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Abstract

The success of NLP systems often relies on
the availability of large, high-quality datasets.
However, not all samples in these datasets
are equally valuable for learning, as some
may be redundant or noisy. Several methods
for characterizing datasets based on model-
driven meta-information (e.g., model’s confi-
dence) have been developed, but the relation-
ship and complementary effects of these meth-
ods have received less attention. In this paper,
we introduce infoVerse, a universal framework
for dataset characterization, which provides
a new feature space that effectively captures
multidimensional characteristics of datasets
by incorporating various model-driven meta-
information. infoVerse reveals distinctive re-
gions of the dataset that are not apparent in the
original semantic space, hence guiding users
(or models) in identifying which samples to
focus on for exploration, assessment, or anno-
tation. Additionally, we propose a novel sam-
pling method on infoVerse to select a set of
data points that maximizes informativeness. In
three real-world applications (data pruning, ac-
tive learning, and data annotation), the samples
chosen on infoVerse space consistently outper-
form strong baselines in all applications. Our
code and demo are publicly available.1

1 Introduction

The construction of large datasets is one of the es-
sential ingredients for success in various NLP tasks
(Wang et al., 2019). However, not all data points
are equally important to learn from; many datasets
often contain low-quality samples, e.g., incorrect
labels (Toneva et al., 2019) or annotation artifacts
(Gururangan et al., 2018). Thus, data character-
ization (Roth and Mattis, 1990), a technique for
transforming raw data into useful information for

∗This work was done while JK was at Minnesota NLP.
1https://github.com/minnesotanlp/
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Figure 1: The proposed framework, infoVerse. By
incorporating multidimensional aspects of data charac-
teristics, infoVerse enables a better dataset characteri-
zation. By selecting maximally informative subsets on
infoVerse, we improve model performance on a variety
of data-centric real-world problems like active learning.

a target task, has a huge potential to improve the
model’s performance by trimming the problematic
samples (Pleiss et al., 2020) or providing better
practices for effective data collection, e.g., active
learning (Beluch et al., 2018) and adversarial anno-
tation (Nie et al., 2019).

However, data characterization via human as-
sessment is highly limited due to the huge cost of
dealing with a large dataset and the vagueness of
the assessment itself. To this end, several model-
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driven meta-information2 have been investigated;
for example, the model’s confidence is a standard
meta-information widely used in active learning
(Beluch et al., 2018). Swayamdipta et al. (2020)
recently show that the training dynamics of the
model’s prediction can indicate the relative impor-
tance of training samples. Various types of meta-
information are continuously proposed from differ-
ent intuitions (Salazar et al., 2020; Paul et al., 2021),
but their relationship and potential beyond relying
on individual one have yet to be explored. Hence,
this work answers the following two research ques-
tions: (1) is there a (hidden) complementary effect
between various meta-information for better data
characterization, and (2) is the combined meta-
information useful for real-world applications?

In this paper, we introduce infoVerse: a univer-
sal framework for better dataset characterization
by incorporating multiple aspects of data character-
istics. To be specific, infoVerse combines various
types of meta-information which offer the different
aspects of data characteristics (e.g., how difficult
the sample is to learn, how certain multiple models
are, and how likely the sample is). Consequently,
we can extract richer information about data infor-
mativeness from their complementary effect, and
infoVerse could guide users (or models) in what
samples to focus on for the exploration, assess-
ment, or annotation. To extend the advantages
of infoVerse into real-world problems, we further
propose a novel sampling method suitable for in-
foVerse based on determinantal point processes
(DPP), which is known to be effective for finding
a diverse and high-quality set of samples (Gillen-
water et al., 2012; Chen et al., 2018). It enables
us to select data points that maximize the informa-
tion at a set level rather than a sample level on the
multidimensional space of infoVerse.

In detail, we first construct infoVerse based
on the diverse meta-information, which could be
broadly classified into four different categories in
Section 3. The complementary effect from the mul-
tiple meta-information in infoVerse helps reveal dis-
tinct regions in the dataset, such as hard-to-predict
and mis-labeled ones, which are not observable in
the original semantic feature space (Section 4). In
Section 5, we empirically show that our framework
has consistently outperformed the strong baselines
in various data-centric applications, like data prun-

2Measurements that quantify implicit information in data
points, such as their difficulty to learn.

ing (Toneva et al., 2019; Paul et al., 2021), active
learning (Yuan et al., 2020), and data annotation
(Xie et al., 2020a), although it is not specifically de-
signed for those problems. This result opens up the
potential of infoVerse to other data-centric applica-
tions, unlike the application-specified approaches.

Our results show that a dataset could be distinc-
tively characterized when many different but com-
plementary dimensions are considered together.
We believe that our infoVerse framework could
evolve continuously with the development of new
meta-information and hence serve as an effective
platform for better characterization of datasets and
construction of high-quality datasets.

2 Related Works

Quantifying and characterizing dataset. Al-
though the large quantity of datasets is usually got
attention for the success of various NLP tasks, the
quality of the dataset is also an important factor.
While constructing data with human-in-the-loop is
quite reliable like Dynabench (Kiela et al., 2021a),
it is expensive and laboring. Hence, some works
show the benefits of using a model for quantify-
ing and characterizing datasets; for example, Ro-
driguez et al. (2021) demonstrates that the model
has the ability to annotate, detect annotation errors,
and identify informative examples. In this line of
work, several model-driven meta-information have
been proposed (Toneva et al., 2019; Swayamdipta
et al., 2020; Beluch et al., 2018), as we provide the
detailed explanation in Section 3 and Appendix A.
Most of the prior works focuses on finding a new
meta-information; however, as they are obtained
under different intuition and aspects of data charac-
teristics, one can expect the complementary effect
between them to provide richer information about
the dataset. Such direction is under-explored from
now on, and we try to fill this gap in this work.

Informative subset selection. Finding an in-
formative subset is key for various real-world ap-
plications; for example, active learning requires
selecting the most informative samples among un-
labeled samples for labeling (Settles, 2009). The
most widely used approaches to finding those sam-
ples in active learning are based on uncertainty.
Although several uncertainty measurements have
been successfully applied in various NLP tasks,
Dasgupta (2011) pointed out that focusing only
on the uncertainty leads to a sampling bias with
repetitive patterns. To this end, diversity-based
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Table 1: Categorization of used meta-information.

Categories Meta-information

Static Entropy, Confidence, BADGE
Measures Task Density, Relative Density score
Training Average Confidence, Variability
Dynamics Forgetting Number, Area Under Margin
Model

EL2N score, BALD, Variance RatioUncertainty
Pre-trained

Sentence Density, Pseudo-log-likelihoodKnowledge

sampling has been explored (Sener and Savarese,
2018). However, as this approach might select
samples that provide little new information, recent
works suggest methods combining uncertainty and
diversity to take advantage of both methods (Ash
et al., 2020; Yuan et al., 2020). Our work pro-
vides a better way to select informative samples by
effectively incorporating multiple aspects of data
characteristics with a single universal framework.

