Pivotal Role of Language Modeling in Recommender Systems:
Enriching Task-specific and Task-agnostic Representation Learning

Kyuyong Shin¥ Hanock Kwak™® Wonjae Kim* Jisu Jeong'
Seungjae Jung! Kyung-Min Kim™ Jung-Woo Ha! Sang-Woo Lee'

NAVER' NAVER AI Lab?

Abstract

Recent studies have proposed unified user mod-
eling frameworks that leverage user behav-
ior data from various applications. Many of
them benefit from utilizing users’ behavior se-
quences as plain texts, representing rich infor-
mation in any domain or system without losing
generality. Hence, a question arises: Can lan-
guage modeling for user history corpus help
improve recommender systems? While its ver-
satile usability has been widely investigated in
many domains, its applications to recommender
systems still remain underexplored. We show
that language modeling applied directly to task-
specific user histories achieves excellent results
on diverse recommendation tasks. Also, lever-
aging additional task-agnostic user histories
delivers significant performance benefits. We
further demonstrate that our approach can pro-
vide promising transfer learning capabilities for
a broad spectrum of real-world recommender
systems, even on unseen domains and services.

1 Introduction

Recent advances in user modeling have focused
on constructing unified user models to be directly
adapted to diverse applications. Many of them
leverage natural language or plain text data, which
enables general-purpose applicability among var-
ious domains and systems (Qiu et al., 2021; Gu
et al., 2021; Geng et al., 2022; Cui et al., 2022;
Hou et al., 2022; Shin et al., 2023). These strate-
gies pave a much more efficient way for service
owners to quickly adapt to various task scenarios
by tuning one single model, bringing performance
improvement across whole systems in parallel.
Based on the recent explosions of sequence pre-
diction models in many domains (Chen et al., 2020;
Brown et al., 2020; Ramesh et al., 2021; Chen
et al., 2021; Borsos et al., 2022), it is natural to ask

$Both authors contributed equally to this research. Corre-
spondence to: <ky.shin@navercorp.com>.

whether recommender systems can benefit from
representation trained by token sequence predic-
tion, i.e., language modeling. Moreover, several
works have provided deep insights into why and
how language models help address downstream
classification tasks (Gururangan et al., 2020; Saun-
shi et al., 2021; Wei et al., 2021; Karouzos et al.,
2021; Krishna et al., 2022).

Some recent studies confirm that continued pre-
training of language model on few task-specific
data drawn from the target task distribution, or
data similar to a target domain can provide sig-
nificant benefits to solve downstream classifica-
tion tasks (Gururangan et al., 2020; Lee et al.,
2020; Karouzos et al., 2021). Interestingly, Krishna
et al. (2022) go further and validate that language
models trained from scratch on task-specific or
task-agnostic data' —data from other downstream
tasks—can rival standard webtext language models.
Another line of research provides mathematical ex-
planations of how language model pretraining can
improve performances on downstream tasks (Saun-
shi et al., 2021; Wei et al., 2021). More specif-
ically, Saunshi et al. (2021) reformulate classifi-
cation tasks as sentence completion tasks, thus
demonstrating that linear classification using output
features from fixed GPT-2 (Radford et al., 2019),
i.e., no finetuning, also guarantees to solve sentence
classification tasks.

Motivated by these works, we introduce a
new method called LMRec, which jointly trains
Language Model and Recommendation task objec-
tives from user behavior histories transformed as
plain text format. As illustrated in Figure 1, our ap-
proach is conceptually simple but practically effec-
tive. We first investigate if the recommender system
jointly trained with the language modeling objec-

!Other studies, such as Gururangan et al. (2020) and Kr-
ishna et al. (2022), use the term “domain-specific data” or
“cross-data” to represent task-irrelevant corpus that is not web-
text data. However, we use the term “task-agnostic data” to
generally refer to data from other downstream tasks.
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Figure 1: Schematic overview of LMRec. Task-specific data refers to the user history data of the target recommen-
dation task. Task-agnostic data is collected from other services that do not overlap with target tasks. (Left) We
append [EOS] token at the end of every input and use the last layer hidden vector of [EOS] token as a user feature.
(Right) The transformer layers are shared across language modeling and recommendation tasks, while the top linear
layers are not. LMReC,agnostic incorporates additional task-agnostic data, which delivers large performance benefits.

tive on task-specific data can enrich the user/item
representations, thus providing better generaliza-
tion even for unseen downstream tasks (Table 4
and 7). We then further verify that additional fask-
agnostic data can help across the various recom-
mendation tasks, especially when using the task-
agnostic data as a user feature (Figure 3). As a
result, our methods significantly outperform all the
baselines on all tasks, including three public bench-
marks and three real-world datasets from different
application service domains, and online A/B exper-
iments. Moreover, the pretrained LMRec shows a
promising ability to perform downstream transfers
flexibly with simple feature-based transfer learning.
We also explore several aspects of how the lan-
guage modeling regime affects the model quality
under various conditions, including transfer learn-
ing, corpus ablation, and model sizes.
Our major findings are as follows:

