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Abstract

The BLOOM model is a large publicly
available multilingual language model, but
its pretraining was limited to 46 languages.
To extend the benefits of BLOOM to other
languages without incurring prohibitively large
costs, it is desirable to adapt BLOOM to new
languages not seen during pretraining. In this
work, we apply existing language adaptation
strategies to BLOOM and benchmark its
zero-shot prompting performance on eight
new languages in a resource-constrained
setting. We find language adaptation to be
effective at improving zero-shot performance
in new languages. Surprisingly, we find that
adapter-based finetuning is more effective
than continued pretraining for large models.
In addition, we discover that prompting
performance is not significantly affected by
language specifics, such as the writing system.
It is primarily determined by the size of the
language adaptation data. We also add new
languages to BLOOMZ, which is a multitask
finetuned version of BLOOM capable of
following task instructions zero-shot. We find
including a new language in the multitask
fine-tuning mixture to be the most effective
method to teach BLOOMZ a new language. We
conclude that with sufficient training data lan-
guage adaptation can generalize well to diverse
languages. Our code is available at https:

//github.com/bigscience-workshop/

multilingual-modeling.

1 Introduction

Although access to transformer-based language
models has expanded greatly over the past several
years (Black et al., 2021; Wang and Komatsuzaki,
2021; Artetxe et al., 2021; Black et al., 2022;
Zhang et al., 2022), these technologies are over-
whelmingly concentrated in a few high resource

∗Corresponding author: contact.yong@brown.edu

languages (Talat et al., 2022). BLOOM (Scao et al.,
2022), the largest publicly available multilingual
language model to date with 176B parameters, cov-
ers only 46 natural languages and even excludes
high-resource languages such as Korean and Rus-
sian which has tens of millions of speakers. This
limitation was driven by a number of factors, most
notably only considering languages for which the
community had enough expertise to manually vali-
date the data quality (Kreutzer et al., 2022), dedu-
plicate and remove personally identifiable infor-
mation (Laurençon et al., 2022) and had sufficient
access to licensed unlabeled text (Joshi et al., 2020).
All of these factors are contingent facts about the
group that trained the model, and leave open the
idea that other researchers could contribute more
languages. As regularly retraining such a model is
prohibitively expensive, the question of whether
this model can be productively adapted to under-
stand additional languages after training becomes
pressing.

We hypothesize that language adaptation sce-
nario is especially interesting for low-resource lan-
guages that would benefit from knowledge transfer.
Therefore, we adapt BLOOM models to support
eight new languages (German, Russian, Bulgar-
ian, Thai, Turkish, Greek, Korean, and Guarani) in
the resource-constrained settings, where we only
use a limited amount of samples (maximum 100K
samples) for each language. We evaluate their zero-
shot prompting on various NLU tasks after adap-
tation. The new languages cover both seen and
unseen scripts in the pretraining data, and they dif-
fer in their language families and word orders. We
benchmark existing language adaptation methods,
such as continued pretraining and MAD-X (Pfeiffer
et al., 2020), as well as a state-of-the-art parameter-
efficient transfer learning method, (IA)3 (Liu et al.,
2022).
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Current work on adapting large multilingual
models has mostly explored continued pretrain-
ing (Müller and Laurent, 2022; NovelAI, 2022;
De la Rosa and Fernández, 2022) of EleutherAI’s
GPT-J-6B (Wang and Komatsuzaki, 2021). More-
over, Ebrahimi and Kann (2021) showed that con-
tinued pretraining outperforms other strategies
for adapting small/medium-sized language mod-
els (i.e., models with fewer than one billion pa-
rameters). However, our experiments demonstrate
that, for large language models such as BLOOM
with comparable sizes to GPT-J-6B, continued pre-
training underperforms adapters under a resource-
constrained setting. In addition, our work focuses
on studying the effects of language adaptation on
prompting, which has been underexplored in previ-
ous language adaptation work (Ebrahimi and Kann,
2021; Ansell et al., 2022; Parović et al., 2022;
Pfeiffer et al., 2022). Prompting can benefit many
languages that lack large amounts of labeled data
as it allows language models to generalize to a
wide range of tasks with significantly less training
cost and data than full finetuning (Liu et al., 2021;
Le Scao and Rush, 2021).

1.1 Our Contributions
Our work is the first to explore the scaling ef-
fects of language adaptation strategies for lan-
guage models with billions of parameters under
a resource-constrained setting. Contrary to prior
work on small/medium-sized multilingual masked
language models (Ebrahimi and Kann, 2021), we
recommend training adapters instead of continued
pretraining for BLOOM with at least 3 billion pa-
rameters for better prompting performance. We
further connect this recommendation to the way
the quality of language independent representation
scales with model parameters.

We also demonstrate the positive effects of
monolingual language adaptation on the prompt-
ing performance of BLOOM on various datasets.
BLOOMZ is a variant of BLOOM that is produced
by finetuning BLOOM on a multitask mixture in
the same languages seen during pretraining. We
find that simply adding a new language in the mul-
titask finetuning is effective in improving perfor-
mance in the new language.

To summarize, our contributions include:
• Studying the effects of language adaptation on

zero-shot prompting and instruction tuning.
• Benchmarking parameter-efficient methods

for adapting BLOOM models of various

scales and analyzing the trade-offs between
the amount of required computes and zero-
shot prompting performance.

• Quantifying the effect of the size of language
adaptation data on language adaptation.

2 Related Work

Language Adaptation Language adaptation en-
ables pretrained language models to support lan-
guages outside of their pretraining data. Most
works investigating language adaptation consider
masked language models such as mBERT (Devlin
et al., 2019) and XLM-R (Conneau et al., 2020) that
are pretrained on 100+ languages. Language adap-
tation approaches can be broadly categorized into
three categories: (1) continued pretraining of the
model (restricted to the embedding layer training
only in some cases) (Neubig and Hu, 2018; Artetxe
et al., 2020; Chau et al., 2020; Muller et al., 2021;
Zhang et al., 2020; Wang et al., 2020); (2) training
of language-specific adapters (Pfeiffer et al., 2020,
2021a,b; Philip et al., 2020; Üstün et al., 2021;
Berard, 2021; Faisal and Anastasopoulos, 2022;
Parović et al., 2022) for the target language; and
(3) training of a sparse subset of model parame-
ters (Ansell et al., 2022). The core motivation be-
hind these approaches is to benefit from knowledge
transfer encoded in the pretrained language models
for the new language processing at a small com-
putational cost (compared to full model retraining
from scratch).

