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Abstract

Multilingual Knowledge Graph Completion
(KGC) aims to predict missing links with mul-
tilingual knowledge graphs. However, existing
approaches suffer from two main drawbacks:
(a) alignment dependency: the multilingual
KGC is always realized with joint entity or
relation alignment, which introduces additional
alignment models and increases the complex-
ity of the whole framework; (b) training ineffi-
ciency: the trained model will only be used for
the completion of one target KG, although the
data from all KGs are used simultaneously. To
address these drawbacks, we propose a novel
multilingual KGC framework with language-
sensitive multi-graph attention such that the
missing links on all given KGs can be inferred
by a universal knowledge completion model.
Specifically, we first build a relational graph
neural network by sharing the embeddings of
aligned nodes to transfer language-independent
knowledge. Meanwhile, a language-sensitive
multi-graph attention (LSMGA) is proposed to
deal with the information inconsistency among
different KGs. Experimental results show that
our model achieves significant improvements
on the DBP-5L and E-PKG datasets.1

1 Introduction

Knowledge graphs (KGs) with plentiful structured
semantic information have been widely used in
various NLP applications such as question answer-
ing (Saxena et al., 2020; Ren et al., 2021), recom-
mender systems (Wang et al., 2021a, 2022b) and
information extraction (Hu et al., 2021; Zong et al.,
2021). Due to the well-known incompleteness of
KG, the task of KG completion seeks to facilitate
the automatic construction of knowledge graphs
by predicting missing links (Bordes et al., 2013;
Balažević et al., 2019; Zhu et al., 2021b; Wang

∗Corresponding author.
1Our codes are available at https://github.com/Rongchuan

Tang/LSMGA-MKGC
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Figure 1: An example of multilingual KGC. (a) Existing
methods try to improve the KGC task on a French KG
by utilizing two support KGs and an external alignment
model is included. (b) Our goal is to simultaneously
improve the KGC task on all given KGs by only one
knowledge model.

et al., 2022a). Recently, there has been a lot of
interest in improving KG completion by leveraging
KGs from different languages. Known as multilin-
gual knowledge graph completion (KGC), various
attempts have been made to transfer knowledge
from one KG to another, such as KEnS (Chen et al.,
2020), AlignKGC (Singh et al., 2021), and SS-
AGA (Huang et al., 2022). And these studies have
demonstrated that it is viable to improve the sin-
gle KGC task by utilizing information from other
language-specific KGs.

However, the methods for multilingual KGC
mainly involve two shortcomings. The first one
is referred to be alignment dependency, indicat-
ing that in previous frameworks, the multilingual
KGC task has to be carried out in conjunction with
entity or relation alignment tasks. This leads to
a cumbersome framework that always consists of
two separate models, one for alignment and the
other for completion, and the multilingual KGC
task can not be trained alone. In addition, the align-
ment model will increase extra computational and
memory costs, which are usually comparable to the
knowledge model.
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The second shortcoming is called training in-
efficiency: although multiple KGs are given, the
knowledge is only propagated from support KGs
(the KGs to provide knowledge of other languages)
to one target KG (the KG to be completed). In this
way, if we wish to perform the completion task on
another KG, we have to re-designate that KG as the
target and retrain entirely, thus making the training
process far from efficient. As the example shown
in Figure 1(a), the French KG is the target KG and
two support KGs in English and Greek are avail-
able. Prior methods output the KGC results only
for the French KG through a framework including
an alignment model and a knowledge model.

According to the multilingual machine transla-
tion (MT) task (Johnson et al., 2017; Zhang and
Zong, 2020), it is capable of building a unified
MT model to translate multiple languages. Since
multilingual KGC and multilingual MT are both
related to knowledge transfer across languages, we
attempt to investigate the multilingual KGC in a
compact manner without a redundant alignment
model while using a universal model to infer the
missing facts in all given KGs. Like depicted in
Figure 1(b), the completion results for all KGs are
expected to be obtained by only one knowledge
model.

Motivated by the discussions above, we propose
a graph neural network with language-sensitive
multi-graph attention (LSMGA) for multilingual
KGC. First, several separate KGs are connected
into a single graph by sharing the embedding of
aligned entities. Second, we design a language-
specific multi-graph attention to better capture dif-
ferent patterns stored in different graphs. At last,
a language-sensitive aggregation module is uti-
lized to integrate the information from multiple
sources. Experimental results show that our ap-
proach achieves better results than previous meth-
ods on the multilingual KGC task. It indicates that
our framework can take full advantage of all given
KGs by using a universal knowledge model.

