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Abstract

Language modeling, a central task in natural
language processing, involves estimating a
probability distribution over strings. In most
cases, the estimated distribution sums to 1
over all finite strings. However, in some patho-
logical cases, probability mass can “leak” onto
the set of infinite sequences. In order to char-
acterize the notion of leakage more precisely,
this paper offers a measure-theoretic treatment
of language modeling. We prove that many
popular language model families are in fact
tight, meaning that they will not leak in this
sense. We also generalize characterizations of
tightness proposed in previous works.

1 Introduction

Language modeling is a core task in natural lan-
guage processing. As canonically defined, lan-
guage modeling involves estimating a distribution
over the set of strings over a given alphabet. If the
alphabet is the set of words in a language,1 then
a language model can be thought of as a distribu-
tion over the language’s sentences. Since Shannon
(1948), language modeling has been used to es-
timate statistical properties of language and has
become essential for computational linguistics re-
search (Hale, 2001; Meister et al., 2021). Further,
it is also central to a wide range of natural language
processing applications, whether as a source model
in a noisy channel architecture (Weaver, 1955; Je-
linek, 1976), as a way of learning better represen-
tations of language (Peters et al., 2018), or, more
recently, for prompted generation (Brown et al.,
2020), where the distribution defined by a language
model is employed in tasks like question-answering
(Petroni et al., 2019), style transfer (Reif et al.,
2022), and even sequence tagging (Liu et al., 2022).

More formally, a language model is typically de-
fined to be a distribution over the countably infinite

1Or perhaps alphabetic symbols or subwords; see, e.g.,
Bostrom and Durrett (2020).

set Σ∗ of all (finite) strings (Booth and Thompson,
1973).2 However, it has been shown that some
classes of autoregressive language models have pa-
rameter settings in which the generative process
terminates with probability < 1. Welleck et al.
(2020) discuss this issue for recurrent neural net-
work language models. Models whose generative
process may fail to terminate are called non-tight
(Chi, 1999, who discussed non-tight PCFGs). If
an autoregressive language model is non-tight, it
may generate infinite sequences and MCMC algo-
rithms over such models will not mix to the correct
distribution.

It is here that a subtlety arises: the set of infinite
sequences is uncountably infinite. Properly treat-
ing a distribution over this sample space requires
a modicum of measure theory.3 To clarify the sit-
uation, we review the measure-theoretic treatment
of distributions over infinite sequences. We then
make use of a termination symbol EOS to define a
random variable whose value can be a string, i.e.,
an element of Σ∗, or an infinite sequence. In a tight
language model, this random variable has probabil-
ity 1 of being a string and hence finite.

Beyond offering a measure-theoretic formaliza-
tion, our paper also demonstrates how tightness
relates to the Borel–Cantelli lemmata, simplifying
a recent result by Meister et al. (2022). To conclude
our paper, we analyze several language modeling
architectures and give conditions on their tightness.
We demonstrate that n-gram language models—
and more generally, language models defined by
stochastic finite-state automata—can be non-tight,
and we give a simple necessary and sufficient con-
dition for tightness in terms of the inverse of the au-
tomaton’s transition matrix. This builds on a known

2Recall that Σ∗
def
=
⋃

n Σn where for n ≥ 0, Σn is the set
of strings of length n. The ∗ is the Kleene closure operator.

3Indeed, our treatment resolves an imprecision present in
the literature. For instance, Welleck et al. (2020) discusses the
probability of infinite sequences despite using the canonical
definition of a language model as a distribution over Σ∗.
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result due to Lehmann (1977). We also discuss
when neural language models become non-tight.
We prove that Transformer-based language models
(Vaswani et al., 2017; Brown et al., 2020) are al-
ways tight and that recurrent neural language mod-
els are always tight when they employ a bounded
activation function. However, we also exhibit a
recurrent neural network (RNN) language model
with a ReLU activation (Nair and Hinton, 2010)
that is non-tight in a simpler construction than the
one offered by Chen et al. (2018). As a byproduct,
we also generalize and strengthen the results given
by Welleck et al. (2020), who give a sufficient con-
dition for tightness of recurrent neural language
models in terms of the norm of the hidden state.

