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Abstract

Natural language processing (NLP) researchers
develop models of grammar, meaning and com-
munication based on written text. Due to task
and data differences, what is considered text
can vary substantially across studies. A con-
ceptual framework for systematically captur-
ing these differences is lacking. We argue that
clarity on the notion of text is crucial for repro-
ducible and generalizable NLP. Towards that
goal, we propose common terminology to dis-
cuss the production and transformation of tex-
tual data, and introduce a two-tier taxonomy
of linguistic and non-linguistic elements that
are available in textual sources and can be used
in NLP modeling. We apply this taxonomy to
survey existing work that extends the notion of
text beyond the conservative language-centered
view. We outline key desiderata and challenges
of the emerging inclusive approach to text in
NLP, and suggest community-level reporting as
a crucial next step to consolidate the discussion.

1 Introduction

Text is the core object of analysis in NLP. An-
notated textual corpora exemplify NLP tasks and
serve for training and evaluation of task-specific
models, and massive unlabeled collections of texts
enable general language model pre-training. To a
large extent, natural language processing today is
synonymous to text processing.

But what belongs to text? More broadly, what
information should be captured in NLP corpora
and be available to the models during training and
inference? Despite its central role, the notion of
text in NLP is vague: while earlier work mostly
focused on grammatical phenomena and implicitly
limited text to written language, the applied NLP
of the past years increasingly takes an inclusive
approach to text by introducing non-linguistic ele-
ments into the analysis. Extensions vary from incor-
porating emojis to exploiting document structure
and cross-document relationships, and apply to all

Figure 1: The same textual document (a) can be seen in
many ways (b-d) depending on the assumed notion of
text: while a syntax researcher might focus on written
language (b), a summarization system can use docu-
ment structure (c), and multimodal applications might
use non-linguistic elements like tables (d). Systemat-
ically capturing the differences between the assumed
notions of text (top) requires a taxonomy of inclusive
approaches to text. Such taxonomy is currently lacking.

major components of the modern NLP infrastruc-
ture, including unlabeled text collections (Lo et al.,
2020), language models (Aghajanyan et al., 2021)
and annotated corpora (Kuznetsov et al., 2022).
The assumption that text in NLP solely refers to
written language no longer holds. Yet, as Figure 1
illustrates, a systematic approach to capturing the
differences between the assumed notions of text is
lacking.

This is problematic for several reasons. From the
reproducibility perspective, machine learning as-
sumes similarity between the source and the target
distribution – yet lack of consensus on the notion of
text might result in undocumented change of the in-
put representation and degraded performance, even
if other common variables like domain, language
and task remain unchanged. From the modeling
perspective, the notion of text has major influence
on task and model design, as it both determines the
tasks NLP aims to tackle, and implies what infor-
mation should be used to perform those tasks. The
final argument for studying the notion of text in
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NLP is conceptual: the capabilities of strong pre-
trained Transformer models (Rogers et al., 2020)
and general-purpose NLP frameworks (Gardner
et al., 2018; Akbik et al., 2019; Wolf et al., 2020)
have led to an explosive growth in NLP beyond
traditional, core tasks. The exposure to rich source
document types like scientific articles (Lo et al.,
2020) and slides (Shirani et al., 2021) and the grow-
ing influence of multimodal processing (Xu et al.,
2022) motivate the use of additional signals beyond
written language in NLP. This leads to a general
question on the scope of the field: if written lan-
guage is no longer the sole object of study, what is,
and how can it be formally delineated?

Any empirical discipline relies on operational-
ization, which casts observed phenomena into ab-
stractions, allowing us to formulate claims and per-
form measurements to evaluate these claims. For
example, operationalizing sentiment (phenomenon)
as a binary variable (abstraction) allows us to a
build a claim ("this review is positive") to be evalu-
ated against the ground truth (review rating), and
dictates the downstream NLP task design (binary
classification). While widely used, this operational-
ization is limited: alternative notions of sentiment
allow making more nuanced claims, fine-grained
measurements and precise models.

