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Abstract
Audio-visual speech recognition (AVSR) at-
tracts a surge of research interest recently by
leveraging multimodal signals to understand hu-
man speech. Mainstream approaches address-
ing this task have developed sophisticated ar-
chitectures and techniques for multi-modality
fusion and representation learning. However,
the natural heterogeneity of different modali-
ties causes distribution gap between their repre-
sentations, making it challenging to fuse them.
In this paper, we aim to learn the shared rep-
resentations across modalities to bridge their
gap. Different from existing similar methods
on other multimodal tasks like sentiment analy-
sis, we focus on the temporal contextual depen-
dencies considering the sequence-to-sequence
task setting of AVSR. In particular, we pro-
pose an adversarial network to refine frame-
level modality-invariant representations (MIR-
GAN), which captures the commonality across
modalities to ease the subsequent multimodal
fusion process. Extensive experiments on pub-
lic benchmarks LRS3 and LRS2 show that our
approach outperforms the state-of-the-arts1.

1 Introduction

Human perception of the world intrinsically com-
prises multiple modalities, including vision, au-
dio, text, etc. (McGurk and MacDonald, 1976; Bal-
trušaitis et al., 2018). Audio-visual speech recog-
nition (AVSR) leverages both audio and visual
modalities to understand human speech, improving
the noise-robustness of audio-only speech recog-
nition with noise-invariant lip movement informa-
tion (Sumby and Pollack, 1954). Thanks to recent
advances of deep learning techniques, AVSR re-
search has gained a remarkable progress (Afouras
et al., 2018a; Ma et al., 2021; Shi et al., 2022b).

Currently, the mainstream AVSR approaches
are centered around developing sophisticated archi-
tectures and techniques for multi-modality fusion,

1Code is available at https://github.com/YUCHE
N005/MIR-GAN.
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Figure 1: Multimodal learning of frame-level modality-
invariant and -specific representations.

including simple feature concatenation (Makino
et al., 2019; Ma et al., 2021; Pan et al., 2022), recur-
rent neural network (Petridis et al., 2018; Xu et al.,
2020) and cross-modal attention module (Afouras
et al., 2018a; Lee et al., 2020). Despite the ad-
vances, these approaches are often challenged by
the representation gap persisting between naturally
heterogeneous modalities (Hazarika et al., 2020).

Recently in some other multimodal tasks like
sentiment analysis (Hazarika et al., 2020; Yu et al.,
2021; Yao and Mihalcea, 2022) and cross-modal
retrieval (Xiong et al., 2020), there have been re-
search works proposing to learn two distinct repre-
sentations to benefit multimodal learning. The first
representation is modality-invariant, where multi-
ple modalities of a same utterance are mapped to a
shared space, indicating the homogeneous seman-
tic meaning from the speaker. In addition, they
also learn modality-specific representations that
are private to each modality. Given an utterance,
each modality contains some unique features with
respect to speaker-sensitive information (Tsiros,
2013). Combing these two representations provides
a holistic view of multimodal data for downstream
tasks (Yang et al., 2022). However, these meth-
ods focus on utterance-level representations that
could be easily mapped to either shared or individ-
ual modality space using similarity cost functions,
which does not apply to AVSR task that requires
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sequence-to-sequence mapping with temporal con-
textual dependencies (Petridis et al., 2018).

Motivated by above observations, we propose an
adversarial network to refine frame-level modality-
invariant representations (MIR-GAN) for capturing
the commonality across modalities, which bridges
their heterogeneous gap to ease the subsequent mul-
timodal fusion. In particular, we first design a MIR
generator to learn modality-invariant representa-
tions over the shared audio-visual modality space.
Meanwhile, a modality discriminator is proposed to
strengthen its modality agnosticism via adversarial
learning. Moreover, to further enrich its contextual
semantic information, we propose a mutual infor-
mation maximization strategy to align the refined
representations to both audio and visual modality
sequences. Finally, both modality-invariant and
-specific representations are fused for downstream
speech recognition. Empirical results demonstrate
the effectiveness of our approach. In summary, our
main contributions are:

• We present MIR-GAN, an AVSR approach
to refine frame-level modality-invariant repre-
sentations, which captures the commonality
across modalities and thus bridges their het-
erogeneous gap to ease multimodal fusion.

• We first learn modality-invariant representa-
tions with a MIR generator, followed by an-
other modality discriminator to strengthen its
modality agnosticism via adversarial learning.
Furthermore, we propose a mutual informa-
tion maximization strategy to enrich its con-
textual semantic information. Finally, both
modality-invariant and -specific representa-
tions are fused for downstream recognition.

• Our proposed MIR-GAN outperforms the
state-of-the-arts on LRS3 and LRS2 bench-
marks. Extensive experiments also show its
superiority on ASR and VSR tasks.

