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Abstract

Recent advancements in large language models
have enabled them to perform well on com-
plex tasks that require step-by-step reasoning
with few-shot learning. However, it is unclear
whether these models are applying reasoning
skills they have learned during pre-training, or
if they are simply memorizing their training
corpus at finer granularity and have learned to
better understand their context. To address this
question, we introduce ALERT, a benchmark
and suite of analyses for evaluating reason-
ing skills of language models. ALERT enables
comparing pre-trained and finetuned models on
complex tasks that require reasoning skills to
solve them. Our benchmark provides a test bed
to assess any language model on fine-grained
reasoning skills, which spans over 20 datasets
and covers 10 different reasoning skills. To
prove the efficacy of ALERT we investigate the
role of finetuning. Our extensive empirical anal-
ysis shows that language models acquire rea-
soning skills such as textual entailment, abduc-
tive reasoning, and analogical reasoning dur-
ing the finetuning stage compared to pretrain-
ing stage. Another finding is when language
models are finetuned they tend to overfit to the
prompt template, which hurts the robustness of
models resulting in generalization problems.

1 Introduction

Large language models (LLMs) (e.g., GPT-
3 (Brown et al., 2020a), PALM (Chowdhery et al.,
2022), OPT (Zhang et al., 2022)) have shown in-
creasing in-context learning capabilities with scal-
ing up the model and data sizes. Despite this
progress, even the largest of these models still
struggle with tasks such as commonsense rea-
soning (West et al., 2022), and math word prob-
lems (Hendrycks et al., 2021b) which require arith-
metic reasoning or symbolic manipulation (Rytting
and Wingate, 2021). Table 1 presents some ex-
amples that require certain reasoning skills. Even

The cafeteria had 23 apples. If they used 20 to make lunch and
bought 6 more, how many apples do they have?
The answer is 29 apples .

Select the best translation into predicate logic. David teaches Chris.
(c: Chris; d: David; Txy: x teaches y) (A) Tdc; (B) Ted; (C) Tcc;
(D) dTc. The answer is (B) Tcd .

Isabella entered the hall. Olivia entered the hall. The ap-
ple is in the blue_treasure_chest. Olivia exited the hall. Is-
abella moved the apple to the green_basket. Question: Where
does Isabella think that Olivia searches for the apple? The
answer is Isabella thinks that Olivia searches for the apple in the

green_basket .

Table 1: Examples from tasks that require reasoning skills and
generated outputs from GPT-3 series fext-davinci-003 engine.

The failed outputs are highlighted in red . Predictions by
ChatGPT are shown in Table 9 in Appendix.

the powerful LLMs (such as text-davinci-003" and
ChatGPT?) fail to make correct predictions.

To improve large LLMs’ performance on tasks
that require multiple steps of reasoning, recent
work used different prompting methods which in-
cluded a rationale with the final answer in the form
of: scratchpad for arithmetic and logical reason-
ing (Nye et al., 2021), chain-of-thought (CoT) (Wei
et al., 2022) for practically any tasks, or adding let’s
think step-by-step (Kojima et al., 2022) to prompt
models to generate explanations. Other works such
as Chung et al. (2022) integrated step-by-step expla-
nations into the finetuning stage (CoT-finetuning).
While these techniques may improve the accuracy
and interpretability, it is not well understood which
reasoning skills they rely on or to what degree they
require higher-order reasoning. It is also uncertain
how frequently the stated reasoning steps actually
contribute to the final task predictions. For instance,
to correctly answer the questions in Table 1 a com-
bination of logical, commonsense, math and spatial
reasoning skills are required.

In this work, to gain a deeper understanding of
LLMs reasoning abilities in in-context learning

! https://beta.openai.com/docs/models/gpt-3.
2h‘ctps ://chat.openai.com/chat.
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settings, we introduce ALERT, a new pipeline to
benchmark different LLMs on various reasoning
skills and provide analysis to assess reasoning abil-
ities. Unlike existing commonly used benchmarks
(e.g., Mishra et al. (2022); Wang et al. (2022c); Sri-
vastava et al. (2022)), ALERT can evaluate LLMs’
fine-grained reasoning skills. It spans over 20
datasets and covers 10 different reasoning skills
including logical, causal, commonsense, abductive,
spatial, analogical, argument and deductive reason-
ing as well as textual entailment, and mathematics
(see Figure 6). ALERT enables easy benchmark-
ing of any LM (e.g., pre-trained, finetuned, CoT-
finetuned) on a rich set of new inference methods
including zero-shot, few-shot and CoT.

Using ALERT, we further investigate whether
finetuning can improve LMs’ performance on
downstream reasoning tasks. Specifically, we are
interested in diagnosing what actually improved
when we observe a performance increase on rea-
soning tasks. Is it because models have seen similar
data in the finetuning stage? Or is it because mod-
els have seen prompts in a specific template and
memorize the template during finetuning such as
definitions provided in the NIV2 benchmark (Wang
et al., 2022¢)? Or does the LLM actually acquired
the required reasoning skill? We investigate these
three possibilities.

To study the above questions, we compare three
different model types (as shown in Figure 2): a pre-
trained model and two types of finetuned models.
Specifically:

* OPT (Zhang et al., 2022): A baseline LLM a
pre-trained model with no finetuning (figure
(A) in Figure 2);

* OPT-FT: Meta-finetuned OPT on reference
answers without explanations, illustrated in
(figure (B) in Figure 2);

¢ OPT-CoT: Meta-finetuned OPT on data with
rationales (explanations) (Chung et al., 2022;
AlKhamissi et al., 2023) (figure (C) in Fig-
ure 2).

Using these three types of models, we investigate
the role of finetuning on three dimensions:
(1) Data memorization: We investigate whether
the performance improvements obtained after fine-
tuning can be attributed to using similar or some-
times the exact same data as in the evaluation
datasets. To this end, we use vocabulary overlap to

Reasoning Skills Datasets

Logical bigbench repeat copy logic, mmmlu an-
swer generation

Causal plausable result generation, anli 2 entail-
ment, anli r3 entailment, cb entailment

Commonsense piqa answer generation, commongen sen-
tence generation, sciq answer generation,
openbookqga question answering

Entailment nli r2 entailment, anli r3 entailment, cb
entailment, lue entailment classification

Mathematics semeval closed vocabulary math, semeval
geometric math, mmmlu formal logic

Abductive tellmewhy

Spatial babi t1 single supporting fact, piga answer
generation, toqa find location easy clean

Analogical commongen sentence generation, bard
analogical reasoning causation

Argument argument stance classification, argument
consequence classification

Deductive rocstories correct answer generation

Table 2: ALERT benchmark consists of 20 datasets covering
10 different reasoning skills. The full list of the reasoning
skills and datasets is in Table 4 in Appendix A.1.

measure the extent to which the evaluation data is
different from the finetuning data, i.e. We investi-
gate whether the improvement is more significant
when evaluation data and finetuning data are more
similar.

(2) Reasoning skills transfer: We investigate if
certain reasoning skills can be more successfully
permeated in LLMs than other reasoning skills.
To verify this, we carefully divide the evaluation
datasets into groups which require different reason-
ing skills. We compile held-out datasets as shown
in Figure 6 which require skills held-out from any
of the training datasets. This way, we expect to
see larger improvements on in-domain skills com-
pared to held-out skills if reasoning skills can be
transferred during finetuning stages.

(3) Prompt template memorization: Our third
hypothesis is that LLMs can overfit to data for-
mat used in the finetuning datasets such as training
data format used in Figure 2. In other words, the
consistency in data format helps LLMs better un-
derstand the instruction which then yields better
performance after finetuning. To test this, we eval-
uate finetuned LLMs on datasets with 5 different
prompt templates.

Summary of findings: (i) Different from Gu-
rurangan et al. (2020), our experiments indicate
that there is no strong correlation between high
vocabulary overlap (between finetuning and evalu-
ation datasets) and performance gain on reasoning
evaluation datasets. This means that LLMs are not

1056



Definition: In this task, we ask you to write an implausible
answer to a question that involves event duration, based on a given
sentence. Here, event duration is defined as the understanding of
how long events typically last. For example, “brushing teeth”,
usually takes a few minutes. Even though there exist multiple
wrong answers, we only need a single wrong answer.
Example 1-

input: Sentence: Jack played basketball after school, after

which he was very tired.

Question: How long did Jack play basketball?

output: 22 hours.

explanation: Typically we play basketball for a couple of

hours. So any answer beyond that range is unlikely.

Figure 1: An example from NIV2 (Wang et al., 2022¢) that
requires a deep understanding of the long task instruction and
can be very challenging even for humans.

simply memorizing the training data during the fine-
tuning stage; (if) Finetuning helps improve certain
reasoning capabilities of LLMs (e.g. analogical
and abductive) but not all of them (e.g. common-
sense reasoning); (i) Finetuning can cause over-
fitting towards data format, which makes it harder
for LLMs to generalize to other prompt templates,
while CoT-finetuning helps to mitigate this issue as
it incorporates a variety of explanations.

