
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
Volume 1: Long Papers, pages 10406–10420

July 9-14, 2023 ©2023 Association for Computational Linguistics

The Benefits of Bad Advice: Autocontrastive Decoding across Model Layers

Ariel Gera, Roni Friedman, Ofir Arviv, Chulaka Gunasekara,
Benjamin Sznajder, Noam Slonim, Eyal Shnarch

IBM Research
{ariel.gera1, ofir.arviv, chulaka.gunasekara}@ibm.com,

{roni.friedman-melamed, benjams, noams, eyals}@il.ibm.com

Abstract

Applying language models to natural language
processing tasks typically relies on the repre-
sentations in the final model layer, as inter-
mediate hidden layer representations are pre-
sumed to be less informative. In this work,
we argue that due to the gradual improvement
across model layers, additional information can
be gleaned from the contrast between higher
and lower layers during inference. Specifically,
in choosing between the probable next token
predictions of a generative model, the predic-
tions of lower layers can be used to highlight
which candidates are best avoided. We propose
a novel approach that utilizes the contrast be-
tween layers to improve text generation outputs,
and show that it mitigates degenerative behav-
iors of the model in open-ended generation, sig-
nificantly improving the quality of generated
texts. Furthermore, our results indicate that
contrasting between model layers at inference
time can yield substantial benefits to certain
aspects of general language model capabilities,
more effectively extracting knowledge during
inference from a given set of model parameters.

1 Introduction

For a wide range of natural language processing
tasks, the standard practice is to rely on deep neu-
ral networks with a transformer-based architecture
(Vaswani et al., 2017). Such models are composed
of multiple transformer layers, where typically the
representations of the final layer are used for the
downstream task. As shown in prior works, some
of the representational knowledge required for per-
forming downstream tasks can already be found
within intermediate layers of the model (Geva et al.,
2021, 2022); at the same time, relying on the rep-
resentations of lower model layers does result in
decreased performance, specifically for inputs that
are more challenging (Schwartz et al., 2020; Xin
et al., 2020; Elbayad et al., 2020; Sun et al., 2022;
Schuster et al., 2022; Din et al., 2023).

Figure 1: An example of auto-contrastive decoding
(ACD) with GPT2, where the top layer (24) is taken
as the expert and contrasted with layer 12, the amateur.
As decoding is done token by token, we can only see
the direct effect on the first token, where ACD leads to
selecting an alternative high probability token - "In".

Recently, Li et al. (2022) considered a scenario
involving two language models; one is a very large
pre-trained model, termed the expert, and the other
is a much smaller version of the same architecture,
termed the amateur. Importantly, whereas these
models share some failure modes and undesirable
behaviors, the expert model clearly outperforms
the amateur model in language model tasks. Focus-
ing on an open-ended auto-regressive text gener-
ation task, they show that it is possible to exploit
the contrast between the predictions of the expert
and amateur to obtain an improved generated out-
put. They term this method Contrastive Decoding.
Specifically, they demonstrate that it is sometimes
beneficial to prefer predictions to which only the
expert model assigns a high probability, versus pre-
dictions to which both the expert and the amateur
assign high probabilities. Intuitively, since the ama-
teur model has a stronger propensity than the expert
for problematic behaviors (e.g., repetitiveness in
the case of text generation), we may be able to
diminish such behaviors by demoting predictions
that are strongly supported by the amateur model.

This scenario relies on a delicate balance: on the
one hand, when making a prediction in a relatively

10406

simpler context, one would expect both the expert
and amateur models to be highly confident about
the prediction, and justifiably so; in contrast, where
both of them assign very low likelihoods to a cer-
tain prediction, these prediction probabilities may
be uninformative. Thus, the aim of considering
the amateur’s predictions during generation is to
better inform a choice between a set of relatively
plausible predictions given an input; in other words,
the predictions of the amateur can serve as a tie-
breaker of sorts, helping to highlight which out of
a set of plausible alternative predictions is more
“expert-like” and less “amateur-like”.

Inspired by Li et al. (2022), in this work we
ask whether within a single language model, in-
termediate hidden layers can similarly be viewed
as “amateur” versions of the final “expert” output
layer. Given indications that model representations
gradually improve as an input progresses through
its layers (Elbayad et al., 2020; Geva et al., 2022),
we aim to examine whether the contrast or gap be-
tween the outputs at different model layers can be
harnessed to obtain better generation predictions.
In other words, we posit that the sub-optimal predic-
tions of intermediate hidden layers carry additional
information, which can be utilized during inference
to obtain more desirable next-token predictions.

Our approach, which we term Auto-contrastive
Decoding (ACD), redistributes a given model’s
probability distribution for the next token, by maxi-
mizing the difference between the log-probabilities
of the final layer and those of an intermediate hid-
den layer. This setting, where the expert and ama-
teur are situated within the same language model,
and their predictions can be carefully contrasted
at inference, is a highly practical one and can be
easily applied to language models of different sizes.

Our results show that ACD enables getting sig-
nificantly better predictions out of a given language
model, without changing its pre-trained weights.

Figure 1 illustrates an example of ACD applied
to GPT2, considering layer 12 as the amateur and
layer 24 as the expert. Both layers exhibit repeti-
tiveness, but applying ACD generates a much im-
proved output altogether.

The main contributions of this work are as fol-
lows:

1. We reproduce the findings of Li et al. (2022)
using a single medium-size model, by suggesting a
novel intra-model auto-contrastive setting.

2. We demonstrate that ACD improves some

aspects of language generation capabilities of pre-
trained language models, in essence extracting
more knowledge from the model at inference time.
We present human evaluation results showing that
this brings it to par with larger language models.

3. We release our code and the pre-trained model
checkpoints used for experiments in this paper, in
order to facilitate further research in this area1.

2 Related Work

There have been a number of studies on analyz-
ing the characteristics of different layers of trans-
former models. Rogers et al. (2020); Van Aken et al.
(2019) used probing to report that in BERT models
the lower layers carry the most information about
linear word order, syntactic information is most
prominent in the middle layers, and the final layers
of BERT are the most task-specific. Van Aken et al.
(2019) also show that similar behavior is observed
in other transformer models such as GPT2. Geva
et al. (2021, 2022) studied the role of feed-forward
layers in transformer models. They demonstrate
that representations across different layers capture
meaningful semantic and syntactic patterns, and de-
scribe how model predictions are gradually refined
as they progress across the different layers.