One common issue is that the script of the new
language is not always supported by the tokenizer.
Artetxe et al. (2020); Aji et al. (2020); Pfeiffer et al.
(2021b) demonstrate that it is possible to add a new
language to these models by training a new embed-
ding layer. Muller et al. (2021) continue training
the pretrained mBERT on the new language data,
and find that transliteration of languages using non-
Latin script boosts performance on these languages.
Berard (2021) add new languages into pretrained
multilingual machine translation models by train-
ing embedding and adapter layers. They show that
adding a new target language (the language to trans-
late to) is harder to learn than a new language to
translate from.

Closest work to our benchmarking efforts is
Ebrahimi and Kann’s (2021) study on different ap-
proaches (i.e., continued pretraining, vocabulary
expansion and adapter layers) to extend the XLM-
R model to 30 new languages on token-level clas-
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sification tasks. They conclude that continued pre-
training is the most promising direction. However,
the cost of such pretraining will grow with the size
of the pretrained model and can be prohibitive for
many researchers working with low-resource lan-
guages. Our results also show that continued pre-
training does not necessarily bring a prompting
performance gain for larger language models.

Multilingual Prompting Prompting reformu-
lates NLP tasks into masked or generative language
modeling problem, depending on the models’ pre-
training objective. Zhao and Schütze (2021) and Qi
et al. (2022) show that finetuning XLM-R on cloze-
style prompts yield better performance than stan-
dard finetuning under a low-resource regime for
XNLI. On the other hand, Winata et al. (2022) find
that standard finetuning of XLM-R outperforms
prompt-based learning for sentiment prediction in
low-resource Indonesian dialects.

Some work shows that multitask prompt-based
training on a variety of tasks and English or trans-
lated prompts improves zero-shot cross-lingual and
cross-task performance (Muennighoff et al., 2022;
Fu et al., 2022). Multilingual prompt-based learn-
ing can also be achieved without performing gra-
dient updates for downstream tasks. For instance,
Lin et al. (2021) demonstrate success in prompting
GPT-like pretrained models with in-context learn-
ing for NLU tasks, using either English or trans-
lated prompt templates. Shi et al. (2023) find that
when language models scale up, they can perform
better multilingual chain-of-thought reasoning.

3 Experimental settings

3.1 BLOOM pretrained models

We focus on adding language support to the
BLOOM language model (Scao et al., 2022) from
560 million to 7.1 billion parameters. BLOOM has
a decoder-only Transformer architecture that uses
AliBi positional embeddings (Press et al., 2022)
and layer normalization after embedding layers.
Its tokenizer is trained with byte-level Byte Pair
Encoding (BPE) algorithm (Gage, 1994; Sennrich
et al., 2016) with a vocabulary size of 250,680.

BLOOM is pretrained for around 350 billion
tokens on the ROOTS corpus (Laurençon et al.,
2022), which covers 46 natural languages and 13
programming languages. Appendix M shows the
distribution of the natural languages in the ROOTS
corpus.

3.2 New Languages
We consider all six languages of XNLI (Con-
neau et al., 2018) that are currently unsupported
by BLOOM: German, Bulgarian, Russian, Greek,
Turkish, and Thai. We also include Korean to fol-
low up on past work on adapting the previous
version of BLOOM (Yong and Nikoulina, 2022)
and Guarani, which is a truly low-resource Native
American language. Table 1 summarizes the unseen
languages used in our experiments. They cover dif-
ferent language families and some of them do not
share scripts with BLOOM’s supported languages.

3.3 Language Adaptation Strategies
We carry out three language adaptation strategies
to analyze their effects on zero-shot prompting. 1

Continued Pretraining Continued pretraining
strategy refers to continually training the BLOOM
model with its causal language modeling pretrain-
ing objective on monolingual text of the new lan-
guage (Chau et al., 2020; Ebrahimi and Kann, 2021;
Muller et al., 2021).

MAD-X We use the language adapter and the in-
vertible adapter of the MAD-X configuration (Pfeif-
fer et al., 2020) to adapt BLOOM to new languages.
Language adapter refers to the bottleneck adapter
with down- and up-projection feedforward layers
(Houlsby et al., 2019; Pfeiffer et al., 2021a) that
are inserted into each Transformer block. The in-
vertible adapter is used in the embedding layers
to mitigate the mismatch between the original and
new language vocabularies.

(IA)3 (IA)3 is a parameter-efficient finetuning
method that performs element-wise rescaling of
inner Transformer block activations through learn-
able vectors (Liu et al., 2022). These vectors can
be merged with the original pretrained weights of
a model at inference to reduce latency by avoiding
passing the activations through additional adapter
modules.

We experiment with (IA)3 since it outperforms
bottleneck adapters, which are used in MAD-X,
and other parameter-efficient finetuning methods
such as BitFit (Ben Zaken et al., 2022), LoRA (Hu
et al., 2022), and FishMask (Sung et al., 2021) on
English NLU tasks (Liu et al., 2022). Our prelimi-
nary experiments show that (IA)3 performs better

1We also ran preliminary experiments on Composable
Sparse-Finetuning (see Appendix D), which is one of the
state-of-the-art language adaptation strategies.
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Language Language Family Word Order Script Space-Separated Seen Script

German Indo-European (Germanic) SVO Latin ✓ ✓
Bulgarian Indo-European (Slavic) SVO Cyrillic ✓ ✗
Russian Indo-European (Slavic) SVO Cyrillic ✓ ✗
Greek Indo-European (Hellenic) SVO Greek ✓ ✗
Turkish Turkic SOV Latin ✓ ✓
Korean Koreanic SOV Hangul ✓ ✗
Thai Tai–Kadai SVO Thai ✗ ✗
Guarani Tupian SVO Latin ✓ ✓

Table 1: Information about the unseen languages used in our experiments.

than these methods (see Appendix G), and thus we
only run (IA)3 due to computational constraints.