The same logic applies to text, which affords
a wide range of operationalizations, from a char-
acter stream (Akbik et al., 2019) to a rich multi-
modal graph (Kuznetsov et al., 2022). Yet, the
typology for describing text use in NLP is lacking.
While concurrent proposals address other key prop-
erties of NLP models and corpora (Gavrilidou et al.,
2012; Gebru et al., 2018; Bender and Friedman,
2018; Mitchell et al., 2019) like domain, language,
demographics, modality and licensing – we lack
common terminology and reporting schemata for
documenting and formally discussing the assumed
notion of text. The growth of the field and the high
cost of the retrospective documentation underline
the urgent need for a lightweight, semi-structured
reporting mechanism to account for text use. To
address this need, we contribute the following:

• A common terminology of text use in NLP
(Section 2);

• A taxonomy of text extensions beyond
the language-focused approach to text
(Section 4), based on commonly used sources
of NLP data and the current state of the art;

• Discussion of the challenges brought by the

Figure 2: A text is produced in an environment (a)
and becomes part of the document space (b) that is
sampled (c), often based on source (d). The sample is
transformed into NLP artifacts (e) that are potentially
reused and further refined across multiple studies (f) to
produce further artifacts, etc. This process determines
the notion of text assumed by the downstream NLP
research and the capabilities of the resulting artifacts.

inclusive approach to text (Section 5);
• A new lightweight semi-structured schema for

reporting text use in NLP (Section 6).
The notion of text is central to NLP, and we ex-

pect our discussion to be broadly relevant, with
particular merit for the documentation policy, NLP
applications, and basic NLP research. The semi-
structured reporting as proposed here is a crucial
step towards developing formalized documentation
schemata (Gavrilidou et al., 2012) for describing
text use and general formats (Hellmann et al., 2013)
to encode non-linguistic information in texts. We
encourage the community to adopt our reporting
schema, and to contribute to the discussion by sug-
gesting new phenomena to be covered by the tax-
onomy of inclusive approaches to text.

2 Terminology

Textual data available to NLP is a result of multi-
ple processes that determine the composition and
properties of texts. To support our discussion, we
outline the data journey a typical text undergoes,
and introduce common terminology. Figure 2 il-
lustrates our proposed model, and the remainder of
this Section provides more details.

Text production. Every text has been produced
by a human or an algorithm with a certain commu-
nicative purpose. Raw text is rarely exchanged; to
avoid ambiguity, we use the term document for a
unit of information exchange1. Documents consist
of text along with additional structural and multi-
modal elements, serialized in a certain format and
accompanied by metadata. In our definition, tex-

1There are many other kinds of documents, e.g. images,
audio or code; here we focus on "textual" documents.
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tual documents cover a broad spectrum ranging
from blog posts, Wikipedia articles and Tweets to
dialogue turns and search queries. A few widely
used formats are plain text, Markdown, PDF.

Document space. All textual documents ever
produced make up the abstract document space.
Document space incorporates both persistent tex-
tual documents that are stored (e.g. Wikipedia ar-
ticles), and transient textual documents that only
exist temporarily (e.g. search queries). Despite the
apparent abundance of textual documents on the
Web, a large (if not major) part of the document
space is not openly available, or is protected from
research use by the copyright, privacy and technical
constraints.

Sampling and sources Since capturing the entire
document space is not feasible, a sample from the
subspace of interest is used. Document space can
be segmented in a variety of ways, including lan-
guage, domain or variety (Plank, 2016), creation
time, etc. One common way to sample textual doc-
uments is based on source: documents from the
same source often share key characteristics like
language variety, text production environment, for-
mat and licensing. Some widely used data sources
in NLP are Wikipedia, arXiv etc. (Faruqui et al.,
2018; Kang et al., 2018).

NLP Artifacts Sampled textual documents are
used to create artifacts, including reference collec-
tions like BooksCorpus (Zhu et al., 2015) and C4
(Raffel et al., 2020), and widely reused general-
purpose language models like BERT (Devlin et al.,
2019) and GPT-3 (Brown et al., 2020). The notion
of text assumed by NLP artifacts is shaped both
by the data journey and by the preprocessing deci-
sions during artifact construction. These, in turn,
determine how text is operationalized downstream.
Due to the differences in how text is produced, sam-
pled and captured, two NLP artifacts might assume
very different notions of text. Yet, a framework to
systematically capture this difference is lacking.