3 infoVerse: Universal Framework for
Multi-aspect Data Characterization

In this section, we present infoVerse, a universal
framework for better data characterization. Our
high-level idea is extracting the complementary ef-
fect between various meta-information, as they are
oriented from the different aspects of data charac-
teristics. In Section 3.1, we briefly introduce the
used meta-information to construct infoVerse. In
Section 3.2, we present a novel sampling method
to extend the advantages of infoVerse for solving
real-world problems. We remark that our frame-
work can be easily extended with a new meta-
information and not limited to specific ones, while
the fixed ones are used for the experiments.

3.1 Meta-information for infoVerse
To construct infoVerse, one needs to determine
which meta-information to use, and it is expected
to get better capability for data characterization
with diverse meta-information. Hence, we first con-
duct an extensive investigation of the existing meta-
information and find that they could be categorized
into four different classes based on how they ex-
tract the data characteristics: (1) Static Measures,
(2) Training Dynamics, (3) Model Uncertainty, and
(4) Pre-trained Knowledge. In Table 1, we provide
the full list of meta-information for each category,
and more details are presented in Appendix A.

Static Measures. Meta-information obtained
from a single static classifier is arguably the eas-
iest and most natural to use. Confidence to true
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Figure 2: Correlation between meta-information consid-
ered in infoVerse on QNLI dataset.

label and Entropy (Shannon, 1948) of the predic-
tive probability from the classifier’s output have
been popularly used to characterize each data point.
BADGE score (Ash et al., 2020), a gradient norm
of the linear classifier with respect to training loss,
is designed to capture the uncertainty of the pre-
diction. Finally, Task Density and Relative Density
defined with kNN distance on the classifier’s fea-
ture embeddings (DeVries et al., 2020) effectively
estimates the uniqueness of data at a task level.

Training Dynamics. Training dynamics of
samples largely varies depending on the samples’
characteristics and hence can provide useful in-
formation, e.g., the confidence of mislabeled sam-
ples slowly increases relative to the normal ones.
Swayamdipta et al. (2020) investigate the useful-
ness of the mean (Confidence) and standard de-
viation (Variability) of the model’s prediction to
true class across training epochs; they observe that
high variable samples are usually useful and low
confident ones have a risk of the noisy label. For-
getting Number (Toneva et al., 2019), a number of
the transitions from being classified correctly to
incorrectly during training, is also shown to be an
effective measurement for finding redundant sam-
ples. Pleiss et al. (2020) reveals that Area Under
Margin (AUM), a sum of the gap between the log-
its of true class and most confusing class across
training epochs, is different among easy, hard, and
mislabeled samples.

Model Uncertainty. As intrinsic randomness
within the model affects the samples’ prediction,
such uncertainty has been widely used in various
fields (Lakshminarayanan et al., 2017; Lee et al.,
2021b). There are two popular ways to measure
the model uncertainty: Monte-Carlo Dropout (MC-
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Dropout) (Gal and Ghahramani, 2016) with differ-
ent Dropout masks for a single model, and Deep En-
sembles (Lakshminarayanan et al., 2017) with mul-
tiple models differently random initialized. Specifi-
cally, the following four meta-information are used
for uncertainty quantification: 1) Entropy of the
average predicted class distribution of multiple pre-
dictions, 2) BALD (Houlsby et al., 2011): mutual
information between data samples and classifier,
3) Variation Ratio (Beluch et al., 2018): a propor-
tion of predictions different with the majority voted
one, and 4) EL2N score (Paul et al., 2021): an ap-
proximated contribution to the change of training
loss. In addition, we also include the average and
variability of confidence across different models.

Pre-trained Knowledge. As general text rep-
resentation provides complementary information
to task’s one, using the pre-trained language mod-
els to extract meta-information is another popu-
lar direction. For example, MLM score (Salazar
et al., 2020), a Pseudo-Log-Likelihood (Wang and
Cho, 2019) of Masked Language Model (MLM),
gives low values to the sentences with inconsis-
tent context. To reduce the computational cost, we
use its approximation following Yuan et al. (2020).
Also, Semantical Density of each sample based on
kNN distance (DeVries et al., 2020) using sentence-
BERT (Reimers and Gurevych, 2019) can assess
its uniqueness compared to other sentences.

Overall, with 23 meta-information, we construct
a new feature space infoVerse. Note that some
complementary or redundant meta-information is
noticed by low or high correlation values in Figure
2, respectively. Remarkably, we observe that sim-
ilar correlations consistently appear across differ-
ent datasets and models, meaning that this "meta"-
information is quite a dataset- and task-agnostic
(see Appendix D).

3.2 Maximally-Informative Subset Selection

Consideration of multiple meta-information via in-
foVerse enables better data characterization, but
it’s non-trivial to apply this framework to practical
problems, such as data pruning and active learn-
ing. One of the main challenges is from the mul-
tidimensional nature of infoVerse, as it requires a
new sampling method rather than existing single-
score based sample selections; for example, Beluch
et al. (2018); Swayamdipta et al. (2020) choose
top-ranked samples ordered by a specific meta-
information like confidence or uncertainty but such

Figure 3: 10 selected samples with different selection
methods on QNLI dataset and their log determinant as
a proxy measure for set-informativeness.

ordering is hard to be defined in multidimensional
space. On the other hand, the single-score strat-
egy cannot capture the relationship between the
selected samples in the subset; hence, it suffers
from the lack of diversity, especially when the size
of the subset is small (see Figure 3). Lastly, the
manual verification of the effectiveness of each fea-
ture becomes very costly when multiple features
are considered. Motivated by this, we provide a
new effective subset selection method for infoVerse
based on determinantal point process (DPP). To
be specific, we propose to focus on maximizing
the informativeness of the subset by leveraging the
capability of infoVerse for data characterization
at a set level; here, DPP provides a way to easily
find the effective sampling method by defining the
appropriate score and similarity functions.

Determinantal point processes. Formally, a
DPP on a set of samples X = {x1, . . . , xN} is a
probability measure P on 2X , the set of all subsets
of X . Under the assumption that P gives a nonzero
probability to the empty set, the probability of each
subset X ⊆ X is P(X) ∝ det(LX) where L ∈
RN×N is a real, positive semidefinite (PSD) kernel
matrix, and LX denotes the sub-matrix of L which
is indexed with the subset X . Here, we can define
the entries of L as follows:

Lij = q(xi)ϕ(xi)
Tϕ(xj)q(xj) (1)

where q(x) ∈ R+ is a score of sample x which is
used to weight the samples with a high quality or
desired property such as high confidence or uncer-
tainty. Next, Sij = ϕ(xi)

Tϕ(xj) ∈ [−1, 1] repre-
sents a similarity between samples xi and xj with a
normalized feature vector ϕ(x) ∈ Rd, ||ϕ(x)||2 =
1. We note that the determinant det(LX) is pro-
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Figure 4: infoVerse (bottom left) on QNLI dataset along with other feature spaces: classifier’s embedding (top left)
and data map (Swayamdipta et al., 2020) (middle left). (center) We present the zoomed version of infoVerse with
some examples of each distinctive region. We set high chroma to high variability samples for better interpretation.
(right) Score distribution of each region characterized by infoVerse.

portional to the volume spanned by the vectors
q(x)ϕ(x) for x ∈ X , and hence the sets with high-
quality and diverse samples have the high proba-
bility under distribution from DPP. Consequently,
DPP provides a natural way to find the maximally-
informative subset by selecting the subset with the
highest probability among the sets with the same
number of samples (Kulesza and Taskar, 2011).

