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Abstract

Modern machine learning relies on datasets to
develop and validate research ideas. Given the
growth of publicly available data, finding the
right dataset to use is increasingly difficult. Any
research question imposes explicit and implicit
constraints on how well a given dataset will en-
able researchers to answer this question, such
as dataset size, modality, and domain. We op-
erationalize the task of recommending datasets
given a short natural language description of
a research idea, to help people find relevant
datasets for their needs. Dataset recommenda-
tion poses unique challenges as an information
retrieval problem; datasets are hard to directly
index for search and there are no corpora read-
ily available for this task. To facilitate this task,
we build the DataFinder Dataset which con-
sists of a larger automatically-constructed train-
ing set (17.5K queries) and a smaller expert-
annotated evaluation set (392 queries). Using
this data, we compare various information re-
trieval algorithms on our test set and present
a superior bi-encoder retriever for text-based
dataset recommendation. This system, trained
on the DataFinder Dataset, finds more relevant
search results than existing third-party dataset
search engines. To encourage progress on
dataset recommendation, we release our dataset
and models to the public.!

1 Introduction

Innovation in modern machine learning (ML) de-
pends on datasets. The revolution of neural net-
work models in computer vision (Krizhevsky et al.,
2012) was enabled by the ImageNet Large Scale
Visual Recognition Challenge (Deng et al., 2009).
Similarly, data-driven models for syntactic pars-
ing saw rapid development after adopting the Penn
Treebank (Marcus et al., 1993; Palmer and Xue,
2010).
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Figure 1: Queries for dataset recommendation im-
pose constraints on the type of dataset desired. Key-
word queries make these constraints explicit, while full-
sentence queries impose implicit constraints. Ground
truth relevant datasets for this query are colored in blue.

With the growth of research in ML and artificial
intelligence (Al), there are hundreds of datasets
published every year (shown in Figure 2). Knowing
which to use for a given research idea can be diffi-
cult (Paullada et al., 2021). To illustrate, consider
areal query from a graduate student who says, “/
want to use adversarial learning to perform domain
adaptation for semantic segmentation of images.”
They have implicitly issued two requirements: they
need a dataset for semantic segmentation of im-
ages, and they want datasets that include diverse
visual domains. A researcher may intuitively select
popular, generic semantic segmentation datasets
like COCO (Lin et al., 2014) or ADE20K (Zhou
et al., 2019), but these are insufficient to cover the
query’s requirement of supporting domain adapta-
tion. How can we infer the intent of the researcher
and make appropriate recommendations?

To study this problem, we operationalize the
task of “dataset recommendation”: given a full-
sentence description or keywords describing a re-
search topic, recommend datasets to support re-
search on this topic (§2). A concrete example is
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Figure 2: The number of public Al datasets has ex-
ploded in recent years. Here we show the # released
from 1990 to 2022 according to Papers with Code.”

shown in Figure 1. This task was introduced by
Férber and Leisinger (2021), who framed it as text
classification. In contrast, we naturally treat this
task as retrieval (Manning et al., 2005), where the
search collection is a set of datasets represented tex-
tually with dataset descriptions®, structured meta-
data, and published “citances” — references from
published papers that use each dataset (Nakov et al.,
2004). This framework allows us to measure per-
formance with rigorous ranking metrics such as
mean reciprocal rank (Radev et al., 2002).

To strengthen evaluation, we build a dataset, the
DataFinder Dataset, to measure how well we can
recommend datasets for a given description (§3).
As a proxy for real-world queries for our dataset
recommendation engine, we construct queries from
paper abstracts to simulate researchers’ historical
information needs. We then identify the datasets
used in a given paper, either through manual an-
notations (for our small test set) or using heuristic
matching (for our large training set). To our knowl-
edge, this is the first expert-annotated corpus for
dataset recommendation, and we believe this can
serve as a challenging testbed for researchers inter-
ested in representing and searching complex data.

We evaluate three existing ranking algorithms
on our dataset and task formation, as a step to-
wards solving this task: BM25 (Robertson and
Zaragoza, 2009), nearest neighbor retrieval, and
dense retrieval with neural bi-encoders (Karpukhin
et al., 2020). BM-25 is a standard baseline for text
search, nearest neighbor retrieval lets us measure
the degree to which this task requires generaliza-
tion to new queries, and bi-encoders are among the
most effective search models used today (Zhong
et al., 2022). Compared with third-party keyword-
centric dataset search engines, a bi-encoder model
trained on DataFinder is far more effective at find-
ing relevant datasets. We show that finetuning the

3From www. paperswithcode.com

bi-encoder on our training set is crucial for good
performance. However, we observe that this model
is as effective when trained and tested on keyphrase
queries as on full-sentence queries, suggesting that
there is room for improvement in automatically
understanding full-sentence queries.

2 Dataset Recommendation Task

We establish a new task for automatically recom-
mending relevant datasets given a description of
a data-driven system. Given a query ¢ and a set
of datasets D, retrieve the most relevant subset
R C D one could use to test the idea described in
q. Figure 1 illustrates this with a real query written
by a graduate student.