2 Motivating Examples

Let Σ be an alphabet, i.e., a finite set of sym-
bols, and let EOS /∈ Σ be a distinguished end-of-
sequence symbol. Let Σ

def
= Σ∪{EOS}. A string of

length n ≥ 0 is a finite sequence x = x1x2 . . . xn
where each xt ∈ Σ. By convention, we say that
xn+1 = EOS, although xn+1 is not an element of
the sequence x. For any integer 1 ≤ t ≤ n+ 1, we
write x<t for the prefix x1x2 · · ·xt−1.

We now begin to distinguish between “language
models” and “sequence models.” As is traditional
in the NLP literature, we henceforth define a lan-
guage model to be a probability distribution over
the countable set Σ∗ of all strings (see Def. 3.4).
It is popular to specify such a distribution in terms
of its conditional probabilities p̄(xt | x<t).

Definition 2.1. An autoregressive sequence
model (ASM) is a conditional probability distri-
bution p̄(xt | x<t) where xt ∈ Σ and x<t ∈ Σ

∗.

If p̄ is an ASM, then we define a non-negative
function p over Σ∗ by p(x)

def
=
∏n+1
t=1 p̄(xt |

x<t) = p̄(EOS | x)
∏n
t=1 p̄(xt | x<t), where n

denotes the length of x.
But is p a language model? Not always, since

as we will see below, it is possible for p(Σ∗) def
=∑

x∈Σ∗ p(x) < 1. Of course this “bad” case never
happens if the ASM’s conditional probabilities are
derived from a known LM, in which case p simply
recovers that LM.4 In this case clearly p(Σ∗) = 1.

4That is, suppose the ASM’s conditional probabilities
match the conditional probabilities of some known language
model p0: that is, p0(Xt = xt | X1 . . . Xt−1 = x<t) =
p̄(xt | x<t) whenever the former conditional probability is
well-defined under the language model p0, i.e., whenever
xt ∈ Σ and x<t ∈ Σ∗ with p0(X1 . . . Xt−1 = x<t) > 0.

It follows that if p(Σ∗) < 1, then the ASM’s con-
ditional probabilities do not match the conditional
probabilities of any language model p0.

We now exhibit such a “bad” ASM. Although
the conditional probability distributions p̄(· | x<t)
each sum to 1 over Σ, they fail to combine into a
model p that sums to 1 over Σ∗ (i.e., a language
model).

Example 2.2 (non-tight bigram model). Consider
the bigram model defined in Fig. 1a over the alpha-
bet Σ = {a, b}. Under this model, any finite string
that contains the symbol b will have probability
0, since p̄(EOS | b) = p̄(a | b) = 0. This im-
plies p(Σ∗) =

∑∞
n=0 p(a

n) =
∑∞

n=0(0.7)n ·0.1 =
0.1

1−0.7 = 1
3 < 1. �

Example 2.3 (tight bigram model). In contrast, in
Fig. 1b, obtained from Ex. 2.2 by changing the arcs
from the b state, p(Σ∗) = 1. See App. B for details
of this calculation. �

Ex. 2.2 above confirms that the autoregressive
formulation does not necessarily yield p that is a
valid distribution over Σ∗.

But if p is not a language model, what is it? It is
intuitive to suspect that, in a model with p(Σ∗) < 1,
the remainder of the probability mass “leaks” to
infinite sequences, i.e., the generative process may
continue forever with probability > 0. We will
make this intuition formal in §3. By analogy with
Chi and Geman (1998) and Cohen and Johnson
(2013), we refer to such models as non-tight.5

The non-tightness of Ex. 2.2 is related to the fact
that the probability of EOS is 0 at some states, in
contrast to Ex. 2.3. However, requiring p̄(EOS |
x<t) > 0 for all prefixes x<t is neither necessary
nor sufficient to ensure tightness. It is not necessary
because one can, for example, construct an ASM in
which p̄(EOS | x<t) = 0.1 when t is even but = 0
otherwise. Such a model generates only odd-length
strings but is tight. It is not sufficient because of
the following example, in which p̄(EOS | x<t) is
always positive but decays so rapidly toward 0 that
the generative process might continue forever.