Aiming to reduce the computational load of
transformers, multiple works have explored early-
exiting, i.e., performing some calculations with-
out passing through all of the model layers. Such
works allow for an early (fast) ‘exit’ from neural
network calculations – for simple instances that
can be solved with high accuracy by lower layers –
while using a late (slow) ‘exit’ for more challenging
instances (Simoulin and Crabbé, 2021; Schwartz
et al., 2020; Xin et al., 2020; Elbayad et al., 2020;
Sun et al., 2022; Schuster et al., 2022).

Decoding algorithms are commonly classified
as search-based and sampling-based. Search-based
methods (Steinbiss et al., 1994) optimize for the
language model log-probabilities, while sampling
methods (Holtzman et al., 2019; Fan et al., 2018)
draw the next token from a truncated distribution.
The idea of using contrast during decoding has
been explored in several studies. Liu et al. (2021)
combine a pretrained LM with ‘expert’ LMs and
‘anti-expert’ LMs, where tokens only get high prob-
ability if they are considered likely by the experts
and unlikely by the anti-experts. Su et al. (2022)

1https://github.com/IBM/
auto-contrastive-generation

10407

https://github.com/IBM/auto-contrastive-generation
https://github.com/IBM/auto-contrastive-generation

propose constrastive search for decoding, where
the generated output is selected from the set of
most probable candidates predicted by the model
while being discriminative with respect to the con-
text. More recently, Li et al. (2022) suggested to
contrast between the likelihood under a large LM
(expert) and a small LM (amateur) during decod-
ing. The present work differs significantly from the
aforementioned contrastive approaches, in that we
contrast the next-token distributions within a single
LM, across expert and amateur layers.

3 Auto-contrastive Decoding

We set the goal of applying the Contrastive De-
coding (CD) method, from Li et al. (2022), using
a single model rather than two different models
(in their setting, a large and a small model of the
same model architecture). Thus, we generally fol-
low the CD approach to calculate the next-token
predictions, by contrasting the predictions of the
expert with those of the amateur. However, in our
setting, both the expert and the amateur are situated
in the same model, and are defined by two different
layers of that model. We term this new method
Auto-contrastive Decoding (ACD). Note that this
setting is more practical and less computationally
demanding, as it does not require passing every
input through two different models in parallel.

Next, we describe how we obtain the expert and
the amateur from a single model; and in §3.2, we
define the auto-contrastive next-token distribution,
given the probability distributions of the expert and
the amateur.

3.1 Expert and Amateur in One Model

Given a pre-trained language model, LMorig, we
take its final output layer as the expert. Similar to
Li et al. (2022), we denote pEXP(xt|x<t) as the next-
token probability distribution of this layer, condi-
tioned on the preceding context (xt being the next
token to predict, and x<t is the context that pre-
cedes it).

To obtain the amateur from the same model, we
add a linear head to one of its intermediate hidden
layers, making LMorig a multi-exit model (Scarda-
pane et al., 2020; Liu et al., 2022). This new head
maps the output of the intermediate layer, given
a preceding context, to a probability distribution
over the vocabulary for the next token, denoted
pAMA(xt|x<t).

To train only this new head, we freeze all of

the existing pre-trained weights of LMorig; we then
train the model, applying the same self-supervised
objective that was used to pre-train LMorig.

In this training we do not aim to fully reproduce
the original pre-training of LMorig; note that we are
training a relatively small number of parameters,
and thus can use less data and perform fewer train-
ing steps. This reduced training is likely to lead to
certain disparities between the amateur head and
the expert head, as the latter was trained as part of
the original LMorig pre-training. Thus, we also train
a new expert head, using an identical procedure as
the one used to train the amateur head2.

To amplify the performance gap between the ex-
pert and the amateur, Li et al. (2022) introduced an-
other limitation on the amateur model (apart from
it being a small version of the expert model) – the
preceding context given to the amateur model is
restricted, notably shorter than the one provided to
the expert model. In ACD we opt to abstain from
this additional (and somewhat arbitrary) limitation,
and both pEXP(xt|x<t) and pAMA(xt|x<t) are con-
ditioned on the same full context.

3.2 Auto-contrastive Next-token Distribution

Next, we describe the auto-contrastive decoding,
ACD. This method outputs a token-level probabil-
ity distribution by contrasting the next-token distri-
bution of the expert, pEXP(xt|x<t), with that of the
amateur, pAMA(xt|x<t).

Following Li et al. (2022), we first implement
the CD adaptive plausibility constraint, Vhead(x<t),
defined by:

Vhead(x<t) = (1)

{xt∈V : pEXP(xt|x<t) ≥ αmax
x′
t∈V

pEXP(x
′
t|x<t)}

Given a preceding context x<t, this constraint se-
lects a subset of plausible next tokens, out of the vo-
cabulary V , whose probabilities are above a thresh-
old. The threshold is a fraction α of the probability
of the token with the highest probability in the vo-
cabulary. The hyperparameter α is in the range
[0, 1], and it is set to 0.1 in all our experiments, as
done by Li et al. (2022).

The score for a plausible xt, i.e., xt ∈
Vhead(x<t), indicating its likelihood to be the next

2Our motivation for training a new expert head was to
explore a scientifically “cleaner” scenario, where there is a
more straightforward relation between the amateur and expert
heads. However, considering the results we report in App. C,
from a practical standpoint this may not be necessary.

10408

token given the context x<t, is calculated by con-
trasting the probabilities given to it by the expert
and by the amateur:

S(xt|x<t) = log pEXP(xt|x<t)−log pAMA(xt|x<t)
(2)

Note that this contrastive score is only applied to
the tokens in Vhead(x<t). This constraint serves an
important purpose in that it helps avoid assigning
high probabilities to very unlikely tokens, namely
those for which pEXP is very low; at the same time,
where the expert is highly confident about a single
top prediction, it helps ensure that pAMA does not
alter the final outcome3.

Li et al. (2022) set the score of the rest of the
tokens in the vocabulary – those not included in
Vhead(x<t) – to minus infinity. We argue that this
design decision has the disadvantage of practically
ignoring a large portion of the vocabulary, and thus
losing information that can be useful.

For instance, search-based decoding algorithms
that rely on S(xt|x<t) will be limited to consid-
ering a small subset of the possible next tokens.
Additionally, applications that require comparing
the probabilities of a predefined and closed set of
token options (See Liu et al., 2023), will similarly
lose valuable and pertinent information that was
initially available in the LMorig probability distri-
bution.