The query g can take two forms: either a key-
word query (the predominant interface for dataset
search today (Chapman et al., 2019)) or a full-
sentence description. Textual descriptions offer a
more flexible input to the recommendation system,
with the ability to implicitly specify constraints
based on what a researcher wants to study, without
needing to carefully construct keywords a priori.

Evaluation Metrics Our task framing naturally
leads to evaluation by information retrieval met-
rics that estimate search relevance. In our experi-
ments, we use four common metrics included in the
trec_eval package,* a standard evaluation tool
used in the IR community:

* Precision@k: The proportion of relevant items
in top k retrieved datasets. If P@Fk is 1, then
every retrieved document is valuable.

¢ Recall@k: The fraction of relevant items that
are retrieved. If R@k is 1, then the search results
are comprehensive.

* Mean Average Precision (MAP): Assuming we
have m relevant datasets in total, and k; is the
rank of the i relevant dataset, MAP is calcu-
lated as )" P@k;/m (Manning et al., 2005).
High MAP indicates strong average search qual-
ity over all relevant datasets.

* Mean Reciprocal Rank (MRR): The average of
the inverse of the ranks at which the first relevant
item was retrieved. Assuming R; is the rank
of the i-th relevant item in the retrieved result,
MRR is calculated as Y ;" R;/m. High MRR
means a user sees at least some relevant datasets
early in the search results.

*https://github.com/usnistgov/trec_eval. We use
the -c flag for the trec_eval command.
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Figure 3: We search against all datasets on Papers With
Code. Our system is trained on a set of simulated queries
and target datasets and evaluated on a set of expert-
written queries with hand-annotated target datasets.

3 The DataFinder Dataset

To support this task, we construct a dataset called
The DataFinder Dataset consisting of (g, R) pairs
extracted from published English-language scien-
tific proceedings, where each ¢ is either a full-
sentence description or a keyword query. We
collect a large training set through an automated
method (for scalability), and we collect a smaller
test set using real users’ annotations (for reliable
and realistic model evaluation). In both cases, our
data collection contains two primary steps: (1) col-
lecting search queries ¢ that a user would use to
describe their dataset needs, and (2) identifying
relevant datasets R that match the query. Our
final training and test sets contain 17495 and 392
queries, respectively. Figure 3 summarizes our data
collection approach. We explain the details below
and provide further discussion of the limitations of
our dataset in the Limitations section. We will re-
lease our data under a permissive CC-BY License.

3.1 Collection of Datasets

In our task definition, we search over the collec-
tion of datasets listed on Papers With Code, a large
public index of papers which includes metadata
for over 7000 datasets and benchmarks. For most
datasets, Papers With Code Datasets stores a short
human-written dataset description, a list of differ-
ent names used to refer to the dataset (known as

“variants”), and structured metadata such as the year
released, the number of papers reported as using
the dataset, the tasks contained, and the the modal-
ity of data. Many datasets also include the paper
that introduced the dataset. We used the dataset de-
scription, structured metadata, and the introducing
paper’s title to textually represent each dataset, and
we analyze this design decision in §5.4.

3.2 Training Set Construction

To ensure scalability for the training set, we rely
on a large corpus of scientific papers, S20RC (Lo
et al., 2020). We extract nearly 20,000 abstracts
from AI papers that use datasets. To overcome
the high cost of manually-annotating queries or
relevant datasets, we instead simulate annotations
with few-shot-learning and rule-based methods.

Query Collection We extract queries from pa-
per abstracts because, intuitively, an abstract will
contain the most salient characteristics behind a
research idea or contribution. As a result, it is an
ideal source for comprehensively collecting poten-
tial implicit constraints as shown in Figure 1.

We simulate query collection with the 6.7B pa-
rameter version of Galactica (Taylor et al., 2022),
a large scientific language model that supports few-
shot learning. In our prompt, we give the model an
abstract and ask it to first extract five keyphrases:
the tasks mentioned in paper, the task domain of
the paper (e.g., biomedical or aerial), the modal-
ity of data required, the language of data or labels
required, and the length of text required (sentence-
level, paragraph-level, or none mentioned). We
then ask Galactica to generate a full query contain-
ing any salient keyphrases. We perform few-shot
learning using 3 examples in the prompt to guide
the model. Our prompt is shown in Appendix A.

Relevant Datasets For our training set, relevant
datasets are automatically labeled using the body
text of a paper.” We apply a rule-based procedure
to identify the dataset used in a given paper (cor-
responding to an abstract whose query has been
auto-labeled). For each paper, we tag all datasets
that satisfy two conditions: the paper must cite
the paper that introduces the dataset, and the paper
must mention the dataset by name twice.°

Note that our queries are obtained from the abstract alone
while the relevance judgements are obtained from the text
body, to encourage more general queries.

®We apply the additional requirement that the counted
dataset mentions must occur in a section with section title con-
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This tagging procedure is restrictive and empha-
sizes precision (i.e., an identified dataset is indeed
used in the paper) over recall (i.e., all the used
datasets are identified). Nonetheless, using this
procedure, we tag 17,495 papers from S20RC with
at least one dataset from our collection of datasets.

To estimate the quality of these tagged labels, we
manually examined 200 tagged paper-dataset pairs.
Each pair was labeled as correct if the paper au-
thors would have realistically had to download the
dataset in order to write the paper. 92.5% (185/200)
of dataset tags were deemed correct.

