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Abstract

Many text classification tasks are inherently
ambiguous, which results in automatic sys-
tems having a high risk of making mistakes,
in spite of using advanced machine learning
models. For example, toxicity detection in user-
generated content is a subjective task, and no-
tions of toxicity can be annotated according to
a variety of definitions that can be in conflict
with one another. Instead of relying solely on
automatic solutions, moderation of the most
difficult and ambiguous cases can be delegated
to human workers. Potential mistakes in auto-
mated classification can be identified by using
uncertainty estimation (UE) techniques. Al-
though UE is a rapidly growing field within
natural language processing, we find that state-
of-the-art UE methods estimate only epistemic
uncertainty and show poor performance, or
under-perform trivial methods for ambiguous
tasks such as toxicity detection. We argue that
in order to create robust uncertainty estimation
methods for ambiguous tasks it is necessary to
account also for aleatoric uncertainty. In this
paper, we propose a new uncertainty estimation
method that combines epistemic and aleatoric
UE methods. We show that by using our hybrid
method, we can outperform state-of-the-art UE
methods for toxicity detection and other am-
biguous text classification tasks'.

1 Introduction

Many natural language processing (NLP) tasks are
subjective and contain inherent ambiguity. For ex-
ample, the notion of toxicity is inherently subjec-
tive (Waseem, 2016) and can be defined in a num-
ber of ways that may conflict with one another and
differ according to the demographic that the meth-
ods are applied to (Thylstrup and Waseem, 2020).
For many datasets, implicit or ambiguous toxicity
can comprise more than 90% of the labeled toxic

'The code for reproducing experiments is available
online at https://github.com/AIRI-Institute/hybrid_
uncertainty_estimation

content (Hartvigsen et al., 2022). Such ambiguity
introduces a high risk of classification mistakes for
machine learning (ML) models. Classification mis-
takes for toxicity detection can result in the removal
of legitimate non-toxic content on one hand, and
the lack of sanction for toxic content, on the other.
A common method for addressing this concern for
content moderation is to abstain from predictions
on ambiguous instances and process them with the
help of human workers (Roberts, 2019).

A classification task where some model predic-
tions can be “rejected” is called selective classifica-
tion (Geifman and El-Yaniv, 2017). The common
approach to solving it is applying uncertainty es-
timation (UE) techniques. UE is a field of ML
that seeks to model the degree to which model
predictions can be trusted by correlating model
mistakes and performance. Better UE methods im-
prove the performance of selective classification
and the trade-off between the amount of labor and
the reliability of downstream applications. In tox-
icity detection, better UE methods minimize the
amount of content that is reviewed by human mod-
erators to predominately be classification errors.

Recent works have suggested deterministic ap-
proaches to UE of neural network predictions based
on fitting the density of latent instance representa-
tions (Lee et al., 2018; van Amersfoort et al., 2020;
Mukhoti et al., 2023; Yoo et al., 2022; Kotelevskii
et al., 2022). They have shown good performance
in NLP for the detection of out-of-distribution
(OOD) instances, adversarial attacks, and misclas-
sified objects in non-ambiguous tasks. However,
they primarily capture epistemic uncertainty, i.e.
uncertainty related to the lack of knowledge about
model parameters and training data, overlooking
aleatoric uncertainty, i.e. uncertainty that arises
from ambiguity and noise in data.

This work aims to create a UE method for more
reliable selective classification in ambiguous tasks
such as toxicity detection by combining different
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Figure 1: The left image shows training data from the two moons dataset. The second column shows uncertainty
scores obtained using aleatoric UE methods entropy and Softmax Response (SR). The first row of the two rightmost
columns illustrates scores obtained using epistemic UE methods Mahalanobis Distance (MD) and Robust Density
Estimation (RDE) (see Section 3.2), and the second row shows the scores obtained using our method (HUQ). The
lighter color indicates higher uncertainty. HUQ correctly identifies both regions with untrustworthy predictions: the
area away from the training data distribution and the area around the model decision boundary.

types of uncertainty. Instances that carry a high risk
of classification mistakes come from two sources:
a) OOD areas, which can be detected with epis-
temic UE methods; and b) in-distribution ambigu-
ous areas, for detection of which, aleatoric UE
methods are appropriate (for illustration see Fig-
ure 1). Therefore, we propose a Hybrid Uncer-
tainty Quantification (HUQ) method that switches
between epistemic and aleatoric uncertainties or lin-
early combines them. It produces better scores of
total uncertainty, which subsequently leads to better
selective classification. The experiments on various
ambiguous tasks show that HUQ in a majority of
cases significantly outperforms other state-of-the-
art UE techniques. To summarize, the contributions
of this work are the following.

* In Section 4, we propose a new uncertainty
estimation method HUQ that combines epis-
temic and aleatoric UE techniques in a special
way that allows to improve the quality of se-
lective classification in ambiguous tasks.

* To the best of our knowledge, this work is
the first to conduct an empirical investigation
of state-of-the-art UE methods for ambiguous
text classification tasks such as toxicity detec-
tion. Our analysis shows that the proposed
HUQ approach outperforms state-of-the-art
methods in selective text classification on am-
biguous tasks; see Sections 5 and 6.

* We analyze the limitations of the proposed
method and suggest conditions to be met for

achieving the improvements; see Section 7.

2 Related Work

Quantifying uncertainty of deep neural network
predictions can be successfully accomplished us-
ing deep ensembles (DE; Lakshminarayanan et al.,
2017), Bayesian models (Blundell et al., 2015),
or their approximations. However, most of these
methods have various drawbacks, including large
computational overhead. For example, for DE, we
need to multiply training time, the occupied mem-
ory, and inference time, since this network requires
training, storing, and running inference for multi-
ple versions of the same model. This makes DE
hardly applicable in real-world scenarios.

Recent work has investigated computationally
efficient deterministic approaches (e.g., Lee et al.,
2018; van Amersfoort et al., 2020; Liu et al., 2020).
However, most work is based on feature space
density and focuses only on the OOD detection
task and epistemic uncertainty estimation. An-
other computationally efficient approach is Selec-
tiveNet (Geifman and El-Yaniv, 2019), which was
designed for computer vision tasks. It introduces
two separate heads for prediction and selection
within the model architecture and adds a special
loss component to minimize selective risk with a
specified coverage.

Most similar to our work is Mukhoti et al. (2023),
which also considers both aleatoric and epistemic
uncertainty. DDU uses a combination of feature-
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space density for epistemic uncertainty and the soft-
max predictive distribution for aleatoric uncertainty.
They advocate for the usage of different methods
for quantifying uncertainty, depending on whether
a considered instance is ID or OOD. However, they
overlook using a linear combination of uncertainty
scores, relying solely on feature-space density for
instances considered OOD. We note that these in-
stances can also be borderline (instances from mid-
dle to low-density areas), for which using aleatoric
uncertainty measures may also be appropriate. Be-
sides, Mukhoti et al. (2023) do not provide results
for selective classification and mostly experiment
with image classification tasks.