To apply DPP on infoVerse, we consider the fol-
lowing design choices. For Sij , we use a Gaussian
kernel with Euclidean distance (Bıyık et al., 2019)
on a normalized features x̃ on infoVerse:

Sij = exp(−β||x̃i − x̃j ||2) (2)

where we use a fixed value β = 0.5. Regarding
score q(x), we use a density defined by kNN dis-
tance (Carbonera and Abel, 2015) DKNN to the
same class’ samples on infoVerse for data pruning:

DKNN(x) = −min
K

{||x̂− x||2 | x̂ ∈ X} (3)

where minK {·} is defined as the Kth smallest
value in a set. In our experiments, we commonly set
K = 5. As DKNN has a negative value, we use its
negative inverse to define a positive score function,
i.e., q(x) = −1/DKNN. Intuitively, it encourages
selecting the samples that preserve the informative-
ness captured on infoVerse as much as possible.
For active learning and data annotation, we use
its inverse as q(x) to select samples that have in-
formation hard to be captured by their neighbor

and hence will be beneficial when labeled. Finally,
we adopt the efficient greedy method (Chen et al.,
2018) for DPP, as finding a set with the highest
probability is NP-hard.

Figure 3 shows the 10 selected samples with
different selection methods on the QNLI training
dataset with a fine-tuned RoBERTa-large classifier.
Here, one can observe that single-score based selec-
tion methods like Ambig and Hard (Swayamdipta
et al., 2020) actually suffer from the lack of di-
versity. CoreSet (Sener and Savarese, 2018) or
K-means clustering can select diverse samples, but
they are known to be vulnerable to the existence of
outliers (Georgogiannis, 2016). In contrast, DPP
successfully selects informative and diverse sam-
ples; as shown in the right below of Figure 3, the
log determinant with DPP, i.e., approximate set-
informativeness, is much higher than the others.

4 Dataset Characterization via infoVerse

In this section, we demonstrate how infoVerse could
help analyze a given dataset via better data charac-
terization. Specifically, Figure 4 presents infoVerse
on QNLI dataset3 along with other representative
feature spaces for data characterization: classifier’s
embedding (at final layer before linear head) and
data map (Swayamdipta et al., 2020). As the clas-
sifier’s embedding and infoVerse are high dimen-
sional space, we project them to 2D space via t-

3Natural language inference dataset derived from SQuAD.
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SNE (Van der Maaten and Hinton, 2008) for visual-
ization. First, one can observe that infoVerse maps
the samples into distinguishable regions based on
their characters; for example, samples with high
variability are further mapped to some different
regions. To be specific, in Figure 4, they have high
variability in a common while having a difference
in other measures: the regions with dotted boxes
have relatively high Ensemble Entropy and MC
Entropy, respectively, which cannot be distinguish-
able in the data map, showing the advantage of
infoVerse in dataset characterization.

This benefit of infoVerse for dataset characteriza-
tion is more clear when we focus on the incorrectly
predicted samples (black squares/circles in Figure
4). As shown in the left of Figure 4, it is hard to find
their characteristics on the classifier’s embedding
as they are scattered over different regions. Data
map (Swayamdipta et al., 2020) maps these sam-
ples to regions with low confidence (hard-to-learn)
or high variability (ambiguous), but not perfectly
as these regions also include correctly predicted
samples. In contrast, infoVerse successfully char-
acterizes these incorrectly predicted samples and
maps them into three distinct regions with a differ-
ent distribution of meta-information: 1) Hard-and-
disagreed, 2) Easy-to-mistake, and 3) Ambiguous.
As shown in the right of Figure 4, both Hard-and-
disagreed and Ambiguous regions have high en-
semble uncertainty, but Hard-and-disagreed region
has relatively low confidence and variability which
means that it is also hard to learn. It might imply
its incorrect prediction due to intrinsic difficulty
as one can verify in the examples in Figure 4. In
contrast, Easy-to-mistake region has much lower
uncertainty than other incorrectly predicted regions,
which indicates the prediction is certainly wrong.
It might indicate that the mistakes happened during
annotation even though they are easy ones to anno-
tate correctly. More results of data characterization
on other datasets with infoVerse are presented in
Appendix D.

5 infoVerse for real-world applications

In this section, we demonstrate the advantages of
infoVerse on three real-world problems: 1) Data
Pruning (Swayamdipta et al., 2020), 2) Active
Learning (Beluch et al., 2018), and 3) Data Anno-
tation (Kiela et al., 2021b). These problems com-
monly require characterizing and quantifying data
to determine which samples to select, but with dif-

ferent goals; hence, various methods have been ex-
plored separately. In contrast, we will demonstrate
the potential of infoVerse as a universal framework
to deal with such data-centric problems.

5.1 Data Pruning

The goal of data pruning is selecting the most in-
formative subset of a given training dataset while
keeping the performance of the model trained on
the subset; hence, measuring the sample’s infor-
mativeness becomes a key for data pruning. This
problem has been popularly investigated with vari-
ous meta-information as an important problem for
improving the efficiency of various NLP tasks.

Setups. For the experiments of data pruning, we
first use two datasets, QNLI (Wang et al., 2019) and
WinoGrande (Sakaguchi et al., 2020), following the
recent work (Swayamdipta et al., 2020). Then, we
use three additional datasets, SST-2 (Socher et al.,
2013), CoLA (Warstadt et al., 2019), and RTE
(Wang et al., 2019), for the comprehensive demon-
stration. We consider 8 different pruning ratios
({17%, 34%, 50%, 67%, 75%, 83%, 87%, 91%}),
which includes more challenging setups compared
to the previous works (Swayamdipta et al., 2020;
Paul et al., 2021). We run all experiments by fine-
tuning RoBERTa-large (Liu et al., 2019), following
(Swayamdipta et al., 2020).

To demonstrate the effectiveness of infoVerse-
DPP, we compare it with various state-of-the-art
approaches to data pruning. We first consider a
random-sampling (Random); then, we consider
three different approaches in (Swayamdipta et al.,
2020) (Easy, Hard, and Ambig), which selects
the samples by scoring them with a specific meta-
information (average confidence and variability).
In addition, we introduce two additional data prun-
ing works: Forget (Toneva et al., 2019) and EL2N
(Paul et al., 2021). Finally, we consider density-
based approaches as they are arguably the most
natural ways to preserve the characteristics of the
dataset: Coreset (Sener and Savarese, 2018) and
Density (Yuan et al., 2020). More details of datasets
and training can be found in Appendix B.2.

Results. Figure 5 shows the performance un-
der varied pruning ratios on WinoGrande (see Ap-
pendix C for the other tasks). We first note that the
effectiveness of each pruning method significantly
varies on the pruning ratio. For example, Hard and
Ambig show good performance at small pruning ra-
tios, but they often fail at large pruning ratios, simi-
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Table 2: Average test accuracy of fine-tuned RoBERTa-large over the eight different data pruning ratios.