As (IA)3 does not adapt the embedding layer, we
couple (IA)3 with invertible adapters for fairer com-
parison with MAD-X language adapters. Our pre-
liminary experiments (Table 4) show performance
gains when using invertible adapters with (IA)3.

3.4 Language Adaptation Setting

We randomly sample 100K samples from the dedu-
plicated OSCAR subcorpora (Ortiz Suárez et al.,
2019) of the respective languages for language
adaptation to simulate low-resource settings. Since
Guarani only has around 100 samples in OSCAR,
we use Jojajovai parallel corpora (Chiruzzo et al.,
2022), which contains 30K Guarani sentences. We
perform 25K language adaptation training steps
using a batch size of 8 and the sequence length of
1,024. See Appendix H for further details.

We do not retrain the tokenizer as BLOOM uses
byte-level BPE tokenization, which never produces
unknown tokens; therefore, we can perform lan-
guage adaptation without extending the vocabulary.
We adapt the embedding layer in two different fash-
ions. For continued pretraining, we make the em-
bedding layer trainable. This follows prior work
on language adaptation (Pfeiffer et al., 2020; Chau
et al., 2020; Ebrahimi and Kann, 2021; Fujinuma
et al., 2022). For MAD-X and (IA)3, we use invert-
ible adapters to adapt the embedding layer while
keeping the embeddings frozen.

3.5 Tasks and Prompt Templates

We evaluate the models on five multilingual NLU
tasks, which cover natural language inference
(XNLI (Conneau et al., 2018), KLUE-NLI (Park
et al., 2021), and AmericasNLI (Ebrahimi et al.,
2022)), commonsense reasoning (XCOPA (Ponti
et al., 2020) and XStoryCloze (Lin et al., 2021)),
anaphora resolution (XWinograd (Tikhonov and
Ryabinin, 2021)), and paraphrasing (PAWS-X

(Yang et al., 2019)). We perform zero-shot prompt-
ing without any task-specific finetuning and sim-
ply reuse the templates used to prompt the XGLM
model Lin et al. (2021) without performing any
prompt engineering. We translate the prompt tem-
plates using automatic translation APIs, and the
translated templates can be found in Appendix F.

3.6 Baselines

We compare the adapted BLOOM model against
generative multilingual language models which
have reported state-of-the-art prompting perfor-
mance. We also report the prompting performance
of the original BLOOM models without any adap-
tation.

XGLM XGLM models (Lin et al., 2021) cover
30 natural languages and come in five different
numbers of parameters: 564M, 1.7B, 2.9B, 4.9B,
and 7.5B.

mGPT mGPT (Shliazhko et al., 2022) is a
GPT model trained on 60 languages from 25 lan-
guage families using Wikipedia and Colossal Clean
Crawled Corpus. It only has 1.3B parameters.

BLOOMZ and mT0 BLOOMZ and mT0 are
BLOOM and mT5 models finetuned on a multilin-
gual task mixture, xP3 (Muennighoff et al., 2022).
Here we report performance on the best prompts,
which corresponds to instructions being in English
while the context and the label are generally non-
English. We also do not report performance on
PAWS-X data since it is part of the xP3 training
mixture.

Among the baselines, XGLM, mGPT, and mT0
have seen all the new languages in Table 1 except
Guarani during model pretraining.
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Figure 1: Results for zero-shot prompt-based evaluation of natural language inference, commonsense reasoning,
anaphora resolution, and paraphrasing tasks. All tasks are evaluated with accuracy measure. Solid lines indicate
language adaptation strategies, and dotted lines indicate baselines. × indicate the non-adapted BLOOM model. Both
✓ and ✗ indicate whether the baseline has seen the language during pretraining, except for Guarani (GN) that is
unseen for all models. We also ablate BLOOMZ and mT0 from PAWS-X evaluation as the models has been trained
on the task.
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Figure 2: Average XNLI prompting performance for
different categories of languages, split by whether it
belongs to Indo-European (IE) family (left), whether its
word order is SVO or SOV (middle), and whether its
script system is seen during pretraining (right).

4 Results and Discussion

4.1 Zero-shot Prompting Performance

Figure 1 shows that language adaptation improves
the original BLOOM’s zero-shot prompting for

unseen languages under the resource-constrained
setting. Furthermore, in general, language adap-
tation follows the scaling law which dictates that
performance gains correlate with model sizes. We
note that when the BLOOM transformer model
becomes wider (from 560M to 1.7B parameters),
certain tasks such as German XNLI and PAWSX
experience performance drops.

For the smallest BLOOM model with 560 mil-
lion parameters, we see that continued pretrain-
ing yields the best prompting performance. Our
result supports Ebrahimi and Kann’s (2021) find-
ings that continued pretraining of masked language
models of similar size, such as mBERT and XLM-
Roberta, gives better NER and POS tagging perfor-
mance than adapters. However, when model sizes
increases beyond 3 billion parameters, adapter-
based language adaptation methods outperform
continued pretraining despite having fewer train-
able parameters. Furthermore, contrary to previ-
ous findings (Yong and Nikoulina, 2022), BLOOM
adapts well to new languages regardless of their lan-
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Figure 3: Comparison between different language adaptation strategies for BLOOM models on the number of
trainable parameters (↓), total training time (↓), inference ‘time per prompt on XNLI test set (↓), and maximum GPU
memory usage (↓) on a single A100 GPU machine.

guage family, word order, and whether they share
the same script system with languages in pretrain-
ing data (Figure 2). We note that there are many
differences in Yong and Nikoulina’s (2022) setting.
Yong and Nikoulina (2022) used a multilingual
model that uses learned positional embeddings in-
stead of Alibi (Press et al., 2022) and that only
supports 13 languages. They also finetuned both
the learned positional and word embedding layers.