Recently, selective classification (or misclas-
sification detection) has been studied for NLP
tasks.One line of such work has proposed adding
a regularization term to the training loss. Xin et al.
(2021) introduces a penalty term for confident in-
stances with a high loss value. Another approach
proposed by Zhang et al. (2019) uses a metric reg-
ularization that minimizes the inter-class distance
in the latent feature space while maximizing the
margin between classes. He et al. (2020) propose a
regularization technique based on self-ensembling
that aims to minimize the difference between pre-
dictions of the two versions of the model. They
also combine this approach with mix-up (Thulasi-
dasan et al., 2019) and a distinctiveness score based
on the MD. Some work has also considered approx-
imations of deep ensembles based on Monte-Carlo
dropout (e.g., Shelmanov et al., 2021; Vazhentsev
et al., 2022). Vazhentsev et al. (2022) conduct
a vast empirical investigation and suggest several
promising combinations of regularizers and feature-
density-based methods. They also highlight the
importance of spectral normalization for obtaining
good results. Kotelevskii et al. (2022) propose a
new UE method NUQ and test it for text classifica-
tion models trained in the low-resource regime.

Despite the aforementioned efforts, highly am-
biguous text classification tasks such as toxicity de-
tection have been overlooked in the previous work.
Moreover, to the best of our knowledge, no prior
work in NLP takes into account aleatoric uncer-
tainty and combines multiple types of uncertainty
for a holistic view of uncertainty.

3 Background

Two types of uncertainty have been documented
in the literature: aleatoric and epistemic (Der Ki-

ureghian and Ditlevsen, 2009). Aleatoric, or data
uncertainty, arises from ambiguity and noise in
data. It should be high, for example, for groups of
instances prone to annotation discrepancy. Epis-
temic, or model uncertainty, pertains to a lack of
knowledge about model parameters and can of-
ten be mitigated through additional training data
collection. Epistemic uncertainty is particularly im-
portant for OOD detection (Hendrycks and Gimpel,
2017) and active learning (Settles, 2009).
According to the Bayesian approach to measur-
ing uncertainty in deep learning networks (Blundell
et al., 2015; Gal, 2016; Depeweg et al., 2018), the
total uncertainty of a model prediction x is a sum of
aleatoric Ua (x) and epistemic uncertainty Ug(x):

Ur(x) = Ua(x) + Ug(x). (1)

High total uncertainty should correlate with clas-
sification mistakes and can be used to flag model
predictions for human review.

3.1 Out-of-Distribution and (Ambiguous)
In-Distribution Instances

We define out-of-distribution (OOD) instances
Xoop as those located either outside a training data
distribution or in its low-density regions. They can
be identified by high epistemic uncertainty.

In-distribution (ID) instances we define to be-
long to the domain of the dataset D located “in-
side” the training data distribution. ID instances
are those, for which model predictions have very
small epistemic uncertainty, i.e. below some thresh-
old dmin:

X = {x: Ug(x) < dmin}- ()

Note that for the in-distribution data, on the basis
of (1) and taking into account (2), we can empiri-
cally approximate Ur(x) ~ Ua(x).

We also define ambiguous in-distribution (AID)
instances as those, predictions on which having
the highest values of aleatoric uncertainty with a
lower bound 6,,.x. AID instances lie around the
class-decision boundaries virtually established by
the discriminative model:

XAID = {XE Xp: UA(X) > 5max}- 3)

3.2 Quantifying Epistemic Uncertainty

Recent works have proposed a variety of compu-
tationally efficient methods for quantifying epis-
temic uncertainty on the basis of fitting the proba-
bility density of latent instance representations. In
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this work, we experiment with Mahalanobis Dis-
tance (MD, Lee et al., 2018), Robust Density Esti-
mation (RDE, Yoo et al., 2022), and Deep Deter-
ministic Uncertainty (DDU, Mukhoti et al., 2023).
Let D be a training dataset, h(x) be a latent rep-
resentation of an instance x (it is usually taken from
the penultimate layer of the network), and ¢ € C
be a class. The UE method based on MD (Lee
et al., 2018), for each class, fits a Gaussian cen-
tered in a class centroid { . }.cc with a covariance
matrix ¥ shared across classes. The highest class-
conditional probability density p(h(x) | y = ¢) de-
termines the confidence of the prediction, and the
uncertainty score is computed as the Mahalanobis
distance between h(x) and the closest centroid:

U™ (x) = min(h(x) = i) 27" (A(x) = pe)-

RDE (Yoo et al., 2022) improves on MD by com-
puting the covariance matrix X for each individual
class using the Minimum Covariance Determinant
estimation (Rousseeuw, 1984) and by reducing the
dimensionality of the hidden representations via
PCA decomposition with an RBF kernel. These
modifications aim to minimize the determinant of
the covariance matrix and reduce the influence of
outliers in the training data.

DDU (Mukhoti et al., 2023) fits a Gaussian Mix-
ture Model (GMM) p(h(x),y) with a single mix-
ture component per class. The uncertainty score is
the probability density of A (x) under the GMM:

UPPY(x) = p(h(x) |y =c) p(y = o),
ceC

where p(h(x) | y = ¢) ~ N'(h(x) | e, Ec) and
Py =€) = 7 Xxinyep Ly = -

Methods based on the fitting density of latent rep-
resentations are suitable for finding OOD instances
but are not capable of identifying AID instances.
More generally, they are not good estimators of
uncertainty in AXjp. Therefore, for ambiguous tasks
where AID instances comprise a large portion of
the data, these epistemic UE methods cannot fully
cover all potential misclassifications.

3.3 Quantifying Aleatoric Uncertainty

As measures of aleatoric uncertainty, we use two
well-known methods based on probabilities from
the output softmax layer of a neural network: en-
tropy (Gal, 2016) and Softmax Response (SR, Geif-

man and El-Yaniv, 2017):

UR(x) ==Y p(y =c|x)logp(y = c| x),
ceC

UR"(x) = 1 = maxp(y = ¢ [ x).

Entropy and SR have been proposed also as mea-
sures of total uncertainty (Malinin and Gales, 2018).
However, this assumption holds only when one has
access to the full posterior distribution under the
Bayesian paradigm, i.e. all possible uncertainties
are quantified within the model. In practice, train-
ing datasets are limited, and we can only approx-
imate considered probability distributions. Thus,
these methods could not capture all the epistemic
uncertainty and mostly reflect the aleatoric one (van
Amersfoort et al., 2020; Mukhoti et al., 2023).

4 Hybrid Uncertainty Quantification

There are two major sources of mistakes in model
predictions: OOD instances and instances that lie in
proximity to the decision boundary (AID instances).
Aleatoric uncertainty can help to detect AID in-
stances, while epistemic uncertainty can help to
detect OOD instances. In many tasks, we have
to deal with both types of mistakes arising from
task ambiguity or from a marked covariate shift
between training and test data. To address this is-
sue, we propose a hybrid method that combines the
strengths of aleatoric and epistemic uncertainty.