Dataset Random Easy Hard Ambig Forget EL2N Coreset Dense infoVerse-DPP

WinoGrande 73.1±0.09 68.1±0.18 69.6±0.31 69.3±0.52 73.8±0.77 72.2±1.02 73.9±0.14 72.9±0.31 74.6±0.24

CoLA 60.7±0.63 32.2±0.94 41.1±0.16 41.0±0.73 59.1±0.54 47.6±1.07 55.5±0.93 61.2±0.43 62.5±0.14

RTE 76.7±0.75 73.5±0.21 56.2±1.59 56.3±2.26 71.0±0.93 61.4±0.81 56.3±0.31 78.1±1.20 78.5±0.60

QNLI 92.9±0.25 70.0±0.07 79.0±0.34 80.0±0.49 92.2±0.31 82.8±1.85 84.2±0.28 92.1±0.30 93.1±0.17

SST-2 95.3±0.10 65.6±0.64 88.7±0.29 93.1±0.57 95.2±0.09 90.5±0.39 92.9±0.48 94.4±0.07 95.7±0.10
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Figure 5: Test accuracy of RoBERTa-large fine-tuned
on the pruned training dataset of WinoGrande.

Table 3: Ablation study about the effectiveness of each
category of meta-information with infoVerse-DPP.

Categories WinoGrande CoLA

Static Measures 72.7±0.24 60.2±0.19

Training Dynamics 73.5±0.35 62.2±0.41

Model Uncertainty 71.5±1.47 60.6±0.36

MC-Model Uncertainty 70.2±0.80 58.9±0.82

Pre-trained Knowledge 72.8±0.84 56.3±0.51

infoVerse 74.6±0.24 62.5±0.14

larly observed in (Swayamdipta et al., 2020). On
the other hand, density-based methods are robust
to the varied pruning ratios, although overall per-
formance is relatively low. Hence, to compare each
baseline by considering all the pruning ratios to-
gether, we compare a single averaged performance
in Table 2 similar to Area Under Curve (Tai, 1994).
Here, one can observe that infoVerse with DPP
(infoVerse-DPP) consistently outperforms other
pruning methods across all datasets.

To demonstrate the advantages of infoVerse-DPP,
we present Figure 6 to qualitatively show how the
proposed method works for data pruning. Inter-
estingly, types of majority meta-information of se-
lected samples dynamically change as the pruning
ratio increases, from confidence to model uncer-
tainty to variability. After the most redundant sam-
ples (i.e., high-confidence) are pruned, followed
by hard and uncertain samples. In contrast, other
baselines do not have any pattern for selection or
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Figure 6: Majority measurement of the selected sam-
ples dynamically change as the pruning ratio increases
(infoVerse-DPP on SST-2): confidence (0-40%) →
model uncertainty (40-60%) → variability (60-85%).

just have static ones, as shown in Figure 15.
It is worth noting that effective pruning strategies

would indeed vary with the pruning ratio or given;
for instance, (Swayamdipta et al., 2020) disclose
that high-confidence samples should be pruned at
low pruning ratios due to redundancy, but these
samples become essential for training as the ratio
increases (e.g., 83%). While (Swayamdipta et al.,
2020) could manually check the varied effective-
ness of confidence and find the effective pruning
strategy based on that, such a manual approach be-
comes very costly when the number of considered
measurements increases. In this aspect, our frame-
work offers an efficient solution as it prunes the
samples toward maximizing the informativeness
of the remaining samples, rather than focusing on
specific measurements. Also, the observed prun-
ing curriculum demonstrates how infoVerse with
DPP actually outperforms the other selection meth-
ods, by automatically adapting the pruning strategy
across varying ratios.

In addition, to verify the complementary effect
between different categories of meta-information,
we compare the model’s performance by pruning
the samples based on each category using DPP.
As shown in Table 3, the effectiveness is largely
different depending on whether each category can
capture the important aspect of the dataset for data
pruning. However, when they are combined to con-
struct infoVerse, the performance is significantly
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Table 4: Average test accuracy of fine-tuned BERT-base over the nine AL iterations.

Dataset Random Entropy BALD BERT-KM FT-BERT-KM BADGE ALPS infoVerse-DPP

AGNEWS 89.9±0.25 90.6±0.17 90.8±0.32 89.8±0.34 90.7±0.18 90.6±0.21 89.3±0.32 90.6±0.19

SST-2 88.8±0.62 89.9±0.81 89.3±0.63 89.3±0.57 89.4±0.64 89.8±0.63 89.2±0.66 90.3±0.57

RTE 60.9±2.80 60.5±1.92 60.9±2.20 60.7±0.06 59.6±2.39 59.8±2.29 58.3±3.00 61.5±2.46

improved which implicitly reveals that they are mu-
tually complementary. More results are presented
in Appendix C and E.

5.2 Active Learning

Active learning (AL) is a task that finds the most
informative subset from unlabeled samples when
labeled and used for training the model. AL usually
consists of multiple iterations of the following two
steps: (1) select a subset of unlabeled data under a
specific sampling method and expand the labeled
data by annotating the subset. (2) Then, train the
model with the new training dataset. More details
and experimental results are in Appendix B.3.

Setups. To demonstrate the effectiveness of info-
Verse in AL, we compare it with the state-of-the-art
AL methods on the various datasets, following the
recent works of AL for NLP tasks (Yuan et al.,
2020; Margatina et al., 2021). Specifically, we
evaluate infoVerse on three datasets: SST-2, RTE,
and AGNEWS (Zhang et al., 2015). Also, several
AL methods are used as the baselines, which are
based on three different strategies: (1) uncertainty-
based (Entropy and BALD, as described in §3.1),
(2) diversity-based (BERT-KM and FT-BERT-KM
(Yuan et al., 2020)) which focus to cover data distri-
bution, and (3) hybrid method to consider both as-
pects jointly (BADGE (Ash et al., 2020) and ALPS
(Yuan et al., 2020)), and Random sampling. All ex-
periments are conducted using BERT-base (Devlin
et al., 2019). We construct infoVerse of unlabeled
datasets with their pseudo-labels (Lee et al., 2013).

Results. We first summarize the results in Fig-
ure 7 and Table 4. Figure 7 presents the test ac-
curacy of the trained model at each AL iteration
on SST-2 dataset (the results of other datasets are
presented in Appendix C, due to limited space).
In addition, Table 4 shows the average test accu-
racy across multiple AL iterations and implies the
overall performance of each method. Here, one
can observe that infoVerse-DPP shows consistent
improvements over other baselines; infoVerse-DPP
outperforms the baselines in RTE and SST-2, while
it shows comparable performance with the highest
performing baseline BALD in AGNEWS. Conse-
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Figure 7: Test accuracy of BERT-base fine-tuned on the
labeled samples by each AL method on SST-2.

quently, infoVerse-DPP achieves the lowest aver-
age rank (1.3) among the tested AL methods.