Though many of the aspects that we study have
been discussed in prior analyses of LLMs (Chung
etal., 2022; Wei et al., 2021a, 2022; Kojima et al.,
2022; Cobbe et al., 2021; Sanh et al., 2021), prior
work has not evaluated LLMs on different reason-
ing skills and how these skills can be improved.
Overall, by evaluating reasoning skills with ALERT,
we gain new insights on how models have or have
not succeeded in generalizing beyond their training
experience.

To summarize our contributions, this paper
presents a meticulously designed benchmark for
assessing reasoning abilities. Furthermore, a thor-
ough investigation of the role of finetuning in the
context of reasoning abilities, data memorization,
and data format is conducted.

2 Motivation and Our Benchmark

Motivation. The analyses in ALERT are inspired
by a scientific question: To what extent do LLMs
learn generalizable reasoning abilities? This ques-
tion motivates our focus on measuring LLMs’ per-
formance on tasks that require contextual under-
standing and perform multi-step operations, which
are crucial to perform well on downstream tasks.

Datasets Construction. To construct the datasets
of ALERT, we select datasets from NIV2 benchmark

(Wang et al., 2022c) and perform the following
operations:

(1) Omit extremely hard tasks. We design
ALERT so that it can be used to benchmark a
variety of LLMs, from pre-trained, finetuned to
instruction-tuned models. To select such tasks,
we apply several heuristics: firstly, we manually
omit tasks that heavily rely on instructions. Some
tasks are hard to solve when only in-context ex-
amples (demonstrations) are provided (e.g., the ex-
ample in Figure 1). Secondly, we selected only
those tasks that achieved a reasonable level of
performance (empirically use ROUGE-L > 5.0)
when evaluated with a pre-trained model (we use
the OPT-13B model). Thirdly, we omit tasks on
which humans fail to get decent performance given
the ground truth labels from NIV2. For exam-
ple, task963_librispeech_asr_next_word_ predic-
tion (Weir et al., 2020) provides a prompt “Joey’s
favourite food is ___”, with the ground truth answer
“sandwiches”. Without any context or background
information, the answer can be any food thus it is
extremely hard for humans to accurately predict
“sandwiches”.

(2) Remove tasks with long input context. The
input sentence length of some tasks can be very
long, and currently most LLMs are not designed
for solving long text problems. We omit tasks with
demonstration length longer than 2048 tokens.

(3) Fix ground truth labels. For each
reasoning task, NIV2 provides the reason-
ing skills required to solve the task, e.g.
task102_commongen_data_to_text requires rela-
tional, analogical and commonsense reasoning.
However, we found that some tasks have been la-
beled with incorrect reasoning skills. For exam-
ple, task393_plausible_result_generation provides
a sentence and asks LLMs to complete the sen-
tence. The labels given by NIV2 are causal reason-
ing and textual entailment, but in fact this task can
hardly examine an entailment skill. Accordingly,
we manually fix reasoning skill labels. In addition,
we only keep the predominant skill. For example,
many tasks need more or less commonsense knowl-
edge, therefore we select the related tasks that only
heavily rely on commonsense knowledge to assess
commonsense reasoning.

Benchmark. After the above steps, we select
tasks that represent a variety of reasoning skills
and construct ALERT reasoning benchmark, where
Table 2 shows details about our benchmark.
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(A) pretrained language models (e.g. GPT-3, OPT)
Inference on
~ taskA, B, C,...

:. Pretrained finetune on Inference on
. LM task D, E, F, ... taskA, B, C,...

Q: If X and Y are digits and 8XY is a 3-digit number
that is divisible by 2, which of the following is a
possible product of X and Y? A)15 B)31 C)12 D)27
E)91; A: The answer is C.

Inference on

" | Pretrained finetune on
o task A, B, C,...

task D, E, F, ...
with explanations
Q: If X and Y are digits and 8XY is a 3-digit number that is
divisible by 2, which of the following is a possible product of X
and Y? A)15 B)31 C)12 D)27 E)91; A: The answer is C. because
Key to this question is to remember the fact that a number
divisible by 2 must end with even OR 0 (i.e Y). If Y had to be 0,
product should also be 0 regardless of X. Otherwise, product is a
multiple of 2. Only one answer choice meets the requirement

Figure 2: We compare three types of models: (A) directly
apply pretrained LLMs on reasoning tasks; (B) finetune LLMs
on a set of tasks; (C) finetune LLMs on tasks with explana-
tions (CoT-finetuning). Finetuning data contains source and

target parts, and the language modeling loss only applied to

the target part.

3 Experiment Setup

3.1 Models

To perform a controlled comparison across training
and prompting methods, we focus on three different
models: pre-trained, meta-finetuned, and rationale-
based meta-finetuned (CoT-finetuned) models. For
pre-trained models, we use OPT (Zhang et al.,
2022), a suite of decoder-only pre-trained trans-
formers which are reported to yield comparable
performance to GPT-3 (Brown et al., 2020b). We
benchmark with OPT models of two scales: 1.3B
and 13B. For finetuned models (OPT-FT), we fine-
tune OPT models on datasets without explanations.
For CoT-finetuned models (OPT-CoT), we finetune
OPT models on data with rationales (explanations).

We train all models in Pytorch (Paszke et al.,
2017) using OPT-IML (Iyer et al., 2022) codebase>.
We initialize model hyper-parameters for each
model scale following OPT (Zhang et al., 2022).
We pack our training examples into sequences of
length 2048, left-truncating examples that overflow.
We use AdamW (Loshchilov and Hutter, 2017)
with 32-bit state with (51, 82) = (0.9,0.95), lin-
early warming up the learning rate for 6% steps to
the maximum, followed by linearly decaying it to
0. For all 1.3B models, we use batch size of 128,
and for 13B models, we use batch size of 256.

3https://github.com/facebookresearch/metaseq/tree/main/pr
ojects/OPT-IML

3.2 Finetuning Data

Our finetuning corpus is comprised of 10 datasets:
ProofWriter (Tafjord et al., 2020), StrategyQA
(Gevaet al., 2021), ECQA (Aggarwal et al., 2021),
CoQA (Reddy et al., 2019), GSM8K (Cobbe et al.,
2021), AQUA-RAT (Ling et al., 2017), ESNLI
(Camburu et al., 2018), MATH (Hendrycks et al.,
2021c), CoS-E (Rajani et al., 2019), WinoWhy
(Zhang et al., 2020). These 10 finetuning datasets
collectively contain 6 different reasoning skills:
logical reasoning, causal reasoning, commensense
reasoning, textual entailment, mathematics, abduc-
tive reasoning. In addition, these 10 datasets all
come with instructions, demonstration examples
and explanations. This enables fair comparison
of OPT-FT and OPT-CoT models. More details
about finetuning corpus can be found in Table 5 in
Section A.2. More details about development data
selection can be found in the Appendix. A.3.

3.3 Evaluation

Templates Following (Wei et al., 2021b), to con-
trol for the effect of variable prompt templates, we
adopt different templates (T) during inference stage
in our experiments:
T1: instruction + demonstration examples with
explanations + "let’s think step by step";
T2: instruction + "Please give a short explanation
after the answer" + demonstration examples with
explanations + "let’s think step by step"
T3: instruction + "Please give a short explanation
after the answer" + demonstration examples with
explanations
T4: "Please give a short explanation after the an-
swer" + demonstration examples with explanations
+ "Let’s think step by step"
TS: instructions + demonstrations

For each dataset, we report the average and max
score among these five templates. The final aggre-
gated results (including aggregated average score
and aggregated max score) are reported by further
averaging across all datasets. Unless specified oth-
erwise, the default score refers to the aggregated
max score among five templates.

Evaluation metrics. Since our benchmark con-
tains both classification and generation tasks, we
cannot use classification accuracy to evaluate all
the tasks. Following FLAN (Wei et al., 2021b), we
append classification choices at the end of prompts
and ask models to generate answers. Thus, clas-
sification tasks can be treated as a special case of
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generation tasks. Accordingly, we use ROUGE-L
(Lin, 2004) to measure the performance of both
classification and generation tasks and report the
aggregated score. Similar to Chung et al. (2022),
we also use exact-match score which is more suit-
able for tasks with short answers. Additionally, we
compute relaxed-match score which is a relaxed
version of exact-match. Specifically, we normal-
ize ground truth answers and predictions to have
all text in lower case and remove punctuation and
extra white spaces.