We find that the adapted BLOOM matches
mGPT’s performance in several XNLI tasks and
even outperforms XGLM and mT0 on the German
PAWS-X and Russian XWinograd tasks. Nonethe-
less, mT0, which has seen the languages dur-
ing pretraining and is trained on a multilingual
task prompts mixture, exhibits the best zero-shot
prompting performance when model parameters
are increased.

We find the adapted BLOOM performs poorly
on Guarani, which is a truly low-resource language.
Language adaptation only boosts the performance
when models beyond 3 billion parameters are used.
We believe this is due to the limited Guarani adap-
tation training data (30K as opposed to 100K for
other languages) as supported by the findings in
Section 4.4.

Best Language Adaptation Strategy We rec-
ommend that the smallest BLOOM model should
be adapted with continued pretraining, but larger
BLOOM models should be adapted with adapters
due to better performance (Figure 1) and compute
efficiency (Figure 3). We find MAD-X language
adapters give better average zero-shot prompting
performance, but (IA)3 adapters have a slight edge
in training efficiency due to significantly fewer
trainable parameters and smaller training time for
larger models.
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Figure 4: Perplexity curves of continued pretraining and
MAD-X language adapters across all BLOOM model
sizes on Russian held-out data.

4.2 Perplexity

Perplexity can be viewed as a measure of uncer-
tainty when predicting the next token in a sequence,
and better language modeling ability means lower
perplexity. Figure 4 shows that evaluation perplex-
ity on Russian texts for continued pretraining and
MAD-X language adapters. We find that perplex-
ity during language adaptation training does
not necessarily correlate with prompting perfor-
mance. While perplexity becomes lower for larger
models, there is a drop in XWinograd performance
for both language adaptation strategies when the
model capacity increases from 1.1 billion to 1.7 bil-
lion parameters. Furthermore, even though contin-
ued pretraining has a lower perplexity than MAD-X
language adapters, which suggests that continually-
pretrained models better model the Russian OS-
CAR data, continually-pretrained BLOOM under-
perform their counterparts for larger model sizes in
both XWinograd and XNLI tasks. This finding is in
line with Liang et al.’s (2022) work that highlights
the mismatch between perplexity and downstream
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Figure 5: Sentence retrieval accuracy for Russian before and after adaptation with MAD-X adapters and continued
pretraining.

task performance.

4.3 Connection to Language Independent
Representation

Figure 5 reports sentence retrieval (SR) accuracy
for Russian for non-adapted models, as well as
models adapted via MAD-X adapters or continued
pretraining. We use sentence retrieval accuracy as
a way to measure quality of language independent
representation, more details in the Appendix B.
Note, that in this setting the representations of Rus-
sian are based on the adapted model, while rep-
resentations of English are based on the original
model, which excludes the problem of potential
catastrophic forgetting. We see that before adap-
tation, the SR accuracy is very low overall, but
bigger model demonstrate better SR results. With
adaptation, SR accuracy drastically improves.

For BLOOM adapted with MAD-X, SR accu-
racy improves as model grows in parameters. The
reason is that adapters’ trainable parameters grow
in size so they represent Russian sentences bet-
ter and larger model start from better representa-
tions of both languages. Interestingly, for con-
tinued pretraining, the best SR accuracy result
is achieved with the smallest BLOOM model
with 560 million parameters, while larger mod-
els achieve much lower SR accuracy. This phe-
nomenon goes against the scaling law and is oppo-
site to what has been observed for MAD-X. 2

Some previous works (Dufter and Schütze, 2020)
suggest that smaller model would emerge bet-
ter language-independent representations as it is
forced to reuse the same parameters for differ-
ent languages. However, when model grows it has
more freedom to partition its’ parameters between
languages. Note that this observation has been
made in the synthetic settings and to the best of
our knowledge has not been confirmed in real mul-

2We have observed similar trends for models adapted for
German.

tilingual models. Our results in Figure 5 could be
seen as an additional support to that initial hypoth-
esis. When doing continued pretraining with rel-
atively small set of the language adaptation data,
there are many ways for the model to optimize it’s
performance (cf Lottery ticket hypothesis (Frankle
and Carbin, 2019)). If the model had more free-
dom to partition its’ parameters between different
languages, there is no guarantee that the continued
pretraining would leverage English-related param-
eters and therefore could diverge its representation
space further away from English. We hypothesize
that this could be a possible explanation of degra-
dation of continued pretraining sentence retrieval
accuracy for larger models.

4.4 Amount of Language Adaptation Data
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Figure 6: Effects of the amount of language adaptation
training data on zero-shot prompting of various Russian
(RU) and Turkish (TR) tasks. "No adapt" denotes the
non-adapted BLOOM model.

We simulate different low-resource settings with
BLOOM-3B using different amounts of adaptation
training data. We use 1K, 10K and 100K samples to
simulate different degrees of low-resource settings
(see Figure 12). Figure 6 demonstrates a positive
correlation between the size of adaptation train-
ing data and zero-shot prompting performance. We
see that, when adapted with less than 100K sam-
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ples, BLOOM performs worse than its non-adapted
counterpart for tasks such as Russian XNLI and
Turkish XCOPA. In other words, based on Figure 6
and Table 6, we need around 100 million tokens
of the new language for effective language adap-
tation. However, surprisingly, the extent of the neg-
ative effect of low-resource setting can be limited
to the type of tasks. For instance, for the same lan-
guage Russian, we observe a limited effect of low-
resource setting on XWinograd and XStoryCloze
prompting.

4.5 Adapters’ Capacity
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Figure 7: Effects of the MAD-X language adapters’ re-
duction factors on zero-shot prompting of various Rus-
sian (RU) and Turkish (TR) tasks. "No adapt" denotes
the non-adapted BLOOM model.

We investigate the effect of the size of adapters’
capacity by varying the reduction factor (also
known as compression rate (Rücklé et al., 2021)) in
the adapter’s bottleneck layer.3 A smaller reduction
value would lead to a larger amount of adapter pa-
rameters. Contrary to Yong and Nikoulina (2022),
we observe a positive correlation between the
amount of adapters’ parameters and prompting per-
formance (see Figure 7).