Jointly training language modeling and rec-
ommendation task objectives improve recom-
mender systems. Language modeling on the user
history can produce rich user/item representations
for diverse applications. These results are con-
sistent with the effect of task-adaptive pretraining
in the previous research (Gururangan et al., 2020;
Karouzos et al., 2021; Krishna et al., 2022). Fur-
thermore, our approach also boosts the transfer
learning capability of the recommendation model.
Extensive experimental results show the efficacy
of our approach compared to training without lan-
guage model objectives (Table 4 and 7).
Language modeling on task-agnostic data pro-

vides strong results on user representation learn-
ing. Consistent with prior work (Gururangan et al.,
2020; Krishna et al., 2022), language modeling
on additional task-agnostic data alleviates overfit-
ting to a specific history corpus and benefits the
learning of robust text representations (Table 4 and
7). We explore how language model pretraining
on the diverse task-agnostic data affects transfer
learning performances, by comparing with models
pretrained on different domain corpora (Figure 3).
Virtues of more user data. Recent studies argue
that increasing information on user data should be
treated as a top priority for improving recommenda-
tion performances (Shin et al., 2021; Ardalani et al.,
2022). We collect additional user data matched
with downstream task users based on user IDs and
incorporate them as an additional user feature. Ta-
ble 7 verifies the data scaling strategy has shown to
be beneficial to our models.

2 Approach

2.1 Language Models Help with Classification
Tasks

The empirical and theoretical analyses from the
prior work imply that the learned features from the
language models trained with appropriate behavior
corpus could help predict user and item interactions
in recommender systems (Gururangan et al., 2020;
Saunshi et al., 2021; Krishna et al., 2022). It is
also consistent with the results in Table 1 that lan-
guage model pretraining with appropriate corpus—
related to the downstream task rather than other
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Method OBS Scientific Method OBS Scientific
Recall@10 NDCG@10 Recall@l0 NDCG@10 Recall@10 NDCG@10 Recall@l0 NDCG@10
LM ebtext 0.3135 0.1766 0.0335 0.0131 SelfPretrain 0.4742 0.2796 0.1068 0.0473
LMagnostic 0.3142 0.1747 0.0327 0.0126 LMRec 0.4867 0.2940 0.1264 0.0695
LMgpecific 0.3769 0.2136 0.0417 0.0194

Table 1: Linear probe results on downstream recom-
mendation tasks of language model (LM) embeddings
pretrained with different source corpora. We pre-
train LMs on three datasets: generic webtext corpora
(LMyebext), task-agnostic user history (LMggnostic)s
and task-specific user data (LMgpecific)-

corpora such as webtext—Ieads to performance im-
provement. It is worth mentioning that linear probe
results of LMgpostic can achieve that of LMyebtext
performance, although task-agnostic data are in a
much smaller-scale than webtext data. This result
strongly motivates our research.

Given a sequence of text tokens of user his-
tory, w = {hi,...,h,} and item text tokens i =
{91, .-+, gm }, the language model objective L, is to
maximize the following negative log-likelihood:

Ly == logP(hjlhj, ...
j=1

yhi—s M), (D

where k is the context size, and the conditional
probability P is modeled using language model
M. Then for the downstream tasks, user and item
representations z,,, z; € R? are computed as fol-
lows:

zy = M(hgos|u) 2)
z; = M(geos|i), 3

where EOS denotes the end of the history token. We
use a vector that corresponds to [EOS] token at the
last layer as a feature (Neelakantan et al., 2022).
The downstream recommendation task loss, Lo, of
each user-item pair is defined as:

1
1t exp(—(Wyzu, Wizi))’
(1 —y)log(l —pus), (5)

where y € {0,1} is the label denoting whether
the user interacted with an item or not. We use
(-,-) for the dot product. The weight matrices
W, W; € R%? linearly transform the user and
item representations, respectively.

Several works have highlighted that jointly opti-
mizing language modeling during finetuning bene-
fits avoiding catastrophic forgetting (Chronopoulou

Pu,i (4)

Ly = —ylogpy,; —

Table 2: The SelfPretrain model is first pretrained with
task-specific data and then finetuned to downstream
tasks, while LMRec is jointly training language model-
ing and recommendation objectives.

et al., 2019; Karouzos et al., 2021). Inspired by the
merits of this strategy, we adopt a joint optimiza-
tion:

L =1L+ ALo, (6)

where L is the final joint training loss. We impose
weight A on Lo loss to prevent the overfitting of
recommendation tasks. As illustrated in Figure 1,
a model that optimizes Equation (6) is denoted as
“LMRec”. The model trained without the language
model objective (L) is “LMRec,,”. The per-
formance comparison between the pretrain-then-
finetune model and our approach are presented
in Table 2.

2.2 Enriching Task-specific and Task-agnostic
Representation

Leveraging task-agnostic data. Optimizing per-
formances solely on task-specific data would re-
strict the potential of a unified framework. There-
fore, a recent trend in user modeling research is
to leverage large quantities of pretraining (or addi-
tional) data that are not directly related to the target
task (Hou et al., 2022; Shin et al., 2023).