Next, we conduct additional experiments to un-
derstand in depth how infoVerse-DPP selects the
informative unlabeled samples and improves the
model’s performance. Specifically, on SST-2, we
compare the average of meta-information of the
selected samples by infoVerse-DPP and two repre-
sentative baselines, Random and Entropy.4 Fig-
ure 8 presents the results; Entropy selects the
mostly uncertain samples (8(c)), but it relatively
suffers to select the unseen samples (8(d)) and
also has a risk to select noisy samples (8(a)). In
contrast, infoVerse-DPP incorporates the multiple
meta-information during the selection; for example,
it selects the mostly variable samples with moder-
ately low confidence, which has been demonstrated
as a key characteristic for effective training sam-
ples (Swayamdipta et al., 2020). Also, the selected
samples capture a certain level of uncertainty along
with a low sentence-level density (i.e., hence can
introduce the new pattern in training samples).

5.3 Data Annotation

Finally, we demonstrate the advantage of infoVerse
on data annotation (Kiela et al., 2021b), to provide
the most effective set of unlabeled samples that are
expected to improve the model’s performance after

4Random is the most simple approach and Entropy shows
the second best performance.
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Figure 8: Comparison of the selected samples with different AL methods (Random, Entropy, and Ours) on SST-2.
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Figure 9: Annotator disagreement on IMP.

Table 5: Test accuracy of RoBERTa-large fine-tuend on
the annotated dataset together with the original training
dataset. 1,000 samples for SST-5 and 600 samples for
IMP are additionally annotated, respectively.

Dataset Original Random Entropy infoVerse-DPP

SST-5 58.2±0.66 58.2±0.72 58.4±0.83 58.8±0.95

IMP 88.6±0.67 88.9±0.40 88.8±0.78 89.0±0.50

they are annotated with human labelers.
Setups. We consider two datasets, SST-5

(Socher et al., 2013) and IMP datasets (Du et al.,
2021). Following (Du et al., 2021), we first con-
duct an unsupervised data retrieval to prepare high-
quality 10,000 candidates among 2M unlabeled sen-
tences from Common Crawl (Wenzek et al., 2020)
and Reddit corpus.5 We then apply each selection
method to choose final queries for data annota-
tion: 1,000 samples for SST-5 and 600 samples for
IMP, respectively. Finally, we ask crowd-workers
to annotate the selected samples using Amazon’s
Mechanical Turk (Crowston, 2012) with at least
three different annotators. We compare the two
representative methods, Random and Entropy, with
ours (infoVerse-DPP) due to the limited resources.
We include more details in Appendix B.4.

Results. Table 5 shows the performance with
different selection methods on SST-5 and IMP
datasets. One can observe that infoVerse with
DPP consistently finds more informative sets of

5https://convokit.cornell.edu/
documentation/subreddit.html

samples leading to extra performance gain than
the other sampling methods on both datasets. We
further measure disagreement between annotators
on the newly-annotated dataset in the IMP task
in Figure 9. The order of annotated samples by
ours is more linearly aligned with the annotators’
disagreement than other sampling methods, indi-
cating that our method prefers to choose more
hard and informative samples first. Consequently,
unlike the prior methods relying on single meta-
information like confidence (Xie et al., 2020b) or
uncertainty (Mukherjee and Awadallah, 2020), our
multi-dimensional approach with infoVerse could
provide useful contributions for data annotation.
Finally, we remark that experimental results and
relevant discussions about computational cost and
complementary effect of meta-information are pre-
sented in Appendix E and F, respectively.

6 Conclusion

We propose a new framework, infoVerse to charac-
terize the dataset in various aspects of data informa-
tiveness. To be specific, infoVerse utilizes various
types of meta-information which offer different
aspects of data characteristics. The combination
of diverse meta-information helps detect distinct
regions of dataset characteristics, which are not ob-
servable in the previous feature spaces. In addition,
we further propose a novel sampling method to se-
lect data points that maximize the information at
a set level rather than a sample level on the mul-
tidimensional space of infoVerse. We empirically
demonstrate the benefit of infoVerse on three ap-
plications: data pruning, active learning, and data
annotation. infoVerse with the proposed subset
selection method shows consistent improvement
over the strong baselines of each problem. We be-
lieve our framework will emerge with the growth of
data-centric approaches and contribute to a better
understanding of the dataset and improvement of
the dataset’s quality.
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Limitations

In this paper, we propose a new framework that ex-
tracts the various aspect of information about given
data, relying on the existing model-driven meta-
information from the trained models. Hence, if
there are some flaws within the used models, such
as biased prediction (Sun et al., 2019) or learn-
ing of spurious correlation (Liu et al., 2021), then
our framework can be directly affected and may
have a risk of inheritance or amplification of such
problematic behaviors. However, as our framework
is not limited to any specific models and meta-
information, one can prevent this problem by using
the robustly trained models (Sagawa et al., 2020)
or introducing more specialized meta-information
(Lee et al., 2021a) for these problems. In addi-
tion, despite the empirical gains we find, our subset
selection method is not theoretically guaranteed
to be (or tightly bound to) the optimal set of max
informativeness, which remains an interesting di-
rection. A further study is necessary showing that
selected samples from infoVerse could lead to low
inter-annotator agreement in manual annotation but
provide more accurate information than pseudo-
labels. Abnormality detection using infoVerse, like
noisy labels, out-of-distribution, or annotation arti-
facts, could be interesting future directions.

Broader Impact and Ethical Implications

Our work aims to quantify the data informativeness
with multi-perspective for capturing properties that
can not be revealed by a single perspective. Espe-
cially, infoVerse lends some insight into data by
models what we have. Thus, infoVerse has the po-
tential for guiding the construction of high-quality
datasets, e.g., removing mis-labeled samples. From
these points, it is possible to develop a system or
general platform for effectively collecting data like
Dynabench6 and Snorkle7. We anticipate that the
general platform of infoVerse could be contributing
to human-involved machine learning systems.

Although our work empirically demonstrates the
improvement over various real-world problems, the
current version of infoVerse has a potential risk
to be vulnerable to sample undesirable properties
(e.g., gender bias (Bordia and Bowman, 2019))
in a dataset, as we construct infoVerse with meta-
information measure do not consider such prop-
erties. However, it can be easily alleviated by

6https://dynabench.org/
7https://www.snorkel.org/

adding various measurements which represent ’fair-
ness’ thanks to the extensibility of our framework.
Hence, we believe that our proposed method can
be personalized to the purpose of data collection.
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A Summary and Formal Definition of
Meta-information

In this section, we first present a detailed summa-
rization of considered meta-information in Table
6. Then, we provide a formal definition of each
meta-information introduced in Section 3.1. Here,
we consider a classification task with K classes for
the explanation. x and y indicate the input token
and the corresponding true label, respectively. fθ
indicates the classifier, which is pre-trained Trans-
former (Vaswani et al., 2017) such as BERT (De-
vlin et al., 2019) or RoBERTa (Liu et al., 2019).
pθ = Softmax(fθ) is a predictive distribution of
classifier and zθ is a contextualized embedding be-
fore linear classifier in fθ = W T zθ.

A.1 Static Measures

Static measures are the meta-information extracted
from a single static model, which is the most
natural and easy way. In total, 5 different meta-
information is used.
1. Task Density (DeVries et al., 2020)

Here, Euclidean distance to Kth nearest sample
is used as density following Carbonera and Abel
(2015).