Our hybrid uncertainty quantification (HUQ)
method first uses Eq. (2) to determine whether an
instance x is ID or OOD. If x € A1p, HUQ applies
Eq. (3) to determine if x is near a class-decision
boundary, i.e., x € Xap. Once the type of instance
has been identified, we can apply an appropriate
uncertainty estimation method for it or combine
multiple uncertainty scores into a single estimate.

Uncertainty scores from different methods may
however not be comparable with one another due
to different magnitudes. Therefore, instead of us-
ing absolute values, we propose to rank instances
in some dataset © by their uncertainty scores and
as a final score use these ranks or their combina-
tions. Ranking can be considered as a form of
normalization. Moreover, such an approach is de-
sirable for the selective classification task, as we
are only interested in the ability to rank predictions
by their uncertainty. We define a ranking function
R(u,®) as the rank of u over a sorted dataset D,
so u; > ug implies R(uy,®) > R(u2, D).
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Having the ranks according to epistemic and
aleatoric scores and the type of x, we can define
the final total uncertainty score. We consider pre-
dictions for ID instances as the most trustworthy,
therefore, we define their total uncertainty score
as the rank of their aleatoric score R(Ua(x), Dip)
only among known ID instances Dip = {x;: x; €
D Nx; € Xip}. Predictions on AID instances are
considered the most error-prone. Their total score
is the rank of the aleatoric score among all known
instances R(Ua(x), D). Lastly, for x ¢ Ajp, we
calculate a linear combination of ranks of aleatoric
and epistemic scores among all known instances:
(1-a)R(Ug(x),D)+aR(Us(x),D), where a €
[0, 1] is a task-specific hyperparameter that depends
on the quality of the softmax classifier, and a num-
ber of training instances. The usage of a mixture
rather than only the epistemic score is justified by
the fact that the generalization capabilities of mod-
els allow them to make meaningful predictions also
in OOD regions, so aleatoric scores to some extent
remain meaningful in these areas.

Thus, the total uncertainty score for x according
to HUQ is

R(Ua(x), D), Vx € Xip \ Xam,
R(Ua(x),D),Vx € Xam,

(1 — ) R(Ue(x), D)+
aR(Us(x),D),Vx ¢ Xp.

Unug(x) =

Note that HUQ can plug-in various “base” meth-
ods for the estimation of epistemic and aleatoric un-
certainty. Algorithm 1 summarizes the uncertainty
score calculation procedure according to HUQ.

The threshold hyperparameters (dmin, Omax) that
determine x € {Xip | Xaip | Xoop} can be set
using the validation dataset. We set dy;, to be the
epistemic uncertainty score of the instances x with
the lowest 3% epistemic uncertainty on the training
set. Similarly, the hyperparameter d,,,x is selected
as the uncertainty score of the most confident in-
stances x from top, ¢ of instances in the training
set with the highest aleatoric uncertainty:

Omin = UE(B%)a Omax = UA(’Y%)

5 Experimental Setup
5.1 Models

We experiment with two pre-trained Transformers:
ELECTRA (“electra-base-discriminator’”) (Clark

Algorithm 1: The HUQ algorithm with
MD for epistemic UE and SR for aleatoric
UE.
Input :Target text x,
Some dataset D = {x;}Y ,,
Hyperparameters: dpin, Omax, &
Output : Uncertainty score Ugyq(x)

1 Ug(x) «— MD(x); Ua(x) < SR(x)
2 Xip « {x: Ug(x) < Omin};

3 Dp = {.’L‘Z x; € D,Nx; € XID}

4 if x € Ajp then

/*When x is IDx/

5 XAID {1‘: UA(ac) > 6max}
6 if x € Xy;p then
7 | Unug(x) = R(Ua(x), D)
8 else
9 ‘ UHUQ(X) — R(UA(X), DID)
10 end
11 else /*When x is not ID*/
12 UHUQ(X) —
(1= a)R(Ug(x), D) + aR(Ua(x), D)

13 end

et al., 2020) and BERT (“bert-base-uncased”) (De-
vlin et al., 2019) with 110 million parameters. We
use a spectral normalization of the weight matrix
in the penultimate linear layer of the classification
heads of the models (Liu et al., 2020) as it can
be helpful for density-based methods (Vazhentsev
et al., 2022). The details on the model hyperparam-
eter optimization procedure and optimal values are
presented in Appendix A. To report the deviation
of results, for each experiment, we train 5 models
with optimal hyperparameters, but different ran-
dom seeds.

5.2 Datasets

There are several tasks that contain highly sub-
jective data, e.g., toxicity detection, particularly
detecting implicit hate and sentiment analysis.
We conduct experiments on five datasets for tox-
icity detection: PARADETOX (Logacheva et al.,
2022), JIGSAW with binary labels,? a collec-
tion of tweets with annotation of hate and offen-
sive language (TWITTER; Davidson et al., 2017),
TOXIGEN (Hartvigsen et al., 2022), and IM-
PLICITHATE (ElSherief et al., 2021); and three
multi-class classification tasks with high ambiguity:
20 NEwWs GROUPS (Lang, 1995), Stanford Senti-
ment Treebank with 5 classes (SST-5; Socher et al.,

%Jigsaw Kaggle Toxic Comment Classification Dataset.
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Model | Method | Epistemic | PARADETOX | TOXIGEN |  JIGSaW | TWITTER | IMPLICITHATE | 20 NEWS GROUPS | SST-5 |  AMAZON
SR - 27.1744.95 | 70.9746.07 | 112.12::17.39 | 887.14+:16.89 | 380.15+19.74 4334443344 | 446.0744.59 | 3529.31:+£62.46
ELECTRA | MD - 11.82£1.79 | 66.2426.97 | 100.99£19.30 | 912.87+27.59 | 386.05+52.70 436.26:£31.58 | 458.80£11.72 | 4692.51:249.35
| HUQ (ours) | MD | 11.2742.27 | 63.69+5.50 | 95.05+11.22 | 878.34::16.30 | 3859943149 | 3832443426 | 433.78+4.77 | 3550.72+57.03
SR - 21.83+5.02 | 76.36:+£3.84 | 72.88+11.20 | 896.714+10.93 | 441.35+39.75 342.56+25.88 | 495.25+21.38 | 4050.21+42.37
BERT MD - 10.39+0.97 | 74.4944.66 | 93.96+14.54 | 932.50:26.00 | 426.26+47.47 322.68+12.01 460.70:£9.66 | 5097.01+335.93
| HUQ (ours) | MD | 971£1.37 | 74.33+2.64 | 70.53+£9.17 | 896.30::22.73 | 416.24:+18.19 | 302.39+23.64 | 464.64:11.09 | 4051.15468.20

Table 1: AUC-RC| results for HUQ-MD and baselines. Best results for each model and dataset shown in bold.