To this end, we introduce “LMRec,agnostic >
which utilizes additional task-agnostic data for lan-
guage model objectives. This approach increases
the generality by mitigating overfitting to a spe-
cific history corpus. Consequently, it boosts the
learning of robust text representations, thus mak-
ing LMRec,4gnostic Universal across various tasks.
As a result, additional task-agnostic data further
boost the performance of our default LMRec model,
which already produces state-of-the-art results in
all tasks and metrics.

Transfer learning. There are several difficulties in
applying a unified model to real-world applications:
(1) target applications are commonly unknown or
undefined during pretraining, (2) user ID cannot be
matched across different companies, (3) large-scale
recommender systems usually contain millions of
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Figure 2: Overall pretraining and feature-based transfer

learning procedures of LMR&:(:E;gnostic model. The two

types of inputs, i.e., “Target Task-specific Data” and
“Task-agnostic Data,” refer to the user history for pro-
ducing user features. Only the linear layer for the down-
stream task is trained, while the pretrained transformer
parameters are frozen. TL denotes transfer learning.

users and items, thus it is computationally expen-
sive to finetune the large models to numerous appli-
cations directly. To overcome these obstacles, we
propose a simple transfer learning framework that
can easily and quickly adapt the model to diverse
applications. As visualized in Figure 2, we simply
plug the target task-specific inputs into the pre-
trained LMRec and compute user/item embeddings
to perform a linear probe. We add superscript to
the model as “LMRec™” for the transfer learning
framework. The LMRec™" model jointly pretrains
multiple tasks, excluding the target downstream
task. The final loss to pretrain is as follows:

L= > ILi+A) I (7)

teTs,Ta teTs

where 7T, denotes a set of pretraining recommenda-
tion tasks, and 7, for additional task-agnostic data.
Note that linear layers of pretraining and feature-
based transfer learning are separate modules.

Task-agnostic user features. Leveraging cross-
domain data of users for improving recommender
systems has been widely discussed (Man et al.,
2017; Yuan et al., 2019; Zhu et al., 2022; Shin et al.,
2023). These strategies assume that the underlying
user preference in the source and the target do-
mains can be related, and thus learning a common
user semantic enhances the recommender system.
Hence, we utilize additional task-agnostic data, ob-
tained from application services whose user 1Ds
are shared in a company level, as a user feature for
target downstream tasks. The difference between
task-specific and task-agnostic data in Figure 2 is

only which user features are used for transfer learn-
ing. For example, if the target downstream task is
ECOMM, models are first pretrained with OBS and
OTA, and then use task-specific data of ECOMM to
produce task-specific user features. For leveraging
the task-agnostic user feature, the pretrained model
extracts user features from task-agnostic data, such
as Search and News. Components other than user
features, such as the pretrained model, downstream
architecture (linear layer), and ground truth inter-
acted items of users, are all the same. We can verify
that the transfer learning approach benefits from
leveraging additional task-agnostic data as user fea-
tures, especially when it is recommending for new
users (Table 7, 8 and Figure 3).

Appendix A describes the training details of our
methods.

3 Experiments

3.1 Datasets

To make user behavioral corpora, we consider the
behavior description as items, i.e., search queries
of search logs, news titles of online news click logs,
and content titles of social media click logs. As
illustrated in Figure 1, we concatenate the behav-
ior logs using the “—” token. This simple form
of a prompt template can have behavior sequences
that are very long. Furthermore, separating corpus
among multiple services provides flexible transfer
learning capabilities by enabling easy proliferation
of behaviors and filtering out redundant represen-
tation to target applications. We use Byte-level
BPE (Wang et al., 2020) to tokenize the textual
description of each item in the behavior logs.
Task-specific datasets. We use three in-house
datasets in order to assess our approach on vari-
ous applications and add three public datasets that
are predominantly evaluated in recommendation
communities. The in-house datasets are built from
services of an online booking service (OBS), an
online travel agency (OTA), and e-commerce platm-
form (ECOMM). For public datasets, we select two
categories “Industrial and Scientific” (Scientific)
and “Prime Pantry” (Pantry) from Amazon review
datatsets (Ni et al., 2019) which are two completely
different service domains. We further collect “On-
line Retail”* dataset from an online retail platform
to validate the cross-system transferability of our
models.

Zhttps://www.kaggle.com/carrie | /ecommerce-data
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In-house Public
Contents
OBS OTA ECOMM  Pretraining  Scientific ~ Pantry  Online Retail  Pretraining

# of Users 300,000 142,051 72,477 10,156,217 8,442 13,101 16,520 1,361,408

# of Items 42,453 2,485 229,775 N/A 4,385 4,898 3,469 446,975
# of Interact. 495,992 177,281 130,859 94,011,305 59,427 126,962 519,906 14,029, 229
Avg. history 1.5 2.3 5.5 128.7 4.5 8.5 25.6 9.6

Avg. history tokens 10.3 17.1 116.4 1,222.7 212.5 214.7 206.6 347.3

Table 3: Statistics of the datasets.