DKNN(x) = −min
K

{||ẑθ − zθ(x)||2}

where ẑθ ∈ Dtrain\{zθ(x)} and minK {·} is de-
fined as the Kth smallest value in a set. In our
experiments, we set K = 5.
2. Relative Density (DeVries et al., 2020)

As the Task Density does not utilize the label
information, we further consider the relative den-
sity which is the difference of kNN density to true
class samples and other class samples. Hence, if
this value is large, it implies that x is near to the
true class and far from other classes. In our experi-
ments, we set K = 5.
3. Static Confidence

µ̄(x) = pθ(y|x)

4. Static Entropy (Shannon, 1948)

H̄Ent(x) = −
K∑

k=1

pθ(k|x) · log pθ(k|x)

5. BADGE (Ash et al., 2020) BADGE is originally

proposed for active learning, to select the diverse
and uncertain samples.

sBADGE(x) = ||(pθ(x)− y) · zθ(x)||2

A.2 Training Dynamics
Training dynamics of samples largely varies de-
pending on the samples’ characteristic and hence
can provide useful information, e.g., the confidence
of mislabeled samples slowly increases relative to
the normal ones. We totally find 4 corresponding
meta-information in this category. Here, E is the
total training epoch.
6. Average Confidence (Swayamdipta et al., 2020)

µ̂(x) =
1

E

E∑

e=1

pθ(e)(y|x)

7. Variability (Swayamdipta et al., 2020)

σ̂(x) =

√∑E
e=1

(
pθ(e)(y|x)− µ̂(x)

)2

E

8. Forgetting Number (Toneva et al., 2019)

nforget(x) =

E∑

e=1

1(acc(e)i > acc(e)i+1)

where acct(x) = 1
(
argmaxk pθ(e)(k|x) = y

)

9. Area Under Margin (Pleiss et al., 2020)

AUM(x) =
1

E

E∑

e=1

M (e)(x, y)

where M (e)(x, y) = fθ(e)(y|x) −
maxk ̸=y fθ(e)(k|x)

A.3 Model Uncertainty
As intrinsic randomness within the model affects
the samples’ prediction, such uncertainty has been
widely used in various fields. Total 6 different
meta-information are considered. As we consider
the ensemble from MC-Dropout and the ensemble
of multiple random seed models, total 12 measures
are considered. Here, T is the total number of
models trained with different random seeds.
10. EL2N score (Paul et al., 2021)

sEL2N(x) =

T∑

t=1

||pθ(t)(x)− y||2
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Table 6: Categorization of used meta-information to construct infoVerse. The arrow between the parentheses
indicates more informative direction for each measure: e.g., less confident data (↓) are less likely seen so more
informative.

Categories Meta-information Description

Static
Measures

Confidence (↓) • Predictive probability to true label
Entropy (↑) • Entropy of the predictive probability
BADGE (↑) • Norm of the gradient with respect to parameters in the final (linear) layer

Task Density (↓) • Euclidean distance to the Kth nearest element on the contextualized embedding
from fine-tuned classifier

Relative Density (↓) • Difference of Task density within other class’ samples and true class samples.

Training
Dynamics

Confidence (↓) • Average predictive probability to true label over the training epochs
Variability (↑) • Variance of predictive probability to true label over the training epochs

Forgetting number (↑) • Summation of forgetting over the training epochs: Sample i undergoes forgetting
when accuracy of i decreases between two consecutive epochs

Area Under Margin (↓) • Average margin over the training epochs: Margin captures how much larger
the assigned logit is than all other logits

Model
Uncertainty
(Ens or MC)

EL2N score (↑) • Approximation for the gradient norm of expected loss which bounds the expected
change in loss for sample i caused by removing it from training

Entropy (↑) • Entropy of predictive probability over multiple models with different random seeds
BALD (↑) • Mutual information between data-points and model’s weights
Variation Ratio (↑) • Proportion of predicted labels that are not coincided with the average prediction
Confidence (↓) • Average predictive probability to true label between the models
Variability (↑) • Variance of predictive probability to true label between the models

Pre-trained
Knowledge

PLL (↑) • Pseudo-Log-Likelihood (PLL) score from pre-trained Masked Language Models

Semantical Density (↓) • Euclidean distance to the Kth nearest element on the contextualized embedding
from pre-trained sentence encoder, e.g., sBERT

11. Ensemble Entropy (Shannon, 1948)

HEnt(x) = −
K∑

k=1

pavg(k|x) · log pavg(k|x)

where pavg(k|x) = 1
T

∑T
t=1 pθ(t)(k|x)

12. BALD (Houlsby et al., 2011)

IBALD(x) = HEnt(x)

− 1

T

T∑

t=1

K∑

k=1

−pθ(t)(k|x) · log pθ(t)(k|x)

13. Variance ratio (Beluch et al., 2018)

v(x) = 1− fm(x)

T

where fm(x) =
∑T

t=1 1(argmaxk pθ(t)(k|x) =
ŷavg(x), ŷavg(x) = argmaxk pavg(k|x)
Furthermore, we consider 14. Ensemble Con-
fidence and 15. Ensemble Variability which
just changes the role of epoch E to the number
of models T . Also, we further consider the same
meta-information by simulating the ensemble
with Monte-Carlo dropout (MC-dropout) (Gal and
Ghahramani, 2016), i.e., using different Dropout
masked models for the ensemble. From this, we

obtain 16. MC EL2N score to 21. MC Ensemble
Variability.

A.4 Pre-trained Knowledge

As general text representation provides complemen-
tary information to task’s one, using the pre-trained
language models to extract meta-information is an-
other popular direction. We use 2 meta-information
measures extracted from pre-trained models which
are agnostic to the target task.
22. Semantical Density (DeVries et al., 2020)

DKNN(x) = −min
K

{||ẑθ − zθ(x)||2}

where ẑθ ∈ Dtrain\{zθ(x)} and minK {·} is de-
fined as the Kth smallest value in a set. We set K =
5. Unlike Task Density, z is extracted from a pre-
trained sentence encoder, e.g., sBERT (Reimers
and Gurevych, 2019) which is known to capture
the relationship between sentences.
23. Pseudo-Log-Likelihood (PLL) (Salazar et al.,
2020; Yuan et al., 2020)

Originally, Salazar et al. (2020) use the follow-
ing masked language modeling (MLM) score from
pre-trained language model θMLM as Pseudo-Log-
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Likelihood (PLL) (Wang and Cho, 2019).

PLL(x) =
L∑

l=1

log pθMLM(xl|x\l)

where x\l := (x1, . . . , xl−1, xl+1, xL). However,
it requires L times of inference for calculation.
Hence, we instead its approximation following
Yuan et al. (2020), which just calculates PLL at
once without masking tokens.

B Details of Experiment

B.1 Dataset
In this section, we provide details of all datasets
we used in this work and hyperparameters used
for training the models. For all datasets, we used
the given standard training and validation sets. We
present the details of downstream datasets in Table
7. All of the data we used can be downloaded from
HuggingFace dataset https://huggingface.
co/datasets/. For experiments, we report ac-
curacy using the official test set on WinoGrande
and AGNEWS. For those where the label for the
official test set is not available (SST-2, RTE, MNLI,
and QNLI), we use the given validation set. Also,
the maximum sequence length is commonly set to
128.