Model | Method | Epistemic | PARADETOX | TOXIGEN |  JIGsaw | TWITTER | IMPLICITHATE | 20 NEWS GROUPS | SST-5 |  AMAZON
SR - 27.1744.95 | 70.97+6.07 | 112.12417.39 | 887.1416.89 | 380.15+19.74 4334443344 | 446.07+4.59 | 3529.31462.46

ELECTRA | DDU - 15.30+1.36 | 76.29+6.94 | 170.74:26.88 | 9154942577 | 385.6460.20 308.23+429.35 | 448.1210.68 | 4711.31+348.28
| HUQ (ours) | DDU 14.63+3.39 | 63.90+4.78 | 110.124:10.75 | 870221134 | 379.39+42.36 3714343298 | 429.30+5.68 | 3514.49:61.13

SR - 21.83+5.02 | 76.36+3.84 | 72.88+11.20 | 896.71+10.93 | 44135+39.75 3425642588 | 495.25+21.38 | 4050.21:42.37
BERT DDU - 13024281 | 763149.07 | 223.77+73.40 | 925.60+£30.92 | 446.28+78.86 3056741342 | 462.29+9.04 | 4819.174251.74
| HUQ (ours) | DDU | 117742.18 | 73.72:4£2.94 | 74474847 | 903.38+£37.43 | 4264343946 | 2944511878 | 467.16+12.97 | 4033.59+36.82

Table 2: AUC-RC| results for HUQ-DDU and baselines. Best reults for each model and dataset shown in bold.

Model | Method | Epistemic | PARADETOX | TOXIGEN |  JiGsaw | TWITTER | IMPLICITHATE | 20 NEWS GROUPS | SST-5 |  AMAZON

SR - 27.17£4.95 | 70.974+6.07 | 112.12+17.39 | 887.14+16.89 380.15+19.74
ELECTRA | RDE 9.04+1.88 | 63.22+4.55 | 93.08+9.05 1065.674+23.22 | 391.57£29.67

433.44+33.44 446.07+4.59 | 3529.31+62.46
432.03+16.77 451.07+13.44 | 5759.07+149.02

| HUQ (ours) | RDE

8.89:£1.72 | 63.3744.92 | 91.83+10.17 | 904.80+27.54 | 380.58+23.58

366.45+19.96 ‘ 424.47+7.05 ‘ 3532.58+60.23

BERT RDE 8.55+1.83 | 72.68+3.47 | 74.01+10.06

896.71£10.93
1033.53£23.57

342.56+25.88 ‘ 495.254+21.38 ‘ 4050.21+42.37

445.15£22.66 331.14+12.94 470.37+10.42 | 6299.17+443.67

‘ SR ‘ - ‘ 21.8345.02 ‘ 76.36+3.84 ‘ 72.88+11.20 ‘

| HUQ (ours) | RDE

8.55+1.83 | 72.60+2.87 | 68.68::6.03 | 885.65115.82 | 424.28+22.04

|
441.35+39.75 ‘
|

289.65:£9.81 | 476.81+18.02 | 4046.09+46.42

Table 3: AUC-RC| results for HUQ-RDE and baselines. Best results for each model and dataset shown in bold.

2013), and AMAZON REVIEWS (McAuley and
Leskovec, 2013) (sports and outdoors categories).
Note that for TOXIGEN and IMPLICITHATE, im-
plicit hate speech accounts for more than 95% of
the positive class. The TWITTER dataset does not
contain a predefined test set, so we create it by our-
selves. It is constructed from the documents with
high annotator disagreement. In all other cases, we
use original test sets. See Appendix B for dataset
statistics and the analysis of their ambiguity.

To reduce the computational burden of the ex-
periments, the datasets are randomly subsampled.
For training, we sample 10% from AMAZON, IM-
PLICITHATE, and JIGSAW; and 20% from PA-
RADETOX. For evaluation, we sample 10% from
PARADETOX, IMPLICITHATE, and JIGSAW.

5.3 Maetrics

Selective classification differs from the standard
classification task as low certainty predictions are
rejected and deferred to alternate procedures, e.g.,
human review. Therefore, for performance evalua-
tion in this task, a special metric is used: area under
the risk coverage curve (AUC-RC; El-Yaniv and
Wiener, 2010). Consider all predictions in a dataset
are sorted in ascending order by uncertainty, so we
can discard some % of the most uncertain predic-
tions. The % of predictions remaining after that
is called a coverage rate, and the total loss of the
remaining predictions is called the selective risk.
The RC curve plots a dependence of the selective

risk from the coverage rate. Finally, the AUC-RC
is a cumulative sum of the selective losses for each
coverage rate. Lower values of AUC-RC indicate
better performance.

5.4 Hyperparameter Selection for HUQ

To find optimal hyperparameters for HUQ, we
select 20% of the training set as a validation
set and optimize AUC-RC on it, using a grid
search. For each variant of models trained with
different random seeds, we select its specific set
of hyperparameters. The hyperparameter grid is
the following: « € [0;1] with a step size 0.1;
Omin € {0%,0.05%,0.1%,0.15%, 0.2%}; dmax €
{0.9%,0.95%,1.0%}. The values of dax and
Omin 10 % are converted into absolute values, when
we apply them to the test data.

6 Results

In our illustrative example of the two moons dataset
in Figure 1, the state-of-the-art epistemic UE meth-
ods, MD and RDE, separate the ID area from the
remaining feature space well. However, the middle
area between the two classes is marked with high
confidence, yet for SR and Entropy, this area is
marked as highly uncertain due to the presence of
instances with high aleatoric uncertainty. HUQ,
which combines aleatoric and epistemic uncer-
tainty, accurately detects both areas of uncertainty,
thereby overcoming the weaknesses of aleatoric
and epistemic uncertainty individually applied.
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Figure 2: Overall comparison by AUC-RC/ of various UE methods for ELECTRA.

6.1 HUQ Against its Base Methods

When presenting results, we denote HUQ with a
specific base epistemic UE method as HUQ (<UE
method>). Note that in the main part of the pa-
per, we present the results only with SR as a base
aleatoric UE method. The results for entropy are
very similar to SR and are presented in Appendix E.

HUQ-MD yields significant improvements over
its base methods (MD and SR) on 6/8 datasets
for both ELECTRA and BERT (see Table 1). The
largest improvements are achieved on 20 NEWS
GROUPS and PARADETOX, where HUQ reduces
AUC-RC by 13.0% and 4.9% (ELECTRA), and
6.6% and 7.0% (BERT).

HUQ-DDU produces improvements over DDU
and SR on all 8 datasets for ELECTRA and on 5
datasets for BERT (see Table 2). For ELECTRA,
HUQ produces large effects on PARADETOX and
ToXIGEN with 4.6% and 11% AUC-RC reduction,
and with BERT on PARADETOX with a 10.6% re-
duction. Interestingly, vanilla DDU is significantly
outperformed by SR for ELECTRA on JIGSAW.
Applying HUQ addresses this issue, and improves
on the results using SR by 1.8%.

The results for HUQ-RDE are more ambiguous
than for DDU and SR (see Table 3). RDE is a
good method for selective classification and is a
hard-to-beat baseline for HUQ. This is because, in
addition to OOD detection RDE computes a co-
variance matrix for each class, thereby making it
suitable for identifying decision boundaries. For

RDE as the base epistemic UE method, HUQ im-
proves results on 4 datasets for ELECTRA and on
6 datasets for BERT. On some datasets, HUQ does
not improve on SR and RDE, e.g., for TWITTER
(ELECTRA) and PARADETOX (BERT). However,
on others, HUQ shows big improvements in RC-
AUC, e.g., 18.0% for 20 NEwWS GROUPS (ELEC-
TRA) and 5.0% for TOXIGEN (BERT).