Example 2.4 (non-tight RNN). Consider an RNN
over a small alphabet Σ = {a, EOS} with the fol-

Then by the chain rule of probability, p(x) = p0(x) for each
x ∈ Σ∗. Thus p = p0, so p is a language model.

5In Chi and Geman (1998) and Cohen and Johnson (2013),
a PCFG is non-tight if its generative process may not terminate,
and consequently the total probability of all finite trees is less
than 1.

9745



p̄(a | BOS) 1
p̄(a | a) 0.7
p̄(b | a) 0.2
p̄(EOS | a) 0.1
p̄(b | b) 1
p̄(EOS | EOS) 1

a

b

EOS

BOS
a/1

a/0.7

b/1

EOS/1

b/
0.2

EOS/0.1

(a) Non-tight 2-gram model.

p̄(a | BOS) 1
p̄(a | a) 0.7
p̄(b | a) 0.2
p̄(EOS | a) 0.1
p̄(b | b) 0.9
p̄(EOS | b) 0.1
p̄(EOS | EOS) 1

a

b

EOS

BOS
a/1

a/0.7

b/0.9

EOS/0.1

EOS/1

b/
0.2

EOS/0.1

(b) Tight 2-gram model.

Figure 1: Tight and non-tight bigram models, expressed as Mealy machines (see §5.1). Transitions with conditional
probability of 0 are omitted. The termination probability at a state is represented by an EOS arc from that state.

lowing hidden state recurrence:

h0 = 0, ht = ReLU(ht−1 + 1). (1)

In this case, the hidden state admits a closed-form
expression ht = t ∈ R. Setting the (1-dimensional)
embedding of the alphabet to be va = 1 and vEOS =
0, we arrive at

p̄(EOS | x<t) = softmax(vaht, vEOSht)EOS

= e0·t
e1·t+e0·t = 1

et+1 > 0. (2)

The EOS probability is always strictly positive, but
Thm. 4.7 shows that this sequence model is non-
tight. Numerically, p(Σ∗) ≈ 0.702 < 1. �

On the other hand, an ASM may be tight after all
if the probability of EOS decays more slowly—even
when it still approaches 0.

Example 2.5 (tight RNN). Consider again an RNN
over the alphabet Σ = {a, EOS} with the following
recurrence using softplus activation:6

h1 = 0, ht = log(exp(ht−1) + 1). (3)

Starting from h1 = 0 = log 1, a simple induction
argument shows that

ht = log(exp log(t− 1) + 1) = log t. (4)

Again, setting va = 1 and vEOS = 0, we arrive at

p̄(EOS | x<t) = softmax(vaht, vEOSht)EOS (5)

= e0·log t

e1·log t+e0·log t = 1
t+1 > 0.

This decays slowly to 0: limt→∞ p̄(EOS | x<t) =
0, but since

∑∞
t=1 p̄(EOS | x<t) = ∞, Prop. 4.3

below implies that this ASM is tight. �
Finally, we illustrate the peril of not treating

distributions over uncountable sets carefully.

6We use softplus instead of ReLU to simplify arithmetics.