B.2 Data Pruning
For data pruning experiments, we commonly
fine-tune RoBERTa-large classifier (Liu et al.,
2019) which has the 355M parameters, following
(Swayamdipta et al., 2020). For fine-tuning, we
commonly train it for 10 epochs with learning rate
1e-5 and batch-size 16 (except WinoGrande with
64 following (Swayamdipta et al., 2020) due to
the optimization difficulty) with Adam optimizer
(Kingma and Ba, 2014). For each pruning ratio,
selection method, and dataset, we run three times
with different random seeds.

B.3 Active Learning
Active learning (AL) is a task that finds the most
informative subset from unlabeled samples when
they are labeled and added to the training dataset.
AL usually consists of multiple iterations of the
following two steps: (1) annotates a subset of unla-
beled data chosen by a sampling method, and (2)
adds the labeled data to the previous round of the
dataset and re-train the model with the new train-
ing dataset. For each round, we trained the model

from scratch to avoid overfitting, following Hu et al.
(2019).

To be specific, for the experiments in Section
5, we select 100 examples for RTE and 500 exam-
ples for CoLA and AGNEWS for each iteration
from the training dataset, respectively.8 Note that
the specific selection Then, they are moved to the
labeled dataset from the unlabeled pool in each
iteration.

To simulate AL, we sample a batch of k sen-
tences from the training dataset, query labels for
this batch, and Batch size k is set to 500 for SST-2
and AGNEWS, and 100 for RTE which is a rel-
atively small dataset. For each sampling method
and dataset, we run an AL simulation five times
with different random seeds. Also, we fine-tune
models on five epochs for SST-2 and AGNEWS,
and ten epochs for the RTE dataset. We experiment
with the BERT-base model which has 110M pa-
rameters provided by HuggingFace Transformers
(Wolf et al., 2019) with Apache License 2.0. Our
implementation is based on existing code reposito-
ries9 with MIT License and used the same hyper-
parameter(Yuan et al., 2020). We use AdamW
(Loshchilov and Hutter, 2019) with a learning rate
of 2e-5.
BERT-KM (Yuan et al., 2020): As a diversity-
based baseline, applying k-means clustering to the
l2 normalized BERT output embeddings of the fine-
tuned model to select k data points.
FT-BERT-KM (Yuan et al., 2020): Using the same
algorithm as BERT-KM except for the BERT em-
beddings from the previously fine-tuned model are
used.
ALPS (Yuan et al., 2020): Input sentence is ran-
domly masked, then predict the masked language
model(MLM) loss of BERT as a proxy for model
uncertainty

B.4 Data Annotation
Here, we provide the details about the annotation
pipeline with crowd workers. During experiments,
we annotate the selected unlabeled samples with
each selection method for SST-5 and IMP datasets.
To this end, we use Amazon’s Mechanical Turk
crowd-sourcing platform (Crowston, 2012). Figure
10 and 11 show the interfaces used to collect an-
notations from crowd workers for each task. The
top provides the summary, the middle provides de-

8The initial (i.e., the first iteration) labeled samples of all
AL methods are commonly selected by random sampling.

9https://github.com/forest-snow/alps
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Table 7: Dataset statistics used in experiments

Dataset Language Domain Classes Train / Dev
QNLI EN Natural Language Inference 2 104k / 5.4k
SST-2 EN Sentiment Analysis 2 67k / 873
WinoGrande EN Commonsense Reasoning 2 40k / 1.2k
CoLA EN Linguistic Acceptability 2 8.5k / 1.0k
RTE EN Natural Language Inference 2 2.5k / 278
AGNEWS EN Topic Classification 4 110K / 7.6k

Table 8: Ablation study with each component of
infoVerse-DPP. Average test accuracy of finetuned
RoBERTa-large classifiers over 8 different pruning ratio
on WinoGrande and CoLA are compared, similar to
Table 2.

Feature Sampling WinoGrande CoLA

Random Random 73.1±0.09 60.7±0.63

Classifier Coreset 72.2±0.91 55.5±0.93

Classifier DPP 73.5±0.25 62.1±0.19

infoVerse Coreset 71.9±0.47 61.0±0.26

infoVerse DPP 74.6±0.24 62.5±0.14

tailed instructions, and then examples are shown.
The whole task has 10 items per Human Interface
Task (HIT). Workers were paid US$1.0 per HIT on
average, and all workers were paid for their work.
To improve the quality of collected preference la-
bels, we only hire the Master workers identified as
high-performing workers from Amazon’s Mechani-
cal Turk system. Overall, we gather at least 3 anno-
tations for each sample. For the experiments with
annotated samples, we use the same experimen-
tal setups with data pruning in Section5.1. Also,
for the annotator disagreement, we report variance
within the multiple annotations. We will release
the annotated dataset for future research.

C Additional Results

C.1 Data Pruning

First, in Figure 13, we plot the test accuracy of
fine-tuned RoBERTa-large across different pruning
ratios on CoLA, SST-2, RTE, and QNLI datasets;
while the baseline methods suffer from inconsistent
performance on different pruning ratio (for exam-
ple, Hard and Ambig show good performance on
low pruning ratio, but steeply degraded when the
pruning ratio increases), infoVerse-DPP shows the
consistently outperforming performance in over-
all. In addition, we plot the dynamics during data

pruning with infoVerse-DPP in Figure 14, similar
to Figure 6. Here, one can observe that infoVerse-
DPP automatically finds the effective strategy adap-
tively. Finally, we present the ablation results of our
component (1) infoVerse and (2) DPP-based sam-
pling method. As shown in Table 8, the DPP-based
sampling method provides a clear improvement in
multidimensional space (vs Coreset). Furthermore,
as infoVerse provides a richer feature space than
the standard classifier’s embedding, such gain is
further enlarged when they are combined.

C.2 Active Learning

In Figure 12, we present the test accuracy of fine-
tuned BERT-base with each AL iteration on RTE
and AGNEWS, respectively. Here, one can ob-
serve that infoVerse-DPP shows comparable per-
formance with the state-of-the-art baseline of AL.

D infoVerse on Other Datasets

In this section, we first present the correlation matri-
ces between 23 meta-information on other datasets,
similar to Figure 2. As one can see in Figure 16,
the correlation matrices between different datasets
(and tasks) are quite similar, which implies that the
meta-information captures the general characteris-
tic of datasets. In addition, we present infoVerse
(bottom left and zoom in right) on other datasets
(CoLA, WinoGrande, RTE, and SST-2) along with
its classifier’s embedding space (top left) and data
map (Carbonera and Abel, 2015) (middle left) in
Figures 20, 19, 17, and 18. Here, one can observe
that infoVerse successfully reveals distinctive re-
gions again.

E Experiments to Verify Complementary
Effect of Meta-information

To further verify the complementary effect be-
tween multiple meta-information, we conduct sim-
ple toy experiments in this section. Similar to
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Table 9: Detection accuracy (%) of linear classifier
trained with multiple meta-information.