4.6 Adapting BLOOMZ

We also investigate language adaptation strategies
for BLOOMZ, which is BLOOM finetuned on
many different task prompts to achieve better cross-
lingual and cross-task generalization (Muennighoff
et al., 2022).

3We also investigate the effects of the placement of
adapters, invertible adapters, and model pretraining on lan-
guage adaptation (see Appendix J and K).
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Figure 8: Zero-shot prompting performance of adapted
BLOOMZ-560m on German XNLI task. Each dot rep-
resents the accuracy of one prompt template, where blue
dots indicate the results of non-adapted BLOOMZ and
red dots BLOOMZ with adapters.

4.6.1 Adding Language Support through
Unlabeled Data

Similar to adapting BLOOM, we train MAD-X
language adapters for BLOOMZ using the same
experimental setting on monolingual OSCAR data.
In Figure 8, we show that BLOOMZ-560m has a
median accuracy of around 38.5% for the German
XNLI tasks (left bar), but after language adaptation,
it performs the worst with an accuracy as poor as
a random classifier at 33% (right bar). However,
when equipped with BLOOM’s language adapters
(this is possible because BLOOM and BLOOMZ
share the same architecture), BLOOMZ retains
its prompting ability (middle bar). The result sug-
gests that BLOOMZ loses its prompting capa-
bility gained from multitask instruction tuning
after language adaptation on the free-form text
of monolingual OSCAR corpora.

4.6.2 Adding Language Support through
Instruction Tuning

We experiment with learning a new language dur-
ing instruction tuning using the same recipe as
BLOOMZ (Muennighoff et al., 2022). We use Rus-
sian, which BLOOM models have not intentionally
seen during pretraining. We collect supervised nat-
ural language task data in Russian and finetune the
pretrained 7.1 billion parameter BLOOM model to
create two variants: (a) BLOOMZ-7.1B-RU, which
is finetuned only on the Russian task data, and (b)
BLOOMZ-7.1B-xP3RU, which is finetuned on the
full xP3 dataset (Muennighoff et al., 2022) with
Russian data added to it. We compare the two
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Figure 9: Performance on unseen language tasks in Russian of BLOOMZ variants.

models with BLOOM-7.1B and BLOOMZ-7.1B in
Figure 9. We find that finetuning on only Russian
(BLOOMZ-7.1B-RU) without the other languages
and tasks in the xP3 mixture shows only tiny im-
provements over the pretrained baseline on XSto-
ryCloze. This is likely due to the lack of diversity in
the finetuning of BLOOMZ-7.1B-RU (Chung et al.,
2022), as the Russian-only split contains fewer
tasks and prompts than the full xP3 dataset. On the
other hand, when adding Russian to the instruc-
tion tuning mixture (BLOOMZ-7.1B-xP3RU),
the performance of the best prompt improves on
XNLI and XStoryCloze. This means that adding
new languages during multitask finetuning can be
effective but requires additional diverse tasks in
other languages.

5 Conclusion

We compare the compute-performance trade-off
of different language adaptation strategies for ex-
tending BLOOM of various sizes to new languages.
Contrary to previous work, we find that adapter-
based strategies best adapt larger BLOOM models
for prompting under low-resource settings. We also
investigate different language adaptation factors
such as the size of language adaptation data and
capacity of adapters. Finally, we investigate the
relationship between language adaptation and in-
struction tuning using the BLOOMZ model, where
we find including new languages during instruction
tuning most effective.

6 Limitations

6.1 Vocabulary and Embedding Adaptation
We do not explore vocabulary and embedding adap-
tation. Our models used byte-level tokenization,
and therefore can handle unseen scripts. How-
ever, one can argue that the tokenization of un-

seen scripts might be suboptimal. For instance,
languages with unseen script will require longer
post-tokenization, therefore impacting the perfor-
mance efficiency. Koto et al. (2021) have shown
that when adapting to a new domain, LM achieved
better performance, despite the fact that the old
vocabulary can support the new domain as well.
Exploring the quality impact of token adaptation
for new languages and new scripts would be very
interesting. In parallel, exploring the best way to
initialize embeddings of the newly formed tokens
is also interesting.

6.2 Parameter-Efficient Finetuning Strategies
We have only considered a limited number of
parameter-efficient finetuning strategies (see Sec-
tion 3.3 and Appendix G) due to computational con-
straints. Nonetheless, we believe that other strate-
gies such as prompt tuning (Lester et al., 2021; Tu
et al., 2022) and ladder side-tuning (Sung et al.,
2022) can adapt BLOOM as well as the adapter-
based strategies explored in our experimental set-
ting. Recent work has also shown that combining
different types of parameter-efficient finetuning
methods, including adapters, can lead to better per-
formance (Mao et al., 2022; He et al., 2022). As we
recommend adapter-based language adaptation for
larger language models, it would be interesting to
explore methods that combine adapters for better
prompting performance.

6.3 Low-Resource Languages
One limitation of our work is that our set of new
languages only covers one truly low-resource lan-
guage, which is Guarani. As our work shows that
100 million tokens are needed for effective adapta-
tion to prompt in a new language (see Section 4.4),
a truly low-resource language usually lacks suf-
ficient unlabeled data for such adaptation (Joshi
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et al., 2020). Therefore, we urge the community
to study data-efficient methods for adapting large
language models to prompt under an extremely
low-resource setting.

6.4 Generative Tasks
Since we only cover natural language understand-
ing tasks in our experimental setup, our findings
may not generalize to generation tasks such as sum-
marization. Furthermore, language adaptation on
monolingual data can lead to catastrophic forget-
ting of seen languages (see Appendix L); therefore,
adapted models are not suitable for multilingual
generative tasks that require an understanding of
multiple languages such as machine translation.
Future work is needed for studying solutions to
mitigate catastrophic forgetting.