3.3 Test Set Construction

To accurately approximate how humans might
search for datasets, we employed Al researchers
and practitioners to annotate our test set. As
mentioned above, the dataset collection requires
both guery collection and relevant dataset collec-
tion. We use SciREX (Jain et al., 2020), a human-
annotated set of 438 full-text papers from major
Al venues originally developed for research into
full-text information extraction, as the basis of our
test set. We choose this dataset because it naturally
supports our dataset collection described below.

Query Collection We collect search queries by
asking annotators to digest, extract, and rephrase
key information in research paper abstracts.
Annotators. To ensure domain expertise, we
recruited 27 students, faculty, and recent alumni of
graduate programs in machine learning, computer
vision, robotics, NLP, and statistics from major
US universities. We recruited 23 annotators on a
voluntary basis through word of mouth; for the rest,
we offered 10 USD in compensation. We sent each
annotator a Google Form that contained between
10 and 20 abstracts to annotate. The instructions
provided for that form are shown in Appendix B.
Annotation structure. For each abstract, we
asked annotators to extract metadata regarding the
abstract’s task, domain, modality, language of data
required, and length of data required. These meta-
data serve as keyphrase queries. Then, based
on these keyphrases, we also ask the annotator to
write a sentence that best reflects the dataset need
of the given paper/abstract, which becomes the full-
sentence query. Qualitatively, we found that the
keyphrases helped annotators better ground and
taining “results”, “experiment”, “evaluation”, “result”, “train-

ing”, or “testing”, to avoid non-salient dataset mentions, such
as those commonly occurring in “related work".

i T
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Figure 4: Distribution of relative year of datasets used
across all papers that used a dataset.

concretize their queries, and the queries often con-
tain (a subset of) these keyphrases.

Model assistance. To encourage more efficient
labeling (Wang et al., 2021), we provided auto-
suggestions for each field from GPT-3 (Brown et al.,
2020) and Galactica 6.7B (Taylor et al., 2022) to
help annotators. We note that annotators rarely
applied these suggestions directly — annotators
accepted the final full-sentence query generated by
either large language model only 7% of the time.

Relevant Datasets For each paper, SciREX con-
tains annotations for mentions of all “salient”
datasets, defined as datasets that “take part in the
results of the article” (Jain et al., 2020). We used
these annotations as initial suggestions for the
datasets used in each paper. The authors of this
paper then skimmed all 438 papers in SciREX and
noted the datasets used in each paper. 46 papers
were omitted because they either used datasets not
listed on Papers With Code or were purely theory-
based papers with no relevant datasets, leaving a
final set of 392 test examples.

We double-annotated 10 papers with the datasets
used. The annotators labeled the exact same set of
datasets for 8 out of 10 papers, with a Fleiss-Davies
kappa of 0.667, suggesting that inter-annotator
agreement for our “relevant dataset” annotations
is substantial (Davies and Fleiss, 1982; Loper and
Bird, 2002).

3.4 Dataset Analysis

Using this set of paper-dataset tags, what can we
learn about how researchers use datasets?

Our final collected dataset contains 17,495 train-
ing queries and 392 test queries. The training exam-
ples usually associate queries with a single dataset
much more frequently than our test set does. This
is due to our rule-based tagging scheme, which em-
phasizes precise labels over recall. Meanwhile, the
median query from our expert-annotated test set
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tagged in each paper, in train and test sets

had 3 relevant datasets associated with it. We also
observed interesting dataset usage patterns:

* Researchers tend to converge towards popu-
lar datasets. Analyzing dataset usage by com-
munity,” we find that in all fields, among all
papers that use some publicly available dataset,
more than 50% papers in our training set use
at least one of the top-5 most popular datasets.
Most surprisingly, nearly half of the papers
tagged in the robotics community use the KITTI
dataset (Geiger et al., 2013).

* Researchers tend to rely on recent datasets.

In Figure 4, we see the distribution of relative
ages of datasets used (i.e., the year between
when a dataset is published, and when a cor-
responding paper uses it for experiments). In
Figure 4, We observe that the average dataset
used by a paper was released 5 years before the
paper’s publication (with a median of 5.6 years),
but we also see a significant long tail of older
datasets. This means that while some papers use
traditional datasets, most papers exclusively use
recently published datasets.

These patterns hint that researchers might over-
look less cited datasets that match their needs in fa-
vor of standard status-quo datasets. This motivates
the need for nuanced dataset recommendation.

4 Experimental Setup on DataFinder

How do popular methods perform on our new task
and new dataset? How does our new paradigm
differ from existing commercial search engines? In
this section, we describe a set of standard methods
which we benchmark, and we consider which third-
party search engines to use for comparison.

"We define “communities” by publication venues: ACL,
EMNLP, NAACL, TACL, COLING for NLP, CVPR, ICCV,
WACYV for Vision, IROS, ICRA, IJRR for Robotics, and
NeurIPS, ICML ICLR for Machine Learning. We include
proceedings from associated workshops in each community.