Our main contributions are summarized as fol-
lows:
• A novel framework for the multilingual KGC

task to predict the KGC results of all given
KGs by only using one knowledge model is
proposed by forcing the aligned entities to
share the same embedding and treating each
source KG equally.

• A graph neural network based on language-

sensitive multi-graph attention is put forward
to capture the different knowledge patterns of
the KGs from different languages and make
the knowledge transfer among different KGs
in distinct ways.

• Experiments have been conducted to validate
the effectiveness of our multilingual KGC
framework, and the results show that our
LSMGA-based graph neural network achieves
significant improvements over existing ap-
proaches on the multilingual KGC task.

2 Related Work

Knowledge Graph Completion involves predict-
ing missing links based on the existing facts, which
are usually from a single KG. Translation-based
methods (Bordes et al., 2013; Wang et al., 2014;
Lin et al., 2015; Ji et al., 2015) establishes
different geometric relationships for the triples,
and then design a score function to evaluate the
plausibility of the triples. In order to capture the
deeper information of the facts, DKRL (Xie et al.,
2016) and ConMASK (Shi and Weninger, 2018)
adopt convolutional neural networks to extract
features from the text descriptions of entities and
realize open-world knowledge graph completion.
Another type of work, such as KE-BERT (Yao
et al., 2019), KEPLER (Wang et al., 2021b), and
SimKGC (Wang et al., 2022a), has attempted
to combine knowledge graph embeddings with
pre-trained language models and achieved some
promising results on the KGC task. Recently, the
methods based on graph neural networks (GNNs)
(Schlichtkrull et al., 2018; Zhu et al., 2021b;
Zhang and Yao, 2022) have shown great potential
in knowledge graph completion, due to GNN’s
powerful ability to model graph structures (Wu
et al., 2021; Cai et al., 2021).

Multilingual Knowledge Graph Completion
aims to boost KGC with multiple KGs that are in
different languages. For the first time, the MTransE
(Chen et al., 2017) model extended knowledge
graph embeddings from a monolingual scenario to
a multilingual scenario, where the information of
multiple KGs can be transferred to each other. Af-
ter then, a lot of work focused on entity alignment
task between different KGs (Zhang et al., 2019; Sun
et al., 2020; Zhu et al., 2021a; Guo et al., 2022).
On the other hand, (Chen et al., 2020) proposes a
new framework KEnS, which improves monolin-
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Figure 2: The overall architecture of our language-sensitive multi-graph attention which contains three KGs. The
four main components are: (i) constructing the unified graph; (ii) using multi-graph attention to capture different
information from different sources; (iii) using language-sensitive aggregation to integrate the information from (ii);
(iv) computing the scores of triples by a KGC decoder.

gual KGC by effectively leveraging complemen-
tary knowledge of multiple language-specific KGs.
AlignKGC (Singh et al., 2021) performs KGC to-
gether with entity alignment and relation alignment
on multilingual KGs and improves KGC accuracy,
as well as alignment scores. SS-AGA (Huang et al.,
2022) improves the multilingual KGC task by using
a relation-aware graph neural network and dynam-
ically generating more potential alignment pairs.
However, entity alignment is still the primary fo-
cus of the aforementioned methods for multilingual
KGC. Additionally, the knowledge models in above
works are almost built upon the methods for mono-
lingual KGC, while few works address multilingual
knowledge transfer directly. In this paper, we are
going to address both alignment dependency and
training inefficiency.

3 Notations and preliminaries

A knowledge graph is denoted as G = (E ,R, T ),
where E is the set of entities, R is the set of rela-
tions and T is the set of triples. A fact is in the
form of a triple (h, r, t) consisting of a head entity
h, a relation r and a tail entity t, where h, t ∈ E
and r ∈ R.

Knowledge graph completion is the task of
predicting new facts based on the existing facts in
a single KG. Usually, the system needs to answer
a query like (h, r, ?) or (?, r, t) by inferring the
missing tail entity or head entity.