Thus, in ACD we retain the probabilities of the
tokens not included in Vhead(x<t), keeping the dis-
tribution of the expert head:

SACD(xt|x<t) = (3)
{
S(xt|x<t) if xt∈Vhead(x<t)

pEXP(xt|x<t) otherwise

We further transform this score function into a
probability distribution. The distribution of the
expert head is split into two probability masses;
one for the tokens in Vhead(x<t), and another for
the tokens not included in it. We redistribute the
former probability mass, weighted by the scores

3Consider for example a case where the token with the
maximum probability is assigned a very high probability, e.g.,
maxx′

t∈V pEXP(x
′
t|x<t) > 0.9, and where pAMA for this token

is also quite high. In this scenario, while Eq. 2 may give a
very low contrast score S(x′

t|x<t), this will be the only token
that meets Vhead(x<t) (Eq. 1), and thus it will nonetheless be
selected as the next token despite its low score.

given to each token by Eq. 2:

Sredist(xt|x<t) = (4)

softmax
(
S(xt|x<t)

)
·

∑

x′
t∈Vhead(x<t)

pEXP(x
′
t|x<t)

Replacing S(xt|x<t) with Sredist(xt|x<t) in
Eq. 3, we obtain our auto-contrastive decoding
probability distribution:

pACD(xt|x<t) = (5)
{
Sredist(xt|x<t) if xt∈Vhead(x<t)

pEXP(xt|x<t) otherwise

To summarize, auto-contrastive decoding, ACD,
is a method to apply contrastive decoding over a
single model. In §3.1 we explain how to create the
amateur by adding and training a new head over
an intermediate layer. In §3.2 we describe how to
obtain a new probability distribution for the next
token by contrasting the expert and the amateur.

4 Experimental Setup

To test our approach, we conduct experiments on
open-ended text generation, as well as on general
language modeling benchmarks, comparing vari-
ous performance metrics with and without applying
auto-contrastive decoding.

In order to analyze changes in performance
across model layers, we add multiple new linear
exit heads; thus, we also report and compare the
baseline model behavior at different exit layers.

4.1 Models
We use pre-trained auto-regressive language mod-
els from the GPT family – GPT-2 (Radford et al.,
2019) and GPT-Neo4 – as test models for explor-
ing multi-exit performance and the effects of ACD.
Specifically, we use the GPT-2 Medium (355M pa-
rameters, 24 layers) and GPT-Neo-125M (125M
parameters, 12 layers) pre-trained model check-
points5.

As outlined in §3.1, we create multi-exit vari-
ants of these models, that are identical to the origi-
nal pre-trained checkpoints, other than the newly-
added parameters for several new linear exit heads.
To present a more comprehensive analysis, we add
multiple heads, one connected to each of the even-
numbered layers; thus, we add a total of 12 and 6

4https://github.com/EleutherAI/gpt-neo
5https://huggingface.co/gpt2-medium, https:

//huggingface.co/EleutherAI/gpt-neo-125M

10409

https://github.com/EleutherAI/gpt-neo
https://huggingface.co/gpt2-medium
https://huggingface.co/EleutherAI/gpt-neo-125M
https://huggingface.co/EleutherAI/gpt-neo-125M

(a) Coherence (b) Diversity

Figure 2: Open-ended generation for different exit layers. The plots depict greedy decoding results of a pre-
trained GPT2-Medium model, using different exit layers for generation. Each point represents an average over the
WikiText-103 test examples of the coherence (a) and n-gram diversity (b).

exit heads to GPT2-Medium and GPT-Neo-125M,
respectively. Each head uses the same configura-
tion as the original language modeling head, with
outputs for the 50257 tokens in the vocabulary and
an input size of 1024 (GPT-2) or 768 (GPT-Neo-
125M).

We train these heads on language modeling using
self-supervision over the CC-100 (Conneau et al.,
2020) corpus, following a standard pre-training ap-
proach (see Appendix A for further details), keep-
ing the original model parameters frozen. As de-
scribed in §3.1, when training the heads we do not
precisely replicate the original pre-training regime;
specifically, we use different pre-training data and
train for a smaller number of training steps6. Never-
theless, we verify the quality of the training process
by comparing the performance of a newly-trained
final layer exit head to that of the original exit head
of the pre-trained model (cf. App. C).

The pre-trained multi-exit base models are used
as-is for open-ended text generation and for the
benchmarks reported in §5.2. Model training and
text generation were performed using the Hugging
Face transformers library (v4.22.2) with the py-
torch machine learning framework (v1.11.0).

4.2 Tasks and Metrics

4.2.1 Open-ended generation
Following Li et al. (2022), we evaluate open-ended
text generation in 3 domains: books, Wikipedia,

6for GPT-2, both the training corpus, and a comprehen-
sive description of training details for the original pre-training,
have not been publicly released; GPT-Neo-125M was origi-
nally trained for 572,300 steps over 300 billion tokens.

and news, using the BookCorpus (Zhu et al., 2015),
WikiText-103 (Merity et al., 2017), and Wikinews7

text corpora, respectively. We test open-ended pas-
sage continuation by using the first 32 words of a
passage as a prompt, and using the multi-exit vari-
ant of the pre-trained model to decode up to 100
tokens8.

Since ACD outputs a full probability distribu-
tion (see §3.2), it can more naturally be combined
with various existing decoding strategies. In this
study we combine ACD with the following decod-
ing methods: Greedy search, Beam search (Fre-
itag and Al-Onaizan, 2017; beam=5), Top-k sam-
pling (Fan et al., 2018, k=50), and Nucleus (top-p)
sampling (Holtzman et al., 2019; p=0.95).

Generation quality is evaluated using automatic
metrics focusing on different axes: aggregated n-
gram diversity measures the repetitiveness within
the generated continuations; semantic coherence
estimates topic drift by calculating similarity be-
tween the prompt and continuation. For further
details on these metrics, refer to Su et al. (2022).

We also report results of human evaluation of the
generation quality, comparing a sample of genera-
tion results across different settings, as explained
below in §5.1.

4.2.2 Language modeling benchmarks
We consider the pre-trained multi-exit model,
which applies ACD at inference time and outputs
complete next-token probability distributions (see

7http://www.wikinews.org
8Li et al. (2022) decode 256 tokens in continuation to the

prompt, however they use stronger base models. With our
models, generation deteriorates massively at those lengths.