4 Analysis
4.1 Does finetuning help?

Figure 3 demonstrates the performance averaged
across all evaluation tasks in our benchmark.
Rationale-based finetuning (OPT-CoT) has been
shown to improve the performance of the 1.3B
model by 3.89% in terms of the aggregated max
ROUGE-L score and 3.83% in terms of the aggre-
gated max exact-match score. As for 13B model,
OPT-CoT gains the improvement by 15.22% in re-
gard of aggregated max ROUGE-L score, 12.64%
in regard of aggregated max exact-match score.
However, finetuning (OPT-FT) sometimes yields
worse results than the vanilla pre-trained model.

4.2 What does LLMs learn during finetuning?

We find that CoT-finetuning improves performance
on reasoning tasks in general. However, what ex-
actly does the LLMs learn during the finetuning
stage is still under explored. Thus, we study the
role of finetuning from three perspectives: data
memorization, reasoning skill transfer, and prompt
template memorization.

4.2.1 Data Memorization

Gururangan et al. (2020) finds that the performance
gain is larger when the finetuning dataset is more
dissimilar to the pre-training dataset. However,
their conclusion is made by a single-task finetun-
ing. They evaluate their model on the same dataset
that was used for finetuning. A more thorough eval-
uation dictates that finetuned models (Wei et al.,
2021b; Chung et al., 2022) be evaluated on held-
out datasets. As such, in Figure 2 in blocks (B) and
(C) we show two potential ways of finetuning and
inference as illustrated here in our paper.

To confirm that the improvement in finetuning
performance is due to the increased amount of data
seen during the finetuning stage, we measure the

dissimilarity between the training data used in fine-
tuning and evaluation, respectively. If higher simi-
larity leads to better performance, it may indicate
that the improvements of finetuned LLMs are due
to seeing more similar data during the finetuning
stage. Following (Gururangan et al., 2020), we
use unigram vocabulary overlap to measure the
data similarity. More specifically, we divide our
tasks into three categories: The first category has
10 datasets which consists of up to 10% overlap
between the finetuning data and evaluation data.
The second category comprises 3 datasets with an
overlap between 10% and 30%. The third category
has 7 datasets with an overlap over 30%. Details
can be found in Table 7 in appendix A.5.

We measure the performance improvements of
OPT-FT and OPT-CoT compared against the pre-
trained OPT model. We present both ROUGE-
L score (top) and relaxed-match score (down) in
Figure 5. The results indicate that there is no
strong correlation between the vocabulary overlap
between fineuning and evaluation datasets and the
performance of the model (neither a higher nor a
lower vocabulary overlap always translate to a per-
formance improvement). OPT-CoT achieves the
best ROUGE-L and relaxed-match scores both in
settings when there is a medium (10%-30%) level
of vocabulary overlap. We don’t observe a consis-
tent pattern on OPT-FT models either. Overall, for
these challenging tasks, seeing similar data during
finetuning stage does not guarantee performance
improvement.

4.2.2 Reasoning Skill Transfer

Table 6 illustrates the reasoning skills present in
each stage. 7 skills can be learned from pretrain-
ing data. Appendix. A.4 shows more details about
pretraining data. 6 skills can be learned from fine-
tuning data (Table 5). Using ALERT we measure a
total of 10 reasoning skills in model evaluation.

The average ROUGE-L scores are calculated
for each reasoning skill on 6 models (1.3B OPT,
1.3B OPT-FT, 1.3B OPT-CoT, 13B OPT, 13B OPT-
FT, 13B OPT-CoT). Figure 7 shows the difference
between OPT-FT and OPT, and the difference be-
tween OPT-CoT and OPT models’ performance.
For example, OPT-FT 1.3B model yields on av-
erage 3.5 less ROUGE-L points than OPT 1.3B
model on the tasks of logical reasoning.

Figure 7 contains 4 sub-figures, showing reason-
ing skills transfer results: (i) The upper left sub-
figure shows 7 skills that are acquired during the
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Aggregated Max Scores across 5 Templates

Aggregated Average Scores across 5 Templates

OPT mmm OPT-FT OPT-CoT OPT mmm OPT-FT OPT-CoT OPT OPT-FT OPT-CoT
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Figure 3: Performance of pre-trained LM (OPT), finetuned LM (OPT-FT) and CoT-
finetuned LM (OPT-CoT) on ALERT reasoning benchmark. Left charts show aggregated
max scores while right are average scores across 5 templates. Scores are averaged

across 20 tasks.

g & $
© & -6.30 % 2.58 % & 2.99 % 9.53 % 50
5 O 2
2 0o o
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g & 11.55 % 36.20 % 5 7.70 % 73.95 % -0
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> , 3.80 % 9.03 % . 34.56 % 12.45 % I"50
N N
) S)

OPTFT  OPT-CoT OPT-FT  OPT-CoT

Performance Changes (%) compared to OPT

Figure 5: Correlation between vocabulary overlap and per-
formance improvement using 13B parameter models. The
top chart shows ROUGE-L while the bottom shows relaxed-
match score.

pretraining stage (OPT pretraining data), and how
much improvement can be obtained through meta-
finetuning (OPT-FT and OPT-CoT); (ii) The bot-
tom left sub-figure illustrates that these 3 skills are
harder to acquire during the pre-training stage, and
the amount of improvement that can be obtained
through meta-finetuning; (iii) The upper right sub-
figure illustrates that such 7 skills are acquired dur-
ing the meta-finetuning stage through finetuning
datasets (Table 5). Do these skills show improve-
ment measured by evaluation benchmark? (iv) The
bottom right sub-figure studies the reasoning skills
that were not learned in the finetuning stage, can
these skills be improved through meta-finetuning?
We study the answers to these questions below.

From figure (ii) We observe that all four of the
LLMs demonstrate enhanced reasoning capabili-
ties on textual entailment, abductive reasoning, and
analogical reasoning tasks. These abilities are not
readily acquired during the pretraining stage, as
the pretraining data consists only of plain text. On
the other hand, skills such as commonsense rea-
soning or spatial reasoning can be gained during
the pretraining stage, while the benefits of further
finetuning are not as pronounced. Additionally,

Figure 4: Analyzing the robustness
of models in following the templates.
Left: template following percentage
by each model; Right: standard devi-
ation of template following percent-
age.

Gururangan et al. (2020) concluded that the more
dissimilar the domain between pretraining and fine-
tuning are, the higher the potential for finetuning
to yield gains. We see the same trend but the do-
main in Gururangan et al. (2020) is defined by the
vocabulary overlaps, while we define the domains
by reasoning skills. From figure (iii) we can see
that the reasoning skills gained during the meta-
finetuning stage may not necessarily transfer to the
improvement of the same skills on the evaluation
datasets.

We also observe that finetuning with OPT-CoT
enables the model to acquire a wider range of rea-
soning skills, resulting in stronger performance on
logical and causal reasoning tasks, in addition to
skills that consistently improve across all finetuned
models.

4.2.3 Data Format Memorization

We investigate whether finetuning can simply mem-
orize the template representation of the training
data, and the effect of data format on the robust-
ness of the models.

Evaluation with relaxed-match score. We com-
pare two metrics: exact-match and relaxed-match.
From Figure 3, we observe that OPT-FT is worse
than OPT when exact-match is used as the metric.
However, when relaxed-match is used, OPT-FT
outperforms OPT as shown in Figure 8. Relaxed-
match score ignores punctuation, articles and ex-
tra whitespace. This suggests that if we decouple
performance from format adherence, OPT-FT per-
forms better than OPT. In other words, finetuning
is helpful but it can make the output more noisy.
This explains the reason for the performance drop
when exact-match is used as the metric.
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Pretraining Reasoning Skills

4 '
Logical, Causal, Commonsense,
Math, Spatial, Argument, Deductive

* OPT pretraining data

\ J

Meta-finetuning Reasoning Skills

4 )
Logical, Causal, Commonsense,
Entailment, Math, Abductive

* Finetuning data in Sec. 3.2

Evaluation Reasoning Skills

Logical, Causal, Commonsense, i)
- Entailment, Math, Abductive, Spatial,
- Analogical, Argument, Deductive
* ALERT benchmark

s b5

Skills in Pretraining Data

Logical -3.50 -2.29 4.35 4.76
Causal 318 1.82 [ 7.83
Commonsense  0.14 2.7 1.75 1.57
Math  0.59 -143 265 6.43

Spatial  -0.05 -0.46  0.01 0.49

Argument [EEEZM -1.35 413 384

Deductive ~ 3.31 -3.65 1.33 -1.03

Held-out Skills from Pretraining Data

Entailment ERFAVKE 3.52 3.06 7.76
Abductive = 5.83 = 5.82 6.16 495

Skills in Meta-finetuning Data

Logical -3.50 -2.29 435 476
Causal 318 1.82 [[7.83
Commonsense  0.14 2.71 1.75 1.57
Entailment 352 306 | 7.76
Math 059 -143 265 & 643
Abductive | 583 582 | 6.16 4.95

Held-out Skills from Meta-finetuning Data

Spatial  -0.05 -0.46  0.01 0.49
Analogical  1.68 15.84 WG 13.87

Figure 6: Reasoning skills
learned during pretraining and
meta-finetuning stages, as well as
tested through ALERT .

