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Abstract

Outside-knowledge visual question answering
is a challenging task that requires both the ac-
quisition and the use of open-ended real-world
knowledge. Some existing solutions draw ex-
ternal knowledge into the cross-modality space
which overlooks the much vaster textual knowl-
edge in natural-language space, while oth-
ers transform the image into a text that fur-
ther fuses with the textual knowledge into the
natural-language space and completely aban-
dons the use of visual features. In this paper,
we are inspired to constrain the cross-modality
space into the same space of natural-language
space which makes the visual features pre-
served directly, and the model still benefits
from the vast knowledge in natural-language
space. To this end, we propose a novel frame-
work consisting of a multimodal encoder, a
textual encoder and an answer decoder. Such
structure allows us to introduce more types of
knowledge including explicit and implicit mul-
timodal and textual knowledge. Extensive ex-
periments validate the superiority of the pro-
posed method which outperforms the state-of-
the-art by 6.17% accuracy. We also conduct
comprehensive ablations of each component,
and systematically study the roles of varying
types of knowledge. Codes and knowledge
data can be found at https://github.com/
PhoebusSi/Thinking-while-Observing.!

1 Introduction

Conventional visual question answering (VQA)
(Antol et al., 2015) tasks require models to answer
questions based on image content. Such tasks have
been thoroughly studied (Guo et al., 2021; Jiang
et al., 2020; Li et al., 2020b) on conventional VQA
datasets VQAvV2 (Goyal et al., 2017). However,
real-world questions often rely on a certain amount
of knowledge beyond images. Therefore, Knowl-
edge Base Question Answering (KB-VQA) tasks
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Figure 1: Comparison with previous paradigms. Orange
lines indicate processes involving cross-modality space.
(a) The conventional VQA paradigm fuses image and
question text into the cross-modality space, and then
predicts answers in a close-set classification manner.
(b) Language-centric paradigm applies captioning and
tagging tools to describe the visual context, and aban-
dons the visual features to convert the VQA task into
an open-ended generative QA task. (c) The proposed
paradigm intends to constrain the cross-modality space
into the same space as natural-language space so that
models can directly decode both text and multimodal
embeddings.

(Cao et al., 2021; Wang et al., 2015, 2017; Shah
et al., 2019; Lu et al., 2018) always require models
to answer questions by referring to the correspond-
ing knowledge facts in a specific pre-defined knowl-
edge base. Yet any pre-defined knowledge base is
far from covering real-world knowledge. Recently,
the outside-knowledge visual question answering
(OK-VQA) task has been proposed (Marino et al.,
2019) and provides the most open VQA setting.
That is, any knowledge resource can be used to
answer its challenging and diverse questions.

Most previous work (Ding et al., 2022; Garderes
et al., 2020; Marino et al., 2021) on OK-VQA fol-
lows conventional VQA paradigm (as shown in
Figure 1 (a)) based on visual-language pre-trained
(VLP) models, and injects knowledge into the same
cross-modality space afterward. However, knowl-
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edge in cross-modality space is much less than that
in natural-language space Gao et al.. This paradigm
excels at visual understanding, but refers to little
knowledge, like a human who focuses on observing
but does not think enough.

To take the advantage of the vast knowledge
in natural-language space, state-of-the-art methods
(Gaoetal., 2022; Yang et al., 2022; Gui et al., 2021)
on OK-VQA follow language-centric paradigm (as
shown in Figure 1 (b)) based on pre-trained lan-
guage models (PLMs). However, although more
knowledge can be introduced, the paradigm is
counter-intuitive because many visual details are
lost when converting an image into text. Therefore,
it is like a human who starts thinking after brief
observing.

For a human, a feasible solution to OK-VQA
is combo Thinking while Observing. To this end,
we propose TwO, which is a framework consisting
of a multimodal encoder, a textual encoder and
an answer decoder. As shown in Figure 1(c), the
multimodal encoder directly encodes the visual
features and acts as the role of observer, while
the textual encoder encodes a range of knowledge
resources and acts as the role of thinker. Finally,
the answer decoder decodes the latent embeddings
from both encoders to generate the final answer.
In addition, a pre-training stage is added to help
constrain the output of both encoders to the same
latent space.

Previous methods (Gui et al., 2021; Gao et al.,
2022; Wu et al., 2022) have thoroughly studied ex-
plicit textual knowledge such as Wikipedia, as well
as implicit textual knowledge in GPT-3 (Brown
et al., 2020). However, the discussion of multi-
modal knowledge, which further utilizes visual fea-
tures, is still in its infancy in OK-VQA. In this
paper, we accumulate explicit multimodal knowl-
edge during pre-training on VQAv2 (Ding et al.,
2022). Besides, inspired by prompting GPT-3
(Yang et al., 2022) for implicit textual knowledge,
we use prompt to bring in implicit multimodal
knowledge stored in the unifying VLP model OFA
(Wang et al., 2022). Moreover, we refine a taxon-
omy of existing methods by knowledge (refer to
Figure 2) where our method is the first to bring in
all types of knowledge.

To summarize, our contributions are as follows:

(1) We propose a simple and effective paradigm
that combines the advantages of both conventional
VQA and language-centric paradigms.

Explicit Implicit

O Explicit Textual
Knowledge

Implicit Textual
Knowledge

O Explicit Multimodal
Knowledge

O Implicit Multimodal
Knowledge

/RR-CRoade
RVLESK

Figure 2: Taxonomy of OK-VQA methods by knowl-
edge types. Green, purple, blue and red fonts represent
the introduction of one, two, three and four types of
knowledge. No existing work introduces four types of
knowledge in a unified framework, but ours.
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(2) Our method can deal with more comprehen-
sive types of knowledge, and is the first to bring in
implicit multimodal knowledge through a prompt-
learning fashion. In addition, we empirically ana-
lyze the roles of different types of knowledge.

(3) Experimental results show the effectiveness
of our method, which establishes a new SoTA ac-
curacy on OK-VQA with a 6.17% gain.

2 Background

2.1 Outside-Knowledge Visual Question
Answering (OK-VQA)

In addition to dividing existing methods according
to latent space, namely multimodal-space methods
(Ding et al., 2022; Garderes et al., 2020; Zhu et al.,
2020; Yu et al., 2020; Zheng et al., 2021; Marino
et al., 2021) and textual-space methods (Yang et al.,
2022; Gui et al., 2021; Gao et al., 2022), existing
methods can also be roughly categorized into two
lines by whether GPT-3 is used. Most of the GPT-3
based methods (Gui et al., 2021; Lin et al., 2022)
outperform non-GPT ones by large margins, since
huge-parameter-capacity GPT-3 can store abun-
dant implicit textual knowledge. The vast implicit
knowledge in GPT-3 can be easily retrieved in a
prompt manner. For example, Pica (Yang et al.,
2022) uses text prompts of in-context examples
to query GPT-3 for answers directly. However,
most existing methods for OK-VQA are non-GPT-
3 based, which do not directly compare with GPT-3
based methods for a fair comparison. For complete-
ness, we explore our model performance with and
without GPT-3, respectively.