Opverall, we see that HUQ usually improves upon
its base methods, but in some cases, retains the
same performance. We suspect that the configura-
tions where HUQ does not outperform the baselines
are due to the presence of large covariate shifts be-
tween the training and test data. We discuss this in
detail in Section 7.

6.2 Overall Comparison

Here, we compare HUQ in selective classification
tasks with various other UE techniques, includ-
ing strong, yet computationally intensive deep en-
sembles (DE Lakshminarayanan et al., 2017) and
SelectiveNet (Geifman and El-Yaniv, 2019) specif-
ically designed for selective classification, but pre-
viously tested only in computer vision. Figure 2
presents results for the ELECTRA model and Fig-
ure 9 in Appendix D presents results for BERT.
The base epistemic UE methods sometimes can-
not outperform even the weak SR baseline or even
fall behind it by a large margin. It is especially
noticeable for RDE on TWITTER and AMAZON
reviews and for DDU on JIGSAW and AMAZON re-
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views. This effect might appear because the major-
ity of model mistakes arise from ambiguity rather
than OOD instances, while these methods are better
suitable for OOD detection. On some datasets, it is
very hard to overcome the weak SR baseline. For
example, on IMPLICITHATE and AMAZON, only
DE confidently outperforms SR.

The results for our implementation of Selec-
tiveNet for text classification models and the de-
tailed experimental setup for this method are pre-
sented in Appendix F. On all considered datasets,
SelectiveNet never outperforms the SR baseline
and significantly falls behind it.

Variants of HUQ are usually the best or the sec-
ond best after DE. For example, HUQ outperforms
this strong baseline on PARADETOX, 20 NEWS
GRoOUPS, and SST-5. However, while DE intro-
duces computational overhead of 400%, HUQ re-
quires additionally less than 5% of standard model
inference time (see Table 15 in Appendix G).

6.3 Analyses

Hyperparameter for mixing aleatoric and epis-
temic uncertainty scores in HUQ. When vary-
ing the hyperparameter o, we change the impact
of aleatoric and epistemic uncertainty for the fi-
nal score. Figure 3 reports the impact of o on
the TOXIGEN dataset. When « is close to 0O, the
performance of the total score approximates the
epistemic uncertainty represented by MD, which is
even worse in terms of AUC-RC than the SR base-
line. When « is close to 1, we use solely the SR
score in the mixture of uncertainties, while treat-
ing AID, ID, and other instances differently, which
results in better performance compared to vanilla
SR. The best results are obtained when we select
« on the validation set. We can see that obtained
a = 0.5 is very close to its optimum on the test set.
HUQ-MD in this case outperforms MD by 10.6%
and SR by 9.6% in terms of AUC-RC. This again
illustrates the importance of mixing different types
of uncertainties for selective classification. Similar
charts for other considered datasets are presented
in Figure 6 in Appendix C and for other hyperpa-
rameters in Figures. 7 and 8 in Appendix C.

Qualitative analysis. Table 16 in Appendix H
presents several instances from various datasets,
as well as model predictions and their normalized
uncertainty scores. The qualitative analysis reveals
that baseline uncertainty scores MD and SR may
be high regardless of whether a classification of

ToxiGen (6min=0.12, 612x=0.9)

0.0 0.2 0.4 0.6 0.8 1.0
a

Figure 3: AUC-RC| for different values of « in HUQ on
Tox1GEN using ELECTRA. The vertical line denotes
& selected on the validation set.

an instance is correct. For example, we see that
four correctly classified instances in PARADETOX
are marked with high uncertainty by at least one
of the methods. Moreover, MD and SR disagree
with each other: MD yields high uncertainty scores
for the first two instances, whereas SR produces
low uncertainty. For the last two instances, the
pattern is reversed. In all of these cases, the MD
score is not low enough to consider instances as ID.
Therefore, HUQ-MD linearly mixes the SR and
MD scores, producing more balanced results with
moderately low uncertainty, which is consistent
with the fact that classifications are correct.

For the last example from Jigsaw, MD falls be-
low a threshold « obtained for this dataset. Conse-
quently, the example is classified as an ID instance,
leading to the HUQ-MD score being equal to the
SR score for this particular case. Contrary to MD,
which yields low uncertainty, high uncertainty of
SR and HUQ correctly indicates a prediction error.

For two examples, HUQ-MD contradict the re-
sults. Specifically, in the third example of ToxiGen
and the second example of Jigsaw, the predictions
are accurate, but uncertainty is moderately high.
This discrepancy arises from both SR and MD be-
ing erroneously high. In such cases, the hybrid
method is unable to correct the uncertainty score.

7 Limitations

While HUQ outperforms individual aleatoric and
epistemic UE methods for most datasets consid-
ered, for some, the effects are negligible. To un-
derstand this pattern, we analyze the difference
between the training and test sets. We generate
latent representations of instances in the datasets
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| PARADETOX | TOXIGEN | JIGSAW | TWITTER | IMPLICITHATE | 20 NEWS GROUPS | SST-5 | AMAZON

Fl-score | 002 | 00 | 069 |

035 |

0.66 | 0.08 | 00 | 075

Mean Impr. HUQ-DDU, % | 460 | 110 | 180 |

190 |

0.02 | 7.20 | 39 | 030

Table 4: The performance of separation instances into train and test datasets. The classification is performed by the
logistic regression model trained on latent feature representations obtained from ELECTRA.

Paradetox ToxiGen

Jigsaw Twitter

20 3 15 - Train
1 Test

' ¥ ]
Train o' o

Test

30

Train g
Test

¥ 4
) 20

-5 0 5 10

20 News Groups

-15 -10 -5 0 5 10 15 20

ImplicitHate

SST-5

s =+ Train
Test

B ™

Figure 4: Visualization of the t-SNE decomposition of latent representations obtained from the fine-tuned ELECTRA

model for the train and test datasets.

using a fine-tuned ELECTRA model and fit a lo-
gistic regression model to discriminate between
train and test sets using these representations as
features. Good performance of the discriminator
indicates a covariance shift between the training
and test data, while bad performance indicates that
instances come from the same distribution.

Table 4 presents F1 scores for this task aligned
with the performance gains of HUQ-DDU in per-
centages over the best method from the pair <SR,
DDU>. As we can see, high F1 scores often cor-
respond to low values of performance gains (the
Spearman rank correlation = 0.8). This means that
HUQ is unlikely to provide improvements to the
base methods for the tasks with big covariate shifts.
In our analysis, this is due to prediction mistakes
primarily arising from OOD instances, which are
well-handled by epistemic UE methods.