4.1 Task Framing

We formulate dataset recommendation as a rank-
ing task. Given a query g and a search corpus of
datasets D, rank the datasets d € D based on a
query-dataset similarity function sim(q, d) and re-
turn the top k datasets. We compare three ways
of defining sim(q, d): term-based retrieval, nearest-
neighbor retrieval, and neural retrieval.

4.2 Models to Benchmark

To retrieve datasets for a query, we find the nearest
datasets to that query in a vector space. We repre-
sent each query and dataset in a vector space using
three different approaches:

Term-Based Retrieval We evaluated a BM25
retriever for this task, since this is a standard base-
line algorithm for information retrieval. We imple-
ment BM25 (Robertson and Walker, 1999) using
Pyserini (Lin et al., 2021).8

Nearest-Neighbor Retrieval To understand the
extent to which this task requires generalization to
new queries unseen at training time, we experiment
with direct k-nearest-neighbor retrieval against the
training set. For a new query, we identify the most
similar queries in the training set and return the rel-
evant datasets from these training set examples. In
other words, each dataset is represented by vectors
corresponding to all training set queries attached
to that dataset. In practice we investigate two types
of feature extractors: TF-IDF (Jones, 2004) and
SciBERT (Beltagy et al., 2019).

Neural Retrieval We implement a bi-encoder re-
triever using the Tevatron package.’ In this frame-
work, we encode each query and document into a
shared vector space and estimate similarity via the
inner product between query and document vec-
tors. We represent each document with the BERT
embedding (Devlin et al., 2019) of its [CLS] token:

sim(q, d) = cls(BERT(q))” cls(BERT(d))

where cls(+) denotes the operation of accessing the
[CLS] token representation from the contextual
encoding (Gao et al., 2021). For retrieval, we sep-
arately encode all queries and documents and re-
trieve using efficient similarity search. Following
recent work (Karpukhin et al., 2020), we minimize
a contrastive loss and select hard negatives using

¥We run BM25 with k1 = 0.8 and b = 0.4.
9https: //github.com/texttron/tevatron
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Figure 6: We analyze the distribution of datasets used in NLP, robotics, vision, and machine learning research.

BM25 for training. We initialize the bi-encoder
with SciBERT (Beltagy et al., 2019) and finetune it
on our training set. This model takes 20 minutes to
finetune on one 11GB Nvidia GPU.

4.3 Comparison with Search Engines

Besides benchmarking existing methods, we also
compare the methods enabled by our new data rec-
ommendation task against the standard paradigm
for dataset search — to use a conventional search
engine with short queries (Kacprzak et al., 2019).
We measured the performance of third-party
dataset search engines taking as input either key-
word queries or full-sentence method descriptions.

We compare on our test set with two third-party
systems— Google Dataset Search'’ (Brickley et al.,
2019) and Papers with Code'! search. Google
Dataset Search supports a large dataset collection,
so we limit results to those from Papers with Code
to allow comparison with the ground truth.

Our test set annotators frequently entered multi-
ple keyphrases for each keyphrase type (e.g. “ques-
tion answering, recognizing textual entailment” for
the Task field). We constructed multiple queries
by taking the Cartesian product of each set of
keyphrases from each field, deduplicating tokens
that occurred multiple times in each query. After
running each query against a commercial search
engine, results were combined using balanced in-
terleaving (Joachims, 2002).

10https ://datasetsearch.research.google.com
11https ://paperswithcode.com/datasets

Model | P@5s R@5 MAP MRR

Full-Sentence Queries

BM25| 4.7 0.1 11.6 +1.7

kNN (TF-IDF)| 5.5 +0.6 123 +1.6 7.8+1.1 155+2.0
kNN (BERT)| 7.1 +0.7 142 +1.5 9.7 +1.2 21.3+23
Bi-Encoder |16.0 +-1.1 31.2 +2.2 234 +19 42.6 +2.7

8.0+ 1.3 145+£2.0

Keyphrase Queries

BM25| 6.6 £0.5 153 +=1.1 11.4+0.8 199 £1.5

kNN (TF-IDF)| 2.7 £04 59 +1.1 33+07 82=+1.6
kNN (BERT)| 2.8 £04 58 £1.1 33 =£1.1 73+13
Bi-Encoder [16.5 +-1.0 32.4 £2.2 23.3 £1.8 423 +2.6

Table 1: A comparison of methods on full-sentence and
keyword search shows that the neural bi-encoder per-
forms best by a significant margin. Standard deviations
are obtained via bootstrap sampling on the test set.

5 [Evaluation

5.1 Time Filtering

The queries in our test set were made from pa-
pers published between 2012 and 2020'?, with me-
dian year 2017. In contrast, half the datasets in
our search corpus were introduced in 2018 or later.
To account for this discrepancy, for each query g,
we only rank the subset of datasets D' = {d €
D | year(d) < year(q)} that were introduced in
the same year or earlier than the query.