Previous work has generally improved model
performance in OK-VQA in two ways: one is to
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introduce more knowledge sources (see Figure 4),
and the other is to optimize the model paradigm
(see Figure 1). For example, MAVEx (Wu et al.,
2022) follows the former way and introduces more
knowledge sources such as Wikipedia, ConceptNet
(Speer et al., 2017) and Google images to boost
model performance; VRR-EReader (Luo et al.,
2021) follows the latter way and replaces the clas-
sifier with an extraction reader to solve the gen-
eralization problem of classification manner. Our
method goes further in both directions: On the
one hand, we explore more comprehensive types
of knowledge. On the other hand, we refine the
paradigm to make the visual features retained, and
the model still benefits from natural language space.
We list the relationship between our method and
previous work in Appendix A.1.

2.2 Taxonomy of OK-VQA Methods by
Knowledge Types

With an in-depth look at the types of knowledge
involved in each existing method, we propose a
complete taxonomy of OK-VQA methods shown
in Figure 2. We divide all knowledge into four
types: explicit textual knowledge, explicit multi-
modal knowledge, implicit textual knowledge, and
implicit multimodal knowledge.

From Figure 2, we find that (1) most GPT-3
based methods (Yang et al., 2022; Gui et al., 2021)
appear in the two circles of "Textual" because they
adopt the language-centric paradigm. (2) There are
few methods to use explicit multimodal knowledge,
which is more challenging to introduce into mod-
els than explicit textual knowledge. Among them,
Marino et al.; Ding et al. propose accumulating
this knowledge through pre-training while Wu et al.
use Google Image to provide similar images. (3)
Recent work is usually distributed in the two cir-
cles of "Implicit". This shows that VLP models or
PLMs have become one of the vital components
of the model for OK-VQA. Appendix A.2 and A.3
show more related work about VLPs and PLMs.

3 Method

3.1 Visual Description Module

Given an image [;, following (Gao et al., 2022),
we adopt a coarse-to-fine transformation strategy
to describe it as comprehensively as possible, and
obtain three parts as follows.

1. Image-level caption C;, given by the SoTA
VLP model OFA (Wang et al., 2022).

2. Object-level attribution description L; from
the VinVL (Zhang et al., 2021) detector.

3. Token-level Optical Character Recognition
(OCR) results O; from easyOCR?.

To simplify, we refer to the three as visual con-
text V; = (C1, Li, Oi). The generated visual de-
scriptions are in the following forms:

G = { (g, o)}

L;,= {phrasef)“b, ...,phrasefﬁbb} , 1)
lab attr attr obj
phrase,w’ = (wg™", ..., wi" W)

Oi = (g™, oy ™)

3.2 Explicit Knowledge Retrieval and
Accumulation

To answer challenging questions, humans tend to
query them in knowledge bases or accumulate rele-
vant knowledge in advance. Inspired by this, we in-
troduce explicit textual and multimodal knowledge
through retrieval and accumulation, respectively.

Wikipedia Passage Retrieval. We view the 21-
million-passage Wikipedia dump D as an explicit
textual knowledge source. In particular, we com-
bine the question (); and caption C; as a query
g = (Qs,C;) to retrieve the relevant passages
from D. To this end, our method adopts an off-
the-shelf pre-trained dense passage retrieval (DPR)
(Karpukhin et al., 2020) model. DPR encodes the
query ¢; and all candidate passages D separately
into dense vectors vg, and [y, Up, , ..., Up ] With
two independent BERT encoders as follows:

vy, = BERTG (¢;),vp, = BERTp (pr) (2)

We compute the inner product sim(g;, pi) = v, -
Vp, as their similarity scores, and then exploit an
indexing engine FAISS (Johnson et al., 2019) to
speed up the above process. The knowledge pas-
sages P; = [pi0,Pi1, ..., Di,k) With top k similarity

scores are the final explicit textual knowledge.

VQA Knowledge Accumulation. Compared to
the rigid facts of textual knowledge, the inexpress-
ible facts of multimodal knowledge are also in-
dispensable (e.g., object identification and scene
understanding (Ding et al., 2022). We view the con-
ventional VQAV2 dataset as an explicit multimodal
knowledge source, and our model accumulates mul-
timodal knowledge in advance through pre-training
on VQAV2.

Zhttps://github.com/JTaided Al/EasyOCR
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Figure 3: The flowchart of our method shows how we obtain four types of knowledge (red fonts) and feed them into
the proposed model, which consists of a multimodal encoder, a textual encoder and an answer decoder.

3.3 Implicit Knowledge Retrieval

Recently, the GPT-3 LLM has shown its strength
in generating open domain knowledge (Gui et al.,
2021; Yang et al., 2022) in a prompt-learning man-
ner, and is widely used in OK-VQA as a source
of implicit textual knowledge. However, the text
descriptions of given images in prompts may lack
important visual information, resulting in incom-
plete or irrelevant knowledge output from GPT-3.
To overcome such drawbacks, we propose to view
the unifying VLP model OFA as a source of im-
plicit multimodal knowledge. Different from GPT-
3, OFA can be queried directly by visual features
with text prompts.

Implicit Textual Knowledge in GPT-3. Fol-
lowing the prompt tuning procedure of KAT
(Gui et al., 2021), we retrieve implicit textual
knowledge in GPT-3 with supporting evidence.
Specifically, we use the combination of the
question, caption, and object labeling as a prompt
Xgpt for each image-question pair. Then we
add carefully designed instruction text and
semantically similar samples as the in-context
examples at the beginning of X,,;. That is, X
is  "(instructions) (in — context examples)
Context: (caption C;)+(objectlabeling L;).