2 Related Work

Audio-Visual Speech Recognition. Current main-
stream AVSR methods focus on sophisticated ar-
chitectures and techniques for audio-visual modal-
ity fusion. Prior methods like RNN-T (Makino
et al., 2019), Hyb-Conformer (Ma et al., 2021) and
MoCo+wav2vec (Pan et al., 2022) employ simple
feature concatenation for multimodal fusion, other
works including Hyb-RNN (Petridis et al., 2018)

and EG-seq2seq (Xu et al., 2020) leverage recur-
rent neural network for audio-visual fusion. In ad-
dition, cross-modal attention has also become pop-
ular recently for multimodal interaction and fusion
in AVSR tasks, such as TM-seq2seq (Afouras et al.,
2018a), DCM (Lee et al., 2020) and MMST (Song
et al., 2022). Despite the effectiveness, these fusion
techniques are often challenged by the representa-
tion gap between naturally heterogeneous modal-
ities. Recently, multimodal self-supervised learn-
ing has been popular for capturing unified cross-
modal representations, like AV-HuBERT (Shi et al.,
2022a) and u-HuBERT (Hsu and Shi, 2022), which
achieve the state-of-the-art but require abundant
unlabeled data and computing resources. In this
work, we propose a supervised learning scheme to
efficiently refine modality-invariant representations
for bridging the heterogeneous modality gap.

Modality-Invariant and -Specific Representa-
tions. Recent studies in many multimodal tasks
suggest that the model benefits from both shared
and individual modality representations, includ-
ing multimodal sentiment analysis (Hazarika et al.,
2020; Yu et al., 2021; Yang et al., 2022), person
re-identification (Wei et al., 2021; Huang et al.,
2022), cross-modal retrival (Zeng et al., 2022) and
image-sentence matching (Liu et al., 2019), etc.
MISA (Hazarika et al., 2020) maps the multimodal
features into two spaces as modality-invariant and
-specific representations, and then fuses them for
downstream classification. MCLNet (Hao et al.,
2021) learns modality-invariant representations by
minimizing inter-modal discrepancy and maximiz-
ing cross-modal similarity. VI-REID (Feng et al.,
2019) builds an individual network for each modal-
ity, with a shared identity loss to learn modality-
invariant representations. However, these methods
map utterance-level representations to modality-
invariant or -specific spaces via similarity cost func-
tions, while AVSR is sequence-to-sequence task
that requires contextual semantic information. To
this end, we propose an adversarial network with
mutual information maximization to refine frame-
level modality-invariant representations that sub-
jects to temporal contextual dependencies.

Adversarial Network. The concept of adversarial
network starts from GAN (Goodfellow et al., 2014),
which has attracted a surge of research interests
due to its strong ability of generating high-quality
novel samples according to existing data. The best-
known applications include image-to-image trans-
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Figure 2: Illustration of our MIR-GAN. (a) Overall architecture. (b) MIR generator that learns modality-invariant
representation f inv

va . (c) Modality discriminator that strengthens the modality agnosticism of f inv
va . (d) Visual and

audio encoders that learn modality-specific representations fspe
v , fspe

a . “MIM” is mutual information maximization.

lation (Isola et al., 2017) and image synthesis (Den-
ton et al., 2015; Radford et al., 2015). Recently,
GAN is further applied to multimodal tasks such
as text-to-image synthesis (Reed et al., 2016; Tan
et al., 2020), video captioning (Yang et al., 2018;
Bai et al., 2021) and cross-modal retrieval (Qian
et al., 2021). In this work, we leverage the strong
distinguishing ability of adversarial network to
strengthen the modality agnosticism of the learned
modality-invariant representations.

3 Methodology

3.1 Overview
The overall architecture of our proposed MIR-GAN
is illustrated in Fig. 2. First, we have two front-end
modules2 to process the input streams, which gen-
erate two modality sequences, i.e., fv, fa ∈ RT×D,
where T is number of frames and D is embed-
ding size. These two sequences are then fed by
visual and audio encoders respectively to generate
modality-specific representations, i.e., fspe

v , fspe
a ∈

RT×D. Based on that, we propose a MIR generator
to learn modality-invariant representations by ex-
tracting the shared information of two modalities,
i.e., f inv

va ∈ RT×D. Meanwhile, we design a modal-
ity discriminator to strengthen its modality agnosti-
cism via adversarial learning. In addition, to further

2Details are presented in Appendix A.3.

enrich its contextual semantic information, we pro-
pose a mutual information maximization (MIM)
strategy to align the refined representations to both
audio and visual modality sequences. Finally, both
modality-invariant and -specific representations are
fused for downstream speech recognition.

3.2 Visual & Audio Encoders
As illustrated in Fig. 2 (d), we introduce a pair of vi-
sual and audio encoders to learn modality-specific
representations. Following Transformer (Vaswani
et al., 2017) architecture, they first employ self-
attention modules to capture the contextual depen-
dencies within each modality, followed by cross-
attention modules for interaction between two
modalities, which can initially narrow their gap
to benefit the subsequent modality-invariant repre-
sentation learning. Finally, there are feed-forward
networks to generate the modality-specific outputs.

3.3 MIR-GAN
With learned modality-specific representations, we
propose MIR-GAN to refine frame-level modality-
invariant representations. First, we design a MIR
generator to extract the shared information of two
modalities, which generates a modality-invariant
representation f inv

va ∈ RT×D. Meanwhile, we
design a modality discriminator to strengthen its
modality agnosticism via adversarial learning.
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Figure 3: Illustration of the Hybrid-Modal Attention.
Here we take the visual modality for example (m = v).

3.3.1 MIR Generator
Fig. 2 (b) details the architecture of proposed MIR
generator G, where we design a hybrid-modal at-
tention (HMA) module to extract out the part of
information in each modality-specific representa-
tion that is related to both modalities:

sm = HMA(fspe
m , fva), m ∈ {v, a}, (1)

where the subscript m denotes modality. The re-
sulted features are then added to input sequence fva
to form the final modality-invariant representation:

f inv
va = Norm(fva +

∑

m∈{v,a}
Conv(sm)), (2)

where the “Norm” denotes layer normalization (Ba
et al., 2016), “Conv” denotes 1×1 convolution fol-
lowed by PReLU activation (He et al., 2015).