3 Prior efforts

Our proposal draws inspiration from recent efforts
in documenting other common properties of ma-
chine learning and NLP artifacts. Model cards
(Mitchell et al., 2019) capture core information
about machine learning models including technical
characteristics, intended and out-of-scope use and
preprocessing details. Data sheets (Gebru et al.,

2018) focus on dataset composition, details of the
data collection process, preprocessing, distribution
and maintenance. In NLP, data statements (Ben-
der and Friedman, 2018) focus on bias mitigation,
detailing key aspects of NLP artifact production
such as curation strategy, language variety, demo-
graphics of speakers and annotators, speech situ-
ation, topic and genre. Rogers et al. (2021) pro-
pose a formalised checklist documenting risks re-
lated to copyright, bias, privacy and confidentiality.
Formal proposals are mirrored by community ef-
forts on data repositories like huggingface datasets
(Lhoest et al., 2021); editorial guidelines2 encour-
age the authors to report key parameters of NLP
artifacts. Related metadata collection initiatives
propose schemata for capturing core information
about language resources like language, type, li-
cense and provenance (Gavrilidou et al., 2012).

While existing approaches to NLP artifact doc-
umentation cover a lot of ground, the require-
ments for documenting the assumed notion of
text remain under-specified. Our work is thus
complementary to the prior efforts. Our report-
ing schema (Section 6) can be seen as specifi-
cation of the Speech Situation and Text
Characteristics sections of the data state-
ments (Bender and Friedman, 2018), and our tax-
onomy incorporates some previously proposed doc-
umentation dimensions like text creation environ-
ment (Gavrilidou et al., 2012) and granularity (Hell-
mann et al., 2013). Unlike most prior approaches,
we deem it desirable to document the assumed no-
tion of text at each step of the NLP data journey,
including text production tools, document space
samples, as well as NLP models and datasets, with
a special focus on widely reused reference corpora
and pre-trained language models.

4 Taxonomy of text extensions

4.1 Preliminaries

We derive our proposal in a bottom-up fashion
based on two categories of sources. The text pro-
duction stage is critical as it determines what in-
formation is potentially available to downstream
processing; to approximate what information could
be used by NLP artifacts, we (1) conduct an analy-
sis of four representative document sources widely
employed in NLP. On the other side of the data jour-
ney are the NLP artifacts, the end-product of NLP

2https://aclrollingreview.org/respons
ibleNLPresearch/
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preprocessing, modeling and annotation. To ap-
proximate what information is being used by NLP,
we outline the de-facto, conservative approach to
text and (2) survey recent efforts that deviate from
it towards a more inclusive notion of text.

Sources. Wikipedia3 (Wiki) is a collaborative
encyclopedia widely used as a data source for
task-specific and general-purpose NLP modeling.
BBC News4 (BBC) represents newswire, one of
the "canonical" domains characterized by carefully
edited written discourse. StackOverflow5 (Stack)
is a question-answering platform that represents
user-generated technical discourse on social media.
Finally, ACL Anthology6 (ACL) is a repository of
research papers from the ACL community and rep-
resents scientific discourse – a widely studied appli-
cation domain (Bird et al., 2008; Mohammad, 2020;
Lauscher et al., 2022). For our analysis we sam-
pled five documents from each of the data sources
(Appendix B): for Wiki, we selected featured ar-
ticles from five distinct portals to ensure variety;
from BBC we selected top five articles of the day7;
for Stack we used five top-rated question-answer
threads; for ACL, we picked five papers from the
proceedings of ACL-2022 available online. Each
document was exported as PDF to accurately re-
produce the source, and manually annotated for
non-linguistic phenomena by the paper authors,
with the annotation refined over multiple iterations.

Baseline: Written language. The conservative,
de-facto approach to text in NLP is "text as writ-
ten language": parts of source documents that
contribute to grammatical sentences are the pri-
mary modeling target, whereas non-grammatical
elements are considered noise and potentially dis-
carded. This tradition is persistent throughout the
history of NLP, from classic NLP corpora (Mar-
cus et al., 1993; Pradhan and Xue, 2009) and core
NLP research, to modern large-scale unlabeled cor-
pora used for model pre-training (Zhu et al., 2015;
Merity et al., 2016; Raffel et al., 2020), language
models (Devlin et al., 2019; Brown et al., 2020) and
benchmarks (Wang et al., 2018). While focus on
text as written language is justified for grammatical
and formal semantic analysis, for other use cases
it proves limiting. In the following Section we sur-

3https://wikipedia.org
4https://www.bbc.com/news
5https://stackoverflow.com
6https://aclanthology.org
7All documents retrieved on October 4th, 2022

vey the emerging inclusive approaches to text that
exploit non-linguistic signals to boost the perfor-
mance and to enable new applications of NLP.

4.2 Taxonomy overview
Table 1 summarizes our proposed two-tier taxon-
omy for describing the inclusive approaches to text.
It demonstrates the wide variety of signals available
and potentially relevant to NLP processing beyond
the conservative, language-centric view. The fol-
lowing sections discuss the taxonomy classes in
greater detail, and Figure 3 gives examples.