Q: (question ;) A:". Xgp can query a tentative
answer A%, and we then query GPT-3 with an-

other prompt Yy, "(question@;) <an$werA?pt>,

This is because" for supporting evidence E/"".
The final obtained implicit textual knowledge is

T, = { A7, B},

Implicit Multimodal Knowledge in OFA.
Instruction-guided pre-training enables OFA to per-
form zero-shot generalization for different prompts,
although it does not have a huge parameter capac-
ity like GPT-3. To generate the tentative answer
Aff “, we directly feed OFA the visual features and

question as the prompt X ;. In addition, "This
is because" in Yy, is no longer applicable to
prompt OFA to generate the evidence, as OFA ex-
cels at question-form prompts rather than writing
a continuation like GPT-3. We therefore design
a question-form prompt Y, ¢, "(question @Q;) Why
<answerAff a> ?" to query OFA for supporting

evidence E; 7% The final obtained implicit multi-
modal knowledge is M; = {Aofa Ofa}

3.4 Model Structure of TwO

We have designed the modules above for different
types of knowledge, and then, as shown in Figure
3, transfer the acquired knowledge to our model,
which contains the following modules:

Multimodal Encoder. We directly adopt an ex-
isting VLP model as our multimodal encoder. This
paper mainly uses LXMERT, the most widely used
one in VQA. LXMERT encodes question @); aqd

image I; to obtain the language hidden states H 2[

and vision hidden states H ; that have fully inter-
acted with each other.

H! HY = encopm(Qi, ) 3)

where Hf € RLa*h, sz” e RLv*h, Ly is the length
of the question, L, is the number of objects, and h
is the size of hidden embedding. This encoder acts
like "observing" where visual features can interact
well with questions.

Textual Encoder. We use T5’s encoder as the
textual encoder, and feed in all possible textual
information, i.e., Q;, Vi, M;(, T;)* and P; as in-
put. Due to the large number of relevant Wikipedia
passages, we concatenate each passage p; ;. that it-
erates over P; with other inputs, and then feed each

3Unless compared with GPT-3 based methods, T} extracted

from GPT-3 is not included by default, due to the much energy
consumption of GPT-3.
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concatenated sequence into the textual encoder as:

ZF = enci(Qi, Vi, My, pig) 4

7

Here, we obtain the hidden embedding sequence
Zf = (z0,%1,...,2t), Where z; represents the
ti, token embedding, ZF € RE*h [, =
|(Qi, Vi, M, pi ;)| is the length of the sequence
and A is the size of the hidden embedding. This
encoder acts like "thinking" where vast knowledge
can interact well with questions.

Combo of Both Encoders. To combine the hid-
den embeddings of both encoders, we map the em-
bedding of the multimodal encoder into the same
dimensional space as the textual encoder:

HL, HY = FCy(relu(FCy([H!, HY)))  (5)

where Hf e Rla*h H! € RLv*h The final mul-
timodal embedding sequence is H; = (H!, HY).
Then we combine the multimodal and textual em-
bedding sequence together to obtain a hybrid em-
bedding sequence S¥ = (H;, ZF). Subsequently,
we iterate all k£ passages with the same encoding
process to generate k£ hybrid embedding sequences:

S; = (SY, S, ..., 8F) (6)

where 9; € R((LatLvtLi)k)xh ig the concatena-
tion of all k£ sequences. Taking into account both
visual features and vast knowledge, we come to a
combo of "thinking and observing".

Answer Decoder. We apply T5’s decoder as the
answer decoder, and feed in the embedding se-
quence S; to generate the final answer according to
the prediction probability P() over the vocabulary
space |V| for each answer token:

P(a}),...

7

,P(a}) = softmax(dec(S;))  (7)

7

where [ is the length of the answer. Finally, we
adopt teacher-enforcing to train the model with
auto-regressive cross-entropy objective:

N 1 VI

_ 1 jow jw
=N - >N AP log(P(al™))

i=1 j=1 w=1
®)

Lans

where NV is the size of the whole training set.

Pre-training and Fine-tuning. In addition to
accumulating explicit multimodal knowledge in
VQAV2, the pre-training stage also makes the an-
swer decoder suitable for decoding two different en-
coders. Note that the implicit knowledge 7; and M;

are not used during pre-training, while the forms
of other inputs are consistent with fine-tuning. To
employ model ensemble, a common practice in
OK-VQA, we take ensembles of six models trained
with different seeds, and select the most frequent
predictions as the final answers.

4 Experiments

4.1 Experimental Setup

OK-VQA Dataset. This paper conducts exten-
sive experiments on the OK-VQA dataset (Marino
et al., 2019), the most open VQA dataset, where
each question requires outside knowledge beyond
the image to answer correctly. Since all questions
are manually annotated with no fixed template or
knowledge base, this dataset allows the use of any
external knowledge source that can help answer.

Evaluation Metric and Implementation Details.
We evaluate performance by the standard VQA
evaluation metric (Goyal et al., 2017) (denoted by
Acc) and Exact Match (Gao et al., 2022) (denoted
by EM). Acc defines a soft score (between 0 and
1) for each annotated answer according to a voting
mechanism, reflecting the consensus subjectively
of multiple annotators. In contrast, EM treats all an-
notated answers to a question equally as the ground
truth, which is a looser metric.

We adopt [xmert-base-uncased or visualbert-vqa
(Li et al., 2019) and T5-large models to initialize
our model. We pre-train and finetune the models
on 12 and 8 A100-80GB GPUs respectively for 3
epochs with a batch size of 1. More details are
shown in Appendix B.

4.2 Comparison with Existing Approaches

Comparison with SoTAs. Table 1 reports the
performance of our proposed method and state-of-
the-art models, from which we can derive several
observations: (1) Comparing the second and third
lines with the first line, we find that implicit knowl-
edge in VLP models or PLMs, used for model
initialization, further improves model performance.
This was rarely discussed in previous work. (2)
MuKEA and TriG are the best-performing meth-
ods to implement OK-VQA in cross-modal space
and natural-language space, respectively. By com-
paring their performance, we find that OK-VQA
solutions in natural-language space perform sig-
nificantly better than those in cross-modal space.
This is because squeezing the rich representation
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Method Venue Implicit Knowledge Explicit Knowledge Resources EM  Acc
BAN NeurIPS(2018) — — 25.17
+AN CVPR(2019) — Wikipedia 25.61
+KG-AUC MM(2020a) — Wikipedia + ConceptNet 26.71
MUTAN ICCV(2017) — — 26.41
+AN CVPR(2019) — Wikipedia 27.84
Mucko 1ICAI(2020) — ConceptNet 29.20
GRUC PR(2020) — ConceptNet 29.87
KM* Inf Fusion(2021) — multimodal knowledge from OK-VQA 31.32
VIiLBERT ICNIP(2019) ViLBERT 31.35
LXMERT EMNLP(2019) LXMERT 32.04
VRR-CReader EMNLP(2021) LXMERT Google Search 36.78
RVLESK LANTERN(2021) LXMERT ConceptNet 39.04
MAVEXx AAAI(2022) VILBERT Wikipedia + ConceptNet + Google Images 41.37
MuKEA CVPR(2022) LXMERT multimodal knowledge from VQAv2 and OK-VQA 42.59
ConceptBert EMNLP(2020) BERT ConceptNet 33.66
KRISP(w/o mm pre.) CVPR(2021) BERT DBpedia + ConceptNet + VisualGenome + haspartKB 32.31
KRISP(w/ mmpre.) ~ CVPR(2021) BERT ditto + VQAv2 38.90
VRR-EReader EMNLP(2021) RoBERTa Google Search 39.20
TRiG CVPR2022 T5 Wikipedia 53.59 49.35
TRiG, E CVPR(2022) T5 Wikipedia 54.73  50.50
Ours LXMERT+OFA+T5 VQAV2 + Wikipedia 59.85 55.33
Ours, E LXMERT+OFA+T5 VQAV2 + Wikipedia 61.12 56.49
Ours visualBERT+OFA+T5 VQAV2 + Wikipedia 60.17 55.52
Ours, E visualBERT+OFA+T5 VQAV2 + Wikipedia 61.32 56.67