Example 2.6 (infinite coin toss). Consider the in-
finite independent fair coin toss model, where we
aim to place a distribution over {H, T}∞, the un-
countable set of infinite sequences of {H, T}. Intu-
itively, such a distribution corresponds to an ASM
in which for all x<t, p̄(H | x<t) = p̄(T | x<t) = 1

2
and p̄(EOS | x<t) = 0. Clearly, each individual
infinite sequence over {H, T} should be assigned
probability (1

2)∞ = 0. Without a formal founda-
tion, one may arrive at the following paradox:

1 = p ({H, T}∞) = p
(⋃

ω∈{H,T}∞{ω}
)

(6)

=
∑

ω∈{H,T}∞
p({ω}) =

∑

ω∈{H,T}∞
0

?
= 0. �

Together, these examples suggest that one must
take care to characterize tightness. And, to the au-
thors’ surprise, it does not appear as if such a care-
ful characterization yet exists in the NLP literature.

3 The Language Model Measure

In this section, we rigorously characterize the kind
of distribution induced by an ASM. As mentioned
earlier, an ASM can lose probability mass to the set
of infinite sequences, Σ∞. However, Σ∞, unlike
Σ∗, is uncountable, and it is due to this fact that we
need to work explicitly with the measure-theoretic
formulation of probability.

3.1 Measure-Theoretic Background
The goal of measure-theoretic probability is to as-
sign probability to subsets of an outcome space Ω.
For instance, in Ex. 2.6, Ω = {H, T}∞. However,
in the course of the study of measure theory, it has
become clear that for many common Ω, it is impos-
sible to assign probabilities in a way that satisfies
a set of reasonable desiderata.7 Consequently, the

7Measure theory texts commonly discuss such desiderata
and the dilemmas that comes with them. See, e.g., Chapter
7 in Tao (2016), Chapter 3 in Royden (1988) or Chapter 3 in
Billingsley (1995). We also give an example in Thm. 3.5.
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standard approach to probability theory resorts to
only assigning probability to certain “nice” sub-
sets of Ω, which are referred to as events or mea-
surable subsets, as in the theory of integration or
functional analysis. The set of measurable subsets
is commonly denoted as F (Def. 3.1), and a proba-
bility measure P : F → [0, 1] is the function that
assigns a probability to each measurable subset. As
it turns out, the following simple and reasonable
requirements imposed on F and P are enough to
rigorously discuss probability (Kolmogorov, 1933).

Definition 3.1. Let P(Ω) be the powerset of Ω.
Then F ⊆ P(Ω) is called a σ-algebra (or σ-field)
over Ω if the following conditions hold:

1) Ω ∈ F ,
2) if E ∈ F , then its complement Ec ∈ F ,
3) if E1, E2, . . . is a finite or infinite sequence of

sets in F , then
⋃
nEn ∈ F .

If F is a σ-algebra over Ω, we call the tuple (Ω,F)
a measurable space.

A measurable space guarantees that operations
on countably many sets are always valid, and hence
permits the following definition.

Definition 3.2. A probability measure P over a
measurable space (Ω,F) is a function P : F →
[0, 1] such that

1) P(Ω) = 1,
2) if E1, E2, . . . is a finite or infinite sequence

of disjoint sets in F , then P(
⋃
nEn) =∑

n P(En).
In this case we call (Ω,F ,P) a probability space.
Note that it assigns measure only to the sets in F;
other sets are said to be non-measurable.

3.2 Sequence Models

As we saw in §2, sampling successive symbols
from a non-tight ASM has probability > 0 of con-
tinuing forever. Hence, we hope to regard the ASM
as defining a probability space over Ω = Σ∗ ∪Σ∞,
where Σ∞ denotes the set of infinite strings8 over
Σ. Note that this set Ω is uncountable whenever
|Σ| ≥ 2. We will first need to turn it into a measur-
able space by defining an appropriate σ-algebra.

This type of distribution is more general than a
language model, which takes Ω to be the set Σ∗ of
finite strings. To distinguish the two, we refer to a
distribution over Σ∗ ∪ Σ∞ as a sequence model.

8We will use the phrase “infinite string” in this paper when
it is natural to do so, e.g., in the context of Σ∗∪Σ∞. However,
this is nonstandard terminology: in computer science, string
generally refers to a finite object.

Definition 3.3. A sequence model is a probability
measure P over the set Σ∗ ∪ Σ∞.