4.3 Body
The first high-level class of our taxonomy encom-
passes the phenomena related to the main, content-
bearing parts of the textual document.

A1: Content. Our source analysis reveals that
naturally occurring textual documents systemati-
cally make use of signal systems beyond written
language. The examples of non-linguistic infor-
mation in textual documents include, but are not
limited to, emojis, math, code, hyperlink-, citation-
and footnote anchors, tables and multimedia, as
well as arbitrary numerical and categorical infor-
mation like scores and ratings (e.g. on STACK).
The stance towards such non-linguistic elements of
text ultimately determines whether an NLP artifact
can represent them in a satisfactory manner, and
recent NLP works successfully use non-linguistic
elements to their advantage. Applications in sen-
timent analysis make use of emoji (Felbo et al.,
2017); recent research addresses text generation
based on tables (Suadaa et al., 2021); Cohan et al.
(2019) use citation anchors for citation intent pre-
diction; Shen et al. (2021), Li et al. (2022) and
Aghajanyan et al. (2021) integrate layout informa-
tion into language model pre-training, resulting
in improved performance across a wide range of
tasks. The ability to handle non-linguistic signals
is key for NLP applications and motivates careful
documentation of text content.

A2: Decoration. Content is complemented by
decoration across all of our sources. Decoration
can take the form of font, style, coloring etc. and
carries important secondary information, including
emphasis, quotation, and signaling Structure (A3).
An important function of text decoration is to mark
code-switching between different signal systems,
from language change to mathematical notation
and code, e.g. on STACK and ACL. Over the

11314

https://wikipedia.org
https://www.bbc.com/news
https://stackoverflow.com
https://aclanthology.org


Figure 3: Taxonomy classes in a WIKI document. Besides language, content (A1) includes link anchors and
images, decoration (A2) marks code-switching to Latin, the article is structured (A3), linked to external sources via
hyperlinks and citations (B1), accompanied by an edit history (B2) and contextualized by its Categories (B3).

examples
A1: Content written language, anchors, math, code, emoji, multimedia

A: Body A2: Decoration formatting, color
A3: Structure document hierarchy, blocks, page and line numbers
B1: Linking implicit links, hyperlinks, citations, footnotes

B: Context B2: Adjacency comments under post, product and review
B3: Grouping tags, document collections, groups

Table 1: Taxonomy of the inclusive notion of text.

past years, decoration received some attention in
NLP: Shirani et al. (2019, 2020) explore the task of
emphasis modeling in visual media, Shirani et al.
(2021) extend it to presentation slides. While hu-
mans widely use text decoration, the semantics of
decoration are source- and author-dependent and
require further systematic investigation.

A3: Structure. Most naturally occurring textual
documents are not a flat, linear text as assumed
by commonly used reference corpora, from Penn
TreeBank (Marcus et al., 1993) to BooksCorpus
(Zhu et al., 2015). Instead, the relationships be-
tween individual units of content are encoded in
document structure. The simplest form of structure
is paragraph; longer documents can exhibit a hierar-
chy of sections; visual proximity is used to include
additional content blocks like quotations, defini-
tions, footnotes, or multimedia. In print, textual
documents can be organized into pages, columns,
lines etc. Explicit document structure is increas-
ingly used in NLP: Cohan et al. (2019) use sections
to help citation intent prediction; Ruan et al. (2022)
exploit document structure to aid summarization;
Sun et al. (2022) use structure to study the capa-

bilities of long-range language models; Kuznetsov
et al. (2022) propose Intertextual Graph as a general
structure-aware data model for textual documents
and use it to support annotation studies and explore
how humans use document structure when talking
about texts. Document structure is implicitly used
in HTML-based pre-training of language models
(Aghajanyan et al., 2021), yielding superior per-
formance on a range of tasks, and enabling new
pre-training strategies; a separate line of study is
dedicated to the analysis of visual document lay-
outs (Shen et al., 2021). The lack of a common
approach to formalizing document structure calls
for systematic reporting of what structural elements
are available in sources, and how document struc-
ture is represented and used in NLP.

4.4 Context

The second high-level class of our taxonomy per-
tains to context. Every text is written and read in
the context of other texts, and the ability to capture
and use context is a key property of NLP artifacts.