Table 1: Results comparison with existing methods. The middle two columns report the implicit knowledge and
explicit knowledge sources involved in each method respectively. The middle two rows show the methods based on
VLP models and PLMs respectively. E denotes the model ensemble.

Method Knowledge in Input Text Acc
PICa Frozen GPT-3 (175B) 46.50
PICa, E Frozen GPT-3 (175B) 48.00
KAT Wikidata+Frozen GPT-3 (175B) | 53.10
KAT, E Wikidata+Frozen GPT-3 (175B) | 54.40
REVIVE Wikidata+Frozen GPT-3 (175B) | 56.60
REVIVE, E Wikidata+Frozen GPT-3 (175B) | 58.00
ours Wikipedia+Frozen OFA (0.93B) | 55.33
ours, E Wikipedia+Frozen OFA (0.93B) | 56.49
ours w/ GPT-3 ditto+Frozen GPT-3 (175B) 57.57
ours w/ GPT-3, E ditto+Frozen GPT-3 (175B) 58.72

Table 2: Results comparison with existing GPT-3 based
methods. E denotes the model ensemble.

of natural-language knowledge (billion-degree pre-
training corpus) into a much smaller cross-modal
space (million-degree pre-training corpus) leads to
a severe loss of knowledge. (3) Our method is com-
patible with various VLP encoders, and beats the
previous SoTAs TRiG by 6.17% Acc and 6.59%
EM. (4) It can be seen from the middle two columns
that, compared to previous work, our method is
the first to utilize all four types of knowledge at
the same time, which is one of the reasons why
our method is effective. Moreover, as shown in
Appendix C.1, our method can outperform TRiG
using 100 Wikipedia passages by 4.37% Acc even
using only 5 passages, which substantially reduces
computing consumption.

Comparison with GPT-3 Based Methods. We
also compare our method with recent GPT-3 based

Ours Ours w/ GPT-3
600/ 5962 = ours 625 2233 - ours w/ GPT-3
- in

59.93

57.57

55.44

Acc/EM (%)
Acc/EM (%)

500 49.35
45.14

a1s 45.28

EM Acc EM Acc

Figure 4: Ablation study on the pre-training and fine-
tuning stages. ’w/o finetune’ denotes that after pre-
training on VQAv2, the model will be evaluated directly
on the OK-VQA test set without further fine-tuning.

methods. As shown in Table 2, GPT-3 Based meth-
ods are significantly superior to non-GPT-3 base-
lines shown in Table 1. However, even without
GPT-3 (175B), we can achieve competitive results
with OFA (0.93B). To compare fairly, we further
improve our model performance by incorporating
GPT-3, and clearly surpass all GPT-3 based SoTAs.

4.3 Ablation Study

Ablation of Pretrain-finetune Strategy. In Fig-
ure 4, we evaluate the contribution of pre-training
and fine-tuning in our method. The decline in
performance caused by "w/o pre-train” confirms
the necessity of pre-training. Although *w/o fine-
tune’ is far worse than the final performance, it is
still competitive compared with previous methods.
This further verifies that multimodal knowledge in
VQAV2 is helpful in solving OK-VQA.
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Model Input Form EM | Acc
ours w/o pre. | visual features + textual input | 59.93 | 55.44
LXMERT visual features — | 32.04
w/o txt enc visual features 29.43 | 26.61
w/o mm enc textual input 60.01 | 55.56
ours visual features + textual input | 62.33 | 57.57
w/o txt enc visual features 34.52 | 31.39
w/0 mm enc textual input 61.55 | 56.83

Table 3: Ablation study on each encoder in our model
structure. The middle column indicates the data format
that each model can be fed. The upper part represents
the models without pre-training. *w/o txt enc’ and ’w/o
mm enc’ denote using only multimodal encoder and
textual encoder respectively.

Model Knowledge Type EM | Acc
ours all four types 62.33 | 57.57
w/o pre. explicit mulimodal | 59.93 | 55.44
w/o Wiki | explicit textual 60.80 | 56.18
w/o OFA implicit multimodal | 57.13 | 52.71
w/o GPT-3 | implicit textual 59.65 | 55.28

Table 4: Ablation study on four types of knowledge. The
second column lists the types of the removed knowledge
source.

Ablation of Model Structure. To prove the com-
plementary benefits of applying the two encoders,
we conduct experiments and report results in Table
3. The findings can be summarized as follows: (1)
As shown in the "Input Form" column, combin-
ing both textual and multimodal encoders allows
our method to handle both visual features and tex-
tual input simultaneously. (2) w/o txt enc’ con-
sistently underperforms *w/o mm enc’, because
the natural-language space of the textual encoder
contains more knowledge, which is critical to OK-
VQA. (3) The upper part shows that, without pre-
training, *w/o textual enc’ performs worse than
LXMERT, as the answer decoder, initialized with
T5, cannot directly fit the encoder initialized with
LXMERT. (4) Similarly, removing the multimodal
encoder without pre-training will instead result in
a slight performance improvement for the same
reason. (5) As shown in the lower part, adopting
pre-training contributes to ameliorating the above
phenomenon. That is, the performance of ’ours’ is
superior to both w/o txt enc’ and w/o mm enc’
by clear margins. This proves that pre-training can
help make the answer decoder suitable for decod-
ing both encoders, thus combining the advantages
of both encoders.