Hybrid-Modal Attention (HMA) first involves a
cross-attention sub-module to extract the informa-
tion in each modality-specific representation that is
related to both modalities, with the query input fva
comprising both visual and audio sequence infor-
mation, as shown in Fig. 3:

f share
m = Cross-Attention(fva, fspe

m , fspe
m ), (3)

To further make the extracted feature invariant to
modalities, we design a parallel convolutional net-
work to learn a mask for filtering out the modality-
specific information:

sm = fshare
m ⊗ σ(Conv(f spe

m ∥fva)), (4)

where “Conv” denotes 1×1 convolutional layer, ∥
denotes feature concatenation, σ denotes Sigmoid
activation, ⊗ denotes element-wise multiplication.

As a result, the output representation sm from
HMA involves information regarding both visual
and audio modalities, making the final output f inv

va

(in Eq. 2) invariant to modalities.

3.3.2 Modality Discriminator
With the generated modality-invariant representa-
tion, we further design a modality discriminator
D to strengthen its modality agnosticism via ad-
versarial learning. As shown in Fig. 2 (c), the dis-
criminator consists of two linear layers followed
by Sigmoid activation to predict a scalar between 0
and 1 for each frame, indicating which modality it
belongs to (i.e., 0 for visual and 1 for audio):

D(f) ∈ RT×1, f ∈ {fspe
v , fspe

a , f inv
va }, (5)

Therefore, for frames in modality-specific repre-
sentations f spe

v and fspe
a , we hope the discriminator

can correctly classify the modality type, i.e., 0 or 1.
In contrast, in order to strengthen the modality ag-
nosticism of refined representation f inv

va , we hope
it can confuse the discriminator with the output
around 0.5, i.e., a medium between two modalities.

With above designs of generator and discrimina-
tor, the adversarial training objective of MIR-GAN
can be mathematically formulated as:

LGAN = LD + LG

= Ef [logD(fspe
a ) + log(1−D(fspe

v ))]

+ Ef [−logD(f inv
va )− log(1−D(f inv

va ))],

(6)

where f inv
va = G(fspe

v , fspe
a , fva), E denotes the

expectation over all the temporal frames in current
data batch. Details of the corresponding optimiza-
tion strategy are illustrated in Alg. 1.

3.4 Mutual Information Maximization
The MIR-GAN successfully refines the modality-
invariant representation by focusing on the modal-
ity commonality and agnosticism, while the origi-
nal semantic information may not be preserved. To
this end, we further design a mutual information
maximization (MIM) strategy via contrastive learn-
ing to enrich the contextual semantic information
in refined modality-invariant representation.

In particular, we formulate a contrastive loss
function to maximize the mutual information be-
tween modality-invariant representation f inv

va and
the modality-specific representations fspe

v , fspe
a :

LMIM =−
T∑

i=1

log
exp(⟨f inv

va_i, f
spe
v_i ⟩/τ)∑T

j=1 exp(⟨f inv
va_i, f

spe
v_j ⟩/τ)

−
T∑

i=1

log
exp(⟨f inv

va_i, f
spe
a_i ⟩/τ)∑T

j=1 exp(⟨f inv
va_i, f

spe
a_j ⟩/τ)

,

(7)
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where ⟨ ·, · ⟩ denotes cosine similarity, τ is tempera-
ture parameter. The subscripts i and j denote frame
index, where f inv

va /fspe
v /fspe

a ∈ RT×D.
The constructed positive and negative samples

are distinguished by frame index. As same frame
of different representations express similar seman-
tic meanings, we assign them as positive samples
to strengthen consistency, while the mismatched
frames are pulled apart from each other. As a result,
the MIM strategy can enrich the semantic informa-
tion in final modality-invariant representation.

3.5 Optimization
The optimization strategy of MIR-GAN is detailed
in Alg. 1. After the forward-propagation process,
we calculate LGAN and LMIM according to Eq. 6
and Eq. 7. Meanwhile, the downstream speech
recognition loss Lrec is calculated as the cross-
entropy between recognized text and the ground-
truth transcription. The final training objective of
MIR-GAN can therefore be written as:
L = Lrec + λGAN · LGAN + λMIM · LMIM ,

(8)

where λGAN , λMIM are weighting parameters to
balance different training objectives.

Inspired by GAN training strategy (Goodfellow
et al., 2014), we split the back-propagation process
into two steps. First, we maximize LGAN to update
the discriminator, where the generator is detached
from optimization. According to Eq. 6, maximizing
the first term of LGAN (i.e., LD) trains the discrimi-
nator to correctly classify the two modalities, while
increasing the second term amounts to informing
discriminator that f inv

va is modality-specific and can
either be visual or audio3 (this is opposite to what
we desire as modality-invariant). Second, we freeze
discriminator and update the rest network, where
minimizing LG pushes the discrimination output
of f inv

va to 0.5,3 which is a medium between vi-
sual and audio modalities, i.e., modality-agnostic.
In addition, Lrec optimizes the downstream speech
recognition model and LMIM implements the MIM
strategy. The entire system is trained in an end-to-
end manner with well-tuned weighting parameters.