Visualizing the differences between the datasets
using a t-SNE decomposition of the latent repre-
sentations (see Figure 4), we can see that for IM-
PLICITHATE and TWITTER, where HUQ does not
provide improvements, some regions of the test
data are not covered by the training set. For PA-
RADETOX and TOXIGEN, on the other hand, the
training dataset completely overlays all regions of

the test data, and using HUQ improves AUC-RC
on the base methods.

8 Conclusion

In this work, we proposed a hybrid uncertainty
quantification method for selective text classifica-
tion. It combines pre-existing methods for aleatoric
and epistemic uncertainty, providing scores of to-
tal uncertainty. Experimentally, we find that HUQ
usually outperforms in terms of RC-AUC other UE
methods that aim at quantifying only one type of
uncertainty. In real terms, the improved uncertainty
estimation offered by our method affords improved
identification of erroneous predictions for ambigu-
ous text classification tasks.

Although the HUQ method often provides better
results, there are some cases where it is unable to
surpass its base methods and performs at a com-
parable level to them. In our analysis of these
examples, we find that this issue arises when there
is a substantial covariate shift between the training
and test data. In future work, we are planning to
analyze other factors that affect the performance of
UE methods in selective classification tasks. Our
goal is to achieve more consistent and stable im-
provements over baselines across diverse datasets.
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Ethical Considerations

The task of uncertainty estimation is one that is
closely tied to the construction of ethical machine
learning methods, as it pertains to the identifica-
tion of potential misclassified instances. For the
task of toxic content classification, uncertainty esti-
mation is particularly important due to the speech
concerns surrounding toxicity detection. Moreover,
toxicity detection has shown disparate performance
along gendered and racialized lines, uncertainty es-
timation provides an avenue for identifying when a
model may no longer be applied without further im-
provement. However, while uncertainty estimation
may have potential benefits to the tasks under the
umbrella of abusive language detection, approach-
ing misclassifications and uncertainty without an
intersectional (Crenshaw, 1991) lens, and with-
out appropriate measures for deep engagements
with affected communities may propagate issues
of social control, and particularly of enforcing re-
spectability politics of language use. It is therefore
important to understand that uncertainty estimation
can only provide a partial perspective to the chal-
lenges that are faced in abusive language detection.
For instance, data that is mislabeled, or labeled
such that it propagates stereotypes can exhibit low
levels of uncertainty while being undesirable in
relation to the goal of equitable machine learning
methods for content moderation.
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A Hyperparameter Values and Hardware Configuration

Model | Dataset | Accuracy Score | Learning Rate | Num. Epochs | Batch Size | Weight Decay
PARADETOX 0.972 2e-05 10 8 0.10
TOXIGEN 0.858 5e-05 3 32 0.00
JIGSAW 0.967 3e-05 13 64 0.00
TWITTER 0.976 9e-06 4 16 0.01

ELECTRA IMPLICITHATE 0.707 7e-05 15 64 0.01
20 NEWS GROUPS 0.897 3e-05 12 64 0.00
SST-5 0.585 9e-06 4 16 0.01
AMAZON 0.736 5e-05 2 32 0.00
PARADETOX 0.971 3e-05 7 16 0.10
TOXIGEN 0.845 5e-05 2 32 0.00
JIGSAW 0.964 5e-05 3 32 0.00

BERT TWITTER 0.978 7e-06 6 32 0.00
IMPLICITHATE 0.702 7e-05 9 64 0.01
20 NEWS GROUPS 0.909 7e-05 9 64 0.01
SST-5 0.533 7e-05 15 64 0.00
AMAZON 0.705 9e-06 3 16 0.01

Table 5: Optimal hyperparameters for each model and dataset.

The optimal hyperparameters are obtained using Bayesian optimization with early stopping. We train a
model on 80% of the training dataset and validate on the remaining 20%. The optimal hyperparameters
are selected according to the best accuracy score on the validation set. After the hyperparameters are
selected, we use them to fine-tune the model on the full training set. The hyperparameter grid is the
following:

Learning rate: [5e-6, 6e-6, 7e-6, 9¢-6, le-5, 2e-5, 3e-5, Se-5, 7e-5, le-4];
Num. of epochs: {n € N |2 <n <15},

Batch size: [4, 8, 16, 32, 64];

Weight decay: [0, le-2, le-1].

Table 6 presents the hardware configuration used in experiments. In addition, we provide the ap-
proximate number of GPU hours that are needed for training and evaluating all models for all datasets.

CPU 2 Intel Xeon Platinum 8168, 2.7 GHz
CPU Cores 24

GPU NVIDIA Tesla v100 GPU
GPU Memory 32 GB

GPU Hours 272

Table 6: Hardware configuration used in this work and the approximate number of GPU hours spent for running
experiments.
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B Dataset Statistics and Analysis of Ambiguity in Datasets
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Figure 5: Visualization of the t-SNE decomposition of latent representations from the fine-tuned ELECTRA model
for various test sets. Different colors indicate different classes.

Figure 5 presents the t-SNE decomposition of latent representations from ELECTRA for various test
sets, where classes are marked with different colors. For TOXIGEN, JIGSAW, and IMPLICITHATE, we can
see that there is no clear boundary between the “neutral” and “toxic” classes. For SST-5 and AMAZON,
we can see a smooth transition from the “very negative” to the “very positive” classes. This illustration
reveals the presence of noisy and ambiguous instances in these datasets.

Table 7 presents the dataset statistics with the number of instances in the test and training sets and the
number of labels.

| PARADETOX | TOXIGEN | JIGSAW | TWITTER | IMPLICITHATE | 20 NEWS GROUPS | SST-5 | AMAZON

Train 39.5K 9.0K 159.6K 248K 21.5K 11.3K 8.5K 207.4K
Test - 0.9K - - - 7.5K 1.1K 29.6K
# Labels 2 2 2 3 3 20 5 5

Table 7: Dataset statistics. For SST-5, we used the validation set as the test set. For datasets, where the test data is
not given we split the entire training dataset into the training and test parts as described in Section 5.2.
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C Contribution of Different Components of HUQ

Figures. 6 to 8 present the dependence of the AUC-RC score when varying one of the hyperparameters in
HUQ, while others are fixed to optimal values. According to the results, the most valuable hyperparameter
of HUQ is «. In Figure 6, for all datasets, except IMPLICITHATE, we see that there exists an optimal
value of « different from O or 1 that gives the smallest AUC-RC. This means that for these datasets, the
contributions of both types of uncertainties are important. In addition, we can see that our validation
strategy finds & close to its optimal value.

Hyperparameters d,,i, and ;. contribute to the final score, but their effect is less significant. Never-
theless, it is crucial to take into account all components of HUQ to achieve the best results.
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Figure 6: Dependence of AUC-RC/ when varying the parameter o for ELECTRA. The parameters d,,i, and 6yax
are fixed and presented in the title. The vertical line indicates the selected optimal value & on the validation set.
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D Overall Comparison of UE Methods for BERT
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Figure 9: Overall comparison by AUC-RC/, of UE methods for the BERT model.
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E Additional Experiments with Different Aleatoric Uncertainty Estimation Methods

Tables 8 to 10 present the comparison of AUC-RC when using SR or Entropy as measures of aleatoric
uncertainty in various versions of HUQ. Only for SST-5, we see a small significant difference between
them: SR is better than Entropy in terms of AUC-RC by 2.5% in HUQ-MD, by 2.7% in HUQ-DDU, and
by 1.7% in HUQ-RDE.