Multilingual knowledge graph completion is
the task of predicting new facts based on the exist-
ing facts in multiple KGs with different languages.
The concrete situation is that there are N KGs
with N different languages as G1, G2, · · · , GN

and between any two KGs Gi = (Ei,Ri, Ti) and
Gj = (Ej ,Rj , Tj), a limited number of aligned en-
tity pairs as {(ei, ej) : ei ∈ Ei, ej ∈ Ej} (e denotes
an entity) are known in advance. Besides, all the
relations are represented within a unified schema
R, i.e. Ri ∈ R for i = 1, 2, · · · , N .

4 Methodology

The overall architecture is illustrated in Figure 2.
Four components are included in the whole frame-
work:

Creating the unified graph. Assuming N
source KGs: G1, G2, · · · , GN , we force the
aligned entity pairs ei and ej to be representated
by the same embedding vector. In this way, N
separate KGs are linked into a unified graph Gu

and the duplicate aligned entities are removed in
the unified entity vector set Eu. Besides, we main-
tain a unified relation vector setR. By sharing the
aligned entities, there is no need to introduce an
alignment model in our framework. And since the
given KGs are treated equally on the unified graph,
we are able to train a model in one go that can be
used for the inference on all given KGs. Therefore,
creating the unified graph is a simple but crucial
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step to deal with both alignment dependency and
training inefficiency.

GNN encoder with multi-graph attention. We
split the neighbor nodes of the target node into
N subgraphs by different sources and encode the
target node into N hidden representations by a
novel GNN with multi-graph attention.

Language-sensitive aggregation. With multi-
ple outputs from the GNN encoder, the final rep-
resentation of the target node is computed by a
language-sensitive aggregation module.

KGC decoder. Given the embeddings of entities
and relations, the scores of triplets are computed
by a KGC decoder and then the KGC loss to be
optimized can be obtained.

Remark 1. By creating the unified graph, our
method could complete all the KGs simultaneously
through a shared knowledge model (sharing both
aligned entities and relations). To complete the
N KGs, the number of entity and relation em-
beddings in our framework is |Eu|+ |R|, while
previous frameworks like SS-AGA (Huang et al.,

2022) is 2 ∗N ∗
(

N∑
i
|Ei|+N ∗ |R|

)
(including

the knowledge model and the alignment model).
By utilizing a smaller model size, our approach
alleviates the scalability challenges posed by mas-
sive KGs, making it more feasible and efficient for
real-world applications.

4.1 GNN with Multi-Graph Attention

Considering the powerful representation ability of
GNN networks for graph structure, we try to build
a GNN model after creating the unified graph. A
staright-forward way is to learn directly on the
unified graph with a commonly used GNN en-
coder. However, there is inevitably lots of repetitive
knowledge among different KGs since knowledge
is language-independent, and simple aggregation
will cause the model to reduce the weight of those
different parts that can reflect the characteristics of
KGs. On the other hand, as each KG has its own
unique knowledge pattern, there should be differ-
ent approaches taken when transferring knowledge
across them. In fact, similar multilingual atten-
tion mechanism has been practiced in the relation
extraction task (Lin et al., 2017).

Explicitly, our model adopts two kinds of graph
attention mechanisms for multilingual KGC, in-
cluding (a) mono-graph attention to select the
neighbor nodes within one language and (b) cross-

graph attention to select the neighbor nodes among
different languages.

4.1.1 Mono-Graph Attention
At first, we follow the idea of multi-layer relation-
aware message passing architecture proposed in
(Huang et al., 2022):

hl+1
i = hli + σ(

∑

ej∈Nni (ei)

Att(hli, h
l
j(r))h

l
j(r)),

(1)
where hli indicates the hidden representation of
entity ei at the l-th layer, σ(·) is a non-linear activa-
tion function, Nni(ei) indicates the neighbor node
set from the ni-th source KG of ei, hlj(r) indicates
the relation-aware message conveyed by entity ej
in a relational triple (ei, r, ej) and Att(hli, h

l
j(r)) is

the attention score of each message from neighbor
nodes. It should be noted that hli and hlj in this
subsection are abbreviations of hlini

and hljni
in

brief.
Since each KG has its own characteristics, it is

intuitive that we adopt different mono-graph atten-
tions to weight the neighbor information within
each language. Specifically, when the target node
ei and its neighbor nodes are from the same ni-th
source KG like in the second subgraph in Figure 2,
the neighbor message hlj(r) is calculated as:

hlj(r) =W l
vni

Concat(hlj , r), (2)

where W l
vni
∈ Rd×2d is a transformation matrix of

the ni-th KG (d is the dimension of the embeddings
of entities and relations), Concat(·) is a vector
concatenation function. Then the attention score is
defined as:

Att(hli, h
l
j(r)) =

exp(αr
ij)∑

ej′∈Nni (ei)

exp(αr
ij′)

, (3)

where αr
ij is referred as a function which scores the

significance of neighbor nodes to the target node.
Here αr

ij is computed as:

αr
ij =

βr√
d
(W l

qni
hli)

T (W l
kni
hlj(r)), (4)

where βr is a learnable relation variable to weigh
the importance of relation r (Huang et al., 2022),
and W l

qni
∈ Rd×d, W l

kni
∈ Rd×d are two transfor-

mation matrices of the ni-th KG.
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4.1.2 Cross-Graph Attention
Besides mono-graph attention, we propose cross-
graph attention for multilingual KGC in order to
better make use of multi-lingual KGs. The key idea
of cross-graph attention is that knowledge trans-
fer between different knowledge graphs should be
performed in different ways. Hence, cross-graph
attention is proposed to aggregate the information
from other KGs in different languages.

Cross-graph attention works similarly to mono-
graph attention. Assume that the target node ei is
from the ni-th KG and its neighbor nodes are from
the nj-th KG (j 6= i) (e.g., the first subgraph in
Figure 2). Formally, the cross-graph representation
is updated as:

hl+1
i = hli + σ(

∑

ej∈Nnj (ei)

Att(hli, h
l
j(r))h

l
j(r)),

(5)
where Nnj (ei) indicates the neighbor node set from
the nj-th KG of ei and hli and hlj in this subsec-
tion are abbreviations of hlinj

and hljnj
It should

be noted that hli and hlj in this subsection are ab-
breviations of hlini

and hljni
in brief. The neighbor

message hlj(r) is calculated as:

hlj(r) =W l
vnj

Concat(hlj , r), (6)

where W l
vnj
∈ Rd×2d is a transformation matrix of

the nj-th KG. Then the attention score is defined
as follows:

Att(hli, h
l
j(r)) =

exp(αr
ij)∑

ej′∈Nnj (ei)

exp(αr
ij′)

. (7)

Similar to the mono-graph attention, we calculate
αr
ij as:

αr
ij =

βr√
d
(W l

qni
hli)

T (W l
knj
hlj(r)), (8)

where W l
qni
∈ Rd×d, W l

knj
∈ Rd×d are the corre-

sponding transformation matrices of the ni-th KG
and nj-th KG, respectively.

4.2 Language-Sensitive Aggregation
After getting the hidden representations from differ-
ent source KGs, we need an efficient aggregation
module to integrate the information from multi-
ple sources. In order to ensure the model explic-
itly knows which language-specific KG the embed-
ding belongs to, we propose a method similar to

that used in multilingual machine translation (Firat
et al., 2016; Zhang et al., 2020), that is, adding a
language tag to each language-specific information.
As a result, we design a language-sensitive aggrega-
tion module to get the final representation of the tar-
get node. To begin, we denote the multiple vectors
output by multi-graph attention as h1, h2, · · · , hN
and the output vector of the mono-graph attention
is also denoted as ht. Second, we maintain N lan-
guage vectors hk1, hk2, · · · , hkN , as the indicators
of each language. Then, the i-th representation
with the corresponding language indicator is de-
fined as:

hvi = Concat(hi, hki). (9)

The vectors in Eq. (9) are used to calculate the
weights of different languages to be aggregated
into the target one. Finally, the final representation
of the target node is calculated as follows:

htf = ht + σ(
∑

i∈1,2,··· ,N
Att(ht, hi)Wvhi), (10)

Att(ht, hi) =
exp(αti)∑

j∈1,2,··· ,N
exp(αtj)

, (11)

αti =
1√
d
(Wqhvt)

T (Wkhvi), (12)

where Wq,Wk,Wv are three transformation matri-
ces.

4.3 KGC Decoder

Given the embeddings of entities and relations, the
score of a candidate triple could be calculated by
a KGC decoder. In this paper, we adopt the score
function proposed in TransE (Bordes et al., 2013)
as:

φ(h, r, t) = −‖h+ r − t‖2. (13)

In order to increase the score of the correct triple
(h, r, t) while decrease the score of the false triple
(h, r, t′), we minimize the following margin-based
ranking loss:

L =
∑

(h,r,t)∈T ,
(h,r,t′)/∈T

[
λ− φ(h, r, t) + φ(h, r, t′)

]
+
,

(14)
where T is the triple set consisting of all triples
from the given N KGs, λ > 0 is a margin hyperpa-
rameter and [x]+ = max(x, 0).
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5 Experiments and Analysis

We have conducted a series of experiments on the
multilingual KGC task with our model and the
results have been carefully analyzed.