4 Experiments

4.1 Experimental Setup
Datasets. We conduct experiments on two large-
scale public benchmarks, LRS3 (Afouras et al.,

3Function log(x) + log(1− x) reaches maximum at x =
0.5, and the minimum is obtained around x = 0 and x = 1.

Algorithm 1 MIR-GAN Optimization.

Require: Training data D that contains visual-audio pairs
(xv, xa) and the text transcription y. The MIR-GAN
network θ that consists of front-ends θvf and θaf , en-
coders θvae, MIR generator θG, modality discrimina-
tor θD and downstream speech recognition model θrec.
Hyper-parameter weights λGAN , λMIM .

1: Randomly initialize the entire system θ.
2: if select self-supervised setting then
3: Load the pre-trained AV-HuBERT for speech recogni-

tion model θrec and front-ends θvf , θaf
4: end if
5: while not converged do
6: for (xv, xa) ∈ D do
7: FORWARD-PROPAGATION:
8: fv = θvf (xv), fa = θaf (xa) ▷ front-ends
9: fspe

v , fspe
a = θvae(fv, fa) ▷ encoders

10: fva = fv∥fa
11: f inv

va = θG(f
spe
v , fspe

a , fva) ▷ Generator
12: ŷ = θrec(f

spe
v ∥fspe

a ∥f inv
va ) ▷ recognition

13: TRAINING OBJECTIVES:
14: LGAN (LD and LG) in Eq. 6 ▷ Discriminator
15: LMIM in Eq. 7 ▷ MI maximization
16: Lrec = CrossEntropy(ŷ, y)
17: BACK-PROPAGATION: ▷ adversarial training
18: UPDATE DISCRIMINATOR: ▷ unfreeze θD
19: argmax

θD

LGAN

20: UPDATE THE REST NETWORK: ▷ freeze θD
21: argmin

θ\θD
Lrec+λGAN ·LG+λMIM ·LMIM

22: end for
23: end while

2018b) and LRS2 (Chung et al., 2017). LRS3
dataset collects 433 hours of transcribed English
videos in TED and TEDx talks from over 5000
speakers, which is the largest publicly available
labeled audio-visual speech recognition dataset.
LRS2 dataset contains 224 hours of video speech,
with a total of 144K clips from BBC programs.
Model Configurations. We first build a base
model with only front-ends and downstream speech
recognition module, which follows Transformer ar-
chitecture with 24 encoder layers and 9 decoder
layers. Based on that, we build the MIR-GAN
with NE = 3 visual & audio encoder layers and
NG = 3 MIR generator layers. To maintain similar
model size, we only use 12 encoder layers and 9 de-
coder layers in the recognition model. The number
of parameters in our base model and MIR-GAN
are 476M and 469M respectively. We also use Con-
former (Gulati et al., 2020) as our backbone. In
addition, we implement a self-supervised setting
by loading pre-trained AV-HuBERT4. Following
prior work (Shi et al., 2022b), we employ data aug-
mentation and noisy test set based on MUSAN

4https://github.com/facebookresearch/
av_hubert
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Method Backbone Criterion Unlabeled Labeled DataAug LM
WER(%)

data (hrs) data (hrs) Clean Noisy

Supervised
TM-seq2seq (2018a) Transformer S2S - 1,519 ✓ ✓ 7.2 -
EG-seq2seq (2020) RNN S2S - 590 ✓ - 6.8 -

RNN-T (2019) RNN RNN-T - 31,000 - - 4.5 -
Hyb-Conformer (2021) Conformer S2S + CTC - 590 ✓ ✓ 2.3 -

Self-Supervised
AV-HuBERT (2022b) Transformer S2S 1,759 433 ✓ - 1.4 5.8

u-HuBERT (2022) Transformer S2S 2,211 433 ✓ - 1.2 -

Proposed (Supervised)

Ours

Base model
Transformer S2S - 433 ✓ -

3.5 14.8
MIR-GAN 2.8 11.7

Base model
Conformer S2S - 433 ✓ -

2.5 10.9
MIR-GAN 2.1 8.5

Proposed (Self-Supervised)

Ours
Base model

Transformer S2S 1,759 433 ✓ -
1.4 5.8

MIR-GAN 1.2 5.6

Table 1: WER (%) of our MIR-GAN and prior works on LRS3 benchmark. “S2S” denotes sequence-to-sequence
loss (Watanabe et al., 2017), “CTC” denotes CTC loss (Graves et al., 2006), “DataAug” denotes noise augmentation,
“LM” denotes language model rescoring. The noisy test set is synthesized using MUSAN noise (Snyder et al., 2015).

noise (Snyder et al., 2015). More detailed settings
are presented in Appendix A.3 - A.5.
Baselines. To evaluate our proposed MIR-GAN,
we select some popular AVSR methods for com-
parison, which can be roughly divided into two
groups. The first is supervised learning method, in-
cluding TM-seq2seq/CTC (Afouras et al., 2018a),
RNN-T (Makino et al., 2019), EG-seq2seq (Xu
et al., 2020) and Hyb-Conformer (Ma et al., 2021).
Another one is the recently popular self-supervised
learning method such as MoCo+wav2vec (Pan
et al., 2022), AV-HuBERT (Shi et al., 2022b) and
u-HuBERT (Hsu and Shi, 2022).