B1: Linking. The first major contextualization
mechanism is explicit linking – a marked rela-
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tionship between an anchor text and a target text
(Kuznetsov et al., 2022). Linking is crucial to
many text genres and is found throughout the doc-
ument sources considered in our analysis. An intra-
document link connects two elements within one
textual document (e.g. reference to a chapter or
footnote), while a cross-document link connects el-
ements in different documents (e.g. hyperlinks and
citations). Links differ in granularity of their an-
chors and targets: the same Wiki page can cite
its sources on the level of individual sentences
(sentence to document) and as a list for further
reading (document to document); a research arti-
cle from ACL can reference a particular statement
in a cited work (sentence to sentence). A few re-
cent works tap into the narrow context for both
task-specific and general-purpose modeling: Bao
et al. (2021) investigate the relationships between
peer reviewer comments and author rebuttals; Co-
han et al. (2020) use information from the citation
graph to create better neural representations of sci-
entific documents; Bugert et al. (2021) exploit hy-
perlinks to generate cross-document event corefer-
ence data; Caciularu et al. (2021) show that jointly
encoding a document and its near context improves
performance on tasks like cross-document coref-
erence resolution and multi-hop question answer-
ing; Kuznetsov et al. (2022) and Kennard et al.
(2022) jointly model cross-document relations be-
tween manuscripts, peer reviews, revisions and au-
thor responses. The availability and use of cross-
document links are key properties of textual docu-
ments and NLP artifacts to be documented.

B2: Adjacency. In addition, textual documents
can be related by adjacency; common examples
include commentaries attached to the main text,
discussion thread replies, copyright notices and
prefaces, or peer reviews and the submissions they
discuss. Contextualization by adjacency is at play
in the NLP study of discussion threads (Jamison
and Gurevych, 2013), peer reviews (Gao et al.,
2019; Bao et al., 2021; Kennard et al., 2022), etc.
Temporal adjacency is a special case where a tex-
tual document exists in the context of its previous
and future revisions, and is a key feature of docu-
ment sources like Wiki; edit histories have been
widely used in NLP as a modeling and annotation
target (Zhang et al., 2019; Kuznetsov et al., 2022;
Iv et al., 2022; Schick et al., 2022; Spangher et al.,
2022). Like linking, adjacency is a rich, naturally
occurring type of contextualization.

B3: Grouping Finally, a textual document can be
contextualized by the region of the document space
that it belongs to: a Wiki page exists in the context
of other pages belonging to the same portal; a BBC
article is positioned along the other articles of the
same day or topic. Group context both provides
the expected common background for text interpre-
tation and sets the standards for the composition
of individual documents. Group context plays key
role in designing discourse segmentation schemata
(Teufel et al., 2009; Hua et al., 2019; Kuznetsov
et al., 2022; Kennard et al., 2022), can yield natural
labels for text classification, and has been used to
augment language models (Caciularu et al., 2021).

4.5 Remarks

Completeness. Our taxonomy serves as the first
attempt at capturing the notion of text used in NLP
in a structured manner. While we believe that the
high-level taxonomy given here is comprehensive,
due to our focus on textual documents we do not
incorporate further divisions related to multimedia
content (e.g. we do not distinguish between images
and graphics, although such distinction could be of
interest for some applications). As more sources
and NLP artifacts are documented, new lower-level
taxonomy classes are likely to emerge.

Interactions. The proposed taxonomy dimen-
sions are not orthogonal and do interact: for ex-
ample, group context (B3) can influence document
structure (A2) and decoration standards (A3); in
turn, decoration is widely used to signal document
structure and linking (B1); the presence of adjacent
context (B2) can affect the level of detail in the con-
tent (A1). The existence of such inter-dependencies
motivates joint documentation and analysis of the
different aspects of text even if a conservative no-
tion of text is adopted in the end.

5 Additional considerations

5.1 Interoperability and generalization

A great advantage of the conservative, written-
language-only view on text is wide interoperability
and generalization: any textual document – from
scientific articles to Tweets – can be reduced to
written language. This makes it possible to ap-
ply a BERT model trained on books to a question-
answering prompt and expect non-trivial perfor-
mance, and enables reuse of text processing frame-
works and annotation tools. Yet, such reduction

11316



leads to substantial information loss and bears the
danger of confounding due to the interactions be-
tween different aspects of text and the text body.
While isolated efforts towards inclusive notion of
text exist, we are not aware of general approaches
that would allow capturing different aspects of text
in a systematic manner across domains and docu-
ment formats. While arriving at a universal, general
inclusive notion of text for NLP might not be feasi-
ble, we believe that reflecting on the generalization
potential of non-linguistic textual elements is the
first step in this direction.