Task-agnostic datasets. We construct sufficiently
large-scale task-agnostic behavioral corpora for in-
house datasets. These datasets are collected over
two years and from four behavioral corpora, a
search engine (Search), e-commerce (E-comm.),
social media platform (SNS), and news website
(News). As a result, the in-house dataset contains
10 million users and 94 million user history logs,
and 12 billion BBPE tokens. Following the ex-
perimental setup of UniSRec (Hou et al., 2022)
for public benchmarks, we select the five cate-
gories “Grocery and Gourmet Food”, “Home and
Kitchen”, “CDs and Vinyl”, “Kindle Store”, and
“Movies and TV” from Amazon review datasets.
These datasets are used as pretraining datasets
for pretrain-then-transfer models such as User-
BERT (Wu et al., 2022), UniSRec (Hou et al.,
2022), M6-Rec (Cui et al., 2022), and CLUE (Shin
et al., 2023), while used as additional task-agnostic
data for LMRecCagnostic model.
The details of datasets are outlined in Table 3.

3.2 Experimental Settings

In-house downstream tasks. The datasets consist
of positive pairs (u, ) which means a user u inter-
acted with an item ¢. The negative pairs are gen-
erated through random sampling during training.
Evaluation metrics are Recall@k and top-k Nor-
malized Discounted Cumulative Gain (NDCG@k),
which are evaluated from ground truth items mixed
with 100 randomly sampled negative items. To test
the generalizability of user representations, we ran-
domly split the user pool among the training (80%),
validation (10%), and test sets (10%).

Public downstream tasks. We filter out users
and items with fewer than 5 interactions. Each
user’s interaction history was listed chronologically.
We use item descriptions such as titles, categories,
and brands for item information. The maximum
token length of item text is set to 512. Following
previous works (Kang and McAuley, 2018; Sun
et al., 2019; Hou et al., 2022), we adopt the leave-

one-out strategy, i.e., next item recommendation
task. The last item, second last item, and other
items are used as the test, validation, and training
data respectively. The Recall@k and NDCG@Fk
are computed by ranking the ground-truth item
among all the other items.

3.3 Baselines

We compare our models against six strong
baselines. Behavior Sequence Transformer
(BST) (Chen et al., 2019) and LightGCN (He
et al., 2020) are primarily used baselines in var-
ious tasks and domains. To reflect the recent trend
of user modeling research, which adopts pretrain-
then-transfer strategies, we employ several models
from these lines of work. UserBERT (Wu et al.,
2022) and UniSRec (Hou et al., 2022) pretrain
self-supervision objectives with language embed-
dings and then finetune the model to downstream
tasks. The most comparable unified user models
to our methods are M6-Rec (Cui et al., 2022) and
CLUE (Shin et al., 2023). These two methods treat
user history as plain text and construct a universal
encoder that can be adapted to any domain and task.
Note that all the pretrain-then-transfer models, ex-
cluding CLUE, utilize webtext language models.
Please see Appendix B for more details of base-
lines.

4 Results

4.1 Performance on Various Tasks

Table 4 presents the efficacy of our LMRec against
baselines. Across the six datasets, LMRec trained
only with the task-specific data achieves state-of-
the-art performances compared to all the base-
lines, even though some methods utilize additional
task-agnostic data. For the in-house datasets, LM-
Rec surpasses best performing baseline models by
over 1.6 ~ 3.2% in Recall@10. In the public
datasets, LMRec shows around 5% average im-
provements compared to baselines. Since other
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Only trained on task-specific data

Use additional task-agnostic data

Downstream tasks Metrics Improv.
BST LightGCN LMRec;, LMRec UserBERT UniSRec CLUE Mo6Rec LMRec agnostic

OBS Recall@10  0.4675 0.4628 0.4654 0.4867 0.4600 0.4745  0.4580 0.4615 0.5060 +6.6%

NDCG@10 0.2780 0.2759 0.2762 0.2940 0.2738 0.2825  0.2691 0.2754 0.3048 +7.9%

OTA Recall@10  0.7160 0.7277 0.7190 0.7428 0.7199 0.7186  0.7225 0.7314 0.7458 +2.0%

NDCG@10 0.4092 0.4235 0.4151 0.4407 0.4145 0.4144 04219 0.4306 0.4431 +2.9%

ECOMM Recall@10  0.6611 0.5378 0.6667 0.7322 0.6934 0.6725  0.5500 0.7093 0.7715 +8.8%

NDCG@10 0.4846 0.4290 0.5081 0.5637 0.5202 0.5079  0.4282  0.5090 0.6009 +15.5%

Scientific Recall@10  0.0625 0.0540 0.0951 0.1264 0.1055 0.1188  0.0894  0.0945 0.1283 +8.0%

NDCG@10 0.0323 0.0276 0.0428 0.0695 0.0457 0.0641  0.0393 0.0413 0.0701 +9.4%

Pant Recall@10  0.0388 0.0402 0.0626 0.0692 0.0630 0.0636  0.0602 0.0645 0.0683 +7.3%

vy NDCG@10 0.0203 0.0195 0.0298 0.0343 0.0312 0.0306  0.0288 0.0324 0.0330 +5.7%

Online Retail Recall@10  0.1460 0.1322 0.1373 0.1475 0.1438 0.1449  0.1258 0.1458 0.1502 +3.0%

NDCG@10 0.0685 0.0608 0.0659 0.0718 0.0654 0.0677  0.0585 0.0702 0.0732 +4.3%

Table 4: Results on the various downstream tasks from in-house and public datasets. The best and second-best
results are denoted in bold and underlined, respectively. “Improv.” indicates the relative improvement of our

methods over the best baselines.