4.2 Main Results

We conduct experiments on two public datasets un-
der supervised and self-supervised settings, depend-
ing on whether use the AV-HuBERT pre-trained
model. Results show that our proposed MIR-GAN
achieves the state-of-the-art under both settings.
LRS3 Benchmark. Table 1 presents the AVSR
performance of our proposed MIR-GAN and prior
methods on LRS3 benchmark. Under supervised
setting, our MIR-GAN achieves significant im-
provement over the base model in both clean and
noisy testing conditions, and the best performance
achieves new state-of-the-art (2.1% vs. 2.3%)
while without using the language model rescoring.
In addition, the Conformer backbone consistently
outperforms Transformer (2.1% vs. 2.8%, 8.5%

Method Backbone
WER(%)

Clean Noisy

Supervised
TM-seq2seq (2018a) Transformer 8.5 -

TM-CTC (2018a) Transformer 8.2 -
Hyb-RNN (2018) RNN 7.0 -

LF-MMI TDNN (2020) TDNN 5.9 -
Hyb-Conformer (2021) Conformer 3.7 -

Self-Supervised
MoCo+wav2vec (2022) Transformer 2.6 -

Proposed (Supervised)

Ours

Base model
Transformer

5.4 21.2
MIR-GAN 4.5 16.7

Base model
Conformer

3.9 15.8
MIR-GAN 3.2 11.9

Proposed (Self-Supervised)

Ours
Base model

Transformer
2.3 7.3

MIR-GAN 2.2 7.0

Table 2: WER (%) of our MIR-GAN and prior works
on the LRS2 benchmark. Detailed configurations are
further presented in Table 6.

vs. 11.7%). Under self-supervised setting, MIR-
GAN also improves the performance of base model,
which surpasses or matches previous state-of-the-
art (1.2% vs. 1.2%, 5.6% vs. 5.8%) while using
less unlabeled data for pre-training.
LRS2 Benchmark. Table 2 compares the AVSR
results of MIR-GAN and baselines on LRS2 bench-
mark. We can observe that the proposed MIR-GAN
outperforms previous state-of-the-art by a large
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Model
TF-Sup-3 CF-Sup-3 TF-SelfSup-3 TF-Sup-2 CF-Sup-2 TF-SelfSup-2

Clean Noisy Clean Noisy Clean Noisy Clean Noisy Clean Noisy Clean Noisy

MIR-GAN (Full) 2.8 11.7 2.1 8.5 1.2 5.6 4.5 16.7 3.2 11.9 2.2 7.0

Importance of Representations
w/o Modality-Invariant 3.3 13.7 2.4 10.1 1.3 5.8 5.3 19.9 3.7 14.9 2.3 7.2
w/o Modality-Specific 3.2 13.2 2.3 9.8 1.4 5.7 5.1 19.5 3.7 14.6 2.2 7.1

Importance of Modules
w/o Visual & Audio Encoders 3.0 12.1 2.1 8.9 1.2 5.6 4.8 18.1 3.4 13.1 2.2 7.0

w/o MIR Generator 3.1 12.8 2.2 9.2 1.3 5.7 4.9 18.7 3.6 13.8 2.2 7.1
w/o Modality Discriminator 3.2 13.3 2.3 9.7 1.4 5.8 5.2 19.4 3.7 14.5 2.3 7.2

Importance of Strategies
w/o Adversarial Training 3.1 13.0 2.3 9.5 1.3 5.7 5.1 19.2 3.6 14.1 2.2 7.2

w/o MIM Strategy 2.9 12.0 2.1 9.0 1.2 5.6 4.7 17.8 3.5 12.6 2.2 7.1

Table 3: Ablation study on LRS3 and LRS2 benchmarks. Results are reported on six configurations in the format
“[Backbone]-[Setting]-[Test set]”, where “TF”/“CF” denote Transformer/Conformer backbone, “Sup”/“SelfSup”
denote supervised/self-supervised setting, “3”/2” denote LRS3/LRS2 test set.

margin under both supervised and self-supervised
settings (3.2% vs. 3.7%, 2.2% vs. 2.6%). In ad-
dition, we also observe promising gains of perfor-
mance in noisy testing conditions.

As a result, our proposed MIR-GAN achieves
new state-of-the-art under both supervised and
self-supervised settings on two public benchmarks,
which demonstrates its superiority on AVSR task.

4.3 Ablation Study

Table 3 presents the ablation study of each compo-
nent in MIR-GAN. There are three parts of abla-
tion that are independent with each other, i.e., each
study is conducted where other two components
are kept same as the full MIR-GAN.
Importance of Representations. We first inves-
tigate the importance of modality-invariant and -
specific representations by discarding each of them.
When removing the refined modality-invariant rep-
resentations from multi-modality fusion, the down-
stream speech recognition performance degrades a
lot under all configurations, which verifies its sig-
nificance of bridging the modality gap. Similarly,
we observe that the modality-specific representa-
tions also plays an important role in AVSR.
Importance of Modules. In this part, we study the
role of each module in the proposed MIR-GAN.
The visual and audio encoders are designed to ex-
tract deep modality-specific representations, which
contributes to performance gains of MIR-GAN.
Then we replace the core module - MIR genera-
tor with simple feature concatenation in refining
modality-invariant representations, which results in
significant performance degradation. Another key
module - modality discriminator also contributes

w/o MIM Strategy w/ MIM Strategy

(a) (b) (c) (d)

Figure 4: Alignment (attention map) between modality-
invariant and -specific representations with and without
MIM strategy: (a)(c) f inv

va ↔ fspe
v , (b)(d) f inv

va ↔ fspe
a .

a lot in MIR-GAN by strengthening the modality
agnosticism of refined representations from MIR
generator. In this sense, we conclude that all the
modules in proposed MIR-GAN contribute posi-
tively to the multimodal representation learning.