Model | Method | Epistemic | Aleatoric | PARADETOX | TOXIGEN |  JIGSAW TWITTER | IMPLICITHATE | 20 NEWS GROUPS SST-5 AMAZON
SR - - 27.17+£4.95 | 70.97+£6.07 | 112.124+17.39 | 887.14+£16.89 380.15+19.74 433.44+33.44 446.07+£4.59 | 3529.31+62.46

ELECTRA Entropy - - 27.23+5.10 | 70.97£6.07 | 112.09+17.31 | 887.32+17.18 380.23+20.25 435.01£33.60 448.66+3.53 | 3521.78+71.23
HUQ MD SR 11.2742.27 | 63.69+5.50 | 95.05+11.22 | 878.34+16.30 385.994+31.49 383.24-+34.26 433.78+4.77 | 3550.72+57.03
HUQ (ours) | MD Entropy 11.2942.25 | 63.68+5.50 | 95.08+11.20 | 879.04+16.83 387.19+36.12 383.76+34.04 444.49+3.34 | 3545.13+£60.40
SR - - 21.83+5.02 | 76.36+3.84 | 72.88+11.20 | 896.71+10.93 441.35+39.75 342.56+25.88 495.25+21.38 | 4050.21+42.37

BERT Entropy - - 21.82+4.99 | 76.36+£3.84 | 72.88+11.20 | 902.59+20.84 | 437.93+44.28 345.43+23.05 496.21+22.07 | 4078.42+51.21
HUQ MD SR 9.71+1.37 74.33+2.64 | 70.53+9.17 | 896.30+22.73 | 416.24+18.19 302.39+23.64 464.64+11.09 | 4051.15+68.20
HUQ (ours) | MD Entropy 9.72+1.37 74.31+2.62 | 70.57+9.12 899.78+23.24 413.77+20.26 301.99+23.81 464.90£11.17 | 4082.83+£76.64

Table 8: The comparison of SR and Entropy as measures of aleatoric uncertainty in HUQ-MD for ELECTRA and
BERT models. The best results for each model are shown in bold.

Model | Method | Epistemic | Aleatoric | PARADETOX | TOXIGEN |  JIGSAW TWITTER | IMPLICITHATE | 20 NEWS GROUPS SST-5 AMAZON
SR - - 27.1744.95 | 70.97£6.07 | 112.124+17.39 | 887.14+16.89 | 380.15£19.74 433.44+33.44 446.07+4.59 | 3529.31+62.46

ELECTRA Entropy - - 27.2345.10 | 70.97+6.07 | 112.094+17.31 | 887.32+£17.18 380.234+20.25 435.01£33.60 448.66+3.53 | 3521.78+71.23
HUQ DDU SR 14.63+3.39 | 63.90+4.78 | 110.12+10.75 | 870.22+11.34 379.39+42.36 371.43+£32.98 429.30+£5.68 | 3514.49+61.13
HUQ (ours) | DDU Entropy 14.794+3.05 | 63.92+4.78 | 113.124+16.99 | 872.40+13.55 | 378.47+42.68 371.924+32.89 441.20+4.11 | 3512.43+68.07
SR - - 21.834+5.02 | 76.36+3.84 | 72.88+11.20 | 896.71+10.93 441.354+39.75 342.56+25.88 495.25+21.38 | 4050.21+42.37

BERT Entropy - - 21.82+4.99 | 76.36+£3.84 | 72.88+11.20 | 902.59+20.84 | 437.93+44.28 345.434+23.05 496.21+22.07 | 4078.42+51.21
HUQ DDU SR 11.7742.18 | 73.72+2.94 | 74.47+8.47 903.38+37.43 426.43+39.46 294.45+18.78 467.16+£12.97 | 4033.59+36.82
HUQ (ours) | DDU Entropy 11.7742.18 | 74.00+3.42 | 74.47+8.46 | 905.05+35.51 424.77+42.83 294.32+18.85 466.94+12.89 | 4066.18+47.16

Table 9: The comparison of SR and Entropy as measures of aleatoric uncertainty in HUQ-DDU for ELECTRA and
BERT models. The best results for each model are shown in bold.

Model ‘ Method ‘ Epistemic | Aleatoric | PARADETOX | TOXIGEN ‘ Jigsaw TWITTER IMPLICITHATE | 20 NEWS GROUPS SST-5 AMAZON
SR - - 27.1744.95 | 70.97+£6.07 | 112.124+17.39 | 887.14+16.89 | 380.15+£19.74 433.44+33.44 446.07+4.59 | 3529.31+62.46

ELECTRA Entropy - - 27.2345.10 | 70.97+6.07 | 112.094+17.31 | 887.32+£17.18 380.23+20.25 435.01+£33.60 448.66+3.53 | 3521.78+71.23
HUQ RDE SR 8.89+£1.72 63.37+4.92 | 91.83+£10.17 | 904.80+27.54 | 380.58+23.58 366.45+:19.96 424.47+7.05 | 3532.58+60.23
HUQ (ours) | RDE Entropy 8.89+1.72 63.37+4.93 | 91.84+10.17 | 898.43+18.71 380.57+23.72 366.77+20.64 431.11+6.18 | 3515.40+67.87
SR - - 21.83+£5.02 | 76.36£3.84 | 72.88+11.20 | 896.71+10.93 | 441.35£39.75 342.56425.88 495.25+21.38 | 4050.21+42.37

BERT Entropy - - 21.8244.99 | 76.36+3.84 | 72.88+11.20 | 902.59+20.84 | 437.934+44.28 345.43+23.05 496.21+£22.07 | 4078.42+51.21
HUQ RDE SR 8.55+1.83 72.60+£2.87 | 68.68+6.03 | 885.65+15.82 | 424.28+22.04 289.65+9.81 476.81+£18.02 | 4046.09+46.42
HUQ (ours) | RDE Entropy 8.55+1.83 72.58+2.87 | 68.68+6.04 | 888.11+18.76 | 421.93+24.35 289.22+10.56 477.47+18.58 | 4072.77+54.12

Table 10: The comparison of SR and Entropy as measures of aleatoric uncertainty in HUQ-RDE for ELECTRA
and BERT models. The best results for each model are shown in bold.
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F Additional Experiments with SelectiveNet

Tables 11 to 13 present the comparison of the SelectiveNet performance (Geifman and El-Yaniv, 2019)
with the performance of the SR baseline. The experiments are conducted with the ELECTRA model
on the PARADETOX, TOXIGEN, and 20 NEWS GROUPS datasets. SelectiveNet is designed only for a
specific coverage, which is fixed during training. Therefore, we select multiple coverage values and for
each value, we fine-tune a separate model, following the standard approach for training SelectiveNet.
Since the coverage for each model is fixed, the AUC-RC metric is not appropriate for evaluation of this
method. Therefore, instead, we use the selective risk for the specified coverage as an evaluation metric.
The results show that for the considered text classification datasets, SelectiveNet significantly falls behind
the standard SR baseline, which is different from the results obtained by Geifman and El-Yaniv (2019) on
computer vision tasks. The optimal hyperparameters for SelectiveNet are presented in Table 14.