10410

http://www.wikinews.org

wikitext wikinews bookcorpus

div coh div coh div coh
Greedy 0.21 0.59 0.23 0.57 0.14 0.40
Greedy+ACD 0.75 0.63 0.74 0.61 0.62 0.50

Beam-5 0.20 0.61 0.24 0.60 0.08 0.35
Beam-5+ACD 0.57 0.62 0.58 0.61 0.37 0.48

Top-k 0.96 0.57 0.96 0.55 0.97 0.42
Top-k+ACD 0.96 0.61 0.96 0.59 0.96 0.47

Top-p 0.98 0.50 0.98 0.49 0.98 0.36
Top-p+ACD 0.98 0.55 0.98 0.54 0.98 0.41

Table 1: The effect of ACD on open-ended generation.
This table lists the automatic quality metrics of n-gram
diversity (div) and topic coherence with the prompt (coh)
of a pretrained GPT2-Medium model, using different
decoding strategies. For each strategy we compare re-
sults using the probability distribution of the exit head
of the final (24th) model layer, to those obtained using
an ACD probability distribution, contrasting the final
layer next-token predictions with those of exit layer 12.

§3.2), to be a fully functional language model.
This model contains the same parameters as LMorig

(apart from the added linear exit heads), but differs
in its characteristics.

We therefore evaluate the ACD-enhanced model
as a pre-trained language model, according to
benchmarks that are commonly used (e.g., Black
et al., 2022; Zhang et al., 2022) to measure lan-
guage modeling capabilities.

LAMBADA (Paperno et al., 2016) is a popular
benchmark that was proposed to encourage com-
putational language models to keep track of infor-
mation in the broader discourse, rather than paying
attention to local context only. It has been shown
that language models which exploit the context in a
shallow manner perform poorly on this benchmark
(Paperno et al., 2016). It is thus a relevant measure
of more advanced language understanding abilities.

The typical measure used for reporting progress
in language modeling is Perplexity (Jelinek et al.,
1977), the inverse of the (geometric) average prob-
ability assigned to each word in the test set by the
model. Perplexity is commonly used as a measure
of model quality, due in part to its simplicity and
its relation to the maximum likelihood framework.

For running the benchmark tests, we use the Lan-
guage Model Evaluation Harness library9 (v0.3.0).

9https://github.com/EleutherAI/
lm-evaluation-harness

5 Results and Analysis

5.1 Open-ended generation
Results for open-ended text generation for the
GPT2-Medium model are shown in Table 1. For the
greedy and beam-search strategies, which exhibit
low diversity of generated texts, we see a signif-
icant improvement in diversity when combining
them with ACD. At the same time, semantic co-
herence scores with ACD are higher in almost all
settings tested. Similar effects of ACD can be ob-
served for the smaller GPT-Neo-125M model (App.
Table 5).

The gains in text diversity highlight one major
effect of ACD, which is that of reducing repetitive-
ness in generation. This is true both to short loops,
such as two tokens being generated again and again,
as well as longer ones. Also, in some cases texts
generated by the top layer simply repeat/variate the
prompt. See Table 2 for examples of the above
failures and their mitigation.

Given the dramatic performance boost given by
ACD, as seen in Tables 1 and 5, we further ask how
ACD-enhanced generation outputs would compare
to those of a larger model with more advanced
capabilities. To this end, we perform open-ended
generation using the GPT2-XL model (1.5B param-
eters). As can be seen in Table 3, GPT2-Medium
(355M parameters) that is enhanced by ACD sig-
nificantly outperforms its larger scale counterpart.

To verify that these results are robust and not an
artifact of the automatic measures used, we conduct
human evaluation of a sample of generation outputs
from the results in Table 3, presenting the prompt
and pairs of generated texts to human annotators
and asking them to compare the quality of outputs.
Results indicate that outputs from GPT2-XL were
twice as likely to be judged as better compared to
the baseline GPT2-Medium; but strikingly, GPT2-
Medium outputs obtained using ACD were overall
judged as slightly better than those of the much
larger GPT2-XL. For details on the human evalua-
tion task, refer to App. D.

In Fig. 2a we portray the behavior of the au-
tomatic coherence measure when relying on the
outputs of different GPT2-Medium exits. It appears
that the generation coherence, i.e., the semantic
relatedness between the prompt and generated con-
tinuation, rises consistently as progressing from
lower to higher layers. Presumably, this reflects
a gradual decrease in topic drift behaviors and an
increased ability to generate longer sequences that

10411

https://github.com/EleutherAI/lm-evaluation-harness
https://github.com/EleutherAI/lm-evaluation-harness

Mitigated
failure

Prompt Greedy ACD Greedy

Short loop The use of iron instead of
wood as the primary mate-
rial of

furniture could have created problems,
says study leader Prof. Iain Kelly from
the School of Materials Science and Engi-
neering at the University

the building blocks of the building blocks of
the building blocks of the building blocks of
the building blocks of the building blocks of
the

Longer loop Du Fu’s political comments
are based on emotion rather
than calculation:

if his party loses power, he fears, China
will face an even more uncertain future
than it faces now. He fears a

he is a man who has been in the trenches for
years, and he is a man who has been in the
trenches for

Prompt

repeated

The first ironclads to have
all-steel armor were the Ital-
ian Caio Duilio

in 1230 and the Saxon Magnus in 1252,
both of whom wore steel shields. Iron ar-
mor became so common that

and the German Wilhelm von Habsburg. The
first ironclads to have all-steel armor were
the Italian Caio

Table 2: Examples of common failures diminished when applying ACD.

Diversity Coherence

GPT2-Medium 0.22 0.63
GPT2-XL 0.31 0.63

GPT2-Medium + ACD 0.75 0.63

Table 3: Scale effects of ACD on open generation. De-
picted are topic coherence and n-gram diversity of gener-
ation outputs over WikiText-103, for 3 settings: a large
model (GPT2-XL, 1.5B parameters), a medium-sized
model (GPT2-Medium, 355M parameters, using its orig-
inal exit head), and the same medium-sized model ap-
plying ACD at inference time, contrasting the next-token
predictions of the final (24th) layer and layer 12.

remain semantically coherent.
Fig. 2b depicts the diversity of open-ended gen-

eration across layers. Interestingly, this measure
exhibits more complex patterns, rising and falling
as we progress from lower to higher layers. As is
common with automatic quality metrics for text
generation, we see this as an indication that n-gram
repetition provides only a partial window into the
generation quality, particularly where the diversity
is overall quite low. Moreover, the nature of out-
puts may undergo phase shifts as they improve. For
instance, generated sequences may shift from being
diverse but unrelated to the inputs in lower layers,
to texts that are semantically related to the prompt
but highly repetitive, and so on.