OPT mmm OPT-FT OPT-CoT
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[5)
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@
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] 2
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3 &
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= 25
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1.3B 13B 1.3B 13B
Model scale Model scale

Figure 8: Comparing pretraining and finetuning models with
relaxed match score. Left: aggregated best (max) performance
across 5 Templates; Right: aggregated average performance
across 5 Templates.

Template following percentage. We check
whether the model can follow the template of the
demonstrations. For example, if a demonstration
uses "the answer is xxx because yyy", then we
check what percentage of instances can follow the
exact same template as the demonstration. Figure 4
(left) shows the average template following percent-
age for each model. Both OPT and OPT-CoT con-
sistently show that they can follow demonstrations’
even though OPT is not pre-trained on rationales.
Compared to 1.3B models, larger models demon-
strate a greater overall ability to follow the template
of the demonstrations. Compared to OPT and OPT-
CoT, OPT-FT lacks the ability to follow diverse
templates. This is because the OPT-FT training
process does not contain any rationale data. Fine-
tuning causes the model to become more biased
towards a particular template representation, while
its ability to adapt to other templates becomes im-
paired. It is worth noting that despite being trained
on rationales, the OPT-CoT model performs well
when evaluated using non-CoT templates.
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Figure 7: The ROUGE-L scores illustrating the difference between OPT-FT and OPT,
as well as OPT-CoT and OPT models within each reasoning skill. Left: skills split by
pretraining data; Right: skills split by meta-finetuning data.

Robustness To assess the robustness of each
model to various templates, we compute the stan-
dard deviation of ROUGE-L scores for each model
across five different templates. As we can see from
Figure 4 (right), OPT is robust to different tem-
plates, while OPT-FT has difficulties adapting to
changing templates. In general, finetuning (both
OPT-FT and OPT-CoT) adversely affects the ro-
bustness of the model and makes the model biased
towards a specific data format, however, OPT-CoT
is better than general finetuning (OPT-FT).

Reasoning chain quality. Following (Golovneva
et al., 2022) we evaluate reasoning abilities of the
models using ROSCOE scoring suite (Table 3). Look-
ing at each score in detail (Appendix C), we found
that overall across templates OPT-FT models pro-
duce shorter, less informative chains, while OPT
baseline models produce long chains with high
amount of self-repetitions. 13B OPT-CoT chains
showed best quality despite some self-consistency
and grammar issues. When comparing prompt tem-
plates, models prompted with Template 5 produce
short chains, often without reasoning at all, even
if they were fine-tuned on reasoning chains (OPT-
CoT), suggesting overfitting to the prompt template.

In summary, models learn the data format rep-
resentation and templates during finetuning stage.
However, finetuned models contain bias towards
the data formats and template it has seen, which
potentially reduces the robustness of the model to
more generalized settings. When comparing ro-
bustness, OPT-CoT is better than OPT-FT, but it is
still not as robust as the pre-trained model.

1061



1.3B 13B
Metrics OPT OPT-FT OPT-CoT| OPT OPT-FT OPT-CoT
ROSCOE-SA | 0.936 0.921 0.938 0.936 0.923 0.940
ROSCOE-SS | 0.925 0.923 0.920 10.926 00916 0.925
ROSCOE-LI | 0.848 0.953 0.875 |0.863 0.944 0.890
ROSCOE-LS | 0.725 0.744 0.666 |0.688 0.705 0.640

Table 3: Summary of the ROSCOE evaluation results averaged
across templates. Each metric is bounded within [0, 1], where
1 indicates the perfect score and O corresponds to failure. In
each row, values corresponding to the best-performing model
are bolded, second best are underscored.

5 Related Work

LLMs that Reason. To improve LLMs’ reason-
ing abilities, Kojima et al. (2022) shows that LLMs
can be decent zero-shot reasoners by simply ap-
pending “Let’s think step by step” to the prompt.
Wei et al. (2022) adds a series of intermediate rea-
soning steps to improve LLMs’ reasoning abilities.
Wang et al. (2022a) further proposes to expand
prompts to include rationales in each few-shot ex-
ample. Fu et al. (2022) discovers that prompting
with higher reasoning complexity achieves substan-
tial gains on math word tasks. To tackle problems
harder than demonstration examples, Zhou et al.
(2022) first reduces a complex problem into a list of
subproblems and solve subproblems sequentially.
Another line of research is to improve the naive
decoding strategy, Wang et al. (2022b) introduces
a self-consistency strategy which selects the most
consistent answer among a set of reasoning paths.

Existing Reasoning Benchmarks. Many bench-
marks are used for evaluating language models’
performance, such as BIG-Bench (Srivastava et al.,
2022), Natural Instruction V2 (NIV2) (Wang et al.,
2022c¢), MMLU (Hendrycks et al., 2020). Although
they contain some reasoning tasks, none of them
are specifically designed to test models’ reasoning
skills. For example, NIV2 contains 172 datasets
and a total of 1554 tasks, including some reasoning
tasks. It has several issues which make it inap-
propriate to be directly used as a reasoning bench-
mark: (/) it is designed for instruction-tuned mod-
els and some tasks might be unsuitable for evaluat-
ing pretrained models or non-instruction finetuned
models, as shown in Figure 1; (2) reasoning skills
have been divided into 27 categories while some
of them have large overlaps, e.g. numerical reason-
ing, quantitative reasoning, reasoning on numbers;
(3) some reasoning labels are wrongly labeled, e.g.
task393_plausible_result_generation gives textual
entailment label but this task can hardly examine
the entailment skill.

The Curriculum benchmark (Chen and Gao,
2022) is designed for probing LLMs’ reasoning
abilities and covers 8 different reasoning skills.
However, this work only focuses on classification
tasks and it converts all examples into the Natu-
ral Language Inference (NLI) format to fit into a
unified framework. We argue that the forced con-
version of all datasets into the NLI format does not
align with human natural conversational style. We
observed that even davinci-003 fails at some simple
tasks due to their forced conversion, e.g. examples
in Table 1. More discussion and results are shown
in the Appendix B.

Finetuning LLMs. LLMs meta-finetuned on a
range of NLP tasks have shown improved per-
formance on held-out downstream tasks such as
FLAN (Wei et al., 2021b), TO (Sanh et al., 2021),
Tk-Instruct (Wang et al., 2022¢) and Instruct-GPT
(Ouyang et al., 2022). Following this approach,
we finetune OPT models and name this type of
models as OPT-FT ((B) in Figure 2). Chung et al.
(2022) further adds chain-of-thought data at fine-
tuning stage and shows significant improvements.
We also study this type of models and name them
as OPT-CoT ((C) in Figure 2). However, from
previous research it still remains unclear whether
the improvement comes from simply adding more
training data or finetuning on rationales actually
helps. We conduct rigorous evaluations to address
this question.

6 Conclusion

We introduce ALERT, a carefully curated benchmark
for evaluating reasoning abilities of LLMs. It com-
prises over 20 datasets and covers 10 different rea-
soning skills. Using this benchmark, we further
investigate the impact of finetuning on these com-
plex tasks. Our experiments reveal that LLMs do
not simply memorize training data, but are capable
of learning various reasoning skills, such as textual
entailment, abductive reasoning and analogical rea-
soning. While we found that finetuning generally
leads to improved performance, we also discovered
some negative effects. LLMs tend to memorize
the data template representation and templates seen
during finetuning, thus reducing the robustness of
the model to generalized settings. CoT-finetuning
(OPT-CoT) can alleviate this issue to some extent,
but it is still less robust compared to the vanilla
pre-trained model.
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Limitations

ALERT aims to encompass a wide range of rea-
soning skills, but some reasoning skills are miss-
ing, specifically in regards to symbolic reason-
ing (last letter concatenation task and coin flip
(Wei et al., 2022)) and compositionality reason-
ing (SCAN (Lake and Baroni, 2018), COGS (Kim
and Linzen, 2020) and CFQ (Keysers et al., 2019)).
These reasoning skills should be included in future
work.

In terms of computing power, we have experi-
mented with models that were accessible to us. We
acknowledge that there are larger models that we
were not able to train due to the limitations of our
computational budget.

During our analysis, we discovered that some
datasets contain noise, where even human experts
are unable to provide accurate answers for certain
instances. While it is important to address this
issue, it is a time-consuming process to carefully
review and clean each instance in the dataset. We
plan to address this in future work.