5.2 Benchmarking and Comparisons

Benchmarking shows that DataFinder benefits
from deep semantic matching. In Table 1, we
report retrieval metrics on the methods described

2We could not include more recent papers in our query
construction process, because SciREX was released in 2020.
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Model | P@5 R@5 MAP MRR

PwC (descriptions) 0.6 1.7 0.9 1.2
PwC (keywords) 3.5 10.0 6.5 9.1
Google (descriptions) 0.1 0.1 0.1 0.3
Google (keywords) 9.7 19.5 12.3 24.0
Ours (descriptions) 16.0 31.2 234 42.6
Ours (keywords) 16.5 324 23.3 42.3

Table 2: Comparing third-party search engines (Pa-
pers with Code and Google Dataset Search) against
our DataFinder system using a bi-encoder architecture.

in §4. To determine the standard deviation of
each metric, we use bootstrap resampling (Koehn,
2004) over all test set queries. Term-based retrieval
(BM25) performs poorly in this setting, while the
neural bi-encoder model excels. This suggests our
task requires capturing semantic similarity beyond
what term matching can provide. Term-based KNN
search is not effective, implying that generalization
to new queries is necessary for this task.

Commercial Search Engines are not effective
on DataFinder. In Table 2, we compare our pro-
posed retrieval system against third-party dataset
search engines. For each search engine, we choose
the top 5 results before computing metrics.

We find these third-party search engines do not
effectively support full-sentence queries. We spec-
ulate these search engines are adapted from term-
based web search engines. In contrast, our neural
retriever gives much better search results using both
keyword search and full-sentence query search.

5.3 Qualitative Analysis

Examples in Figure 7 highlight the tradeoffs
between third-party search engines and models
trained on DataFinder. In the first two exam-
ples, we see keyword-based search engines struggle
when dealing with terms that could apply to many
datasets, such as “semantic segmentation” or “link
prediction”. These keywords offer a limited specifi-
cation on the relevant dataset, but a system trained
on simulated search queries from real papers can
learn implicit filters expressed in a query.

On the final example, our system incorrectly fo-
cuses on the deep architecture described (“deep
neural network architecture [...] using depthwise
separable convolutions”) rather than the task de-
scribed by the user (“machine translation”). Im-
proving query understanding for long queries is a
key opportunity for improvement on this dataset.

Full-Sentence Query: | want to use adversarial learning to perform
domain adaptation for semantic segmentation of images.
Keyword Query: semantic segmentation domain adaptation images

Actual Google PWC Ours
Cityscapes 1 LoveDA VQA Cityscapes
GTA5 2 Office-31 RTE GTA5
SYNTHIA 3 Dark Zurich VQA2.0 SYNTHIA

Full-Sentence Query: We propose a method for knowledge graph link
prediction based on complex embeddings
Keyword Query: knowledge base link prediction graph

Actual Google PWC Ours

FB15k 1 WN18RR RuBQ FB15k

WN18 2 YAGO DRKG WN18
3 FB15k-237 CVL-DataBase

Full-Sentence Query: A new deep neural network architecture for
machine translation using depthwise separable convolutions.
Keyword Query: machine translation text

Actual Google PWC Ours
WMT 2014 1 WMT 2014 Machine Number SQUAD
Sense
2 UCI Datasets WikiText-2
3 Affective Text WikiText-103

Figure 7: We qualitatively compare the retrieval be-
havior of a neural biencoder retriever (trained on
DataFinder) and third-party dataset search engines.

5.4 More In-depth Exploration

We perform in-depth qualitative analyses to under-
stand the trade-offs of different query formats and
dataset representations.

Comparing full-sentence vs keyword queries
As mentioned above, we compare two versions
of the DataFinder-based system: one trained and
tested with description queries and the other with
keyword queries. We observe that using keyword
queries offers similar performance to using full-
sentence descriptions for dataset search. This sug-
gests more work should be done on making better
use of implicit requirements in full-sentence de-
scriptions for natural language dataset search.

Key factors for successful queries What in-
formation in queries is most important for effec-
tive dataset retrieval? Using human-annotated
keyphrase queries in our test set, we experiment
with concealing particular information from the
keyphrase query.

In Figure 8, we see task information is criti-
cal for dataset search; removing task keywords
from queries reduces MAP from 23.5 to 7.5 (sta-
tistically significant with p < 0.001 by a paired
bootstrap t-test). Removing constraints on the lan-
guage of text data also causes a significant drop in
MAP (p < 0.0001). Removing keywords for text
length causes an insignificant reduction in MAP
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Figure 8: Comparison of the reduction in the MAP
metric of the retrieval results after removing different
types of query terms (e.g. keywords related to the task
or language the researcher is interested in studying).

Model|  P@5 R@5 MAP  MRR

Full-Sentence Queries

Description | 15.3 +£1.0 30.0 2.1 23.0 1.9 42.8 £2.7
+ Struct. Info | 16.0 1.1 31.2 £2.2 233 +1.8 424 +£2.7
+ Citances | 15.8 +-1.1 30.8 £2.2 23.1 £1.9 422 +£2.7

Keyphrase Queries
Description | 13.1 +1.0 25.6 2.0 17.4 £1.6 33.1 £2.5
+ Struct. Info | 16.6 +1.1 32.7 2.2 23.5+1.8 42.8 £2.8

+ Citances | 16.8 +-1.0 33.4 £2.2 23.6 +1.8 43.0 £2.6

Table 3: Adding structured metadata for each dataset’s
textual representation significantly improves keyphrase
search quality using a neural bi-encoder. We compute
standard deviations via bootstrap resampling. We use
the "Description + Struct. Info" textual representation
for all other experiments in this paper.