5.2 Language modeling benchmarks
Results for the LAMBADA benchmark task, for
individual exit layers of GPT2-Medium and for
ACD generation, are shown in Figure 3. The ac-
curacy and the perplexity metrics of this bench-
mark dataset both improve as progressing along
the model layers. In both cases, performance is fur-
ther improved by applying ACD, with substantial
gains in accuracy. Similar gains are obtained for

the GPT-Neo-125M model (App. Figure 5).
This is a non-trivial finding, in that it provides an

indication that by using ACD we enable the model
to more accurately take into account the broader
context and long-range dependencies in the text.

As in §5.1, one may further ask how these gains
compare to the performance reached by a larger
pre-trained model. Indeed, as shown in Table 4,
GPT2-Medium enhanced by ACD is on par with
the larger GPT2-XL model (1.5B parameters) on
the LAMBADA benchmark, achieving improved
accuracy but also somewhat inferior perplexity.

Figure 4 depicts the word-level perplexity over
the general WikiText-2 dataset. As can be seen,
perplexity behaves as expected across model layers.
For this general corpus, ACD does not improve the
overall perplexity beyond that of the final exit layer.

Thus, we see that ACD provides a substantial
benefit for the challenging LAMBADA data, that
specifically measures a model’s advanced ability
to look at broader context windows, but not for the
overall perplexity over a general text corpus. While
this is an initial finding that deserves further explo-
ration, one interpretation is that ACD specifically
strengthens “higher-layer behaviors”, such as those
measured by the challenging LAMBADA task, but
also induces other types of biases into the model’s
output probability distributions.

6 Discussion

In this work we develop an approach that contrasts
different model layers, improving the output proba-
bilities of a generative model. Applying it to exist-
ing pre-trained language models, we demonstrate
that intermediate low-performing model layers can
in some cases inform the predictions of the high-
performance final layer. This setting is of particular
interest due to its practicality and flexibility, as it
can be applicable to models of different sizes and is

10412

Figure 3: GPT2 performance on the LAMBADA benchmark. Plots depict accuracy (left, higher is better) and
perplexity (right, lower is better; presented in log scale) on LAMBADA across layers. Individual GPT2-Medium
exits are denoted by •; results for the ACD probability distribution, contrasting layers 24 and 12, are denoted by +.

Figure 4: GPT2 performance on the WikiText-2
benchmark. The plot depicts the word-level perplexity
(lower is better) over the WikiText-2 corpus. Individual
GPT2-Medium exit layers are denoted by •, while results
for the ACD probability distribution, contrasting layers
24 and 12, are denoted by +.

utilized during inference via a single forward pass.

But more broadly, our findings bring forth an en-
ticing notion, that one would be able to make more
out of an existing model simply by considering
the predictions of intermediate layers (which are
typically ignored). This idea is somewhat counter-
intuitive, as language models are in a sense opti-
mized – and often in a long pretraining process over
massive corpora – for the quality of their final layer
representations. At the same time, thematically
this notion is in line with works that describe the
computations in transformer models as a linear-like
progression, where each layer refines the represen-
tations of the previous ones, and where even the
representations of specific tokens can shift in a con-
sistent direction along with the progression across

LAMBADA Acc. ↑ Ppl. ↓
GPT2-Medium 0.43 18.3
GPT2-XL 0.51 10.6

GPT2-Medium + ACD 0.55 15.4

Table 4: Scale effects of ACD on LAMBADA. De-
picted are the accuracy and perplexity scores of the
LAMBADA benchmark, for 3 settings: a large model
(GPT2-XL, 1.5B parameters), a medium-sized model
(GPT2-Medium, 355M parameters, using its original
exit head), and the same medium-sized model apply-
ing ACD at inference time, contrasting the next-token
predictions of the final (24th) layer and layer 12.

layers (Geva et al., 2021, 2022). Loosely speak-
ing, if the changes from one layer to the next can
sometimes track a vector of improvement with a
discernible direction, then in theory one could try
and “extend” this vector; and doing so may help
estimate what a larger model, one with additional
layers, would have said about a particular instance.
We see these as interesting avenues both for theo-
retical study, and for empirical explorations as to
whether surprising findings such as those presented
here can be applied to real-world use-cases.

Here we present an initial, and relatively simple,
algorithm for performing the ACD contrast between
layers. As in Li et al. (2022), our formulation still
relies on a somewhat arbitrary hyperparameter α;
also, contrast is always done with respect to a single
particular exit layer, and choosing the most appro-
priate layer for contrast may not be trivial. Here,
for simplicity and robustness, we did not attempt
to optimize these two important hyperparameters,

10413

and used a single configuration throughout our ex-
periments. However, we see much room for future
work on improving these details, and finding ways
to intelligently choose which layers to contrast and
how to combine between them.

An interesting avenue for future work concerns
the effect of ACD when applied not just to a pre-
trained model, but to one fine-tuned for a particular
downstream task. Specifically, it may be that spe-
cific types of generation tasks may derive more
benefit from ACD, depending on their reliance on
more “high-level” model capabilities, and also on
the importance of diversity in generated outputs.

The present work focuses specifically on gen-
erative models, and on improving the quality of
text generation outputs and next-token predictions.
However, the basic approach of looking at the out-
puts of intermediate layers and using them to in-
form model predictions is a general one, and is
thus also worth exploring in other contexts, such as
classification tasks.

To sum, our findings indicate that our proposed
approach, ACD, can be of great practical value, in
that it significantly boosts the performance of a
generative language model with a minimal compu-
tational cost. This approach suggests new avenues
on how to best extract knowledge from a language
model and more efficiently utilize its parameters.

Limitations

One of the primary limitations of this work is that
this is essentially an empirical study. Although we
provide extensive experiments to show that the pro-
posed approach demonstrates significantly better
results in different settings, currently we do not pro-
vide any theoretical guarantees for this approach.
Second, many of our experiments would not be
easily reproduced in languages other than English,
that lack sufficient linguistic resources. During this
study we used the GPT-2 and GPT-Neo language
models, which have been trained on large amounts
of English text. Finally, anecdotally we observed
that this approach can also increase hallucination
behaviors, which are a common issue with many
text generation models. During application, one
would have to take necessary measures to monitor
the hallucinations produced by the model.

Acknowledgements

We thank our many colleagues for their valuable
input on this research effort, and owe particular

thanks to Liat Ein-Dor and Leshem Choshen for
their advice and assistance.