Ethics Statement

Large language models (LLMs), due to potential
bias in the training data, can be prone to gener-
ate toxic and unwanted content (Weidinger et al.,
2021). However, in this paper, we are focused on
reasoning tasks where the model is prompted to
explain its decisions, because of which our model
falls under contained generation. By providing
clear prompts and constraints, we believe that this
might help guide the model’s output towards spe-
cific, desired outcomes and reduce the likelihood
of generating unwanted or harmful content, as op-
posed to open ended text generation tasks.
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A More Details about Data Usage

A.1 Reasoning Benchmark

Table 4 shows detailed reasoning benchmark.

A.2 Training Corpus (cont. from §3.2)

We used 10 datasets for finetuning, which contain
6 different reasoning skills.

A.3 Development Data Details

Our finetuning models are tuned on pretrained
LLMs on the finetuning corpus with the goal of
improving the performance of unseen tasks. For
example, blocks (B) and (C) in Figure 2 are show-
ing models that are finetuned on tasks B,C,D and
the goal is to achieve good results on task A.

Checkpoint selection can determine the final per-
formance of the LLMs to a very large extent. There
are several ways to select checkpoints: (i) select
checkpoint of the last iteration; (if) select check-
point based on perplexity or loss from validation
datasets of finetuning corpus (validation datasets
of task B, C, D); (iii) select checkpoint based on
perplexity or loss from validation datasets of evalu-
ation corpus (validation datasets of task A);

In order to achieve a better performance on evalu-
ation corpus, a common approach is to use methods
like (iii) to select a checkpoint. However, we would
like to prevent LLLMs overfiting to the distribution
of our final evaluation corpus. We initially used
the method (ii) but found that it did’t work well.
However, this resulted in a distribution mismatch
issue. We speculate this to the fact that some tasks
in our finetuning corpus do not have a validation
set. We thus select 3 tasks from NIV2 benchmark
and compile a development set that does not have
any overlaps with our finetuning data or evaluation
data. There are 3 datasets used as our develop-
ment set for checkpoint selection: task 247 dream
answer generation (Sun et al., 2019), task 118 se-
meval and task 10 open vocabulary mathematical
answer generation (Hopkins et al., 2019) and anli
rl entailment (Williams et al., 2022)

A.4 Pretraining Data Analysis

The pre-training corpus of OPT model (Zhang et al.,
2022) contains a concatenation of datasets used in
RoBERTa (Liu et al., 2019), the Pile (Gao et al.,
2020), and PushShift.io Reddit (Baumgartner et al.,
2020; Roller et al., 2020).

RoBERTa Three datasets in RoOBERTa (Liu et al.,
2019) are used as pretraining corpus: BookCorpus
(Zhu et al., 2015), Stories (Trinh and Le, 2018),
and CCNews (Liu et al., 2019). Deductive reason-
ing skill and spatial reasoning skill can be learned
from stories dataset. Logical reasoning skill can be
learned from these three datasets.

Pile A subset of the Pile (Gao et al., 2020) are
used as pre-training corpus, including Common-
Crawl, DM Mathematics, Project Gutenberg, Hack-
erNews, OpenSubtitles, OpenWebText2, USPTO,
and Wikipedia. Mathematics reasoning skill can be
learned from DM Mathematics dataset. Causal Rea-
soning can be learned widely from OpenWebText2.
Commensense reasoning skill can be learned from
Wikipedia.

PushShift.io Reddit The longest chain of
comments in each thread are extracted from
PushShift.io Reddit (Baumgartner et al., 2020). Ar-
gument reasoning skill can be learned from this
dataset.

A.5 Vocabulary Overlaps (Cont. from § 4.2.1)

We measure unigram vocabulary overlaps between
our finetuning corpus and the evaluation corpus
(reasoning benchmark).

B Curriculum Benchmark Results (Cont.
from §5)

We randomly selected one dataset from each rea-
soning skill and reported the results of GPT-3
(Brown et al., 2020b) (text-davinci engine). Since
all of the data has been converted to NLI format, we
measure classification accuracy of GPT-3 model.
From Table 8, we can see that even GPT-3 achieves
a pretty random results on these datasets. Through
our analysis, we found that it is not because those
tasks are too difficult for GPT-3, it is because
curriculum benchmark forcing all the data to be
NLI format, resulting in unnatural data expression,
which made GPT-3 fail on it. We conclude that the
curriculum benchmark may be suitable for classi-
fication finetuned models, but it is not suitable for
language models for in-context learning.

C Evaluating reasoning chains (Cont.
from §5)

Following (Golovneva et al., 2022) we evaluate
reasoning abilities of the models using ROSCOE
scoring suite (Table 10). Chains are evaluated
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Reasoning

Skills Task ID Datasets
Logical 62 bigbench repeat copy logic (Srivastava et al., 2022)
Reasoning 697 mmmlu answer generation formal logic (Hendrycks et al., 2021a)
393 plausible result generation (Weir et al., 2020)
Causal 1386 anli 12 entailment (Williams et al., 2022)
Reasoning 1387 anli 13 entailment (Williams et al., 2022)
1388 cb entailment (Wang et al., 2019)
80 piqa answer generation (Bisk et al., 2020)
Commonsense 102 commongen sentence generation (Lin et al., 2020)
Reasoning 591 sciq answer generation (Welbl et al., 2017)
1286 openbookqga question answering (Mihaylov et al., 2018)
1386 anli r2 entailment (Williams et al., 2022)
Texual 1387 anli r3 entailment (Williams et al., 2022)
Entailment 1388 cb entailment (Wang et al., 2019)
1344 glue entailment classification (Wang et al., 2018)
104 semeval closed vocabulary math answer generation (Hopkins et al., 2019)
Mathematics 119 semeval geometric math answer generation (Hopkins et al., 2019)
697 mmmlu answer generation formal logic (Hendrycks et al., 2021a)
Abduct.we 332 tellmewhy answer generation (Lal et al., 2021)
Reasoning
. 83 babi t1 single supporting fact answer generation (Weston et al., 2015)
Spatial . . .
Reasonin 80 piqa answer generation (Bisk et al., 2020)
J 151 tomqa find location easy clean (Nematzadeh et al., 2018)
Analogical 102 commongen sentence generation (Lin et al., 2020)
Reasoning 1152 bard analogical reasoning causation (Fulda et al., 2017)
Argument 513 argument stance classification (Kobbe et al., 2020)
Reasoning 514 argument consequence classification (Kobbe et al., 2020)
D i . .
educt}ve 216 rocstories correct answer generation (Mostafazadeh et al., 2016)
Reasoning
Table 4: Details about ALERT benchmark.
Datasets ‘ Train Size | Val Size | Test Size Reasoning Skills
ProofWriter 69,810 10,190 20,030 Logical Reasoning, Causal Reasoning
StrategyQA 2,290 - 490 Commonsense Reasoning
ECQA 7,598 1,090 2,194 Commonsense Reasoning
CoQA 10,8647 7,983 - Textual Entailment
GSM8K 7,473 - 1,319 Mathematics
AQUA-RAT 97,467 254 254 Mathematics
ESNLI 549,367 9,842 9,824 Commonsense Reasoning, Logical Reasoning, Textual Entailment
MATH 7,500 - 5,000 Mathematics
CoS-E 9,741 1,221 - Commonsense Reasoning
WinoWhy 273 - - Abductive Reasoning, Commonsense Reasoning

Table 5: Training corpus for meta-finetuning OPT-FT and OPT-CoT. (Cont. from § 3.2)
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Task ID Datasets ‘ Reasoning Skills
247 dream answer generation (Sun et al., 2019) Logical Reasomng.
Commonsense Reasoning
118 semeval open vocabulary mathematical Commonsense Reasoning
answer generation (Hopkins et al., 2019) Mathematics
Textual Entailment
1385 anli r1 entailment (Williams et al., 2022) | Commonsense Reasoning
Causal Reasoning

Table 6: Dev set for checkpoint selection

Category Datasets ‘ Vocabulary Overlaps
bigbench repeat copy logic (Srivastava et al., 2022) 1.59%
babi t1 single supporting fact answer generation (Weston et al., 2015) 0.38%
semeval closed vocabulary math answer generation (Hopkins et al., 2019) 7.90%
semeval geometric math answer generation (Hopkins et al., 2019) 5.84%
0% to 10% tomgqa find location easy clean (Nematzadeh et al., 2018) 0.94%
plausible result generation (Weir et al., 2020) 3.72%
argument stance classification (Kobbe et al., 2020) 6.04%
argument consequence classification (Kobbe et al., 2020) 6.11%
mmmlu answer generation formal logic (Hendrycks et al., 2021a) 5.35%
bard analogical reasoning causation (Fulda et al., 2017) 0.45%
commongen sentence generation (Lin et al., 2020) 29.31%
10% to 30% tellmewhy answer generation (Lal et al., 2021) 28.05%
cb entailment (Wang et al., 2019) 20.97%
piqa answer generation (Bisk et al., 2020) 42.51%
rocstories correct answer generation (Mostafazadeh et al., 2016) 57.45%
sciq answer generation (Welbl et al., 2017) 32.54%
over 30% openbookqa question answering (Mihaylov et al., 2018) 48.2%
glue entailment classification (Wang et al., 2018) 55.19%
anli r2 entailment (Williams et al., 2022) 43.37%
anli r3 entailment (Williams et al., 2022) 53.13%

Table 7: Vocabulary overlap. Dissimilarity has been measured between training data (in Table 4) and evaluation data (in
Table 5).