Feature Space Mis-pred Mis-labeled OOD Adv

Classifier Embedding 10.4 89.1 89.0 85.9
∗infoVerse 97.5 94.2 90.3 87.1
infoVerse 99.9 94.3 91.4 87.5

- (4) 99.8 94.2 86.3 86.0
- (3)-MC 85.7 94.2 82.9 86.0
- (3)-Ens 77.9 94.2 78.6 86.0

- (2) 49.9 94.1 69.9 86.0

(Swayamdipta et al., 2020), we train a simple lin-
ear classifier on each feature space by assuming
that gold labels of each task are available for train-
ing; for example, given sample is noisy-labeled or
not. Here, we consider four different abnormal-
ity detection tasks with the QNLI dataset: mis-
predicted, mislabeled (or noisy labeled), out-of-
distributed (OOD), and adversarial samples (Adv),
respectively.

In Table 9, one can verify that the accuracy in-
creases as more meta-information is used; it im-
plies that they are actually complementary and can
provide richer information when they are jointly
considered. In the end, infoVerse shows a better
performance than the original classifier’s semantic
embedding in all tested cases. Also, we consider
the reduced feature space, ∗infoVerse, by applying
the PCA-based feature selection method using the
correlation matrix, and verify its comparable per-
formance only using the half of meta-information.
But, since only small costs are additionally required
to use infoVerse compared to ∗infoVerse, we use
all 23 meta-information for our experiments. It
is noteworthy that new meta-information can be
easily included in our framework, and contribute
to compose more informative feature space. In
the remaining part of the section, we further pro-
vide the details of this experiment. Here, we use
RoBERTa-large classifier (Liu et al., 2019) fine-
tuned on QNLI dataset (Wang et al., 2019).

1) Finding mispredicted samples: we train a sin-
gle linear classifier with SGD optimizer on each
feature space to classify whether a given sample is
correctly predicted or not. Here, we assume that the
binary labels that indicate whether a given sample
is correctly predicted or not are available to train
the linear classifier. Then, we only measure the
performance on the test mispredicted samples.

2) Detecting mis-labeled samples: following the
setups in (Swayamdipta et al., 2020), we artificially
impose the 10 % label noise into training samples

with high confidence (i.e., easy-to-learn). Then,
we train a single linear classifier with SGD opti-
mizer on each feature space to classify whether
given samples has corrupted label or not. Here, we
assume that the binary labels that indicate whether
a given sample is corrupted or not are available to
train the linear classifier.

3) Detecting out-of-distribution samples: we
consider the samples of QNLI’s development set
as inD and samples of MNLI’s development set
(both matched and mismatched) as OOD. Then, we
train a single linear classifier with SGD optimizer
on each feature space to classify whether the given
sample is from inD or OOD. Here, we assume that
the binary labels that indicate whether a given sam-
ple is inD or OOD are available to train the linear
classifier.

4) Detecting adversarial sentence: Here, we con-
sider the task to classify whether the normal sen-
tence is given (MNLI) or adversarially gathered
sentence is given (ANLI (Nie et al., 2019)). Then,
we train a single linear classifier with SGD opti-
mizer on each feature space to classify whether the
given sample is normal or adversarial. Here, we as-
sume that the binary labels that indicate whether a
given sample is normal or adversarial are available
to train the linear classifier.

F Computational Cost

The computation cost of infoVerse depends on
which meta-information is used for constructing
it. As introduced in Table 1, we considered meta-
information with four categories (static measures,
training dynamics, model uncertainty, and pre-
trained knowledge). The calculation of these cat-
egories requires (1, E, T , and 2) forward passes
of the trained model for each sample, where E de-
notes the total training epochs, and T indicates the
total number of trained models with different ran-
dom seeds. In the case of the proposed sampling
method, it has O(N2M) time complexity when
returning N items from M total items, but we re-
mark that it can be further reduced with a simple
approximation (Chen et al., 2018). Yet, we remark
that our method does not require additional training
costs since it only utilizes the trained models via
standard way (cross entropy and multiple random
seeds) and pre-trained models.

For example, we measured the runtime of our
approach using the CoLA dataset, with the time
consumption in seconds: training/constructing in-

9840



foVerse/DPP sampling consume 3852s/100s/10s,
respectively. This demonstrates that our method’s
overall cost is relatively minor compared to training
expenses. Moreover, it is worth noting that the cost
of ours is only incurred once at initial construction.
It is also worth noting that all meta-information
within the same category are obtained with the
same forward passes, and there is no additional
cost after infoVerse is constructed at once.

In addition, although this work did not focus
much on reducing computational overhead, we be-
lieve simple practices can further reduce the cost of
constructing infoVerse. For example, substituting
the additional forward passes by saving the out-
puts of models during training on the fly (Huang
et al., 2017; Tarvainen and Valpola, 2017) or using
a proxy of the original model with smaller archi-
tectures and fewer training epochs (Coleman et al.,
2019).
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Figure 10: Interface to collect annotation from crowd workers for sentiment classification for SST-5
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Figure 11: Interface to collect annotation from crowd workers for insult detection for IMP dataset.
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Figure 12: Test accuracy of BERT-base classifier fine-
tuned using the labeled samples by each AL method on
(a) RTE and (b) AGNEWS.
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Figure 13: Data pruning performance on different
datasets: (a) CoLA, (b) SST-2, (C) RTE, and (d) QNLI.
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(d) QNLI
Figure 14: Dynamics of data pruning with infoVerse-
DPP on different datasets: (a) CoLA, (b) WinoGrande,
(C) RTE, and (d) QNLI.
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Figure 15: Dynamics of data pruning with different
selection method on SST-2 dataset: (a) infoVerse-DPP,
(b) Variability, and (c) Random.
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Figure 16: Confusion matrices between meta-
information on different datasets: (a) WinoGrande, (b)
SST-2, (C) CoLA, and (d) RTE.
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Figure 17: infoVerse (bottom left) on CoLA along with other feature spaces: classifier embedding (top left) and
data map (Swayamdipta et al., 2020) (middle left). (middle) Zoomed version of infoVerse is presented. (right)
Score distribution of each wrong region characterized by infoVerse.

Figure 18: infoVerse (bottom left) on WinoGrande along with other feature spaces: classifier embedding (top
left) and data map (Swayamdipta et al., 2020) (middle) Zoomed version of infoVerse is presented. (right) Score
distribution of each wrong region characterized by infoVerse.

Figure 19: infoVerse (bottom left) on RTE along with other feature spaces: classifier embedding (top left) and data
map (Swayamdipta et al., 2020) (middle left). (middle) Zoomed version of infoVerse is presented. (right) Score
distribution of each wrong region characterized by infoVerse.
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Figure 20: infoVerse (bottom left) on SST-2 along with other feature spaces: classifier embedding (top left) and data
map (Swayamdipta et al., 2020) (middle left). (middle) Zoomed version of infoVerse is presented. (right) Score
distribution of each wrong region characterized by infoVerse.
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disclaimers of any risks to participants or annotators, etc.?
Figure 11, 12 in Appendix

�3 D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
Appendix B.4

�3 D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
We specified the task in instruction (Figure 11, 12 in Appendix)

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
Not applicable. Left blank.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
Not applicable. Left blank.
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