Ablation of Four Types of Knowledge. Table
4 shows that the absence of any type of knowl-
edge will lead to a significant drop in performance

Knowledge hit Knowledge hit
Source Train | Test | Source Train | Test
GPT-3 ans + evi | 56.59 | 61.51 | OFA ans + evi | 63.36 | 66.75
GPT-3 ans 54.02 | 59.27 | OFA ans 57.63 | 61.59
GPT-3 evi 34.09 | 37.26 | OFA evi 57.84 | 61.47
Visual Context | 32.28 | 32.92 | Wikipedia(75) | 82.58 | 85.26
captions 22.34 | 22.81 | Wikipedia(50) | 80.34 | 82.62
labels 23.62 | 24.18 | Wikipedia(25) | 74.28 | 76.56
OCR 0.44 | 0.32 | Wikipedia(10) | 63.20 | 64.74
all 93.18 | 95.30 | Wikipedia(5) 51.88 | 54.12

Table 5: Hit of each component in our model’s inputs.
H 1t is defined as the percentage of samples in the whole
dataset that get a hit on any corresponding annotated an-
swer by the retrieved knowledge. "ans" and "evi" denote
tentative answers and supporting evidence, respectively.

(1.39%~4.86% Acc and 1.53%~5.20% EM), which
proves the complementary benefits among the four
types of knowledge. Among the four types of
knowledge, implicit knowledge in OFA contributes
the most and explicit knowledge of Wikipedia con-
tributes the least. We will discuss this phenomenon
in Appendix D.1. In addition, in Appendix C.3, we
also perform ablations from a dependence perspec-
tive to prove the indispensability of each encoder
and knowledge.

Performance of Knowledge Retrieval. From Ta-
ble 5, it can be seen that: (1) The combination of all
the knowledge retrieved in our method can cover
the answers corresponding to 95.30% of the sam-
ples. The high hit guarantees a high upper bound,
allowing the model to generalize better. (2) Hit
of prompting OFA significantly outperforms that
of prompting GPT-3, indicating that implicit multi-
modal knowledge may be more effective than im-
plicit textual knowledge in OK-VQA. (3) The sup-
porting evidence can clearly improve hit of the ten-
tative answers, especially for OFA (from 61.59%
to 66.75%). (4) Wikipedia’s high hit demonstrates
the effectiveness of our adopted DPR model in re-
trieval. As shown in Appendix C.1, as the number
of Wikipedia passages increases, Acc/EM of our
model rises first and then falls because noise is
introduced when the number of passages is large.

In Appendix D.1, we also conduct experiments
to further explore the extent to which the model
makes use of each type of knowledge. We find that
compared with explicit knowledge, implicit knowl-
edge has a higher conversion rate from knowledge
to correct answers. We also qualitatively analyze
the impact on OK-VQA of different versions of
OFA in Appendix D.2.
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Q: What activity is usually done sitting
in those furniture?
A: [watch to, watch to, watch tv,
television watch, talk, relax]
OiFSsmI Pred: watch tv v
DU Pred: read X

i e [ o Whatbirds are those?

A: [seagull, seagull, seagull,
seagull, seagull]

OuESHRM Pred: scagull

[OUFSHRE Pred: qull X

VoA
ARG M

Visual Context
€: awoman walking on the beach with a flock of birds
L: flying bird, calm white blue gray water, crashing small
white wave, wet sandy beach, flying bird, flying bird,
black swimming flying bird, large white black flying bird
CET] OFA
qull, the gulls are not only very watching tu movies sitting,  read, you will not have to worry
common, but also very noisy tv watching movies watch.  about the furniture getting dirty.

Visual Context
C: a living room with a fireplace and a clock on the wall
L: white mantle, gray silver flat flat screen off black television,
decorative tall white candle, long sheer bright white window|
glass green vase, brown wood black stand, white candle

FA
. birds se gull sesels,
se gulls gull seiders
Wikipedia
.. notices what appear to be whitecaps on the sea, but tis
actually a great line of seaqulls waiting for the tide to rise.
When Nat arrives home, his concerns about the aggressive
behavior of the birds are confirmed by ..

pedia
... homes that lack a parlour or drawing room, the living room
‘may also function as a reception room for guests. Objects in living|
rooms may be used to instigate and mediate contemplation
about significant others, as well as to regulate the amount of ...

©: If you ask someone to put their nam

Q: A center affixed unit like this one in on a piece of paper for your personal

akitchen s called a what?
A: [island, island, island, island, island]

pleasure you are asking for their what?
A: [autograph, autograph, autograph,
signature, signature]

Oiirs i Pred: name X
[OuFSRE Pred: autograph

[Ouirsim Pred: kitchen X
[OuiESERE Pred: island v

'Visual Context
€ two men in tuxedos are looking at a cell phone
L: bald talking looking standing smiling man, folded holding

Visual Context
C: a kitchen with a bar with three stools
L: black bowl, open white door, black refrigerator, white
white hand, curly short dark black hair, young standing
looking smiling man, gray white wall, white shirt

cushion, pink red yellow flower, white ceiling, black handle,
plastic clear small glass bowl, beige glass tan brown vase ...
GpT

OFA OFA
bar stool island islands

bar stool island islands

island, it is in the center of
the room

autograph, you are asking them
to do something for you.
‘Wikiped;

... Ataboret (also spelled tabouret or tabourette) or stool refers
to two different pieces of furniture: a cabinet or a stool. The
popular sense refers to a small portable stand or cabinet, with
drawers and shelves for storage. It is used as a method to bring ...

... Ataboret (also spelled tabouret or tabourette) o stool refers
to two different pieces of furniture: a cabinet or a stool. The
popular sense refers to a small portable stand or cabinet, with
drawers and shelves for storage. It is used as a method to bring ...

(b)
QF What continent s s are this bird
found on?
A: [north america, north america, north
america, north America, south america]
w/opre. Pred: northamerica v/

british heart foundation]
w/opre. Pred: music festival )

W/0OFA Pred:concert /.
oir Y W/0GPT Pred:concert /. W/0OFA Pred:asia X
w/oWiki Pred:concert </ W/0GPT  Pred: north america

Visual Context ‘w/o Wiki _Pred: north america +/

(c) (d)

Q: What model plane is this?