Importance of Strategies. With the adversarial
training strategy illustrated in Alg. 1, the proposed
modality discriminator effectively strengthens the
modality agnosticism of the refined representations
from generator. To verify its effectiveness, we re-
move the adversarial training strategy from MIR-
GAN, which results in similar performance degra-
dation to the previous case without modality dis-
criminator. Therefore, it demonstrates the key role
of this strategy in learning modality-invariant rep-
resentations, where further visualization is shown
in Fig. 5. Meanwhile, we design a MIM strategy to
enrich the contextual semantic information in the
refined modality-invariant representations, and sim-
ilar performance drops can be observed in absence
of such strategy. Furthermore, we visualize the at-
tention maps in Fig. 4 to show its effectiveness. The
clear diagonals in (c) and (d) indicate the strong
ability of MIM strategy to align modality-invariant
and -specific representations, which enriches the
contextual semantic information in the former.
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(a) Base Model (c) MIR-GAN(b) MIR-GAN w/o Discriminator

Figure 5: The t-SNE visualization of modality-invariant and -specific representations from (a) base model, (b)
MIR-GAN without modality discriminator and (c) MIR-GAN. The orange and blue points denote visual and audio
modality-specific representations respectively, and green points denote modality-invariant representations. This
study is conducted on frame-level representations using a portion of LRS3 test set.

Method
WER(%)

Clean Noisy

Base Model 3.5 14.8

+ MCLNet (Hao et al., 2021) 3.4 14.5
+ VI-REID (Feng et al., 2019) 3.3 14.0
+ MISA (Hazarika et al., 2020) 3.3 13.7

MIR-GAN (ours) 2.8 11.7

Table 4: Comparison between MIR-GAN and utterance-
level multimodal approaches on LRS3 benchmark.

Visualizations of Modality-Invariant and -
Specific Representations. Fig. 5 presents the
t-SNE visualization of modality-invariant and -
specific representations to illustrate the principle of
MIR-GAN. First, we observe from (a) base model
that the two modality-specific representations are
distantly separated, indicating the heterogeneous
gap between different modalities (Hazarika et al.,
2020). With the proposed MIR-GAN (no modal-
ity discriminator), the two modalities are pushed
closer by the interaction between encoders, and
the refined modality-invariant representations serve
as a medium between them. However, these re-
fined representations are still entangled with audio
modality-specific representations5, making them
less modality-invariant. Finally, the proposed dis-
criminator effectively strengthens their modality
agnosticism via adversarial learning, which are dis-
persed between two modalities to capture their com-
monality and thus bridge the heterogeneous modal-
ity gap. As a result, the subsequent multi-modality
fusion process would be eased and generate better
features for downstream recognition.

Comparison with Utterance-Level Approaches
As illustrated in §2, prior works have investigated
utterance-level modality-invariant and -specific rep-
resentations with similarity cost functions, includ-

5Audio modality plays the dominant role in AVSR task.

Method Backbone
WER(%)

AV A V

Supervised
TM-seq2seq (2018a) Transformer 7.2 8.3 58.9
EG-seq2seq (2020) RNN 6.8 7.2 57.8

RNN-T (2019) RNN 4.5 4.8 33.6
Hyb-Conformer (2021) Conformer 2.3 2.3 43.3

Self-Supervised
Distill-Pretrain (2022) Conformer - - 31.5
AV-HuBERT (2022b) Transformer 1.4 1.5 26.9

u-HuBERT (2022) Transformer 1.2 1.4 27.2

Proposed (Supervised)

Ours

Base model
Transformer

3.5 4.7 63.5
MIR-GAN 2.8 3.5 48.6

Base model
Conformer

2.5 3.0 40.2
MIR-GAN 2.1 2.3 34.2

Proposed (Self-Supervised)

Ours
Base model

Transformer
1.4 1.6 28.6

MIR-GAN 1.2 1.3 26.6

Table 5: Performance on single-modality inputs with
LRS3 benchmark. “AV”, “A” and “V” indicate the input
modality during both finetuning and inference stages.
The missing modality is replaced by zero embeddings.

ing MISA (Hazarika et al., 2020), MCLNet (Hao
et al., 2021) and VI-REID (Feng et al., 2019). We
implement them in our framework as comparison
to our proposed MIR-GAN, where we employ their
designed similarity cost functions on frame-level
representations. As illustrated in Table 4, these
utterance-level approaches can also improve AVSR
results but still underperforms our proposed ap-
proach by a large margin.
Performance on Single-Modality Inputs. Further-
more, Table 5 presents the performance of our MIR-
GAN on single-modality inputs. First, we observe
that in all models using both modalities performs
better than single modality, and the audio-only case
achieves much better results than visual-only case,
which shows the dominance of audio modality in
AVSR task. Under two single-modality cases, our
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proposed MIR-GAN both achieves significant im-
provement over the base model, and the best per-
formance outperforms or matches previous state-
of-the-arts in both supervised and self-supervised
settings (2.3% vs. 2.3%, 34.2% vs. 33.6%; 1.3%
vs. 1.4%, 26.6% vs. 26.9%). Therefore, even
with missing modality, our MIR-GAN can still re-
fine effective modality-invariant representations to
benefit the downstream speech recognition, which
further verifies the generality of our approach.