5.1 Datasets and Evaluation Metrics

Datasets. We use two datasets for evaluation: DBP-
5L (Chen et al., 2020) and E-PKG (Huang et al.,
2022). The statistics are shown in Table 1. The
DBP-5L dataset consists of five language-specific
KGs extracted from DBpedia, including Greek
(EL), English (EN), Spanish (ES), French (FR) and
Japanese (JA). The E-PKG dataset is a multilin-
gual E-commerce KG dataset about phone-related
product information in six languages, including
German (DE), English (EN), Spanish (ES), French
(FR), Italian (IT) and Japanese (JA). The relations
in both datasets are in English and shared across
different language-specific KGs. The English KGs
in both datasets are the largest, and the smallest are
the Greek KG and the Japanese KG, respectively.

Evaluation Metrics. Following previous work, we
evaluate our LSMGA-based model with the task
of tail entity prediction. Concretely, we rank all
entities in the candidate set to predict t given h
and r for each triple (h, r, t) in the test set. Then
three common evaluation metrics are reported,
i.e. Hits@1, Hits@10 and mean reciprocal ranks
(MRR). Hits@k computes the fraction of correct
entities ranked within top-k, and MRR is the aver-
age reciprocal rank of all test instances. Besides,
we adopt the filtered setting in (Bordes et al., 2013)
which removes the scores of all known triples in
the training, validation and test sets.

Lang. #Entity #Relation #Train #Valid #Test
DBP-5L

EL 5,231 111 8,670 4,152 1,017
EN 13,996 831 48,652 24,051 7,464
ES 12,382 144 33,036 16,220 4,810
FR 13,176 178 30,139 14,705 4,171
JA 11,805 128 17,979 8,633 2,162

E-PKG
DE 17,223 21 45,515 22,753 7,602
EN 16,544 21 60,310 39,150 10,071
ES 9,595 21 18,090 9,039 3,034
FR 17,068 21 47,999 23,994 8022
IT 15,670 21 42,767 21,377 7,148
JA 2,642 21 10,013 5,002 1,688

Table 1: The statistics of DBP-5L and E-PKG datasets.

5.2 Details of Implementation

During the training stage, we combine the instances
in all training sets for training. There are two ways
to select the optimal model, one is to select an
optimal model via the average MRR on all valida-
tion sets and the other is to use the validation set
of each KG separately to save the optimal model
corresponding to that KG. In this paper, the exper-
iments are carried out in the first way as depicted
in Figure 3, which is consistent with the goal of
this paper to implement KGC on all given KGs by
using only one model.

Most hyperparameters are shared between both
datasets. We use Adam (Kingma and Ba, 2015)
optimizer to train our model. The embeddings of
entities and relations are initialized randomly and
their dimensions are 256, as is the hidden dimen-
sion of the GNN encoder. Besides, the layer of
GNN is set as 2. Grid search is used to select the
learning rate lr and the margin λ with ranges lr =
{1×10−4, 5×10−4, 1×10−3, 5×10−3, 1×10−2},
λ = {0.2, 0.3, 0.5, 0.8}. The best learning rate is
5 × 10−3 for DBP-5L dataset and 1 × 10−3 for
E-PKG dataset, while the best margin is 0.5 for
DBP-5L and 0.3 for E-PKG. Models are trained
with a batch size of 200 on one GeForce GTX
1080Ti GPU.

model 

training

model 

selection

model 

test

MRR

a
v

er
a
g

e

best 

model

train

train

train

train

train

val

val

val

val

val

test

test

test

test

test

Figure 3: The training process. The best model is se-
lected via the average MRR on all validation sets.