A:[747,747, boing, boeing 747,
Boeing 737 86n]

Q¢ What item might be used to warm
this item of furniture?
A: [electric blanket, electric blanket,

blanker, cloth dryer, blanket] wiopre. Pred: 747 v
‘w/opre. Pred: blanket v

w/o OFA Pred: 747 v
W/0OFA Pred: blanket v

w/0 GPT Pred: 747 v
W/0GPT Pred: heater X

‘w/o Wiki Pred: jet X
W/o Wiki Pred: blanket v

Visual Context

Visual Context
C: asmall bird perched on a tree branch
L: sitting black small gray bird, gray black wing, thin brown
branch, brown black gray tail, black white head, open pointy
white small black beak, skinny wood thin small brown branch

©: a crowd of people watching a band play on a stage

L: brown red brick building, brown white large brick building,
long metal gray stage, red car, round black white clock, large
brown black guitar, open closed glass window, purple cloudyl

0: Heart, Wouu, lunsisofotiey com

OFA

north america africa south

GPT GPT
festival, the festival is a celebratio africa, the bird is found in Africa

of the harvest

OFA
music festival concert
concerts continent, north south west
Wikipedia

.. Rainforest scops owl are repeated at intervals of several

... Although the fan was able to walk away after falling from the
seconds. The rainforest scops owl is endemic to Madagascar wherel

stage, the concert was cut short after he fainted. He later died in

'Visual Context
€ a bedroom with a bed and a curtain with papers on it
L: brown pillow, unmade white made bed, open white stacked
book, striped white pillow, on silver gold lamp, light brown
wood brown headboard , beige sheer tan white curtain
cPT

C:alarge airplane flying through a blue sky
L: sharp horizontal vertical large gray wing, cloudless clear blue
sky, large gray wing, large silver white flying airplane, large
white engine, large white engine, horizontal sharp small tail
0: Cn-Reie
OFA
jet plane airplane airliner, this jet
plane commercial passenger airliner.  Cessna 172

OFA PT
blanket, the item of furniture is cessna, the planeis a
‘made of wood.

Wikipedia

.. The first relevant definition reads: “A piece of furniture with

Wikipedia
... Boeing 747 considered by many as one of the most iconic in
drawers and shelues; in the bedroom, a sort of elaborate chest of

film history. The aircraft entered the cultural lexicon as the original

itis found in the east of the island. As it

hospital. Stage diving Stage diving is the act of leaping from a ggests it
prefers humid tropical forest and bush.Although the fan was able .,

concert stage onto the crowd below ...

d (s0in French); in the drawing room, a large (and generally|
kind of chiffonier.” ing room ...

"Jumbo Jet", ... Boeing 747 is an American wide-body commercial
jet airliner and cargo aircraft, often referred to byits ..

(e) ®

()] (h)

Figure 5: Examples of our prediction together with all the supporting knowledge when (Upper) only using a single
encoder or (Lower) respectively removing each type of knowledge from our method. Pred denotes our predicted
answer. ours-mm and ours-txt represent the model that combines only multimodal encoder or textual encoder with

answer decoder, respectively.

5 Qualitative Analysis

Case Study on Two Encoders. To explore the re-
spective roles of the two encoders, the upper part of
Figure 5 shows the examples that can be answered
correctly by one of the two single-encoder models.
Plot (a) and (b) of Figure 5 show that ours-mm
excels at answering questions that need comprehen-
sion about image scenes and objects. For example,
the orientation and the relative position between TV
and sofa in plot (b) help generate the answer "watch
tv". Such scene information is easily omitted by a
single textual encoder. This further validates that
the multimodal encoder supplements the missing
image information, and makes better use of the
image when combining knowledge.

Plot (¢) and (d) shows that ours-txt is an ex-
pert in answering questions that require focusing
more on external knowledge rather than image un-
derstanding, since the textual encoder is the pri-
mary channel for receiving knowledge from multi-
ple sources.

Case Study on Varying Types of Knowledge.
As shown in the lower plots in Figure 5, we fur-
ther analyze the circumstances under which each
type of knowledge is essential, respectively. Plot
(e) shows that the model would hardly generate
correct answers, even those that have been recalled
by knowledge, once pre-training is removed. This
demonstrates that explicit multimodal knowledge
accumulated during pre-training enhances the abil-

ity to use the recalled knowledge according to im-
age content. Plot (f) shows that when a question is
deeply dependent on image content (e.g., bird type
detection), implicit multimodal knowledge in OFA
can directly provide tentative answers from the im-
age, which strengthens the visual understanding.
Plot (g) shows that implicit textual knowledge in
GPT-3 is essential for questions that require com-
monsense knowledge. Plot (h) shows that when a
question is highly open, even if both GPT-3 and
OFA fail to recall the corresponding knowledge,
the retrieved Wikipedia passage can still provide
enough knowledge (see Figure 4), e.g., enumerat-
ing the most plane models. In Appendix D.3, we
also compare our method qualitatively against the
previous methods.

6 Conclusion and Future Work

This paper proposes a simple and effective method
that mimics human behavior "thinking while ob-
serving", i.e., benefiting from the vast knowledge
in natural-language space while making the most of
the visual features for better image understanding.
Our method establishes a new SoTA accuracy of
56.67% with a 6.17% improvement on OK-VQA.
Moreover, we consider more comprehensive types
of knowledge, and systematically analyze the role
of each type of knowledge in detail. We hope our
work can stimulate followers to explore OK-VQA
further along the direction of how to fuse both
nature-language and cross-modality spaces better.
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Limitations

Although the proposed method has verified the
feasibility of the idea that constrains both natural-
language and cross-modality spaces together, it is
still necessary to explore more ways to better com-
bine the output of two encoders. Third, our method
involves multiple offline knowledge retrieval pro-
cesses, such as retrieving relevant Wikipedia pas-
sages, which will make it difficult to deploy our
model as an online model.
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A  More Related Work

A.1 Relationship with Previous Works

TRiG (Gao et al., 2022) and MuKEA (Ding et al.,
2022) respectively explored how to solve OK-VQA
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in natural language space and cross-modality space.
The difference between our work and these two
work can be explained by Figure 1. KAT (Gui
et al., 2021) studied two types of knowledge, i.e.,
implicit and explicit knowledge in natural-language
space. We further introduced four specific types
of knowledge, i.e., implicit textual and multimodal
knowledge, and explicit textual and multimodal
knowledge.

Although REVIVE (Lin et al., 2022) integrates
visual features into the final model as we did, their
model structure and knowledge introduction strat-
egy are different from ours. For the model structure,
they connect CLIP and T5 in series (i.e., feeding T5
with visual features obtained by CLIP) while we
combine a VLP encoder and T5 encoder in parallel
(i.e., fusing visual features when decoding). For
knowledge exploration, their main focus is how to
use the regional feature to retrieve Wikipedia and
GPT-3, while we aim to explore and use more com-
prehensive types of knowledge, such as prompting
OFA to obtain implicit multimodal knowledge.