References
Sid Black, Stella Biderman, Eric Hallahan, Quentin

Anthony, Leo Gao, Laurence Golding, Horace He,
Connor Leahy, Kyle McDonell, Jason Phang, et al.
2022. GPT-NeoX-20B: An open-source autoregres-
sive language model. arXiv:2204.06745.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8440–
8451, Online. Association for Computational Lin-
guistics.

Alexander Yom Din, Taelin Karidi, Leshem Choshen,
and Mor Geva. 2023. Jump to conclusions: Short-
cutting transformers with linear transformations.
arXiv:2303.09435.

Maha Elbayad, Jiatao Gu, Edouard Grave, and Michael
Auli. 2020. Depth-adaptive transformer. In ICLR
2020-Eighth International Conference on Learning
Representations, pages 1–14.

Angela Fan, Mike Lewis, and Yann Dauphin. 2018.
Hierarchical neural story generation. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 889–898, Melbourne, Australia. Association
for Computational Linguistics.

Markus Freitag and Yaser Al-Onaizan. 2017. Beam
search strategies for neural machine translation. In
Proceedings of the First Workshop on Neural Ma-
chine Translation, pages 56–60, Vancouver. Associa-
tion for Computational Linguistics.

Mor Geva, Avi Caciularu, Kevin Ro Wang, and Yoav
Goldberg. 2022. Transformer feed-forward layers
build predictions by promoting concepts in the vo-
cabulary space. arXiv:2203.14680.

Mor Geva, Roei Schuster, Jonathan Berant, and Omer
Levy. 2021. Transformer feed-forward layers are key-
value memories. In Proceedings of the 2021 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pages 5484–5495, Online and Punta Cana,
Dominican Republic. Association for Computational
Linguistics.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and
Yejin Choi. 2019. The curious case of neural text de-
generation. In International Conference on Learning
Representations.

Fred Jelinek, Robert L Mercer, Lalit R Bahl, and
James K Baker. 1977. Perplexity—a measure of the

10414

https://arxiv.org/abs/2204.06745
https://arxiv.org/abs/2204.06745
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.acl-main.747
https://arxiv.org/abs/2303.09435
https://arxiv.org/abs/2303.09435
https://openreview.net/pdf?id=SJg7KhVKPH
https://doi.org/10.18653/v1/P18-1082
https://doi.org/10.18653/v1/W17-3207
https://doi.org/10.18653/v1/W17-3207
https://arxiv.org/abs/2203.14680
https://arxiv.org/abs/2203.14680
https://arxiv.org/abs/2203.14680
https://doi.org/10.18653/v1/2021.emnlp-main.446
https://doi.org/10.18653/v1/2021.emnlp-main.446
https://openreview.net/forum?id=rygGQyrFvH
https://openreview.net/forum?id=rygGQyrFvH

difficulty of speech recognition tasks. The Journal of
the Acoustical Society of America, 62(S1):S63–S63.

Xiang Lisa Li, Ari Holtzman, Daniel Fried, Percy
Liang, Jason Eisner, Tatsunori Hashimoto, Luke
Zettlemoyer, and Mike Lewis. 2022. Contrastive de-
coding: Open-ended text generation as optimization.
arXiv:2210.15097.

Alisa Liu, Maarten Sap, Ximing Lu, Swabha
Swayamdipta, Chandra Bhagavatula, Noah A Smith,
and Yejin Choi. 2021. DExperts: Decoding-time con-
trolled text generation with experts and anti-experts.
In Proceedings of the 59th Annual Meeting of the As-
sociation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 6691–
6706. Association for Computational Linguistics.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang,
Hiroaki Hayashi, and Graham Neubig. 2023. Pre-
train, prompt, and predict: A systematic survey of
prompting methods in natural language processing.
ACM Computing Surveys, 55(9):1–35.

Xiangyang Liu, Tianxiang Sun, Junliang He, Jiawen Wu,
Lingling Wu, Xinyu Zhang, Hao Jiang, Zhao Cao,
Xuanjing Huang, and Xipeng Qiu. 2022. Towards
efficient NLP: A standard evaluation and a strong
baseline. In Proceedings of the 2022 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 3288–3303, Seattle, United States.
Association for Computational Linguistics.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2017. Pointer sentinel mixture mod-
els. In International Conference on Learning Repre-
sentations.

Denis Paperno, Germán Kruszewski, Angeliki Lazari-
dou, Ngoc-Quan Pham, Raffaella Bernardi, Sandro
Pezzelle, Marco Baroni, Gemma Boleda, and Raquel
Fernández. 2016. The LAMBADA dataset: Word
prediction requiring a broad discourse context. In
Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 1525–1534, Berlin, Germany.
Association for Computational Linguistics.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Anna Rogers, Olga Kovaleva, and Anna Rumshisky.
2020. A primer in BERTology: What we know about
how BERT works. Transactions of the Association
for Computational Linguistics, 8:842–866.

Simone Scardapane, Michele Scarpiniti, Enzo Bac-
carelli, and Aurelio Uncini. 2020. Why should we
add early exits to neural networks? Cognitive Com-
putation, 12(5):954–966.

Tal Schuster, Adam Fisch, Jai Gupta, Mostafa Dehghani,
Dara Bahri, Vinh Q Tran, Yi Tay, and Donald Metzler.
2022. Confident adaptive language modeling. In
Advances in Neural Information Processing Systems,
volume 35, pages 17456–17472. Curran Associates,
Inc.

Roy Schwartz, Gabriel Stanovsky, Swabha
Swayamdipta, Jesse Dodge, and Noah A. Smith.
2020. The right tool for the job: Matching model and
instance complexities. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, pages 6640–6651, Online. Association
for Computational Linguistics.

Antoine Simoulin and Benoit Crabbé. 2021. How many
layers and why? An analysis of the model depth
in transformers. In Proceedings of the 59th Annual
Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference
on Natural Language Processing: Student Research
Workshop, pages 221–228, Online. Association for
Computational Linguistics.

Volker Steinbiss, Bach-Hiep Tran, and Hermann Ney.
1994. Improvements in beam search. In Third inter-
national conference on spoken language processing.

Yixuan Su, Tian Lan, Yan Wang, Dani Yogatama,
Lingpeng Kong, and Nigel Collier. 2022. A
contrastive framework for neural text generation.
arXiv:2202.06417.