Intuitively (we will make this precise later), the
event Σ∞ ⊂ Σ∗ ∪ Σ∞ in Def. 3.3 represents non-
termination of the generating process, i.e., it at-
tempts to generate an infinitely long sequence. If
this never happens, we have a language model.
Definition 3.4. A language model is a probabil-
ity measure P over just Σ∗. Equivalently, it is a
sequence model P such that P (Σ∞) = 0.

Our goal in the rest of this section is to rigorously
construct a sequence model P that encodes the
conditional probabilities of a given ASM. Since the
ASM specifies conditional distributions over the
augmented alphabet Σ, we first use it to construct
a probability measure P over a measurable space
(Σ
∞
, σ(C)). We then derive our sequence model

P from P as the probability measure of a random
variableX in a measurable space (Σ∗∪Σ∞, σ(C)).
The σ-algebras σ(C) and σ(C) will be built below.

3.3 Pre-Measure
As mentioned in §3.1, it is often impossible to mea-
sure the probability of every single subset of Ω. For
example, in the infinite coin toss model in Ex. 2.6,
we might begin by reasonably assigning probability
0 to each individual sequence ω ∈ {H, T}∞. Unfor-
tunately, it is then impossible to assign probability
to every subset of {H, T}∞; we must restrict our
measurable space to a strict subset of P(Ω), where
P() is the powerset operator.
Theorem 3.5. Assuming the Axiom of Choice and
the Continuum Hypothesis, there exists no proba-
bility measure P over ({H, T}∞,P({H, T}∞)) such
that P({ω}) = 0 for each ω ∈ {H, T}∞.

Proof. This is a direct consequence of Ulam
(1930). See App. C.1.1 for a discussion. �

We will address this with well-known methods.
A versatile theorem of Carathéodory provides a
natural way to construct a probability space for
sequences, in which prefix probabilities are well-
defined. We first review two needed definitions.
Definition 3.6. A ⊆ P(Ω) is called an algebra
(or field) over Ω if

1) Ω ∈ A,
2) if E ∈ A, then Ec ∈ A,
3) if E1, E2 ∈ A, then E1 ∪ E2 ∈ A.

Definition 3.7. Let A be an algebra over some
set Ω. A probability pre-measure over (Ω,A) is a
function P0 : A → [0, 1] such that
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1) P0(Ω) = 1,
2) if E1, E2, . . . is a (countable) sequence of dis-

joint sets inA whose (countable) union is also
in A, then P0(∪∞n=1En) =

∑∞
n=1 P0(En).

Note that the only difference between a σ-
algebra (Def. 3.1) and an algebra is that condition 3
is weakened from countable to finite, and the only
difference between a probability measure (Def. 3.2)
and a pre-measure is that the latter is defined with
respect to an algebra instead of a σ-algebra.

The idea behind Carathéodory’s Extension The-
orem is that there is often a simple construction
of an algebra A over Ω such that there is a natural
way to define a probability pre-measure. One can
then extend this probability pre-measure to a proba-
bility measure that is both minimal and unique in a
precise sense. For example, the standard Lebesgue
measure over the the real line can be constructed
in this way. For our case of infinite sequences, we
will first construct an algebra over Ω = Σ

∞ for
some alphabet Σ. Then, assuming we are given an
ASM p̄ over Σ, we can associate the algebra with
a pre-measure that is consistent with p̄. We will
make use of the following definition to construct
the algebra:

Definition 3.8. Given any set H ⊆ Σ
k, define its

cylinder set (of rank k) to be

C(H)
def
=
{
xω : x ∈ H,ω ∈ Σ

∞} (7)

In essence, a cylinder set of rank k is the set of
infinite strings that share their k-prefix with some
string x ∈ H ⊆ Σ

k. For a length-k string x =

x1 · · ·xk, the rank-k cylinder set C(x)
def
= C({x})

is the set of all infinite strings prefixed by x.9 We
denote the collection of all rank-k cylinder sets
by Ck def

=
{
C(H) : H ∈ P(Σ

k
)
}

and define C def
=

⋃∞
k=1 Ck to be the collection of all cylinder sets

over Ω.10

Lemma 3.9. C ⊂ P(Ω) is an algebra over Ω =
Σ
∞.