A.2 VLP Models and PLMs

Transformer-based PLMs (Devlin et al., 2018; Liu
et al., 2019; Raffel et al., 2020) have achieved re-
markable success in NLP, with the help of large-
scale textual pre-training corpus, such as Wikipedia
(2,500M words) and BookCorpus (800M words).
Recently, VLP models (Li et al., 2019; Tan and
Bansal, 2019; Lu et al., 2019; Chen et al., 2019;
Guo et al., 2021; Jiang et al., 2020; Li et al., 2020b;
Yu et al., 2019; Singh et al., 2019) have also made
significant progress in various multimodal down-
stream tasks (Krishna et al., 2017; Hudson and
Manning, 2019; Johnson et al., 2017; Tapaswi et al.,
2016; Si et al., 2022). Compared to PLMs, they
are considered to contain less knowledge due to the
smaller size of their pre-training datasets, such as
Visual Genome (0.01M images and 2M image-text
pairs).

We believe that models initialized with PLMs
(Garderes et al., 2020; Marino et al., 2021; Gao
et al., 2022) (e.g., BERT (Devlin et al., 2018), T5
(Raffel et al., 2020)) and VLP models (Wu et al.,
2022; Ding et al., 2022; Shevchenko et al., 2021)
(e.g., LXMERT (Tan and Bansal, 2019)) introduced
implicit text knowledge and implicit multimodal
knowledge, respectively, which can further enhance
model performance as validated by the results in
the middle two rows of Table 1.

A.3 LLMs and Super Large-scale VLP
Models

Recently, the super large-scale language model
(LLM) GPT-3 has also been adopted as a knowl-
edge source for OK-VQA. Unlike normal PLMs,
GPT-3 is mainly used in a prompt-learning manner
without any further fine-tuning. Similarly, the very
recent VLP model OFA has attracted researchers’
attention due to its excellent zero-shot capability
for different prompts. To the best of our knowledge,
the proposed method is the first to prompt OFA to
obtain its implicit multimodal knowledge.
Inspired by the success of LLMs in NLP, su-
per large-scale visual-language pre-trained mod-
els, such as Flamingo (Alayrac et al., 2022) and
very recent PaLLl (Chen et al., 2022), has also been
launched in the multimodal field recently. They are
pre-trained with a billion-degree multimodal cor-
pus which contains more knowledge than normal
VLP models. We also compared our method with
these large-scale VLP models in Appendix C.2.

B More Implementation Details

We use the OK-VQA dataset of version v1.1* with
license CC-BY 4.0, containing 9009 training sam-
ples and 5046 test samples. Each sample contains
an image, a question in English that requires out-
side knowledge beyond the image to answer cor-
rectly, and corresponding ground truth answers an-
notated by five annotators.

We use the [xmert-base-uncased or visualbert-
vga model to initialize the multimodal encoder,
and use 7T5-large model to initialize the textual
encoder and answer decoder. We adopt the OFA-
huge-VQA version® of OFA that is fine-tuned with
VQAV?2. For the multimodal encoder, all the ques-
tions are trimmed to the same length of 16 with the
tokenizer of BERT, and we use pre-trained Faster
R-CNN to extract a set of fixed 36 objects with
2048-dimensional features from each image. For
the textual encoder, we use the tokenizer of TS5 to
segment all the input, i.e., (Qs, Vi, My, (T3, )pi k)
into the token sequence with a fixed length of 250
when the number of Wikipedia passages is less
than 75. Note that, to reduce GPU memory us-
age, when the number of Wikipedia passages is
75, we remove the stop words in Wikipedia pas-

*https://okvqa.allenai.org/download.html

Shttp://creativecommons.org/licenses/by/4.0/

®All the T5, LXMERT, visualBERT and OFA models are
released by huggingface (Wolf et al., 2020).
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Figure 6: Comparison of EM (left) and accuracy (right)
on OK-VQA with varying number of Wikipedia pas-
sages.

sages and set the token sequence length as 200.
The adopted DPR (Karpukhin et al., 2020) model
is pre-trained on multi-question answering datasets
(Kwiatkowski et al., 2019; Joshi et al., 2017; Be-
rant et al., 2013; BaudiS and gedivjf, 2015). The
AdamW (Loshchilov and Hutter, 2017) optimizer
is adopted with a learning rate of 1e-5 for the mul-
timodal encoder and 1e-4 for the textual encoder
and the answer decoder, using the linear schedule
with warmup. We pre-train and finetune the mod-
els for 3 epochs with batch sizes of 12 and 8 on
A100-80GB, respectively. We set the number of
Wikipedia passages to 75 when our method com-
bines GPT-3, otherwise 50. Following (Gao et al.,
2022; Lin et al., 2022), we apply a normalization
process (Chen et al., 2017; Lee et al., 2019) (in-
cluding whitespace, lowercasing, punctuation and
removing articles) for each predictions. Following
previous work, all results are abtained by a single
run based on same seed.

C More Experimental Results

C.1 Performance Using Varying Number of
Passages

Figure 6 shows the performance with a varying
number of passages, and we find that: (1) Our
method is consistently superior to the previous-
best TRiG no matter with a varying number of
Wikipedia passages. With merely 5 passages, the
proposed method can perform much better than
TRiG with 100 passages, which greatly improves
model training and inference speed. (2) The perfor-
mance fluctuation is not as large as before under
a different number of Wikipedia passages, which
indicates that explicit knowledge in Wikipedia is
no longer the only major source of knowledge. (3)
With the increase in the number of Wikipedia pas-
sages, the performance of our model increases first
and then decreases. This can be explained by the
low recall rate of knowledge when the number of

Method #Params #Pre. Data | Acc
Flamingo 80B 2.3B 57.80
PaL.l 3B 1.6B 52.40
PaLl 15B 1.6B 56.50
PaLI 17B 1.6B 64.50
ours-LXM | 0.98B (+0.93B) 0.44M 56.49
ours-ViB | 0.88B (+0.93B) 0.44M 56.67

Table 6: Results comparison with super large-scale
visual-language pre-trained models. "#Pre. Data" repre-
sents the size of pre-training data. (+0.93B) represents
the parameter quantity of OFA used offline.

sample Proportion

textual enc n GPT-3~ OFA Wik VQAV2 all

Figure 7: The proportion of the correctly-answered sam-
ples that will be answered incorrectly when the certain
(left) encoder, (right) knowledge source is removed.

passages is small, while noise is introduced when
the number of passages is large.

C.2 Comparison with Super Large-scale VLP
Models

Table 6 shows the excellent performance of super
large-scale VLP models on OK-VQA. However,
they are difficult to deploy due to the huge number
of parameters. Our method achieved competitive
results with these models, using much fewer pa-
rameters and only 0.03% data for pre-training.