Tianxiang Sun, Xiangyang Liu, Wei Zhu, Zhichao Geng,
Lingling Wu, Yilong He, Yuan Ni, Guotong Xie, Xu-
anjing Huang, and Xipeng Qiu. 2022. A simple
hash-based early exiting approach for language un-
derstanding and generation. In Findings of the As-
sociation for Computational Linguistics: ACL 2022,
pages 2409–2421, Dublin, Ireland. Association for
Computational Linguistics.

Betty Van Aken, Benjamin Winter, Alexander Löser,
and Felix A Gers. 2019. How does BERT answer
questions? a layer-wise analysis of transformer rep-
resentations. In Proceedings of the 28th ACM Inter-
national Conference on Information and Knowledge
Management, pages 1823–1832.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Ji Xin, Raphael Tang, Jaejun Lee, Yaoliang Yu, and
Jimmy Lin. 2020. DeeBERT: Dynamic early exiting
for accelerating BERT inference. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 2246–2251, Online.
Association for Computational Linguistics.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, et al. 2022.

10415

https://arxiv.org/abs/2210.15097
https://arxiv.org/abs/2210.15097
https://doi.org/10.18653/v1/2021.acl-long.522
https://doi.org/10.18653/v1/2021.acl-long.522
https://dl.acm.org/doi/abs/10.1145/3560815
https://dl.acm.org/doi/abs/10.1145/3560815
https://dl.acm.org/doi/abs/10.1145/3560815
https://doi.org/10.18653/v1/2022.naacl-main.240
https://doi.org/10.18653/v1/2022.naacl-main.240
https://doi.org/10.18653/v1/2022.naacl-main.240
https://openreview.net/forum?id=Byj72udxe
https://openreview.net/forum?id=Byj72udxe
https://doi.org/10.18653/v1/P16-1144
https://doi.org/10.18653/v1/P16-1144
https://aclanthology.org/2020.tacl-1.54
https://aclanthology.org/2020.tacl-1.54
https://doi.org/10.1007/s12559-020-09734-4
https://doi.org/10.1007/s12559-020-09734-4
https://proceedings.neurips.cc/paper_files/paper/2022/file/6fac9e316a4ae75ea244ddcef1982c71-Paper-Conference.pdf
https://doi.org/10.18653/v1/2020.acl-main.593
https://doi.org/10.18653/v1/2020.acl-main.593
https://doi.org/10.18653/v1/2021.acl-srw.23
https://doi.org/10.18653/v1/2021.acl-srw.23
https://doi.org/10.18653/v1/2021.acl-srw.23
https://arxiv.org/abs/2202.06417
https://arxiv.org/abs/2202.06417
https://doi.org/10.18653/v1/2022.findings-acl.189
https://doi.org/10.18653/v1/2022.findings-acl.189
https://doi.org/10.18653/v1/2022.findings-acl.189
https://doi.org/10.1145/3357384.3358028
https://doi.org/10.1145/3357384.3358028
https://doi.org/10.1145/3357384.3358028
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.18653/v1/2020.acl-main.204
https://doi.org/10.18653/v1/2020.acl-main.204

OPT: Open pre-trained transformer language models.
arXiv:2205.01068.

Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhut-
dinov, Raquel Urtasun, Antonio Torralba, and Sanja
Fidler. 2015. Aligning books and movies: Towards
story-like visual explanations by watching movies
and reading books. In Proceedings of the IEEE in-
ternational conference on computer vision, pages
19–27.

A Pre-training details

For training the additional linear heads in our
multi-exit versions of GPT2-Medium and GPT-Neo-
125M, we apply a training regime to the pre-trained
models, while freezing the parameters of the origi-
nal pre-trained model checkpoints (see §3.1).

For runtime considerations, we train all the
added linear heads (12 and 6 heads in total for
GPT2-Medium and GPT-Neo-125M, respectively)
within a single training run, where a cross-entropy
loss is calculated for the outputs of each individ-
ual linear head with respect to the labels, and the
total training loss is calculated as the sum of these
losses. Note that since each head is only connected
to its exit layer m, and the shared pre-trained model
parameters are kept frozen, this setup is roughly
equivalent to training each of the linear heads sepa-
rately.

Training was conducted with self-supervision
over the English portion of the CC-100 (Conneau
et al., 2020) corpus10. We used 20M instances out
of the full dataset. Each text was tokenized, and
the different tokenized instances were then joined
together into chunks with a maximum sequence
length of 512. Thus, no padding was applied to the
examples. Following the tokenization and chunk-
ing, the training data consisted of ∼ 1.3M training
examples (∼ 650M tokens). Training was per-
formed using a causal language modeling objec-
tive, where the cross-entropy loss is calculated be-
tween the autoregressively generated outputs of the
language modeling head and the input tokens (of
length 512), which serve as the label.

The linear heads of each model were trained for
3 epochs over the chunked texts, using the AdamW
optimizer, a learning rate of 2 × 10−4 with a lin-
ear decay scheduler, and a train batch size of 64.
Training runs totalled approximately 24 / 55 GPU
hours for GPT-Neo / GPT2-Medium, respectively,
on Nvidia A100 GPUs.

10https://huggingface.co/datasets/cc100

wikitext wikinews bookcorpus

div coh div coh div coh
Greedy 0.09 0.57 0.08 0.54 0.06 0.35
Greedy+ACD 0.32 0.62 0.32 0.61 0.20 0.49

Beam-5 0.08 0.59 0.08 0.56 0.05 0.33
Beam-5+ACD 0.15 0.60 0.15 0.60 0.10 0.48

Top-k 0.95 0.56 0.95 0.54 0.95 0.40
Top-k+ACD 0.91 0.62 0.92 0.60 0.92 0.48

Top-p 0.98 0.48 0.98 0.47 0.98 0.35
Top-p+ACD 0.97 0.56 0.97 0.54 0.97 0.41

Table 5: The effect of ACD on open-ended generation.
This table lists the automatic generation quality metrics
of n-gram diversity (div) and topic coherence with the
prompt (coh) of a pretrained GPT-Neo-125M model,
using different decoding strategies. For each strategy
we compare results using the probability distribution of
the exit head of the final (12th) model layer, to those
obtained using an ACD probability distribution, con-
trasting the final layer next-token predictions with those
of exit layer 8.

B GPT-Neo-125M results

The open-generation results for the GPT-Neo-125M
model are shown in Table 5. The results for this
model over the LAMBADA benchmark are de-
picted in Fig. 5.