Method OBS
Recall@10 NDCG@10
LMRecC,agnostic (0% : 100%) 0.4703 0.2805
LMRecC agnostic (30% : 70%) 0.4811 0.2932
LMRecagnostic (50% : 50%) 0.4905 0.2991
LMRecqgnosiic (70% : 30%) 0.4917 0.3003
LMRec (100% : 0%) 0.4867 0.2940

Table 5: Performance on the OBS task while vary-
ing the ratio of the leveraged task-specific and task-
agnostic data for language modeling. We set LM-
REC’s task-specific data size as 100% and vary the
task-specific and task-agnostic data ratio.

Models Inputs Speedup Parameters
Transformer!  User history logs 1 125M
LightGCN User history logs %34 M
LMRec™  Pretrained user repr.  x 157 1.2M

T All the models, excluding LightGCN and CLUE.

Table 6: Inference time and trainable weight compari-
son of the downstream models measured from the OBS
task. We calculate the inference time of a single batch
on A100 GPU.

pretrain-then-transfer models leverage additional
data, we introduce LMRec agnostic, @ more robust
representation learning method using additional
corpus for language modeling. LMRec agnostic T€-
markably outperforms the other models in all tasks
by a significant margin (see improvement in Ta-
ble 4). We further conduct an ablation study on
combining task-specific and task-agnostic corpus
when the computation resources are limited. Ta-
ble 5 presents the results. LMRecCgnosic (0% :
100%), i.e., language modeling on task-agnostic
data only, outperforms LMRec i, in Table 4, but

shows the worst performance in Table 5. Increas-
ing the ratio of used task-specific data delivers
performance benefits to some point (70%). How-
ever, leveraging task-specific data solely finally
decreases the performance.

Previous research provides a theoretical analy-
sis of why language model pretraining guarantees
effective representation learning for downstream
tasks (Saunshi et al., 2021; Wei et al., 2021). The
additional analysis in Appendix C may support
these results.

4.2 Linear Probe

We show the effectiveness of the language model
pretraining then feature-based transfer strategy
(Figure 2) across all tasks. Our approach empiri-
cally demonstrates the flexible generalizability of
the pretrained features. Note that all the base-
lines, excluding CLUE, are pretrain-then-finetune
methods, and the downstream computational cost
(Table 6) is much more expensive than the linear
probe.

As shown in Table 7, the linear probe result
of LMRec_Tlh that are trained only on recommen-
dation tasks shows worst transfer learning perfor-
mances. Unsurprisingly, a model trained without
language modeling cannot guarantee generalizabil-
ity to other language corpora. It is worth mention-
ing that LMRec™, which jointly trains language
model and recommendation tasks objectives, shows
decent transfer learning capability for downstream
tasks. This result provides that incorporating lan-
guage model pretraining with recommender system
profits strong adaptability and generality compared
to the recommendation model, even on the linear
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. Task-specific feature Task-agnostic feature Combine
Downstream tasks ~ Metrics
LMRec!l; LMRec™ LMRec},, UniSRec CLUE M6Rec LMRec™ LMRecly,, UniSRec CLUE M6Rec LMRecly,,

OBS Recall@10  0.3661 0.4687 0.4861 0.5133 0.5112 0.5451 0.4837 0.5675 0.5397 0.5416 0.5540  0.5952
NDCG@10 0.2039  0.2792 0.2886 0.3139 0.3204 0.3357 0.2874 0.3514 0.3305 0.3372 0.3391  0.3766

OTA Recall@10  0.5531 0.7196 0.7375 0.7121 0.7408 0.7285 0.7231 0.7410 0.7201 0.7436 0.7324  0.7521
NDCG@10 0.3014 04119 0.4368 0.4103 0.4414 0.4288 0.4185 0.4421 0.4166 0.4445 0.4297  0.4579

ECOMM Recall@10  0.3202  0.7134 0.7655 0.6068 0.5763 0.6233  0.6273 0.6653 0.6882 0.6370 0.7204  0.7803
NDCG@10 0.3547  0.5355 0.5878 0.4748 0.4558 0.4810 0.4485 0.4969 0.5204 0.4838 0.5122  0.6117

Table 7: Task-agnostic transfer learning results on in-house datasets. All the models are pretrained with datasets
that are not the target task. For example, the models are first pretrained with OBS and OTA and then transferred
to the ECOMM (target task). The “Task-specific feature” stand for the models that use task-specific user data to
produce user embedding, while the “Task-agnostic feature” stands for user embedding from task-agnostic data,
including Search, E-commerce, SNS, and News. The combination of them is denoted as "Combine".