5.3 Main Results

In order to prove the effectiveness of our proposed
method, we empirically compare different methods.
For monolingual KGC methods, we choose the
classic models TransE (Bordes et al., 2013), RotatE
(Sun et al., 2019) and DisMult (Yang et al., 2015).
In addition, we also include KG-BERT (Yao et al.,
2019) which adopts pre-trained language models
for KGC tasks. For multilingual KGC methods, we
compare three recent related works: KEnS (Chen
et al., 2020) ensembles knowledge transfer across
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Method EL EN ES FR JA
H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR

Monolingual KGC methods
TransE 13.1 43.7 24.3 7.3 29.3 16.9 13.5 45.0 24.4 17.5 48.8 27.6 21.1 48.5 25.3
RotatE 14.5 36.2 26.2 12.3 30.4 20.7 21.2 53.9 33.8 23.2 55.5 35.1 26.4 60.2 39.8

DistMult 8.9 11.3 9.8 8.8 30.0 18.3 7.4 22.4 13.2 6.1 23.8 14.5 9.3 27.5 15.8
KG-BERT 17.3 40.1 27.3 12.9 31.9 21.0 21.9 54.1 34.0 23.5 55.9 35.4 26.9 59.8 38.7

Multilingual KGC methods
KEnS 28.1 56.9 - 15.1 39.8 - 23.6 60.1 - 25.5 62.9 - 32.1 65.3 -

AlignKGC 27.6 56.3 33.8 15.5 39.2 22.3 24.2 60.9 35.1 24.1 62.3 37.4 31.6 64.3 41.6
SS-AGA 30.8 58.6 35.3 16.3 41.3 23.1 25.5 61.9 36.6 27.1 65.5 38.3 34.6 66.9 42.9
LSMGA 33.1 89.9 54.5 16.8 61.7 32.4 25.6 74.8 42.8 31.2 81.3 48.6 33.5 79.1 49.8

Table 2: Main results for the DBP-5L dataset. H@k is a shorthand of Hits@k.

Method DE EN ES FR IT JA
H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR

Monolingual KGC methods
TransE 21.2 65.5 37.4 23.2 67.5 39.4 17.2 58.4 33.0 20.8 66.9 37.5 22.0 63.8 37.8 25.1 72.7 43.6
RotatE 22.3 64.3 38.2 24.2 66.8 40.0 18.3 58.9 33.7 22.1 64.3 38.2 22.5 64.0 38.1 26.3 71.9 41.8

DistMult 21.4 54.5 35.4 23.8 60.1 37.2 17.9 46.2 30.9 20.7 53.5 35.1 22.8 51.8 34.8 25.9 62.6 38.0
KG-BERT 21.8 64.7 38.4 24.3 66.4 39.6 18.7 58.8 33.2 22.3 67.2 38.3 22.9 63.7 37.2 26.9 72.4 44.1

Multilingual KGC methods
KEnS 24.3 65.8 - 26.2 69.5 - 21.3 59.5 - 25.4 68.2 - 25.1 64.6 - 33.5 73.6 -

AlignKGC 22.1 65.1 38.5 25.6 68.3 40.5 19.4 59.1 34.2 22.8 67.2 38.8 24.2 63.4 37.3 31.2 72.3 46.2
SS-AGA 24.6 66.3 39.4 26.7 69.8 41.5 21.0 60.1 36.3 25.9 68.7 40.2 24.9 63.8 38.4 33.9 74.1 48.3
LSMGA 30.7 68.5 44.8 31.9 70.2 45.9 23.1 61.1 36.5 23.7 63.5 38.2 26.8 64.5 41.0 43.7 78.4 57.1

Table 3: Main results for the E-PKG dataset. H@k is a shorthand of Hits@k.

multiple language-specific KGs; AlignKGC (Singh
et al., 2021) performs KGC together with entity
alignment and relation alignment on multilingual
KGs; SS-AGA (Huang et al., 2022) improves the
multilingual KGC task by dynamically generating
more potential alignment pairs.

The results are displayed in Table 2 and Table
3, and the figures of the methods for comparison
are derived from (Huang et al., 2022). It should be
noted that those methods employ mBERT (Devlin
et al., 2018) to initialize the entity and relation em-
beddings from their textual descriptions. For the
DBP-5L dataset, the performance of our LSMGA
is much better than the baseline methods in most
situations except Hits@1 metric on the Japanese
KG, which strongly verifies the effectiveness of
our proposed framework which only uses a sin-
gle knowledge model. As for the E-PKG dataset,
LSMGA achieves the best results in 5 out of 6 KGs
and is comparable to the baselines on the French
KG. Considering that we do not use the textual
descriptions of the entities, our results are more
competitive.