C Comparison to the original LM heads

As noted in §3.1, in order to reduce training dispar-
ities between the expert and the amateur we train
a new expert head, rather than using the model’s
original exit head as the expert. Here, we compare
the performance of the newly-trained expert heads
to that of the original language modeling heads. In
addition, we report the effects of ACD when us-
ing the original expert head for the ACD contrast
procedure.

As can be seen in Table 6, our newly-trained
expert heads are slightly inferior to the original lan-
guage modeling heads, presumably due to the more
limited pre-training regime of the new heads. Nev-
ertheless, ACD that relies on the newly-trained ex-
pert head clearly outperforms the original language
modeling head in open-generation and LAMBADA
metrics (as also shown in Tables 3 and 4).

The results of ACD when contrasting between
the original LM head and our newly-trained ama-
teur head are overall rather similar. Thus, despite

10416

https://arxiv.org/abs/2205.01068
https://doi.org/10.1109/ICCV.2015.11
https://doi.org/10.1109/ICCV.2015.11
https://doi.org/10.1109/ICCV.2015.11
https://huggingface.co/datasets/cc100

Figure 5: GPT-Neo performance on the LAMBADA benchmark. Plots depict accuracy (left, higher is better) and
perplexity (right, lower is better; presented in log scale) on the LAMBADA language modeling task across different
layers. Individual GPT-Neo-125M exit layers are denoted by •, while results for the ACD probability distribution,
contrasting layers 12 and 8, are denoted by +.

the more noisy or unpredictable nature of the dis-
parities between the exit heads in this case (given
that they were trained in a different pre-training
regime over different training examples), it appears
the effects of applying ACD are relatively robust to
such a scenario.

D Human evaluation

We conducted two evaluations for open-ended gen-
eration quality of the models:

• Comparing greedy decoding outputs of GPT2-
XL and GPT2-Medium

• Comparing greedy decoding outputs of GPT2-
XL to GPT2-Medium with ACD

As input for inference, we randomly sampled
40 texts from the WikiText-103 dataset. Following
the setting described in §4.2.1, we used the first
32 words of those texts as prompts and for each
evaluated model extracted up to 100 tokens of the
decoded text. The same prompts were used for
the two sets of evaluations, and thus also identical
generation outputs of the GPT2-XL Greedy setting.
3 NLP experts labeled the 80 resulting instances,

consisting of a prompt and inferences from two
models. For each instance, they were asked to
select the better model on 3 different aspects, in
separate questions: fluency, coherence and overall
quality (Figure 6). For each question they could
select either ‘model A’, ‘model B’ or a tie. The in-
ferences were shuffled such that ’model A’ for each
displayed instance was randomly selected from ei-
ther the GPT2-XL Greedy model or its counterpart.

The sets of evaluations (i.e., GPT2-XL vs. GPT2-
Medium and GPT2-XL vs. GPT2-Medium + ACD)
were also shuffled, such that annotators did not
know which pair of models they are annotating.

The final label for each instance is obtained by
the majority choice of the annotators. A tie major-
ity label is achieved either when the majority of
annotations is tie or when no majority is obtained
(which in this setting can only occur when annota-
tions are equally distributed - one for each model
and one tie).

Label distributions are shown in Figures 7, 8.
Inter-annotator agreement for those tasks, obtained
by averaging Cohen’s Kappa for all annotator pairs,
in each task, for each question is as follows - 0.15
for the fluency question, 0.34 for the coherence
question and 0.42 for the overall quality question.
An image of the task is shown in Figure 6.

10417

Diversity ↑ Coherence ↑ LAMBADA acc. ↑ Perplexity ↓

GPT2-Medium L-24orig 0.22 0.63 0.43 26.8
GPT2-Medium L-24new 0.21 0.59 0.39 30.0

GPT2-Medium L-24orig + ACD 0.62 0.64 0.56 71.3
GPT2-Medium L-24new + ACD 0.75 0.63 0.55 57.2

GPT-Neo-125M L-12orig 0.12 0.60 0.37 32.3
GPT-Neo-125M L-12new 0.09 0.57 0.31 38.5

GPT-Neo-125M L-12orig + ACD 0.30 0.62 0.53 68.1
GPT-Neo-125M L-12new + ACD 0.32 0.62 0.50 71.8

Table 6: Comparison to the original LM exit heads. Depicted are open-generation metrics (using greedy
decoding over WikiText-103), LAMBADA benchmark accuracy, and WikiText-2 perplexity of the GPT2-Medium
and GPT-Neo-125M models. For each model, 4 settings are shown: using its original exit head (L-orig), using
our newly-trained final layer exit head (L-new), and the results of applying ACD at inference time, contrasting the
next-token predictions of a newly-trained intermediate layer exit head with those of either the original (L-orig +
ACD) or newly-trained (L-new + ACD) final layer exit.

Figure 6: Human Evaluation Task UI

Figure 7: Human Evaluation results comparing
greedy decoding generation outputs of GPT2-XL and
GPT2-Medium. This figure shows the distribution of
majority labels for each of the 3 task questions.

Figure 8: Human Evaluation results comparing
greedy decoding generation outputs of GPT2-XL and
GPT2-Medium + ACD. This figure shows the distribu-
tion of majority labels for each of the 3 task questions.

10418

ACL 2023 Responsible NLP Checklist

A For every submission:
�3 A1. Did you describe the limitations of your work?

Limitations section

�3 A2. Did you discuss any potential risks of your work?
Limitations section

�3 A3. Do the abstract and introduction summarize the paper’s main claims?
Abstract and Section 1

�7 A4. Have you used AI writing assistants when working on this paper?
Left blank.

B �3 Did you use or create scientific artifacts?
Sections 3, 4

�3 B1. Did you cite the creators of artifacts you used?
Section 4

�3 B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
Section 4

�7 B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
All artifacts, existing and created, are under permissive licenses.

�7 B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
While the data used does contain some unique identifiers and offensive content, all of it comes from
publicly available sources, and was only used for quantitative and qualitative analysis.

�7 B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
As stated in the Limitations section, the models and data are limited to English corpora (both general
and domain-specific).

�3 B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
Appendix A

C �3 Did you run computational experiments?
Section 4

�3 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
Section 4, Appendix A

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

10419

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/

�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
Section 4

�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
Section 4, 5

�3 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
Section 4; Our full implementation is released on GitHub

D �3 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Section 5.1, Appendix D

�3 D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
Appendix D

�7 D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
The annotators are part of the research group that authored the paper.

�7 D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
The annotators are part of the research group that authored the paper.

�3 D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
Appendix D

�3 D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
Appendix D

10420