6.5 Experimental Settings
We used the sequence length of 1024 by mistake
(instead of 2048 as described in Scao et al. (2022))
as we followed prior work on adapting BLOOM
models to new languages (Yong and Nikoulina,
2022). However, in principle, it should not change
the conclusions we draw from our study since
none of the evaluation tasks are done on sequences
longer than 1024 tokens. Our post-hoc experimen-
tal results with the correct sequence length of 2048
(see Appendix N) also align with our results dis-
cussed in Section 4.1.

We did not carry out adaptation for the largest
BLOOM model and BLOOMZ model with 176
billion parameters due to prohibitive computational
costs. We leave them for future work to explore
language adaptation for language models with hun-
dreds of billions of parameters.
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Appendix

A Authors’ Contributions

Our work extended the language support of the
BLOOM model (Scao et al., 2022) that was created
under the BigScience project, a year-long initiative
to create open-source large multilingual language
models in a transparent manner which involves
600 researchers from over 50 countries and 250
institutions. All authors came from the BigScience
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multilingual modeling working group, and in the
following list, we document our contributions made
to this work.
Zheng-Xin Yong led the project, set up training
and evaluation pipelines, coordinated resources and
experiments, and wrote most of the paper.
Vassilina Nikoulina advised the project.
Zheng-Xin Yong and Vassilina Nikoulina ini-
tially conceptualized the project.
Zheng-Xin Yong, Hailey Schoelkopf, and Lin-
tang Sutawika implemented various parameter-
efficient finetuning methods.
Zheng-Xin Yong, Hailey Schoelkopf, Alham
Fikri Aji, David Ifeoluwa Adelani, Khalid Al-
mubarak, M Saiful Bari, Ahmed Baruwa, Jungo
Kasai, and Vassilina Nikoulina performed lan-
guage adaptation training and prompting evaluation
to collect results.
Zheng-Xin Yong and Niklas Muennighoff per-
formed BLOOMZ language adaptation experi-
ments.
Vassilina Nikoulina performed the sentence re-
trieval experiments.
Zheng-Xin Yong, Hailey Schoelkopf, Niklas
Muennighoff, Alham Fikri Aji, David Ifeoluwa
Adelani, Khalid Almubarak, Ahmed Baruwa,
Jungo Kasai, Genta Indra Winata, Stella Bi-
derman, Edward Raff, Dragomir Radev, and
Vassilina Nikoulina contributed to the paper.

B How does Language Independent
Representation changes with Model
Sizes

In this work we try to establish the connection
between the quality of language-independent rep-
resentation a pretrained LM can emerge, and its
adaptability to the new language. In order to evalu-
ate the quality of language-independent represen-
tation we rely on sentence retrieval task (similar to
(Dufter and Schütze, 2020; Artetxe and Schwenk,
2019)) computed on FLORES dataset.4 Sentence
retrieval task is to identify closest sentence in En-
glish given a representation of the sentence in the
new language, which imitates most most popular
knowledge transfer scenario, where we have final
task data available in English only. In addition to
what has been done previously, we compute sen-
tence retrieval accuracy at each layer of the differ-
ent pretrained models, to better understand where
and how the language-independent represetnation

4We take a subset of 200 sentences of the dev set

emerges. Figure 10 reports the sentence retrieval
accuracy for the subset of languages used to train
BLOOM model, for different model sizes. We no-
tice that all the models follow very similar pattern:
first and last layers of the model show quite low
SR accuracy, but intermediate layers are able to
achieve almost perfect sentence retrieval accuracy
for all model sizes. An exception is a set of very
low-resource languages which seem to have very
low Sentence Retrieval Accuracy from English. We
do not notice any significant between models of
different sizes for the languages that have been
observed during training.

C Batch Sizes

Figure 11 shows that the batch size of 8 is an
optimal batch size considering the performance-
compute trade-off. Performance increases quickly
when batch size increases to 8 and slowly after-
ward.

D Composable Sparse-Finetuning

Composable Sparse-Finetuning (C-SFT) is a
sparse-finetuning method that finetunes language-
specific and task-specific sparse subset of language
model’s parameters (mask), both of which
demonstrates composability (Ansell et al., 2022).
Since the authors demonstrate that this method
outperforms MAD-X in language adaptation
for POS and NER tasks, we also experimented
with it on prompting. In our setting, we only
finetuned the language-specific mask, and we
followed Ansell et al. (2022) by freezing the output
embedding and all layer normalization parameters.
We reused the same hyperparameters but with
an even split of 12,500 steps in both first and
second stage of C-SFT. We ran our experiments
using the publicly released code https://github.

com/cambridgeltl/composable-sft/tree/

6e3ef08cf0fc465d59285e529569387246028538.
Our preliminary results with smaller BLOOM

models show that models adapted by C-SFT are
not capable of prompting (see Table 2) even though
it improves sentence retrieval score (red▼ in Fig-
ure 14). In addition to the poor prompting perfor-
mance, C-SFT requires finetuning the entire model
and needs twice the GPU RAM memory than con-
tinued pretraining for storing a copy of the origi-
nal model to compute the sparse mask. We found
that we can improve prompting performance with
longer C-SFT training steps. When we ran 25K
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Figure 10: Sentence Retrieval accuracy for known languages for different BLOOM models across layers.
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Figure 11: German XNLI prompting performance with
the BLOOM-560m model trained with various batch
sizes of monolingual language adaptation data.

training steps for both stages of C-SFT, totalling
50K language adaptation steps (instead of 25K to-
tal steps), German XNLI prompting performance
improved from 33.01% to 35.97%. However, due
to computational constraint, we did not run more
experiments with C-SFT.

Models Adapt. DE RU TR

Random - 33.33% 33.33% 33.33%

BLOOM-560m - 34.79% 34.11% 33.75%
BLOOM-560m MAD-X 36.83% 39.86% 36.03%
BLOOM-560m C-SFT 33.01% 33.05% 33.39%

BLOOM-1b1 - 39.64% 39.62% 33.43%
BLOOM-1b1 MAD-X 42.5% 40.26% 37.64%
BLOOM-1b1 C-SFT 34.93% 33.49% 33.39%

Table 2: XNLI Accuracy for unadapted BLOOM model,
MAD-X language adapters, and Composable Sparse-
Finetuning (C-SFT).