Datasets Random score | GPT-3 Davinci score
Boolean 34.50% 31.80%
Physical 49.08% 50.00%
Entailment Tree 50.88% 54.41%
Event Semantic 54.08% 55.89%
Spatial 49.80% 49.30%

Table 8: Classification accuracy by GPT-3 davinci-engine on the Curriculum benchmark.

using facebook/roscoe-512-roberta-base sentence
embedding model. Evaluation results are detailed
in Table 10. We found that the chain quality varies
between models, in particular some reasoning as-
pects correlate with chain length as seen in Table 11.
Similar to (Chung et al., 2022), we noticed that non-
finetuned models (i.e. OPT-1.3B and OPT-13B)
tend to produce long chains of reasoning, often
repeating themselves, which significantly affects
the quality of the chains and final scores (Figure 9).

Below we explore the differences between models’
outputs under four perspectives: semantic align-
ment, semantic similarity, logical inference and
language coherence.

C.1 Semantic Alignment

Despite the fact that model 13B OPT-CoT on
average outperforms other models in almost
all semantic alignment scores (Faithfulness-Step,
Faithfulness-Token, and Info-Step, see Table 10),
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The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?
The answer is 29 apples. The cafeteria started with 23 apples and bought 6 more, for a total of 23 + 6 = «23+6=29»29 apples .

Select the best translation into predicate logic.
(A)Tdc;(B)Tcd;(C)Tce;(D)dTe.

David teaches Chris. (c:

Chris; d: David; Txy: x teaches y)

The answer is (B) Tcd. In predicate logic, the predicate (in this case, "T") is written before the subject and object of the sentence.

Since David (d) is the teacher and Chris (c) is the student, the correct translation is Tcd, which reads as "David teaches Chris."

Isabella entered the hall. Olivia entered the hall. The apple is in the blue_treasure_chest. Olivia exited the hall. Isabella
moved the apple to the green_basket. Question: Where does Isabella think that Olivia searches for the apple? The answer
is It is impossible for me to answer this question as I have no information about the thoughts or actions of Isabella or Olivia.

Additionally, I do not have access to browse any information beyond my training data, which ends in 2021 .

Table 9: Examples from tasks that require reasoning skills and generated outputs from ChatGPT. The faild outputs are

highlighted in red.

Average across templates
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Figure 9: Distribution of the steps’ number across all tasks
and templates varying between models (top) and between
templates for OPT-CoT 13B model.

there is no common pattern across tasks (Fig 10).
The performance change between finetuned mod-
els and corresponding pretrained version are sig-
nificant* on half of the tasks (11 tasks out of 20
for Faithfulness-* scores, and 9 out of 20 for Info-
Step).

Repetition-Token score variations exhibit differ-
ent behavior. Half of the tasks have higher num-
ber of repetitions between reasoning steps for pre-
trained models, with OPT-FT models generally out-

4Significance is determined using T-test comparison,
where p-value is below 0.05.

performing others (all performance improvements
are significant). Generations produced by these
models tend to be shorter in terms of the number
of steps (Figure 9), so they contain less repetitions,
but also less semantic overlap with the context, thus
in general having lower faithfulness and informa-
tiveness. Some examples reflecting this behavior
are provided in Table 12.

Scores are mostly aligned across Templates (Fig-
ure 11), except Template 5, that stands out in hav-
ing less aligned scores with respect to the context,
but also more self-consistent across the task. This
is the only template that did not have any expla-
nation in its prompt. Manual review showed that
despite CoT-finetuning, OPT-COT models tend to
produce 1-step answer-only generations (see exam-
ple in the Table 12, and Figure 9 for chains’ length
distribution), thus overfitting to the template rather
than learning from finetuning.

In summary, ROSCOE-SA is able to identify
aligned information, but it does not guarantee high-
quality output. It will favor model with short ex-
planations and high semantic overlap with the ref-
erence. We found that often OPT-FT-1.3B sim-
ply repeats one sentence from the input, instead
of producing reasoning, and thus will get high-
est ROSCOE-SA scores on these chains, while other
models that produce some sort of reasoning will be
punished.

C.2 Semantic Similarity

Semantic similarity scores support previous conclu-
sions: models, finetuned on final answers (OPT-FT)
exhibit lower similarity with respect to the base-
line and CoT-finetuned models, while having less
repetitions (Figure 12). Again, we attribute that to
the fact that these models produce short chains that
lack detailed reasoning steps.
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OPT 1.3B OPT-FT1.3B OPT-CoT 1.3B  OPT 13B OPT-FT 13B OPT-CoT 13B

ROSCOE-SA
Faithfulness-Step 0.863 0.841 0.862 0.863 0.858 0.870
Faithfulness-Token 0.936 0.921 0.938 0.936 0.923 0.940
Info-Step 0.857 0.829 0.854 0.858 0.846 0.861
Repetition-Token 0.618 0.920 0.683 0.582 0.857 0.701
ROSCOE-SS
Info-Chain 0.925 0.909 0.920 0.926 0.916 0.925
Repetition-Step 0.627 0.923 0.692 0.591 0.859 0.708
ROSCOE-LI
Source Consistency 0.550 0.604 0.573 0.584 0.617 0.598
Self-Consistency 0.848 0.953 0.875 0.863 0.944 0.890
ROSCOE-LS
Perplexity-Step 0.016 0.006 0.015 0.010 0.006 0.009
Perplexity-Chain 0.022 0.006 0.020 0.016 0.006 0.013
Grammar 0.725 0.744 .666 0.688 0.705 0.640

Table 10: ROSCOE evaluation results averaged across templates. Each metric is bounded within [0, 1], where 1 indicates the
perfect score and O corresponds to failure. Values corresponding to the best performing model are bolded, second best are
underscored.

Kendall’s 7 score  Kendall’s 7 p-value

Faithfulness-Step -0.101 0.000
Faithfulness-Token 0.039 0.000
Info-Step 0.054 0.000
Repetition-Token -0.869 0.000
Info-Chain 0.009 0.000
Repetition-Step -0.867 0.000
Source Consistency -0.119 0.000
Self-Consistency -0.553 0.000
Perplexity-Step 0.000 0.960
Perplexity-Chain 0.369 0.000
Grammar 0.013 0.000

Table 11: Kendall correlation between evaluation perspective and number of steps in chain across all generated reasoning chains.
Strong correlations (|7| > 0.4) are bolded.

C.3 Logical Inference grammatically correct content.

In general, finetuned models are more self- and
source-consistent than respective baselines (Fig-
ure 13, significantly outperforming nonfinetuned D.1 Data in ALERT

D Licenses

.models on 14 out of 20 ta.sks. We further loo.ked « task62: Apache 2.0
into the task 083, which is a task to find a right

answer given s given single supporting fact, po- * task697: MIT
tentially amongst a set of other irrelevant facts.

Manual review showed that although in this task * task393: MIT

finetuned models tend to produce answers that are
more consistent, they often fail to select the fact
that is relevant to the question asked (see "Spatial e task1387: CC BY-NC 4.0
Reasoning" example in Table 12.

* task1386: CC BY-NC 4.0

* task1388: CC BY-SA 3.0
C.4 Language Coherence

Despite the variations in the values, Perplexity-* * task080: AFL 3.0

score changes between models are mostly insignif- e task102: MIT
icant (15 out of 20 tasks, see Figure 14). Man-
ual review showed that all models produce mostly * task591: CC BY-NC-3.0
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D.2

D.3

task1286: Apache 2.0
task1344: CCBY 4.0

task104: Please refer to: https://github.c
om/allenai/semeval-2019-task-10#te
rms-and-conditions

task119: Please refer to: https://github.c
om/allenai/semeval-2019-task-10#te
rms-and-conditions

task332: Please refer to: https://github.c
om/StonyBrookNLP/tellmewhy

task083: CCBY 3.0

task151: Please refer to: https://github.c
om/kayburns/tom-qa-dataset

task1152: Apache 2.0

task513: Please refer to: https://github.c
om/dwslab/StArCon

task514: Please refer to: https://github.c
om/dwslab/StArCon

task216: Please refer to: https://www.micr
osoft.com/en-us/research/publicati
on/a-corpus-and-cloze-evaluation-f
or-deeper-understanding-of-commons
ense-stories/

Data in Dev set

task247: Dream dataset is intended for non-
commercial research purpose only. https:
//github.com/nlpdata/dream.

task118: Please refer to: https://github.c
om/allenai/semeval-2019-task-10#te
rms-and-conditions

task 1385: CC BY-NC 4.0

Data in Training set

ProofWriter: CC BY. Downloaded from http
s://aristo-data-public.s3.amazonaws
.com/proofwriter/proofwriter-datas
et-V2020.12.3.zip

StrategyQA: MIT. Downloaded from https:
//storage.googleapis.com/ai2i/strate
gyqa/data/strategyga_dataset.zip.