Method CTR GMV
New Total New Total
GNN 1.00 1.00 1.00 1.00
CLUE x1.52 x1.14 x1.08 x1.02
LMRec!: x1.76 x1.24 x1.12 x 1.04

+agnostic

Table 8: A Click Through Rate (CTR) and Gross
Merchandise Value (GMV) gain on the online product
collection task. The user group ‘new’ corresponds to
users with no recorded behavior on the service for
the past month. We set the GNN model gain as the
baseline for the CTR and GMV calculation.

probe, i.e., not trained on downstream tasks directly.
As previous research (Gururangan et al., 2020; Kir-
ishna et al., 2022) confirmed, it is reasonable to
believe that leveraging large quantities of addi-
tional data for language model pretraining is strictly
more powerful than using small task-specific data.
LMRec,j,oqic shows enhanced transferability on
linear probe. Comparing results among Table 4, 6,
and 7, we can see that LMRec] ., ;. outperforms
other baselines with much fast and easy adaptation.

4.3 Virtues of More User Data

A line of research that studies scaling law in recom-
mender systems argues that parameter growth will
not always offer performance improvement and
has low return-on-investment (ROI) in resource
efficiencies (Ardalani et al., 2022; Shin et al.,
2023). Hence, the data scaling scheme should
be treated as a top priority for improving model
performances. To verify the efficacy of the data
scaling approach, we evaluate our model on down-
stream tasks by using task-agnostic data as user
feature. Results are presented in Table 7-(Task-
agnostic feature/Combine). We simply concatenate
task-specific and task-agnostic data to use as inputs

for the Combine setup. Most baselines are not ade-
quately reflecting the possibility of using additional
user features due to their pretraining methods, but
LMRec} . i Properly considers the potential of
using more user data. It is an enormous benefit to
the models seeing that LMRec [} ;. (Combine)
shows outstanding performance by combining all
the user data. Interestingly, LMRec™", which is
trained without task-agnostic data, also achieves
state-of-the-art or comparable performances to the
baseline models. This result highlights the efficacy
of our approach.

We conducted an online A/B experiment for
a product collection recommendation task (see
Appendix D for more details) on our in-house e-
commerce platform for two weeks in August 2022.
Table 8 shows the consistent superiority of our
method online. For user groups ‘new’, the user
representation by LMReCI&E‘gnostic significantly im-
proves CTR and GMV compared to GNN (Jeong
et al., 2020). We conjecture that it may benefit
from additional user data from other services, thus

contributing to users with no recorded behavior.

4.4 Effect of Pretraining Behavior Corpora
for Transfer Learning

We perform ablation studies on the relations be-
tween pretraining corpora and using task-agnostic
data as user features. As shown in Figure 3,
the model pretrained with the specific corpus
provides general and robust representations of
that corpus even on unseen tasks. Interestingly,
tailoring a language model to diverse corpora
may bridge the gap between pretraining and task-
agnostic corpus domains. For example, even
though LMRecISLearch leverages only Search cor-
pus for language model pretraining, it consistently
outperforms LMRec_TIII;1 and LMRec™ on all the
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to 210 million. The Recall@10 is normalized across models for each task.

downstream tasks with other task-agnostic features.

As it can be seen in Figure 3, the performance of
LMRec’ in OBS task is relatively low compared
to other tasks. It is due to the strong contribution
of task-agnostic features (Table 7 and Figure 4)
for the OBS task. In other words, when the task-
agnostic features are well-transferable to the target
downstream tasks, the performance differences be-
tween not pretrained (LMReth) and the rest can
be substantial.

4.5 Effect of Model Size

Many recent reports in NLP and computer vision
have empirically demonstrated the existence of a
scaling law, where performance scales strongly
with model capacity (Brown et al., 2020; Kaplan
et al., 2020; Zhai et al., 2021; Bahri et al., 2021).
Recently, Shin et al. (2023) found the power-law
learning curve as a function of model size in rec-
ommender systems. Figure 4 shows that scaling up
the model leads to a strict performance improve-
ment on the downstream tasks, consistent with the
results in the prior works. However, we can also

find that models’ performances have an upper limit.
It is in harmony with the trend in Ardalani et al.
(2022) that the recommendation performance fol-
lows a power law plus a constant relationship to
the model size, which is an irreducible error on our
side.

Note that the performances of LMReth do not
vary according to the model sizes. We conjecture
that the model trained without language modeling
has no benefits from high model complexity, as its
learning capacity is naturally limited.