Coverage
m‘ 0.7 ‘ 0.8 ‘ 0.85 ‘ 0.9 ‘ 0.95

SR 7.67+3.56 11.17+£4.02 | 15.00+£4.86 | 22.83+3.43 | 42.83+3.43
SelectiveNet | SR 16.00£7.80 | 18.83+14.25 | 32.17+£28.27 | 32.67+22.31 | 51.33£28.03
SelectiveNet 12.17£10.91 | 18.50+12.94 | 60.50£26.60 | 44.33£25.94 | 86.67+22.18

Table 11: Selective risk for various coverages on the PARADETOX dataset. We compare the score from the selective
head of the SelectiveNet model with the SR of the SelectiveNet model and SR of the standard ELECTRA model.

Coverage
M 0.7 ‘ 0.8 ‘ 0.85 ‘ 0.9 ‘ 0.95

SR 59.50+6.28 86.00+6.72 | 100.17+5.27 | 115.33+5.32 | 134.50+4.23
SelectiveNet | SR 75.67+7.81 108.17+6.43 | 107.83+6.71 | 138.50+26.33 | 148.00£10.04
SelectiveNet 101.33£25.31 | 134.33£5.54 | 112.674£9.95 | 158.50+21.80 | 148.67+10.13

Table 12: Selective risk for various coverages on the TOXIGEN dataset. We compare the score from the selective
head of the SelectiveNet model with the SR of the SelectiveNet model and SR of the standard ELECTRA model.

Coverage
M 0.7 ‘ 0.8 ‘ 0.85 ‘ 0.9 ‘ 0.95

SR 329.00+17.63 | 486.17+23.74 617.67+25.15 800.83+25.81 1012.83+31.40
SelectiveNet | SR 449.67+£44.20 | 668.00£109.26 | 1656.33+2062.30 | 2024.83+2177.35 | 1070.00439.01
SelectiveNet 472.17+48.84 | 794.17£106.07 | 1759.33+1959.53 | 2146.504+2108.52 | 1175.004+47.12

Table 13: Selective risk for various coverages on the 20 NEwWS GROUPS dataset. We compare the score from the
selective head of the SelectiveNet model with the SR of the SelectiveNet model and SR of the standard ELECTRA
model.
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Dataset Coverage | Objective Score | Learning Rate | Num. Epochs | Batch Size | Weight Decay | Reg. Lambda

0.70 0.98 2e-5 7 4 0.00 30
0.80 0.98 Se-5 8 32 0.10 40
PARADETOX 0.85 0.98 2e-5 11 8 0.01 1
0.90 0.98 Te-5 5 64 0.01 10
0.95 0.98 2e-5 6 64 0.10 32
0.70 0.86 2e-5 5 4 0.00 30
0.80 0.85 le-5 12 8 0.00 10
TOXIGEN 0.85 0.85 3e-5 13 32 0.01 32
0.90 0.86 2e-5 7 4 0.00 30
0.95 0.86 3e-5 12 4 0.00 10
0.70 0.88 5e-5 11 32 0.10 10
0.80 0.89 5e-5 12 8 0.10 40
20 NEWS GROUPS 0.85 0.89 5e-5 12 8 0.10 40
0.90 0.88 5e-5 12 8 0.10 40
0.95 0.87 S5e-5 8 32 0.10 40

Table 14: Optimal hyperparameters for the SelectiveNet model. The hyperparameter grid for Reg. Lambda is: [1,
10, 20, 30, 32, 40]. For other hyperparameters, we use the same grids as for the standard model.
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G Computation Overhead for Uncertainty Estimation

Table 15 presents the computation time for various UE methods. The HUQ-MD during the inference
stage introduces only 0.02% of overhead in comparison with the MD and less than 5% of overhead in
comparison with the SR baseline. On the contrary, a deep ensemble of 5 models introduces 400% of
overhead in comparison with the MD and the SR, which makes it impractical.

Method | PARADETOX, sec | TOXIGEN, sec | JIGSAW, sec | TWITTER, sec | IMPLICITHATE, sec | 20 NEWS GROUPS, sec | SST-5,sec | AMAZON, sec
SR 10.6+0.1 2.9+0.0 43.2+0.3 18.4+0.2 6.9+0.1 18.6+0.1 2.9+0.0 77.845.9
MD 11.0+0.1 3.0+0.1 45.2+0.7 19.3+40.3 7.4+0.2 22.140.9 3.140.0 82.3+6.0
HUQ-MD (ours) 11.0+0.1 3.0+0.1 45.2+0.7 19.3+0.3 7.4+40.2 22.140.9 3.140.0 82.3+6.0
Deep Ensemble 52.9+0.1 14.340.1 216.1+0.6 92.0+0.3 34.4+0.1 92.9+0.1 14.5+0.0 388.8+14.1

Table 15: The computation time for the inference stage for the selected methods.

H Qualitative Analysis

Dataset | Text | Prediction | True Label | SR | MD | HUQ-MD | 6,1
i kinda feel bad saying this but , " yes ! " Neutral | Neutral 0.02 027 | 00

ParADETOX | HE Was really scared Neutral | Neutral 0.01 0.25 00
! that ’s how we roll , alt as f¥ck Toxic Toxic 0.16 11045 | 00
Prekiit, i 'm voting greens . Toxic Toxic 014 | 043 | 00

the only reason they are so successful is because they work harder than us Toxic Neutral 0.42 00

TOXIGEN | what 's a mexicans favourite sport ? cross country Neutral | Toxic 00
in the end, it is the american taxpayer who pays for all of this Neutral Neutral 0.0

"Regarding text formatting, I'm talking about this version of Michael Di Biase, which you reverted to more than once. And who's this ""we"" in the final line of your comment? " | Neutral | Neutral 0.04 10537 03 ] o1s

JIGSAW Right, it's done. I've moved the appropriate comments from this talk page to that one. Neutral | Neutral 048 02
You are retarded Learn to type like you're not five years old, MORON! Toxic Neutral 0.16 02
&#8220;@SimplyHype: @kobebryant shut the f*ck up, you f*cking trash n*gga, work on another ring&#8221; <URL> Offensive | Toxic 0.05

Twirrgr | 1M 5000000 tired of this d*ck dyke showing up on my fb feed. Real studs dont fuce n*ggas. Just be bisexual. Offensive | Toxic 0.05
Ebola sounds like a hood hoe Offensive | Toxic 0.30 00

In two months tho h*e Offensive | Offensive | 0.15 043 | 005

Table 16: Textual examples from various datasets with uncertainty scores from HUQ-MD for the ELECTRA model.
Uncertainty for each method is presented in the range [0-1]. The value indicates percentages of instances in the test
dataset with a lower uncertainty score. The higher saturated color indicates higher uncertainty.
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