5.2 Impact of production environment
Text production environment plays a key role in
what information can be captured by the textual
document, which, in turn, determines the capabil-
ities of the downstream NLP artifacts. While a
sophisticated text editing interface promotes the
use of decoration, non-linguistic content, structure
and linking, a plain text input field does not. More-
over, the regulating documents and norms that ac-
company text production have a profound effect on
text composition: for example, in addition to com-
mon expectations of a scientific publication, ACL
provides document templates, sets page limits and
often enforces obligatory structural elements e.g.
reproducibility and limitation sections; Wiki is
supplied with extensive general and portal-specific
guidelines, as well as strict formatting requirements
enforced by the community; similar mechanisms
are characteristic of most other sources of textual
data. Finally, the environment might determine the
availability of adjacent and group context during
text production. Despite its crucial role, we are not
aware of NLP studies that investigate the effect of
the production environment on the resulting texts,
and believe that our taxonomy can serve as a viable
scaffolding for such studies.

5.3 Implications
Efficiency. Computational demands of NLP re-
search are a growing concern (Strubell et al., 2019).
It remains unclear how the transition to inclusive
treatment of textual documents might affect the
efficiency of NLP models. Modeling additional
aspects of text might require more parameters and
increase the computational demands; yet, the syn-
ergies between different aspects of text might allow
NLP models to converge faster during training. We
are not aware of NLP studies that systematically
investigate the effects of inclusive approach to text

on training of NLP models, and believe that this
question requires further scrutiny.

Ethics. Recent years are marked by increased
attention to the ethics of NLP research, broadly in-
cluding the issues of privacy, confidentiality, licens-
ing and bias (Bender and Friedman, 2018; Rogers
et al., 2021; Dycke et al., 2022). While some types
of information beyond written language do not con-
stitute a threat as they are openly accessible in the
source textual documents (e.g. textual content A1,
decoration A2 and structure A3), others are poten-
tially harmful: precise details of text production
might impact privacy, and inclusion of certain con-
texts (e.g. edit histories, B2) might expose NLP
artifacts to false and incomplete information. We
are not aware of systematic NLP research into what
types of non-linguistic information about textual
documents are safe to store and report.

Methodology Current NLP methodology is tai-
lored to a conservative approach to text – from
commonly reported dataset statistics (e.g. number
of words) to modeling objectives and evaluation
metrics. The transition towards an inclusive no-
tion of text calls for a careful revision of the NLP
practice. Dataset statistics might include informa-
tion like the number of figures and tables (A1) or
structural information on intra-document (A3) and
inter-document (B1-3) level. Pre-trained language
models would need to process new types of content,
structure and context. Evaluation metrics would
need to take into account the new signals. In addi-
tion, machine learning models are prone to heuris-
tic behavior (Gururangan et al., 2018) – and besides
providing a useful training signal, inclusive notion
of text might introduce spurious cues that the mod-
els would exploit. Future research must determine
the optimal ways to operationalize the inclusive
approaches to text in NLP.

6 Reporting

An inclusive approach to text is an emerging trend
in NLP that demands systematic study. While
preparing this work, it became evident that the lack
of systematic reporting limits the meta-analysis of
text use in NLP. In line with related documentation
efforts, here we propose a simple, semi-structured
mechanism for reporting text use. In the short term,
such reporting would make it easier to gauge the
capabilities of data sources and NLP artifacts, in-
crease community awareness on what aspects of
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text are represented and used, and allow aggrega-
tion of text use information from different studies.
In the long term, it would help the community de-
velop standards for applying the inclusive approach
to text and formally documenting text use, and al-
low informed development of general data models
and formats (Hellmann et al., 2013) to facilitate
interoperability between NLP artifacts that adopt
an inclusive approach to text.

6.1 Schema
As our proposed taxonomy is subject to extension,
and to keep the reporting effort low, we formulate
the proposed reporting schema as a set of open-
ended questions guided by examples in Table 1, in
the spirit of short-form data statements by Bender
and Friedman (2018). We encourage the reporters
to complement it with new categories and phenom-
ena if necessary. For each NLP study that uses
or creates textual documents or NLP artifacts, we
propose to include the following information into
the accompanying publication:

• Body: Does the source, format, dataset, model
or tool incorporate or use any information
apart from written language, including non-
linguistic content, decoration and structure?