(p = 0.15), though it causes a statistically sig-
nificant reduction on other metrics not shown in
Figure 8: P@5 and R@5. Based on inspection of
our test set, we speculate that domain keywords
are unnecessary because the domain is typically
implied by task keywords.

Comparing textual representations of datasets
We represent datasets textually with a community-
generated dataset description from PapersWith-
Code, along with the title of the paper that intro-
duced the dataset. We experiment with enriching
this dataset representation in two ways. We first
add structured metadata about each dataset (e.g.
tasks, modality, number of papers that use each
dataset on PapersWithCode). We cumulatively ex-
periment with adding citances — sentences from
other papers around a citation — to capture how
others use the dataset. In Table 3, our neural bi-
encoder achieves similar retrieval performance on
all 3 representations for full-sentence search.
Keyword search is more sensitive to dataset rep-

Model | P@5 R@5 MAP MRR

Full-Sentence Queries

SciBERT (finetuned) | 16.0 31.2 23.3 424
SciBERT (not finetuned)| 0.0 0.0 0.0 0.0
COCO-DR (not finetuned)| 6.1 14.8 8.8 15.7

Keyphrase Queries

SciBERT (finetuned) | 16.6 32.7 23.5 42.8
SciBERT (not finetuned)| 0.0 0.0 0.0 0.0
COCO-DR (not finetuned)| 6.2 13.9 9.6 16.8

Table 4: Finetuning for the dataset recommendation task
significantly outperforms strong retrieval architectures
finetuned for general search, like COCO-DR.

resentation. adding structured information to the
dataset representation provides significant benefits
for keyword search. This suggests keyword search
requires more specific dataset metadata than full-
sentence search does to be effective.

The value of finetuning Our bi-encoder retriever
is finetuned on our training set. Given the effort
required to construct a training set for tasks like
dataset recommendation, is this step necessary?

In Table 4, we see that an off-the-shelf SciBERT
encoder is ineffective. We observe that our queries,
which are abstract descriptions of the user’s infor-
mation need (Ravfogel et al., 2023), are very far
from any documents in the embedding space, mak-
ing comparison difficult. Using a state-of-the-art
encoder, COCO-DR Base — which is trained for
general-purpose passage retrieval on MS MARCO
(Campos et al., 2016), helps with this issue but still
cannot make up for task-specific finetuning.

6 Related Work

Most work on scientific dataset recommendation
uses traditional search methods, including term-
based keyword search and tag search (Lu et al.,
2012; Kunze and Auer, 2013; Sansone et al., 2017;
Chapman et al., 2019; Brickley et al., 2019; Lhoest
et al., 2021). In 2019, Google Research launched
Dataset Search (Brickley et al., 2019), offering
access to over 2 million public datasets. Our work
considers the subset of datasets from their search
corpus that have been posted on Papers with Code.

Some work has explored other forms of dataset
recommendation. Ben Ellefi et al. (2016) study
using “source datasets” as a search query, while
Altaf et al. (2019) use a set of related research
papers as the user’s query. Firber and Leisinger
(2021) are the only prior work we are aware of
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that explores natural language queries for dataset
recommendation. They model this task as classifi-
cation, while we operationalize it as open-domain
retrieval. Their dataset uses abstracts and citation
contexts to simulate queries, while we use realistic
short queries (with an expert-annotated test set).

7 Conclusion

We study the task of dataset recommendation from
natural language queries. Our dataset supports
search by either full-sentence or keyword queries,
but we find that neural search algorithms trained
for traditional keyword search are competitive with
the same architectures trained for our proposed full-
sentence search. An exciting future direction will
be to make better use of natural language queries.
We release our datasets along with our ranking
systems to the public. We hope to spur the commu-
nity to work on this task or on other tasks that can
leverage the summaries, keyphrases, and relevance
judgment annotations in our dataset.

Limitations

The primary limitations concern the dataset we cre-
ated, which serves as the foundation of our findings.
Our dataset suffers from four key limitations:
Reliance on Papers With Code Our system
is trained and evaluated to retrieve datasets from
Papers With Code Datasets (PwC). Unfortunately,
PwC is not exhaustive. Several queries in our test
set corresponded to datasets that are not in PwC,
such as IWSLT 2014 (Birch et al., 2014), PASCAL
VOC 2010 (Everingham et al., 2010), and CHiME-
4 (Vincent et al., 2017). Papers With Code Datasets
also skews the publication year of papers used in
the DataFinder Dataset towards the present (the
median years of papers in our train and test set
are 2018 and 2017, respectively). For the most
part, PwC only includes datasets used by another
paper listed in Papers With Code, leading to the
systematic omission of datasets seldom used today.
Popular dataset bias in the test set Our test
set is derived from the SciREX corpus (Jain et al.,
2020). This corpus is biased towards popular or
influential works: the median number of citations
of a paper in SciREX is 129, compared to 19 for
any computer science paper in S20RC. The queries
in our test set are therefore more likely to describe
mainstream ideas in popular subields of Al
Automatic tagging Our training data is gener-
ated automatically using a list of canonical dataset

names from Papers With Code. This tagger mis-
labels papers where a dataset is used but never re-
ferred to by one of these canonical names (e.g. non-
standard abbreviations or capitalizations). There-
fore, our training data is noisy and imperfect.