5 Conclusion

In this paper, we propose MIR-GAN, an adversar-
ial network to refine frame-level modality-invariant
representations for AVSR, which captures the com-
monality across modalities to ease the multimodal
fusion process. MIR-GAN first learns modality-
invariant representation with MIR generator, fol-
lowed by a modality discriminator to strengthen its
modality agnosticism via adversarial learning. Fur-
thermore, we propose a mutual information maxi-
mization strategy to enrich its contextual semantic
information. Finally, both modality-invariant and
-specific representations are fused to provide a holis-
tic view of multimodal data for downstream task.
Experiments on public benchmarks show that our
MIR-GAN achieves the state-of-the-art.

Limitations

The main novelty of our proposed MIR-GAN is
refining frame-level modality-invariant represen-
tations via adversarial learning. It is promising
to combine this approach with the popular self-
supervised pre-training to learn unified multimodal
representations. In this work, we only load pre-
trained AV-HuBERT for the front-ends and speech
recognition model, while the proposed modules
(i.e., encoders, generator, discriminator) are still
trained from scratch. In future, we may include
the entire MIR-GAN into self-supervised learning
scheme, together with the adversarial learning to
refine better multimodal representations.
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A Experimental Details

A.1 Datasets
LRS36 (Afouras et al., 2018b) is currently the
largest public sentence-level lip reading dataset,
which contains over 400 hours of English video
extracted from TED and TEDx talks on YouTube.
The training data is divided into two parts: pretrain
(403 hours) and trainval (30 hours), and both of
them are transcribed at sentence level. The pretrain

6https://www.robots.ox.ac.uk/~vgg/dat
a/lip_reading/lrs3.html
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Method Backbone Criterion Unlabeled Labeled DataAug LM
WER(%)

data (hrs) data (hrs) Clean Noisy

Supervised
TM-seq2seq (2018a) Transformer S2S - 1,519 ✓ ✓ 8.5 -

TM-CTC (2018a) Transformer CTC - 1,519 ✓ ✓ 8.2 -
Hyb-RNN (2018) RNN S2S + CTC - 397 ✓ ✓ 7.0 -

LF-MMI TDNN (2020) TDNN LF-MMI - 224 - ✓ 5.9 -
Hyb-Conformer (2021) Conformer S2S + CTC - 381 ✓ ✓ 3.7 -

Self-Supervised
MoCo+wav2vec (2022) Transformer S2S + CTC 60,000 381 ✓ - 2.6 -

Proposed (Supervised)

Ours

Base model
Transformer S2S - 224 ✓ -

5.4 21.2
MIR-GAN 4.5 16.7

Base model
Conformer S2S - 224 ✓ -

3.9 15.8
MIR-GAN 3.2 11.9

Proposed (Self-Supervised)

Ours
Base model

Transformer S2S 1,759 224 ✓ -
2.3 7.3

MIR-GAN 2.2 7.0

Table 6: WER (%) of our MIR-GAN and prior works on LRS2 benchmark. “S2S” denotes sequence-to-sequence
loss (Watanabe et al., 2017), “CTC” denotes CTC loss (Graves et al., 2006), “DataAug” denotes noise augmentation,
“LM” denotes language model rescoring. The noisy test set is synthesized using MUSAN noise (Snyder et al., 2015).

part differs from trainval in that the duration of its
video clips are at a much wider range. Since there is
no official development set provided, we randomly
select 1,200 samples from trainval as validation set
(∼ 1 hour) for early stopping and hyper-parameter
tuning. In addition, it provides a standard test set
(0.9 hours) for evaluation.
LRS27 (Chung et al., 2017) is a large-scale pub-
licly available labeled audio-visual (A-V) datasets,
which consists of 224 hours of video clips from
BBC programs. The training data is divided into
three parts: pretrain (195 hours), train (28 hours)
and val (0.6 hours), which are all transcribed at
sentence level. An official test set (0.5 hours) is
provided for evaluation use.

A.2 Data Preprocessing

The data preprocessing for above two datasets
follows the LRS3 preprocessing steps in prior
work (Shi et al., 2022a). For the audio stream,
we extract the 26-dimensional log filter-bank fea-
ture at a stride of 10 ms from input raw waveform.
For the video clips, we detect the 68 facial key-
points using dlib toolkit (King, 2009) and align the
image frame to a reference face frame via affine
transformation. Then, we convert the image frame
to gray-scale and crop a 96×96 region-of-interest
(ROI) centered on the detected mouth. During train-

7https://www.robots.ox.ac.uk/~vgg/dat
a/lip_reading/lrs2.html

ing, we randomly crop a 88×88 region from the
whole ROI and flip it horizontally with a proba-
bility of 0.5. At inference time, the 88×88 ROI
is center cropped without horizontal flipping. To
synchronize these two modalities, we stack each
4 neighboring acoustic frames to match the image
frames that are sampled at 25Hz.