ECQA: Literature and Wikipedia passages are
shared under CC BY-SA 4.0 license. Mid-
dle/High school exam passages are collected
from RACE which comes with its own license.

GSMSK: MIT. Downloaded from https://
raw.githubusercontent.com/openai/gra
de-school-math/master/grade_school_
math/data/train. jsonl.

AQUA-RAT: Apache License, Version 2.0.
Downloaded from: https://raw.github
usercontent.com/deepmind/AQuA/master
/train. json

ESNLI: please refer to https://github.c
om/0OanaMariaCamburu/e-SNLI/commit/b
ab@fa0212be9e5c6737da70c639a5961882e
931. Downloaded from: https://raw.gith
ubusercontent.com/0OanaMariaCamburu/e
-SNLI/master/dataset/esnli_train_1.c
sV

MATH: MIT. Downloaded from: https://
people.eecs.berkeley.edu/~hendrycks
/MATH. tar

CoS-E: BSD-3-Clause license. Downloaded
from: https://raw.githubusercontent.
com/salesforce/cos-e/master/data/v1.
11/cose_train_v1.11_processed. jsonl

WinoWhy: MIT. Downloaded from: https:
//raw.githubusercontent.com/HKUST-K
nowComp/WinoWhy/master/winowhy. json

E More Details about Model Training

We finetune our 1.3B models on 32 V100s with
batch size 8 on each GPU with totally 38 hours and
21 minutes. We finetune our 13B models on 128
V100s with batch size 4 on each GPU with totally
13 hours and 26 minutes.

Following OPT-IML (Iyer et al., 2022), we
use Fully Sharded Data Parallel (Artetxe et al.,
2021) and the Megatron-LM Tensor Parallelism
(Shoeybi et al., 2019). We inherit most model
hyper-parameters for each model scale following
OPT-IML. We pack our training examples into se-
quences of length 2048, left-truncating examples
that overflow. We use Adam (Kingma and Ba,
2014) with 32-bit state with (51, 32) = (0.9,0.95),
linearly warming up the learning rate for 60 steps
to the maximum, followed by linearly decaying it
to 0.
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Figure 10: Normalized ROSCOE-SA scores per task, averaged across templates. Scores are normalised by their mean value

across OPT 1.3B model’s generations.
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REASONING SKILL: Logistic Reasoning, Mathematics

PROMPT: Please give a short explanation after the answer. Input: Identify the conclusion of the following argument. It is
hard not to verify in our peers the same weakened intelligence due to emotions that we observe in our everyday patients.
The arrogance of our consciousness, which in general, belongs to the strongest defense mechanisms, blocks the unconscious
complexes. Because of this, it is difficult to convince people of the unconscious, and in turn to teach them what their conscious
knowledge contradicts. (Sigmund Freud, The Origin and Development of Psychoanalysis) (A)It is hard not to verify in our
peers the same weakened intelligence due to emotions that we observe in our everyday patients. (B)The arrogance of our
consciousness, which in general, belongs to the strongest defense mechanisms, blocks the unconscious complexes. (C)Because
of this, it is difficult to convince people of the unconscious, and in turn to teach them what their conscious knowledge contradicts.
(D)1t is difficult to convince people of the unconscious, and in turn to teach them what their conscious knowledge contradicts.
Let’s think step by step. Output: The answer is D because Because of the reasons specified in the argument, it is difficult to
convince people of the unconscious, and in turn to teach them what their conscious knowledge contradicts. Input: Select the
best translation into predicate logic: No people drive on Mars. (Dx: x drives on Mars) (A) ~Pd (B) (Vz)(Pz V ~Dzx) (C)
(Vz)(Pz D ~Dzx) (D) ~Dp Let’s think step by step. Output: The answer is C because Answer C means for everything, if that
thing is a person, it doesn’t drive on Mars. So that’s the correct translation. Input: Select the best translation into predicate logic.
David teaches Chris. (c: Chris; d: David; Txy: x teaches y) (A)Tdc (B)Tcd (C)Tcc (D)dTc Let’s think step by step. Output: The
answer is A because David teaches Chris, so in the relation Txy x should be ’d’ for davis and y should be ’¢’ for Chris. Input:
Which of the given formulas of PL is the best symbolization of the following sentence? Either England’s importing beef is not a
necessary condition for France’s subsidizing agriculture, or China promotes human rights if South Africa supplies diamonds.
A (~FDOE)V(C=~S)B)(~EDF)V(CDS)(C)(~FDE)V(C=S)D) ~(F D> E)V(SDC) Let’s think
step by step. Output: The answer is D because When not defined in the question, entities, relationships or statements are shown
with their first letter. In this example ’France subsidizing agriculture’ is shown with F for simplicity. The correct answer is D,
because it uses the ’or’ operator between the two ’if” clauses. Input: Select the best translation into predicate logic. Kevin is
introduced to José by Wilma. (j: José; k: Kevin; w: Wilma; Ixyz: x introduces y to z) (A)Iwjk (B)Ijkw (C)Ikjw (D)Iwkj Let’s
think step by step. Output:

REFERENCE: D

OPT 1.3B: The answer is A because all statements need to be presented with an argument.

OPT-FT 1.3B: The answer is B

OPT-CoT 1.3B: The answer is A because Using the "or’ operator between the statements, we have : Kevin is introduced to José,
because of its "e’ factor in the equation. Wilma is introduced to Kevin because of its ’j” factor in the equation. José is introduced
to Wilma because of its "y’ factor in the equation. In both cases, Wilma accepts "x” and ’y’.

OPT 13B: The answer is A because introducing a person to another person is the action of introducing. It is possible that Kevin
has been introduced to Wilma but not Jose.

OPT-FT 13B: The answer is A because when w is introduced, it says *Wilma introduced Kevin to José’

OPT-CoT 13B: The answer is D because the correct term is ’introduces’, the relation is ’j: kevin and w: wilma to k: x’, it is an
*and’ relation. Using the operator *and’ allows us to choose the greatest of the 5 possibilities.

REASONING SKILL: Commonsense Reasoning

PROMPT: Please give a short explanation after the answer. Input: Deserts are in extremely dry environments, so liquids will
naturally be (A) rainbow (B) plentiful (C) meager (D) talented Let’s think step by step. Output: The answer is C because This is
a good example and the output correctly answers the question. Input: Dairy has things in it that would make humans sick, so in
order for dairy to be edible, this process has to take place (A) mixing (B) boiling (C) freezing (D) pasteurized Let’s think step
by step. Output: The answer is D because in order for dairy to be edible, this process has to take place pasteurized. So, the
correct answer is "D". Input: Digestion is when stomach acid breaks down (A) a pizza (B) a house (C) a rock (D) a car Let’s
think step by step. Output: The answer is A because Digestion is when stomach acid breaks down a food and only option A is a
food. So, this example is correct. Input: With a ruler I can measure (A) feelings (B) love (C) air (D) a phone Let’s think step by
step. Output:

REFERENCE: D

OPT 1.3B: A is a feeling, and all feelings come from feelings (A). Therefore, feelings are products of emotions (A). Therefore,
emotions are created by emotions (A). Therefore, feelings and emotions are directly related (A). Therefore, emotions are created
by emotions (A)... [repeats 249 times]

OPT-FT 1.3B: A because feelings and love are measurements and air is a phone

OPT-CoT 1.3B: The answer is D because With a ruler I can measure an object or range of objects and options are all to do with
measuring. So, this example is correct.

OPT 13B: The answer is B because With a ruler I can measure a length and only options B and D are in front of me. So, the
answer is B.