Queries in English only All queries in our
training and test datasets were in English. There-
fore, these datasets only support the development
of dataset recommendation systems for English-
language users. This is a serious limitation, as Al
research is increasingly done in languages other
English, such as Chinese (Chou, 2022).

Ethics Statement

Our work has the promise of improving the scien-
tific method in artificial intelligence research, with
the particular potential of being useful for younger
researchers or students. We built our dataset and
search systems with the intention that others could
deploy and iterate on our dataset recommenda-
tion framework. However, we note that our initial
dataset recommendation systems have the potential
to increase inequities in two ways.

First, as mentioned in Limitations, our dataset
does not support queries in languages other than
English, which may exacerbate inequities in dataset
access. We hope future researchers will consider
the construction of multilingual dataset search
queries as an area for future work.

Second, further study is required to under-
stand how dataset recommendation systems affect
the tasks, domains, and datasets that researchers
choose to work on. Machine learning models are
liable to amplify biases in training data (Hall et al.,
2022), and inequities in which domains or tasks
receive research attention could have societal con-
sequences. We ask researchers to consider these
implications when conducting work on our dataset.
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A Few-Shot Prompt for Generating
Keyphrases and Queries

When constructing our training set, we use in-
context few-shot learning with the 6.7B parameter
version of Galactica (Taylor et al., 2022). We
perform in-context few-shot learning with the
following prompt:

Given an abstract from an artificial intelli-
gence paper:

1) Extract keyphrases regarding the task (e.g.
image classification), data modality (e.g. images
or speech), domain (e.g. biomedical or aerial),
training style (unsupervised, semi-supervised, fully
supervised, or reinforcement learning), text length
(sentence-level or paragraph-level), language
required (e.g. English)

2) Write a brief, single-sentence summary contain-
ing these relevant keyphrases. This summary must
describe the task studied in the paper.

Abstract:

We study automatic question generation for
sentences from text passages in reading compre-
hension. We introduce an attention-based sequence
learning model for the task and investigate the
effect of encoding sentence- vs. paragraph-level
information. In contrast to all previous work, our
model does not rely on hand-crafted rules or a
sophisticated NLP pipeline; it is instead trainable
end-to-end via sequence-to-sequence learning.
Automatic evaluation results show that our system
significantly outperforms the state-of-the-art rule-
based system. In human evaluations, questions
generated by our system are also rated as being
more natural (i.e., grammaticality, fluency) and
as more difficult to answer (in terms of syntactic
and lexical divergence from the original text and
reasoning needed to answer).

Output: (Task | Modality | Domain | Train-
ing Style | Text Length | Language Required |
Single-Sentence Summary)

Task: question generation

Modality: text

Domain: N/A

Training Style: fully supervised

Text Length: paragraph-level

Language Required: N/A

Single-Sentence Summary: We propose an im-
proved end-to-end system for automatic question
generation.

Abstract:

We present a self-supervised approach to estimate
flow in camera image and top-view grid map
sequences using fully convolutional neural
networks in the domain of automated driving. We
extend existing approaches for self-supervised
optical flow estimation by adding a regularizer
expressing motion consistency assuming a static
environment. However, as this assumption is
violated for other moving traffic participants we
also estimate a mask to scale this regularization.
Adding a regularization towards motion consis-
tency improves convergence and flow estimation
accuracy. Furthermore, we scale the errors due to
spatial flow inconsistency by a mask that we derive
from the motion mask. This improves accuracy
in regions where the flow drastically changes
due to a better separation between static and
dynamic environment. We apply our approach
to optical flow estimation from camera image
sequences, validate on odometry estimation and
suggest a method to iteratively increase optical
flow estimation accuracy using the generated
motion masks. Finally, we provide quantitative and
qualitative results based on the KITTI odometry
and tracking benchmark for scene flow estimation
based on grid map sequences. We show that we can
improve accuracy and convergence when applying
motion and spatial consistency regularization.

Output: (Task | Modality | Domain | Train-
ing Style | Text Length | Language Required |
Single-Sentence Summary)

Task: optical flow estimation

Modality: images and top-view grid map sequences
Domain: autonomous driving

Training Style: unsupervised

Text Length: N/A

Language Required: N/A

Single-Sentence Summary: A system for self-
supervised optical flow estimation from images
and top-down maps.
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Abstract:

In this paper, we study the actor-action semantic
segmentation problem, which requires joint
labeling of both actor and action categories in
video frames. One major challenge for this task is
that when an actor performs an action, different
body parts of the actor provide different types
of cues for the action category and may receive
inconsistent action labeling when they are labeled
independently. To address this issue, we propose an
end-to-end region-based actor-action segmentation
approach which relies on region masks from an
instance segmentation algorithm.  Our main
novelty is to avoid labeling pixels in a region mask
independently - instead we assign a single action
label to these pixels to achieve consistent action
labeling. When a pixel belongs to multiple region
masks, max pooling is applied to resolve labeling
conflicts. Our approach uses a two-stream network
as the front-end (which learns features capturing
both appearance and motion information), and
uses two region-based segmentation networks
as the back-end (which takes the fused features
from the two-stream network as the input and
predicts actor-action labeling).  Experiments
on the A2D dataset demonstrate that both the
region-based segmentation strategy and the fused
features from the two-stream network contribute
to the performance improvements. The proposed
approach outperforms the state-of-the-art results
by more than 8

Output: (Task | Modality | Domain | Training
Style | Text Length | Language Required | Single-
Sentence Summary)

Task: actor-action semantic segmentation
Modality: video

Domain: N/A

Training Style: fully supervised

Text Length: N/A

Language Required: N/A

Single-Sentence Summary: [ want to train a
supervised model for actor-action semantic
segmentation from video.