The Greek KG in DBP-5L and the Japanese KG
in E-PKG are much smaller than other KGs in both
datasets, with fewer entities and facts. And we
can see from the results that the performance gains

on the Greek KG and the Japanese KG are the
two biggest compared to other KGs, with MRR
rising from 35.3% to 54.5% and from 48.3% to
57.1%. This phenomenon demonstrates that the
proposed multi-graph attention can very effectively
take advantage of other language-specific KGs to
improve the KGC performance of the KG in low-
resource languages.

Table 4 shows the results of multilingual KGC
on the remaining KGs after each KG has been re-
moved from the DBP-5L dataset. Overall, we can
see that removing any KG will reduce the perfor-
mance of others. This further validates the comple-
mentarity of different language-specific KGs on the
KGC task and also proves that our model can well
realize knowledge transfer among multiple KGs.
Moreover, it can be discovered that removing the
English KG has the biggest impact on the overall
performance, since the English KG provides the
most information in the DBP-5L dataset.

5.4 Ablation Study

We conduct ablation studies to gain a deeper under-
standing of our model design. The models used for
comparison are the following: (a) W/O MGA is the
model to learn directly on the unified graph and the
information from all given KGs are aggregated by
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Method EL EN ES FR JA
H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR

Use all 33.1 89.9 54.5 16.8 61.7 32.4 25.6 74.8 42.8 31.2 81.3 48.6 33.5 79.1 49.8
-EL - - - 15.6 62.6 31.9 21.7 73.4 39.7 28.8 79.8 46.6 31.6 77.8 47.8
-EN 21.0 86.0 45.0 - - - 18.8 68.0 35.9 22.3 75.6 41.2 22.8 76.4 42.3
-ES 23.9 82.6 45.7 13.0 55.9 27.8 - - - 25.0 73.8 41.7 29.1 76.8 46.3
-FR 27.5 87.4 49.7 13.5 58.5 28.7 19.8 69.0 36.9 - - - 26.4 74.4 42.9
-JA 27.1 83.6 48.1 15.0 60.1 30.5 23.0 72.5 40.2 24.2 75.0 42.0 - - -

Table 4: The complementarity among different KGs in DBP-5L dataset.

mono-graph attention rather than multi-graph atten-
tion; (b) W/O LSA is the model using multi-graph
attention without language-sensitive aggregation,
which means the multiple vectors output by multi-
graph attention are aggregated without language-
indicator; (c) Add-LSMGA uses addition instead
of concatenation in Eq. (9); (d) Concat-LSMGA is
our proposed method.

Method Avg H@1 Avg H@10 Avg MRR
KEnS 24.9 57 -
AlignKGC 24.6 56.6 34.0
SS-AGA 26.9 58.8 35.2
W/O MGA 24.3 75.6 43.2
W/O LSA 23.0 77.0 42.3
Add-LSMGA 25.3 77.0 43.7
Concat-LSMGA 28.1 77.4 45.6

Table 5: Ablation on the DBP-5L dataset.

In order to have a more comprehensive compar-
ison, three current methods are also included and
the results are shown in Table 5. The DBP-5L
dataset is used and the metrics are the average cor-
responding metrics of the five KGs. First, we can
see that W/O MGA has made significant improve-
ments on Hits@10 and MRR, which proves the
effectiveness of sharing the aligned entities. Sec-
ond, the results of W/O LSA decreases slightly
on Hits@1 and MRR, indicating that only using
multi-graph attention without language-indicators
can not aggregate information from different KGs
effectively. After combining the language-sensitive
aggregation module, the performance outperforms
the method without using multi-graph attention.
Furthermore, our proposed LSMGA based on con-
catenation achieves the state-of-the-art.

6 Conclusion

In this paper, a multilingual knowledge graph com-
pletion model using a graph neural network with
language-sensitive multi-graph attention has been
proposed. We emphasize that the multilingual
KGC could be implemented well without an align-

ment model. In addition, language-sensitive multi-
graph attention allows knowledge transfer among
multiple KGs to be carried out in different ways.
Finally, the experiments on the DBP-5L and E-
PKG datasets show that our framework achieves
considerable improvement over existing methods.

Limitations

Since the unified graph is very large, it will take
more time to construct the subgraphs before the
first training. But after saving these subgraphs,
there is no need to rebuild the subgraphs in the
subsequent training process. On the other hand,
the aligned entities among different KGs is a nec-
essary condition for our proposed framework and
otherwise, our model can not conduct knowledge
transfer among the given KGs without an alignment
model or other techniques.
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