OPT-FT 13B: The answer is D because a phone is an object

OPT-CoT 13B: The answer is A because Answer: Measure feelings With a ruler I can measure.
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REASONING SKILL: Casual Reasoning, Textual entailment

PROMPT: Please give a short explanation after the answer. Input: Premise: If you can dream it, you can achieve it — unless
you’re a goose trying to play a very human game of rugby. In the video above, one bold bird took a chance when it ran onto a
rugby field mid-play. Things got dicey when it got into a tussle with another player, but it shook it off and kept right on running.
After the play ended, the players escorted the feisty goose off the pitch. It was a risky move, but the crowd chanting its name
was well worth it. Video credit: Storyful / Nathan Swarbrick @swazzal990 <sep> Hypothesis: The crowd believed they knew
the name of the goose running on the field. Let’s think step by step. Output: The answer is Entailment because This is a good
example, the hypothesis sentence entails the given premise. Because the crowd was chanting its name, the crowd must have
believed they knew the goose’s name. Input: Premise: Notley hopeful attacks on women politicians will fade in coming year
After a politically nasty year that saw women politicians face a barrage of attacks on social media and angry demonstrators
shouting to have them put behind bars, Premier Rachel Notley is optimistic there will be a return to civil discourse. In a year-end
interview with CBC News, Notley reflected on 2016, a year that saw hateful social-media attacks against MLA Sandra Jansen,
and chants of “Lock her up” directed at the premier at an anti-carbon tax rally in Edmonton. <sep> Hypothesis: Notley reflected
on the chants of "lock her up" from previous to the year 2016. Let’s think step by step. Output: The answer is Contradiction
because The Premise states Notley reflected on the chants from 2016, not before 2016. In this example hypothesis sentence
contradicts the given premise. Input: Premise: Mazda Sales (Thailand), a unit of Japanese carmaker Mazda Motor Corp,
remains bullish about its sales prospects this year despite falling figures in the first six months, the Bangkok Post reported, citing
its President Hidesuke Takesue. (bit.ly/1gr7HMd) —- NOTE: Reuters has not verified this story and does not vouch for its
accuracy. (Bangkok Newsroom; Editing by Prateek Chatterjee) <sep> Hypothesis: Mazda Sales will be fired next week Let’s
think step by step. Output: The answer is Neutral because In this example the hypothesis can’t be proven one way or the other
based on the context. It’s set in the future and no one knows the future. So, hypothesis sentence is neutral with respect to a
given premise. Input: Premise: How to clear nasal congestion quickly<br>Gently blow your nose. Perhaps the easiest and
quickest way to reduce nasal congestion is to simply blow your nose into a soft tissue. Unfortunately, it’s not always possible to
completely relieve congestion by merely blowing, but it’s always a good starting point. <sep> Hypothesis: strike a pose to fix
your nose Let’s think step by step. Output:

REFERENCE: Contradiction

OPT 1.3B: The answer is Modified Contradiction because In this example the hypothesis sentence suggests the method is "Do
not hit your head." In fact, that’s the phrase a person who is rolling around on the ground, or who has had their head hit a hard
surface while trying to get a good sleeper on the sheets should try. Why is this? A head-on collision will ... [continues to
hallucinate for 23 steps]

OPT-FT 1.3B: Answer: Blow your nose into a soft tissue.

OPT-CoT 1.3B: The answer is Contradiction because The hypothesis states that Nastai will solve his and nasal congestion only
by blowing into his nose, but that’s not necessarily true, because he could have blown into his nose and caused irritation as well.
OPT 13B: The answer is Yes because The answer is Yes. All the above information about clearing the nose is proven by the
given premise, but if you still don’t know the answer, then we suggest you go here and click on "How to clear your nose
naturally” page.

OPT-FT 13B: The answer: contradiction

OPT-CoT 13B: The answer is contradiction because One cannot blow their nose if they have struck a pose.

REASONING SKILL: Analogical Reasoning

PROMPT: Please give a short explanation after the answer. Input: throw : fly. aspire : ? Let’s think step by step. Output: The
answer is attain because Fly is a causation of throw. Hence, the inferred analogy being causation, attain is the causation of
aspire. Input: listen : hear. drop : ? Let’s think step by step. Output: The answer is fall because Hear is a causation of listen.
Hence, the inferred analogy being causation, the causation of drop is fall. Input: hit : shatter. nourish : ? Let’s think step by step.
Output: The answer is grow because Shatter is a causation of hit. Hence, the inferred analogy being causation, the causation of
nourish is grow. Input: throw : fly. ignite : ? Let’s think step by step. Output:

REFERENCE: burn

OPT 1.3B: The answer is move because fly is a causation of ignite. Hence, the inferred analogy being causation, the causation
of move is fly.

OPT-FT 1.3B: The answer is throw

OPT-CoT 1.3B: The answer is ignite because Fire is a causation of throw. Hence, the inferred analogy being causation, the
causation of ignite is fly.

OPT 13B: The answer is evaporate because Fly is a causation of throw. Hence, the inferred analogy being causation, the
causation of evaporate is ignite.

OPT-FT 13B: The answer is fly because Ignite is a causation of throw

OPT-CoT 13B: The answer is grow because Throw is a causation of grow.
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REASONING SKILL: Commonsense reasoning, Spatial Reasoning

PROMPT: Please give a short explanation after the answer. Input: How do you remove keys from a computer keyboard for
cleaning? Let’s think step by step. Output: The answer is Place the tip of a knife under the corner of a key and gently twist to
pop it off. because The process of removing keys from a keyboard for cleaning is descriptive and logical. Input: How can you
dry wet replacement computer keyboard keys? Let’s think step by step. Output: The answer is by arranging paper towels on the
counter and evenly spacing out each key to dry, face side up, on top of them. because The steps involved in the process of drying
wet replacement keyboard keys are logical. Input: To coat small plastic objects like replacement keyboard keys with soap Let’s
think step by step. Output: The answer is place them, water and liquid dishsoap in a sealed container. Shake vigorously until the
container is completely full of foam. because The process of coating small plastic objects like replacement keys is descriptive
and logical. Input: How do you cut gnocchi without a knife? Let’s think step by step. Output: The answer is Press the edge of a
spoon down into the dough to cut it. because The answer is quite detailed about the method to cut gnocchi when knife is not
available. Input: How do you taste something? Let’s think step by step. Output: The answer is Place it in your mouth to taste.
because To taste something one has to keep it in contact with the tongue. Hence it is logical to put it in the mouth to taste. Input:
How do you wear a bracelet? Let’s think step by step. Output: The answer is Put it on around your wrist. because Bracelet is
worn around wrists. Hence it is correct answer. Input: To find an easy way to complete levels on a video game, Let’s think step
by step. Output:

REFERENCE: look up cheat codes to make the rules of the game different or null.

OPT 1.3B: The answer is Enter key without pressing. because How to find the perfect way to complete levels on a video game
is logical and descriptive.

OPT-FT 1.3B: It tells you the easiest way to get all the coins and medals and the fastest way to get through the level.
OPT-CoT 1.3B: The answer is play the game. because If you play a game to finish the levels then you can call it a game.
OPT 13B: The answer is Complete the level as fast as possible to get a high score, by jumping through the stage as quickly as
possible. because The answer is explicit and very clear that how a user can complete levels on a video game with just a hint.
OPT-FT 13B: The answer is try harder or use a guide, because The process of finding an easy way to complete levels on a video
game is descriptive and logical.

OPT-CoT 13B: The answer is YouTube to find out how to get past a level. because YouTube is used to find out ways to complete
a game easily.

REASONING SKILL: Spatial Reasoning

PROMPT: Instructions: You will be given a passage consisting of set of facts and a question as input. The task is to answer a
question of form *Where is <person_name>?" using one of the given facts to determine the latest location of the person. Answer
should be a word/phrase describing the location from the supporting fact. Avoid answers that are incomplete or incorrect.
Positive Examples: Input: Passage: Mary moved to the bathroom. John went to the hallway. Question: Where is Mary? Output:
bathroom Input: Passage: Mary moved to the bathroom. John went to the hallway. Daniel went back to the hallway. Sandra
moved to the garden. Question: Where is Daniel? Output: hallway Input: Passage: Mary moved to the bathroom. John went to
the hallway. Daniel went back to the hallway. Sandra moved to the garden. John moved to the office. Sandra journeyed to
the bathroom. Question: Where is Daniel? Output: hallway Input: Passage: John moved to the hallway. Mary travelled to the
hallway. Sandra went to the bedroom. Sandra went back to the hallway. Question: Where is Mary? Output:

REFERENCE: hallway

OPT 1.3B: bathroom

OPT-FT 1.3B: hallway

OPT-CoT 1.3B: hallway

OPT 13B: bathroom

OPT-FT 13B: bathroom

OPT-CoT 13B: hallway

Table 12: Examples from tasks that require different reasoning skills and generated outputs. The failed outputs are highlighted
in red. Outputs that are different from the reference, but can be valid because the question is ambiguous are highlighted in blue.
All except the one are examples generated using prompt Template 4, last example used Template 5.
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