generating gold novel
examples if the dataset has been seen in pretrain-
ing. However, it remains possible that if the LLM
had seen the task data in pretraining, it could repli-
cate parts of or an entire example from the dataset
in generations. Unfortunately, as we do not have
access to GPT-3 pretraining data, we cannot deter-
mine whether or not this is indeed a risk. Instead,
we probe whether this is a possiblity via an n-gram
overlap metric comparing the similarity between
our generated examples and the test set.
Specifically, we measure the average fraction of
n-grams in a generation that also appear in the test
set, which we interpret as the maximal frequency
that the LLM could have copied test data via pre-
training leakage. For comparison, we compute
the same metric between the test set and heldout
novel class data. In this case, examples are sam-
pled from exactly the same distribution and thus
expected to exhibit some n-gram overlap due to
shared background features. We use this value as
a baseline: generation n-gram overlap should be
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Figure 15: Outlier Exposure is sensitive to the size of the novel set on TREC-10. We vary the novel set size from 0
to 100K, finding that both accuracy and AUROC decrease with as few as 100 novel generations. We indicate with a
dashed line the point where the novel set and training set size are approximately equal.
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Figure 16: Outlier Exposure disproportionately hurts smaller datasets. We subsample the training set for AGNews,
use 100K novel generated examples, and vary the training loss. We find that CCL achieves similar ID performance
as Vanilla at all training set sizes, but OE hurts accuracy when the training set is smaller than 1000 examples.

similar to or lower than heldout n-gram overlap.
We find in Table 6 that the n-gram overlap of our
novelty prompted generations is lower across all
datasets and values of n than of the heldout set,
indicating that the performance of CoNAL should
not be attributed to example data leakage.
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Figure 17: CoNAL improves the separability of ID and examples. We plot the confidences of 50 random ID
and 50 random OOD examples on a vanilla finetuned BERT classifier versus a CoONAL trained BERT classifier.
CoNAL successfully decreases the confidence of OOD test examples while minimizing the impact of the confidence
of ID test examples.
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examples, but unfortunately also decreases confidence on ID
examples. We plot the confidences of 50 random ID and 50 random OOD examples on a vanilla finetuned BERT
classifier versus a NP+OE trained BERT classifier. We also observe that ID examples exhibit a large confidence
distribution after OE training: some ID examples have similar confidence as OOD examples. Note that the axis
limits on these plots differ from the axis limits on Figure 17, as confidences in general are much lower.
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(%) n= \ 2 3 4 5 6 7
Generation | 61.6 234 8.8 4.1 2.2 1.3

AGNews  pildout | 704 367 204 131 90 67
Generation | 462 214 103 41 17 07
TREC-10 pjdout | 475 239 111 51 26 14
Emotion Generation | 56.8 20.8 6.5 1.7 0.4 0.1
Heldout | 593 263 109 37 11 03
Generation | 86.8 68.1 572 479 402 329
TACRED  pidout | 872 723 636 582 542 505

Table 6: Novel generations have lower n-gram overlap with the test set than heldout novel class examples. We
measure the percent of generation n-grams which appear in the test set, comparing this against a baseline of heldout
novel class examples. Across all dataset and measured values of n, we find this overlap to be lower than baseline.
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[l B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
Not applicable. Left blank.

L1 B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.

Not applicable. Left blank.

C ¥ Did you run computational experiments?
Section 4.2, Section 5, Appendix A.1, A.9, A.10, A.11
¥ C1. Did you report the number of parameters in the models used, the total computational budget

(e.g., GPU hours), and computing infrastructure used?
Section 4.2, Appendix A.1

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on Al writing
assistance.
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v C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
Section 4.2, Appendix A.1, A.9, A.10, A.11

v C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?

Table 1. Table 2. Table 3. Table 5. Figure 6. Figure 12. We report the average over multiple seeds on
all tables, and report standard error in subscript.

0 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?

Not applicable. Left blank.

D Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

[l D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
Not applicable. Left blank.

L1 D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?

Not applicable. Left blank.

0J D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
Not applicable. Left blank.

[ D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
Not applicable. Left blank.

(] D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
Not applicable. Left blank.
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