5 Related Work

Any model that trains a text-based user model to
adapt to unseen domains/systems can be viewed as
prior work of our research. This line of work has
been recently explored since learning text represen-
tation has been rapidly developed in the decade. In
this context, Qiu et al. (2021) and Gu et al. (2021)
are the earliest work we are aware of. They train the
model through critical word matching in user logs
and then finetune models to the downstream tasks.
First, the word (item) embeddings are precomputed
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using pretrained language models (PLMs). The se-
quence of item embeddings is then passed to the
encoder to produce user representations. Recently,
some researchers propose to use behavior history
as plain text data (Geng et al., 2022; Cui et al.,
2022; Hou et al., 2022; Shin et al., 2023). Hou et al.
(2022) and Shin et al. (2023) introduce a contrastive
learning framework on multiple service domains,
and perform transfer learning across various down-
stream tasks. Another line of work (Geng et al.,
2022; Cui et al., 2022) tries to construct personal-
ized prompts for building versatile framework, i.e.,
“Here is the history of {gender} {age}: {history
from all services}, The user is now recommended
a {item}”. This approach profits from the methods
that utilize language models such as GPT-2 (Rad-
ford et al., 2019), TS5 (Raffel et al., 2020), and
M6 (Lin et al., 2021). Their PLM-based approach
can be generalized to various applications, with
the ability to perform zero-shot learning. Shin et al.
(2023) is the only work that trained the whole en-
coder from scratch rather than using PLMs. We
refer readers to Liu et al. (2023) and Yuan et al.
(2023) for an overview of this line of work.

A related idea to our work is the training lan-
guage model on task-specific or task-agnostic cor-
pora. It has been shown to be beneficial in a variety
of works (Chronopoulou et al., 2019; Gururangan
et al., 2020; Lee et al., 2020; Karouzos et al., 2021;
Krishna et al., 2022). Gururangan et al. (2020) con-
tinue pretraining of LM on task-specific data and
show it can improve the downstream performances
of standard webtext language models. Krishna et al.
(2022) point out that the effect of pretraining on
standard webtext data may have been overesti-
mated. They show that models trained only on
task-specific data comparably perform to existing
webtext language models. On the one hand, a line
of research jointly trains language models on task-
specific data during finetuning to avoid catastrophic
forgetting (Chronopoulou et al., 2019; Karouzos
et al., 2021). Some of the works above also in-
vestigate if the models pretrained on task-agnostic
data can be effective for downstream tasks. Guru-
rangan et al. (2020) and Lee et al. (2020) show
domain-adaptive pretraining further improves the
performance of pretrained language models. Re-
cently, Krishna et al. (2022) have observed that
pretraining on task-agnostic data can provide a sig-
nificant advantage compared to standard webtext
data. These findings give huge insight into our

research.

Note that our work aims at extending the poten-
tial of language modeling that has been success-
fully used for diverse applications to recommender
systems.

6 Conclusion

Recent works have built text-based user models and
demonstrated that the rich nature of text informa-
tion in any domain or system could be a valuable
foundation for user modeling. Our primary contri-
bution is jointly optimizing the language modeling
and recommendation task objectives and success-
fully tackling a broad spectrum of diverse recom-
mendation tasks, including transfer learning for
unseen domains and systems. Overall, our analysis
sheds remarkable insights on user representation
learning through user behavioral corpora.

Considerations and Limitations

LMRec is trained on user behavior text data that are
collected from diverse service applications. These
datasets are preprocessed to users’ behavior se-
quences as detailed in Figure 1 and Section 3.1.
However, in order to improve the quality of user
representations, choosing the item information dif-
ferently for each application may improve the effec-
tiveness. As such, we can consider domain-specific
information for each service rather than using gen-
eral item information. For example, we may lever-
age additional domain-specific information such
as news topics or categories, names of the press
agency, and keywords for the news content rather
than using only news titles for the News dataset.
This issue is a promising extension for practitioners
to successfully apply LMRec to real-world applica-
tions.

The types of task-agnostic data will largely af-
fect the performance gains of LMRec,gnostic and
LMRecIL“gnOSﬁC. We fully utilize four types of task-
agnostic data, i.e., Search, E-comm., SNS, and
News, and achieve state-of-the-art results. How-
ever, this paper does not thoroughly explore their
optimized combination or mixing ratio of the cor-
pus due to the heavy computational costs, which
most large LM studies suffer from. While prior
work shows how the pretraining corpus sources
and their combination affect diverse downstream
tasks (Raffel et al., 2020; Gururangan et al., 2020;
Lee et al., 2020; Krishna et al., 2022; Shin et al.,
2022), there still remain limitations in finding the
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generic relation between downstream performance
and corpus properties; measuring the effect of the
pretraining corpus on the downstream task is still
underexplored. We point out that more careful
study is left for future research.

Regarding reproducibility, it is difficult to open
our in-house data due to legal issues caused by
privacy and user agreement. Therefore, we tried
our best to validate the efficacy of our LMRec with
the experiments on benchmark datasets in addition
to in-house data.
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A Training Details

We utilize separate data loaders to deal with differ-
ent batch sizes between language modeling and
recommendation tasks. Furthermore, the early
stopping strategy is employed based on the valida-
tion loss of the recommendation task and patience
of 100 steps. We use the AdamW (Loshchilov
and Hutter, 2019) with 5, = 0.9, 82 = 0.98,
¢ = 1075, and Zero Redundancy Optimizer (Rajb-
handari et al., 2020). We update the model using
linear warm-up of the learning rate over the first 1%
steps, followed by cosine decay (Loshchilov and
Hutter, 2017) to decrease the learning rate to 10%
of its initial value. The cosine decay is also applied
to the A value. We leverage the automatic mixed-
precision (Micikevicius et al., 2018) package in
Pytorch (Paszke et al., 2019) to reduce training
time and GPU memory usage. Gradient norm clip-
ping (Pascanu et al., 2013) is used with the max
norm set to 0.1 to stabilize training. Unless oth-
erwise specified, all results are reported by 1256M
transformer decoder (Vaswani et al., 2017). All
models use a vocabulary size of 50, 258 and a max
sequence length of 2, 048. The hyperparameter val-
ues for different sizes of LMRec is presented in
Table 9. All the results are averaged over the 20
runs.