E Korean PAWS-X

Figure 1 shows that all models perform poorly on
the Korean PAWS-X task, where a random classifer
baseline scores 50%. Our analysis with English
templates shows that XGLM baseline, which is ef-
fective at code-mixed prompting setting (Lin et al.,
2021), also performs poorly for Korean PAWS-
X (see Figure 13). Therefore, we believe that the

0 2 4 6 8 10
Number of Samples in OSCAR (in Log10-Scale)

0.0

0.2

0.4

0.6

0.8

De
ns

ity 1K
 sa

m
pl

es

10
K 

sa
m

pl
es

10
0K

 sa
m

pl
es0

1
2
3
4
5

Figure 12: Distribution of language resources on OS-
CAR (Ortiz Suárez et al., 2019) grouped by the level of
resource setting (0 indicates very low-resource, 5 indi-
cates high-resource) according to Joshi et al. (2020).

prompt template is ineffective for Korean PAWS-X
task.

F Prompt Templates

We used the same templates proposed by (Lin et al.,
2021) for prompting the XGLM model. Table 3
shows the English and translated templates for all
the tasks. We did not manage to get Thai templates
rendered with pdflatex, but the templates can be
found on here for XNLI and here for XCOPA.

G Other Parameter-Efficient Finetuning
Strategies

We experimented with various parameter-efficient
finetuning strategies for language adaptation, in-
cluding BitFit (Ben Zaken et al., 2022), (IA)3 (Liu
et al., 2022), LoRA (Hu et al., 2022), and FishMask
(Guo et al., 2021). We reported the best result from
the two sets of hyperparameters, one reported in
the original papers proposing the methods and the
other reported in Appendix H). On German XNLI
task, we found that MAD-X language adapters still
yield the best prompting performance (see Table 4).
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Tasks Languages Templates Verbalizers

XNLI

EN {PREMISE}, right? [Label], {HYPOTHESIS} Yes ∣ No ∣ Also
BG {PREMISE}, нали? [Label], {HYPOTHESIS} Да ∣ Не ∣ Освен това
DE {PREMISE}, richtig? [Label], {HYPOTHESIS} Ja ∣ Nein ∣ Auch
EL {PREMISE}, σωστ; [Label], {HYPOTHESIS} Ναι ∣ χι ∣ Επση
RU {PREMISE}, не так ли? [Label], {HYPOTHESIS} Да ∣ Нет ∣ А также

KLUE-NLI KO {PREMISE},맞지? [Label], {HYPOTHESIS} 예 ∣아니요 ∣또한
AmericasNLI GN {PREMISE}, ¿ajépa? [Label], {HYPOTHESIS} Heẽ ∣ Nahániri ∣ Ave

PAWS-X
EN {SENTENCE 1}, right? [Label], {SENTENCE 2} Yes ∣ No
DE {SENTENCE 1}, richtig? [Label], {SENTENCE 2} Ja ∣ Nein
KO {SENTENCE 1},맞죠? [Label], {SENTENCE 2} 예 ∣아니오

XStoryCloze EN {CONTEXT} [Label] IdentityRU

XWinograd EN {CONTEXT} (with ’_’ replaced by [Label]) IdentityRU

XCOPA
EN cause: {SENTENCE 1} because [Label]

Identityeffect: {SENTENCE 1} so [Label]

TR cause: {SENTENCE 1} çünkü [Label]
effect: {SENTENCE 1} yani [Label]

Table 3: Task templates for prompting BLOOM where "[Label]" is replaced with the answer choices in the
verbalizers column. *NLI tasks’ verbalizers correspond to entailment, contradiction, and neutral respectively,
and PAWS-X’s corresponds to true and false respectively. Identity verbalizer maps candidate choice to itself in
multiple-choice tasks.
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Figure 13: XGLM model’s zero-shot prompting per-
formance on German and Korean PAWS-X task with
prompt templates in its own language or English lan-
guage.
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Figure 14: Sentence retrieval accuracy for German with
different language adaptation strategies.
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Adapt. Accuracy

No Adaptation 34.79

MAD-X (Bottleneck adapters) 36.83
BitFit 33.95
(IA)3 36.31
(IA)3 + invertible adapters 36.47
LoRA 35.79
FishMask 35.59

Table 4: German XNLI prompting performance with
the BLOOM-560m model adapted by various parameter-
efficient finetuning methods.

H Language Adaptation Experimental
Setup Details

We trained for a total of 25,000 steps with a batch
size of 8 and sequence length of 1024 on the
monolingual corpora of the new language. In other
words, the models are trained on around 204 mil-
lion tokens. We evaluated every 5,000 steps on the
perplexity of 1,000 held-out validation samples,
and we took the best checkpoint for downstream
prompting tasks. We defaulted to using a single
RTX 3090 GPU machine for each language adapta-
tion training, unless the model is too large or takes
too long to run (for instance, performing continued
pretraining for BLOOM with 7.1 billion parame-
ters), which we would use eight A100 GPUs with
40GB RAM for training. We conducted single runs
for each language adaptation due to computational
constraint.

We performed hyperparameter search on learn-
ing rates of {1e-3, 1e-4, 1e-5}, linear and cosine
decay, and warm-up ratio of {0, 0.05, 0.1} using
the Russian XNLI task and BLOOM-560m and
-1b1 models. Table 5 reports the best set of hyper-
parameters. In general, we found that different sets
of hyperparameters caused around 1∼2 % small
difference in XNLI accuracy. Since our primary
goal was to study trends and performance-compute
trade-offs for language adaptation strategies, we
did not perform extensive hyperparameter search.

Adapt. LR Decay Warm-up Ratio

Continued Pretraining 1e-4 Linear 0
MAD-X 1e-4 Linear 0
(IA)3 1e-4 Linear 0.1

Table 5: Best set of hyperparameters for language adap-
tation strategies.

Figure 15: Impact of adapter placement on the quality
of model adaptation. Dashed line corresponds to the
adapted model with an adapter placed at each layer
(referred as mad-x in other experiments).