• Context: Does the source, format, dataset,
model or tool incorporate or make use of ad-
ditional context beyond single document, in-
cluding by linking, adjacency or via group
context? If yes, what is it and how is it used?

In addition, for text document sources and inter-
active NLP models we propose to document the
production environment: How are the documents
produced, including guidelines, software and hard-
ware used? Are the documents single-authored
or written collaboratively? How can these factors
influence text body and context? Optionally, we
invite researchers to reflect upon the implications
of their approach to text for generality, efficiency,
ethics and methodology. Is the newly introduced
signal widely used across textual documents? Does
it add computational overhead or help reduce com-
putational cost? Can new information lead to bias,
privacy risks or promote heuristic behavior? Does
the selected methodology take the non-linguistic
nature of the new information into account?

6.2 Example and Implementation
To illustrate the intended use of the proposed
schema, Appendix A provides example documenta-
tion for a textual source (StackOverflow). We note

that despite the brevity, short form and potential in-
completeness, this kind of documentation is highly
informative as it both allows to quickly grasp the
notion of text assumed by a data source or artifact,
and to aggregate this semi-structured information
across different kinds of NLP studies in the future.

Unlike prior efforts that focus on documenting
datasets and models separately, our schema ap-
plies to all stages of the NLP data journey, from
data sources to NLP artifacts, including reference
corpora, labeled corpora, preprocessing tools, pre-
trained and end-task models and applications. The
schema can be incorporated into the data state-
ments and editorial guidelines and used to extend
prior metadata documentation proposals (Gavrili-
dou et al., 2012) and data repository submission
forms (Lhoest et al., 2021).

We encourage the community to make use of
this low-effort mechanism as a step towards bet-
ter interoperability of NLP artifacts and the sys-
tematic study of the inclusive notion of text. We
specifically highlight the need for documenting
commonly used sources of textual documents; this
will provide the NLP community with a better pic-
ture of the document space. We deem it equally im-
portant to document pre-trained language models
and reference corpora, since their capabilities have
a major effect on downstream NLP modeling and
applications. This would allow us to gauge how
far NLP is from accurately modeling the docu-
ment space, and will highlight the gaps future work
would need to address on the way towards a gener-
ally applicable inclusive approach to text.

7 Conclusion

Text plays the central role in NLP as a discipline.
But what belongs to text? The rise in applications
of NLP to non-linguistic tasks motivates an inclu-
sive approach to text beyond written language. Yet,
the progress so far has been limited to isolated
research efforts. As NLP ventures into new ap-
plication areas and tackles new tasks, we deem it
crucial to document the notion of text assumed by
data sources and NLP artifacts. To this end, we
have proposed common terminology and a two-tier
taxonomy of inclusive approaches to text, comple-
mented by a widely applicable reporting schema.
We hope that our contributions and discussion help
the community systematically approach the change
of NLP scope towards more accurate modeling of
text-based communication and interaction.
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Limitations

Our proposed taxonomy is subject to extension, and
we expect new phenomena to be included into its
scope as the field progresses and as more document
sources are considered. Using a taxonomy as an
organizational basis for the proposed schema is dic-
tated by our aim to keep the schema simple. The
design of future, formalized reporting schemata
might adopt an onthology-based approach as it af-
fords more flexibility, and take into account inter-
operability with the existing proposals in the linked
open data community (Hellmann et al., 2013).

While source analysis is only one of our con-
tributions and is thus limited in scope, we have
observed that increasing the number of documents
from the same source yields diminishing value: if
a source uses a certain non-linguistic textual ele-
ment, it does so consistently. This suggests that
the future qualitative studies of document sources
used in NLP should be conducted in a breadth-
first fashion, with few documents samples from
many sources, unless quantitative measurement is
desired (e.g. "how often do Wikipedia authors use
text formatting") or unless a source is known to ac-
commodate a wide variety of document types with
different publication and formatting standards.

We do not provide specific details on document-
ing the text production environment, which rep-
resents a promising future research avenue. The
study of how the texts in NLP are created is a criti-
cal research direction: due to the increased applied
use of pre-trained generative language models, doc-
umenting the text form and origin is a pressing
need.

Our discussion stresses the overall need for more
careful handling of terminology in NLP. In this
work we chose the term "text" to refer to the object
of study in NLP – hence an approach that incorpo-
rates non-linguistic elements into text is considered
"inclusive". We note that "text" itself is an over-
loaded term associated with writing on one hand,
and text as a format on the other hand; from a
cross-disciplinary perspective, e.g. in semiotics, a
musical piece or an advertisement would be termed
"text" as well. An alternative terminology would
use "document" instead of "text" – however, we
have opted against this choice, as document can
be non-textual (e.g. images, spreadsheets), car-
ries certain implications on length, structure and
standalone nature (“document-level NLP"), and
comes with its own cross-disciplinary connotations.