C.3 Ablations from a Dependence Perspective

As shown in the left part of Figure 7, we analyze
the contribution of the two encoders in our final
performance from another perspective. 53.40%
and 5.76% of the correctly-answered samples rely
on the textual encoder and multimodal encoder,
respectively, as they will be answered incorrectly
when removing the textual encoder or multimodal
encoder. Moreover, 4.49% of samples can only be
answered correctly by relying on both encoders at
the same time, which indicates that both encoders
are indispensable.

From the right part of Figure 7, it can be seen
that 10.85%~19.03% of correctly answered sam-
ples will go wrong if any of the knowledge types
are missing. This high proportion indicates that all
types of knowledge’ are complementary to each

"Implicit knowledge in T5 and LXMERT will not be dis-
cussed here, since they are considered as the parts of the model
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other for our method. Moreover, 2.25% of samples
can only be answered correctly when all four types
of knowledge are available, which proves that more
comprehensive knowledge is necessary.

D More Discussion and Qualitative
Analysis

D.1 Conversion Rate from Knowledge to
Answers

To further explore the extent to which the model
makes use of each type of knowledge, we con-
duct experiments to evaluate the conversion rate of
knowledge to the correct answers. Note that the
explicit multimodal knowledge in VQAV?2 is intro-
duced in the manner of pre-training, it is thus dif-
ficult to evaluate its hit, and will not be discussed
here.

As shown in Figure 8, OFA (0.93B) recalls cor-
rect answers for more samples than GPT (175B).
This shows that a unifying VLP model is more
suitable for retrieving related knowledge in OK-
VQA than an LLM. Moreover, although the hit
of Wikipedia is much higher than that of GPT-3
or OFA, its Acc/EM is lower than the others by
a wide margin. This shows that higher hit does
not necessarily lead to higher Acc/EM, and how to
further extract answers from the retrieved knowl-
edge will be an impressive direction in future work.
On the whole, compared with explicit knowledge,
implicit knowledge has a higher conversion rate
from knowledge to correct answers.

structure.

Model zero-shot Acc | ans hit | ans + evi hit | Acc
OFA 33.57 45.35 49.53 52.67
OFA-vqa 3.26 57.63 63.36 55.33

Table 7: Comparison between different versions of
OFA.

Q: Whatis this type of mack truck used for?

A: [cement, cement, cement, cement, road work]

OFA ans:: hauling
OFA evi: for heavy loads

OFA-vqa ang:cement mixer truck construction jobs drilling

OFA-vqa evi:cement mixer concrete construction drilling

Figure 9: Comparison of knowledge retrieved from OFA
and OFA-vqga. "ans" and "evi" represent the tentative
answers and the supporting evidence, respectively.

D.2 OFA vs OFA-vqa

OFA releases many versions of models, including
VQA-vqga which is fine-tuned on VQAv?2 dataset.
As shown in Table 7, we compare the performance
of the two versions and find that OFA-vqa has im-
proved the hit of knowledge at the expense of the
accuracy of its direct testing in OK-VQA and the
natural fluency of the language (see Figure 9). In
order to introduce more knowledge, we adopted
OFA-vqa version and further improved the model
performance. Note that due to the dataset bias
in VQAV2 (i.e., the answer to about half of the
questions is "yes" or "no"), the model always in-
puts the adhesion of the two items, e.g., "yesno"
or "yesyesyes", we thus remove these frequently
misspelled words in the output of OFA-vqa.

D.3 Qualitative Comparison between Qurs
and Baselines.

We qualitatively evaluate the effectiveness of our
method in Figure 10. The baselines selected here
are MuKEA (Ding et al., 2022) and PICa (Yang
et al., 2022). The former follows the conventional
VQA paradigm and predicts answers in a close-set
classification manner, while the latter follows the
language-centric paradigm and predicts answers in
an open-vocabulary generative manner.

As shown in plot (a), the question is about "ani-
mal parts", while MuKEA’s answer is about "sport".
Obviously, MuKEA does not correctly understand
the meaning of the complex question. This is be-
cause the conventional VQA paradigm has poor
text comprehension compared to the language-
centric paradigm. As shown in plot (b), MuKEA
mistakenly predicts the answer "buddhism" as
"catholicism", since the classification manner is

10972



Q: Which part of this animal would be in use of
it was playing the game that is played with the
items the man is holding?

A: [month, month, month, month, month]

Ours Pred: month v

MUKEA Pred: frisbee X
PICd  Pred: month

What religion does the statue belone to?
[buddhism, buddhism, buda, china, buddhist]

ze

Ours Pred: buddhism +/

MuKEA Pred: catholic X
PICA  Pred: buddhism

(b)

Q: What color is the ball for the sport being
shown is?
A: [green, green, green, green, white]

Ours Pred: green v
MUKEA Pred: green v
PICA  Pred: yelow X

Q: What time of year is it?
A: [fall, fall, fall, fall, winter]

(d) Ours Pred: fall

v
MUKEA Pred: fall v
X

PICA  Pred: summer

Figure 10: Qualitative comparison between our method
and baselines (MuKEA and PICa). MuKEA is based on
the VLP model LXMERT, which explores knowledge in
cross-modality space. PICa is based on the LLM model
GPT-3, which explores knowledge in natural-language
space. Pred denotes the predicted answers.

easier driven by the dataset bias (Agrawal et al.,
2016; Manjunatha et al., 2019) that "catholicism"
appears more frequently in its pre-training and
training sets. While PICa generates correct an-
swers for the two examples due to the vast textual
knowledge of the natural-language space.

As shown in plots (¢) and (d), PICa fails to recog-
nize the "color of the ball" and neglects the "dead
leaves" in the image scene, respectively, which
are vital to answering the given questions. While
MuKEA correctly predicts the two examples due
to the comprehensive visual information in cross-
modality space.

In summary, these examples demonstrate that
previous paradigms either lack knowledge or fail to
capture visual information. In contrast, our method
takes both into account and consistently generates
the correct answers for these examples. This further
reflects the rationality of our motivation to combine
both natural-language and cross-modality spaces
to achieve a combo of "thinking and observing".

E Potential Risks

A lot of work (Agrawal et al., 2016; Manjunatha
et al., 2019) has proved that VQA models are
prone to learn the dataset bias. Therefore, our
model may be driven by the certain bias in OK-

VQA and VQAV?2 training sets, such as language
bias (Agrawal et al., 2018), multimodal shortcut
(Dancette et al., 2021; Si et al., 2022) and harmful
stereotypes (Hirota et al., 2022).
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