I Number of Tokens for Language
Adaptation Data

We report the number of tokens after preprocessed
by BLOOM’s BPE tokenizer for all the language
adaptation training samples in Table 6.

J Placement of Adapters

We examined how adapters’ placement impacts
the overall performance. For this, we kept a single
adapter at different layers of the model, where we
increased the bottleneck size in a way to match the
same parameter count of the model with a full set of
adapters.5 Figure 15 compares adapter placement
results on XNLI task. We note that layers in the
middle benefit less from the language adaptation,
and the last layers benefit most from the language
adaptation.
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Figure 16: Performance on natural language inference
tasks with and without invertible adapters (inv. adpt.)
adapting BLOOM’s embedding layer. "No adapt" de-
notes the non-adapted BLOOM model.

5For model with 24 layers it would result into 24x larger
bottleneck size of the adapter.
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K Ablations

Invertible Adapters We analyzed the perfor-
mance of MAD-X with and without invertible
adapters, which are used to adapt the embedding
layer of BLOOM-3b, on prompting for natural lan-
guage inference tasks. Figure 16 shows that invert-
ible adapters only improve performance for Ger-
man, Bulgarian, and Turkish. This implies that the
prompting performance gain from language adapta-
tion mainly results from adapting the Transformer
blocks.
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Figure 17: XNLI RU performance with and without
pretraining of BLOOM.

Model Pretraining We also performed language
adaptation with continued pretraining and MAD-
X language adapters on a randomly initialized
BLOOM. Figure 17 shows that, without pretrain-
ing, the adapted BLOOM model behaves like a
random classifier on the XNLI task. Our results
confirm that knowledge transfer takes place during
language adaptation of pretrained models.

Languages Number of Samples Number of Tokens

BG 100K 120M
DE 100K 75M
EL 100K 160M
GN 30K 1M
KO 100K 155M
RU 100K 140M
RU 10K 14M
RU 1K 1.4M
TH 100K 160M
TR 100K 90M
TR 10K 9M
TR 1K 0.9M

Table 6: Number of byte-level tokens in the ran-
domly sampled OSCAR data used for language adapta-
tion. Guarani only has 30K samples, fully taken from
Chiruzzo et al.’s (2022) corpora.

L Catastrophic Forgetting

We observe that continued pretraining leads to
catastrophic forgetting of seen languages when we
evaluated adapted BLOOM on the English XNLI
task (Figure 18).

0.
56 1.

1
1.

7

3.
0

7.
1

# Parameters (Billions)

30

35

40

45

50

55

60

XN
LI

-E
N 

Ac
cu

ra
cy

XGLM
BLOOM
cont. pretrain (BLOOM)

Figure 18: Continued pretraining causes catastrophic
forgetting on English, regardless of model sizes.

M Pretraining Languages Existing in
BLOOM

Table 7 shows the distribution of natural and pro-
gramming languages in the ROOTS pretraining
data (Scao et al., 2022; Laurençon et al., 2022).

N Post-Hoc Experiments

Sequence Lengths of 2048 We adapted
BLOOM-7.1B model for Thai and Greek using
with the sequence length of 2048 instead of 1024
and training steps of 12500. We picked these two
languages because they have the most number of
tokens in the 100K samples (see Table 6), and
we halved the training steps to maintain the same
number of tokens seen during language adaptation
since we doubled the sequence length. The rest
of the setup follows Section 3.4. Figure 19 shows
that adapters-based strategies still outperform
continued-pretraining when we use the sequence
length of 2048, which is consistent with our results
discussed in Section 4.1.

O Artifacts

For the pretrained models used in our study,
BLOOM (Scao et al., 2022) and BLOOMZ mod-
els (Muennighoff et al., 2022) are released under
the RAIL license, whereas mGPT (Shliazhko et al.,
2022) and mT0 (Muennighoff et al., 2022) are re-
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Figure 19: Comparison of prompting performance be-
tween sequence lengths of 1024 and 2048 during lan-
guage adaptation for Thai (TH) and Greek (EL) lan-
guages with continued pretraining and MADX adapters.

leased under the Apache 2.0 license. XGLM (Lin
et al., 2021) is released under the MIT license.

OSCAR data (Ortiz Suárez et al., 2019), which
is used to adapt BLOOM models, are released un-
der the Creative Commons designation CC0 1.0
Universal license. whereas Guarani data (Chiruzzo
et al., 2022) are released under the MIT license.

XNLI (Conneau et al., 2018) are released un-
der the Attribution-NonCommercial 4.0 Interna-
tional license, KLUE-NLI (Park et al., 2021) and
AmericasNLI (Ebrahimi et al., 2022) under the
Attribution-ShareAlike 4.0 International license,
XCOPA (Ponti et al., 2020) under the Attribution
4.0 International license, XStoryCloze (Lin et al.,
2021) under the MIT license, and PAWS-X (Yang
et al., 2019) may be freely used for any purpose.

Language Proportion (%)

English 30.04
Simplified Chinese 16.2
Traditional Chinese 0.05
French 12.9
Arabic 4.6
Basque 0.15
Catalan 1.1
Indonesian 1.2
Portuguese 4.9
Spanish 10.8
Vietnamese 2.7
Chitumbuka 0.00002
Assamese 0.01
Kikuyu 0.00004
Odia 0.04
Bambara 0.00004
Gujarati 0.04
Akan 0.00007
Marathi 0.05
Xitsonga 0.00007
Punjabi 0.05
Sesotho 0.00007
Kannada 0.06
Chichewa 0.0001
Nepali 0.07
Setswana 0.0002
Telugu 0.09
Northern Sotho 0.0002
Malayalam 0.10
Fon 0.0002
Urdu 0.10
Kirundi 0.0003
Tamil 0.20
Wolof 0.0004
Bengali 0.50
Luganda 0.0004
Lingala 0.0002
Hindi 0.70
chiShona 0.001
isiZulu 0.001
Igbo 0.001
isiXhosa 0.001
Kinyarwanda 0.003
Yoruba 0.006
Swahili 0.02
Code* 10.8

Table 7: Information about the seen languages by
BLOOM model.
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