As NLP progresses methodologically and interacts
with other disciplines, we deem it plausible that a
more precise terminology will emerge.
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A Documentation example: text source

StackOverflow hosts three main types of textual
documents: questions, answers and commentaries.
(A) Body: documents are richly formatted, include
multiple content types (text, code, math, images)
and decoration (emphasis, code-switching, links).
Documents are associated with additional metadata,
author and creation/edit time; questions and an-
swers are assigned a rating (number of votes), ques-
tions are tagged. Basic structure is present: ques-
tions and answers can be logically structured; ques-
tions are titled; yet, commentaries are usually short
and not structured. (B) Context: linking is used
throughout, mostly via hyperlinks, both to the doc-
uments on the platform and to external documents;
questions, answers and commentaries are related
by adjacency; revision histories are available for
questions and answers; questions are grouped via
tags, and answers and commentaries are grouped
by question. Production environment: questions
and answers are entered via a UI based on Mark-
down9, that supports formatting, structuring, lists,
links, code and block inserts, and table format-
ting. The question submission form additionally
includes a title and a tag field. While posting the
answer, the user has direct access to the question,
previous answers and commentaries. Guidelines
for asking and answering questions are available10

and enforced both by explicit moderation and by
the community.

B Source documents

Table 2 summarizes our source analysis. Note that
it serves an illustrative purpose and should be used
neither as a comprehensive list of non-linguistic
phenomena (see Section 4 instead), nor as a com-
prehensive documentation of the data sources: if
substantially more documents were considered,
mathematical notation would be eventually found
in STACK, a WIKI article would eventually feature
a code snippet, and an eventual ACL paper would
be accompanied by an adjacent erratum or a peer
review. The list below enumerates the documents
used in our study, retrieved on October 4th, 2022.

WIKI
• https://en.wikipedia.org/wiki/
Euclidean_algorithm

9https://stackoverflow.com/editing-hel
p

10https://stackoverflow.com/help/how-t
o-ask

WIKI BBC STACK ACL
A Body
A1 Content
- math yes no no yes
- code no no yes yes
- hyperlinks yes yes yes yes
- citations yes no no yes
- footnotes yes no no yes
- images yes yes yes yes
A2 Decoration
- font yes no yes yes
- style yes yes yes yes
A3 Structure
- paragraphs yes yes yes yes
- sections yes yes yes yes
- blocks yes yes no yes
- pages no no no yes
- columns no no no yes
B Context
B1 Linking yes yes yes yes
B2 Adjacency yes yes yes no
B3 Grouping yes yes yes yes

Table 2: Non-linguistic elements of text by data source,
"yes" – encountered in at least one document from the
study sample.

• https://en.wikipedia.org/wiki/
Cabbage

• https://en.wikipedia.org/wiki/
1689_Boston_revolt

• https://en.wikipedia.org/wiki/
Abdication_of_Edward_VIII

• https://en.wikipedia.org/wiki/
243_Ida

STACK
• https://stackoverflow.com/ques
tions/477816/which-json-conte
nt-type-do-i-use

• https://stackoverflow.com/ques
tions/5767325/how-can-i-remov
e-a-specific-item-from-an-arr
ay

• https://stackoverflow.com/ques
tions/6591213/how-do-i-renam
e-a-local-git-branch

• https://stackoverflow.com/ques
tions/348170/how-do-i-undo-g
it-add-before-commit

• https://stackoverflow.com/ques
tions/1642028/what-is-the-ope
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rator-in-c
BBC
• https://www.bbc.com/news/busin
ess-63126558

• https://www.bbc.com/news/world
-latin-america-63126159

• https://www.bbc.com/news/world
-europe-63119180

• https://www.bbc.com/news/world
-australia-63126430

• https://www.bbc.com/news/world
-asia-india-63127202

ACL
• https://aclanthology.org/2022.
acl-long.6.pdf

• https://aclanthology.org/2022.
acl-long.7.pdf

• https://aclanthology.org/2022.
acl-long.8.pdf

• https://aclanthology.org/2022.
acl-long.9.pdf

• https://aclanthology.org/2022.
acl-long.10.pdf
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