For a given abstract that we want to process, we
then add this abstract’s text to this prompt and ask
the language model to generate at most 250 new
tokens.

B Information on Expert Annotations

As mentioned in §3, we recruited 27 graduate stu-
dents, faculty, and recent graduate program alumni
for our annotation collection process. For each an-
notator, we received their verbal or written interest
in participating in our data collection.

We then sent them a Google Form containing be-
tween 10 and 20 abstracts to annotate. An example
of the form instructions is included in Figure 9.

We originally had annotators label the “Train-
ing Style” (unsupervised, semi-supervised, super-
vised, or reinforcement learning), in addition to
Task, Modality, Domain, Text Length, and Lan-
guage Required. However, this field saw exces-
sively noisy labels so we ignore this field for our
experiments.
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DatasetFinder Annotation Form #21

We are developing a dataset search engine which accepts natural language descriptions of
what the user wants to build. We need your help writing queries to test our search engine,
and you will write each query based on areal, published research paper.

Given an abstract from an artificial intelligence paper:
1) extract keyphrases regarding:

- the task (e.g. image classification)

- data modality (e.g. images or speech)

- domain (e.g. biomedical or aerial)

- training style (unsupervised, semi-supervised, supervised, or reinforcement learning)

- text length (sentence-level or paragraph-level)

- language required (e.g. English)
2) write a very short, single-sentence summary that contains these relevant keyphrases,
only including other information if critical to understanding the abstract. Do not include any
information about model architecture or engineering decisions, beyond what is relevant to
selecting a training/evaluation dataset.

Things to keep in mind:

- We're providing you with a machine-generated "TLDR" of the abstract, as well as Al-
generated suggestions for each field.

- Feel free to skim the abstract rather than closely reading the whole thing, or even skip it
if the TLDR is sufficiently informative.

- Do not spend more than *2 minutes* in total on each example. If you find yourself
taking too long to understand or tag a given abstract, just skip to the next one.

- Do not mention any datasets by name.

Let's go through an example:

Abstract: Semantic image segmentation is an essential component of modern
autonomous driving systems, as an accurate understanding of the surrounding scene is
crucial to navigation and action planning. Current state-of-the-art approaches in semantic
image segmentation rely on pre-trained networks that were initially developed for

Figure 9: Annotators each annotated 10-20 abstracts for our label collection using a Google Form with the
instructions shown here..
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A For every submission:

¥ Al. Did you describe the limitations of your work?
We discuss the limitations in Lines 552 - 599.

¥ A2. Did you discuss any potential risks of your work?
Yes, we discuss some potential ethical risks related to the use of our work in the "Ethics Statement"
(Lines 601 - 626)

A3. Do the abstract and introduction summarize the paper’s main claims?
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We mention our use of the SciREX dataset in Section 3.3: "Test Set Construction”.
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Yes, under the main header of Section 3 we discuss that we will release our data under a CC-BY
license.

vf B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
In Section 3.3 (line 244) we mention the use of an existing artifact. In the Conclusion (Section 7), we
discuss the liberal intended uses of our dataset.

¥/ B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
No, but our dada contains no anonymous information about annotators.

¥/ B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
Yes, in Section 3.4

v B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.

Yes, in Section 3.4

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on Al writing
assistance.
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C ¥ Did you run computational experiments?

Yes, in Section 4.2.

C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
We mentioned the number of parameters in some cases (in Section 3.2 we mention the size of an LLM
we use), an we mention the computing infrastructure in the bottom of Section 5. We do not mention
total computational budget because our paper was very compute-light, so we did not feel that total
computational budget was salient enough to mention.

¥ C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
No. We did not perform hyperparameter search.

¥ C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
We include standard deviations in Tables 1 and 3, and we also discuss signiicance tests in Section
5.2 and 5.4.

v C4. 1If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?

We discuss the evaluation package and parameters we use under Section 2 (footnote 4), and we
discuss the BM25 retrieval parameters we use in Section 4.2 (footnote 8).

D ¥ Did you use human annotators (e.g., crowdworkers) or research with human participants?

Section 3.3

¥/ D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
We include the initial instructions provided to participants in Appendix B.

v/ D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?

Section 3.3

¥/ D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
Appendix B

D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No. We procured annotations *from™* annotators rather than *about* annotators, and therefore we
did not feel that IRB approval was necessary.

X D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No. We mentioned that the annotators were students, faculty, and recent alumni of graduate programs
in Al, robotics, computer vision, NLP, and statistics. For the purposes of our dataset, more detailed
demographic and geographic information would not be relevant.
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