A.3 Model Settings
Front-ends. We introduce the modified ResNet-18
from prior work (Shi et al., 2022a) as visual front-
end, where the first convolutional layer is replaced
by a 3D convolutional layer with kernel size of
5×7×7. The visual feature is flattened into an 1D
vector by spatial average pooling in the end. For
audio front-end, we use one linear projection layer
followed by layer normalization (Ba et al., 2016).
MIR-GAN. We build the MIR-GAN framework
based on Transformer, where the embedding
dimension/feed-forward dimension/attention heads
in each Transformer layer are set to 1024/4096/16
respectively. In addition, we also employ Con-
former as backbone, where the depth-wise convo-
lution kernel size is set to 31. We use a dropout of
p = 0.1 after the self-attention block within each
Transformer layer, and each Transformer layer is
dropped (Fan et al., 2019) at a rate of 0.1.

A.4 Data Augmentation
Following prior work (Shi et al., 2022b), we use
many noise categories for data augmentation. We
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select the noise categories of “babble”, “music”
and “natural” from MUSAN noise dataset (Sny-
der et al., 2015), and extract some “speech” noise
samples from LRS3 dataset. All categories are di-
vided into training, validation and test partitions.

During training process, we randomly select one
noise category and sample a noise clip from its
training partition. Then, we randomly mix the sam-
pled noise with input clean audio, at signal-to-noise
ratio (SNR) of 0dB with a probability of 0.25.

At inference time, we evaluate our model on
clean and noisy test sets respectively. Specif-
ically, the system performance on each noise
type is evaluated separately, where the testing
noise clips are added at five different SNR levels:
{−10,−5, 0, 5, 10}dB. At last, the testing results
on different noise types and SNR levels will be
averaged to obtain the final noisy WER result.

A.5 Training Details

Training. We follow the sequence-to-sequence
finetuning configurations of AV-HuBERT (Shi
et al., 2022b) to train our systems. We use Trans-
former decoder to decode the encoded features into
unigram-based subword units (Kudo, 2018), where
the vocabulary size is set to 1000. The temperature
τ in Eq. 7 is set to 0.1, and the weighting parame-
ters λGAN/λMIM in Eq. 8 are set to 0.01/0.005
respectively. The entire system is trained for
60K steps using Adam optimizer (Kingma and Ba,
2014), where the learning rate is warmed up to a
peak of 0.001 for the first 20K updates and then
linearly decayed. The finetuning process takes ∼
1.4 days on 4 NVIDIA-V100-32GB GPUs.
Inference. No language model is used during in-
ference. We employ beam search for decoding,
where the beam width and length penalty are set to
50 and 1 respectively. All the hyper-parameters in
our systems are tuned on validation set. Since our
experimental results are quite stable, a single run is
performed for each reported result.

A.6 Baselines

In this section, we describe the baselines for com-
parison.

• TM-seq2seq (Afouras et al., 2018a): TM-
seq2seq proposes a Transformer-based AVSR
system to model the A-V features separately
and then attentively fuse them for decoding,
and uses sequence-to-sequence loss (Watan-
abe et al., 2017) as training criterion.

• TM-CTC (Afouras et al., 2018a): TM-CTC
shares the same architecture with TM-seq2seq,
but uses CTC loss (Graves et al., 2006) as
training criterion.

• Hyb-RNN (Petridis et al., 2018): Hyb-RNN
proposes a RNN-based AVSR model with hy-
brid seq2seq/CTC loss (Watanabe et al., 2017),
where the A-V features are encoded separately
and then concatenated for decoding.

• RNN-T (Makino et al., 2019): RNN-T adopts
the popular recurrent neural network trans-
ducer (Graves, 2012) for AVSR task, where
the audio and visual features are concatenated
before fed into the encoder.

• EG-seq2seq (Xu et al., 2020): EG-seq2seq
builds a joint audio enhancement and multi-
modal speech recognition system based on
the element-wise attention gated recurrent
unit (Zhang et al., 2019), where the A-V fea-
tures are concatenated before decoding.

• LF-MMI TDNN (Yu et al., 2020): LF-MMI
TDNN proposes a joint audio-visual speech
separation and recognition system based on
time-delay neural network (TDNN), where
the A-V features are concatenated before fed
into the recognition network.

• Hyb-Conformer (Ma et al., 2021): Hyb-
Conformer proposes a Conformer-based (Gu-
lati et al., 2020) AVSR system with hy-
brid seq2seq/CTC loss, where the A-V input
streams are first encoded separately and then
concatenated for decoding.

• MoCo+wav2vec (Pan et al., 2022):
MoCo+wav2vec employs self-supervised
pre-trained audio and visual front-ends, i.e.,
wav2vec 2.0 (Baevski et al., 2020) and MoCo
v2 (Chen et al., 2020), to generate better
audio-visual features for fusion and decoding.

• AV-HuBERT (Shi et al., 2022a,b): AV-
HuBERT employs self-supervised learning
to capture deep A-V contextual information,
where the A-V features are masked and con-
catenated before fed into Transformer encoder
to calculate masked-prediction loss for pre-
training, and cross-entropy based sequence-to-
sequence loss is used for finetuning.
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• u-HuBERT (Hsu and Shi, 2022): u-HuBERT
extends AV-HuBERT to a unified framework
of audio-visual and audio-only pre-training.

• Distill-Pretrain (Ma et al., 2022): Distill-
Pretrain proposes a Conformer-based VSR
framework with additional distillation from
pre-trained ASR and VSR models.
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