B Details of Comparison Models

Behavior Sequence Transformer (BST) (Chen
et al., 2019) embeds user history logs as low-
dimensional vectors and passes them to the
transformer layers to model underlying user
preferences.

LightGCN (He et al., 2020) leverages Graph
Convolution Network (Kipf and Welling, 2017)
for enhancing collaborative filtering. It linearly
propagates user and item embeddings of a bipartite
interaction graph. The final embedding is com-
puted by the sum of the embeddings propagated at
each layer.

UserBERT (Lu et al, 2020) incorporates
two self-supervision tasks for pretraining. These
pretext tasks effectively capture the relations
between user behaviors and inherent user interests.
It finally finetuned models on target tasks.

UniSRec (Hou et al., 2022) proposes to
combine parametric whitening and MoE adaptor

— M
—— LMRecC_jm
— LMRec

—500 -250 0 400 800

Figure 5: Hessian max eigenspectra of language model
only (LM), recommendation model only (LMRec ),
and combination of them (LMRec) on OBS task. We
calculate the Hessian max eigenvalue at the best-
performing steps on downstream tasks.

for learning personalized representation. UniSRec
pretrains user history by sequence-to-sequence
contrastive learning and then finetunes the model
to downstream tasks.

M6Rec (Cui et al.,, 2022) employs prompt
tuning of pretrained language models for building
a unified framework. M6Rec fully utilizes text
inputs to generalize to any domains/systems and
has the ability to perform zero-shot learning. Since
they did not release pretrained M6 (Lin et al.,
2021), we used Huggingface RoBERTa (Liu et al.,
2019) to implement it.>

CLUE (Shin et al.,, 2023) presents a plain
text-based contrastive learning framework, consid-
ering heterogeneous services or applications as
a modality and users as a common semantic. It
then performs feature-based transfer learning for
downstream tasks.

C Effect of Language Modeling on Local
Curvature

One of the most well-known criteria influencing
neural network generalization is observing Hes-
sian eigenvalues with respect to parameters. Since
the Hessian is often treated as local curvature, the
eigenvalues of Hessian determine the smoothness
of loss landscapes. Many researchers have argued
that the flat loss landscape leads to better gener-
alization (Li et al., 2018; Foret et al., 2021; Chen
et al., 2022; Park and Kim, 2022). We calculate
and gather top-5 Hessian eigenvalues by PyHes-
sian (Yao et al., 2020), and resulting max eigenval-
ues are visualized using kernel density estimation
in Scikit-learn (Pedregosa et al., 2011). Results
are presented in Figure 5. The language model

3https://huggingface.co/transformers/model_doc/roberta
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Model Size  nyayers demb  Mheads dyin A Batch Size  Learning Rate ~ Weight Decay
1.7M 4 32 4 128 1x 1072 256 5x 1073 1x 1072
™ 4 128 4 512 1x 1072 512 2x 1073 1x 1072
20M 8 256 8 1024 8 x 1073 1024 1x 1073 5x 1072
64M 12 512 8 2048 8x 1073 1024 8 x 107* 1x10°?
125M 12 768 12 2048 3x 1073 1024 2x107* 1x 1071
210M 24 768 16 2048 3x1073 1024 2x107* 1x107!

Table 9: Architectures and hyperparameters of the models.

only (LM) on the OBS task produces many nega-
tive eigenvalues, which means the loss landscape
is non-convex and, thus, challenging to optimize.
This result is natural since the loss of the target
task computed without adaptation of models cannot
bring good properties. On the other hand, eigenval-
ues of models (LMRec_j,,, and LMRec) trained with
target objectives flocked together on the positive
side. The magnitude of the eigenspectra of LMRec-
model is smaller than that of LMRec_j,, model. It
means that learning two objectives simultaneously
improves the robustness and generality of model
performance on downstream tasks.

D Online A/B Experiment

We run A/B experiments on product collection rec-
ommendation tasks using LMRec ., user fea-
ture to verify the practical usage of our method
online. The product collection is a collection of
products allotted by merchandisers with a partic-
ular category such as “Plush robe coats for men”,
“Winter sale special offer”, and “Best backpacks
for high school students”. This task is to recom-
mend the product collection banner, linked to a
page displaying a list of products.

We pretrain LMRecE;gnoStic with OBS, OTA, and
ECOMM and then transfer to the product collection
recommendation (target task). The mean pooled
task-specific and task-agnostic user features are
used as the final user features. During the 14 days
of online experimentation, we measured two im-
portant metrics for the online recommender system,
CTR and GMYV, to track user satisfaction with the
platform. CTR represents the click/view rate of
recommendation, and GMYV is the total value of
sold products through recommendation. All mod-
els take the same amount of user traffic.
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