Proof. See App. C.1.2. �

We are now ready to define the pre-measure P0

for the cylinder algebra C. Given an ASM p̄ and
any set C(H) ∈ C, let

P0(C(H))
def
=
∑

x∈H p̄(x) (8)

9This type of cylinder set, i.e., one that is generated by a
singleton, is also called a thin cylinder.

10Observe that C1 ⊂ C2 ⊂ C3 ⊂ · · · .

where, denoting the length of x by k,

p̄(x)
def
=
∏k
t=1 p̄(xt | x<t). (9)

We confirm in Prop. C.2 that P0 is well-defined
even though the cylinder set C(H) may also arise
as C(H ′) where H ′ 6= H .11

Lemma 3.10. P0 is a pre-measure over C.

Proof. See App. C.1.2. �

3.4 Extension of Pre-Measure

We have now gathered all the ingredients needed
to state Carathéodory’s theorem.

Theorem 3.11 (Carathéodory’s Extension Theo-
rem). Given an algebra A over some set Ω and a
probability pre-measure P0 : A → [0, 1], there ex-
ists a probability space (Ω,F ,P) such thatA ⊂ F
and P|A = P0. Furthermore, the σ-algebra F de-
pends only on A and is minimal and unique—thus
we may denote it by σ(A)—and the probability
measure P is unique.

Proof Sketch. See App. C.2.1. �

Applying Carathéodory’s extension theorem to
our cylinder algebra C and pre-measure P0, we see
that there exists a probability space (Σ

∞
, σ(C),P)

over Σ
∞ that agrees with the ASM p̄’s probabilities.

It is a fair question to ask what kinds of sets are
non-measurable under this construction; we discuss
this in App. C.2.2.

3.5 A String-Valued Random Variable

Having constructed the probability space
(Σ
∞
, σ(C),P), we now demonstrate how to use

it to induce a probability space over Σ∗ ∪ Σ∞ as
required by Def. 3.3. We will achieve this through
the use of a random variable.

Definition 3.12 (random variable). A mapping X :
Ω → S between two measurable spaces (Ω,F)
and (A,G) is an (A,G)-valued random variable,
or a measurable mapping, if, for all B ∈ G,

X−1(B)
def
= {ω ∈ Ω : X(ω) ∈ B} ∈ F . (10)

To construct a random variable that takes values
in Σ∗∪Σ∞, Def. 3.12 requires us to first construct a
σ-algebra over Σ∗∪Σ∞. We will do so in a similar

11For example, in the infinite coin toss model, C(H) =

C({HH, HT}).
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fashion as we constructed (Σ
∞
, C). Given H ⊆

Σk, define a rank-k cylinder set in Σ∗ ∪ Σ∞ to be

C(H)
def
= {xω : x ∈ H,ω ∈ Σ∗ ∪ Σ∞}. (11)

Let Ck be the set of all rank-k cylinder sets. Define
C def

= ∪∞k=1Ck. Then, σ (C) is a σ-algebra by the
same reasoning as in Lemma 3.9 and Thm. 3.11.
We can now define the random variable X by12

X(ω) =

{
ω<k if ωk is the first EOS in ω
ω otherwise (if EOS /∈ ω)

(12)

where ω ∈ Σ
∞. We claim that X is well-defined:

Proposition 3.13. The function X :
(Σ
∞
, σ(C)) → (Σ∗ ∪ Σ∞, σ(C)) defined in

Eq. (12) is a measurable mapping.

Proof. See App. C.3. �

Any measurable function induces a probability
measure on the output space, called the pushfor-
ward measure (cf. §2.4 in Tao, 2011), given by

P (X ∈ E)
def
= P(X−1(E)). (13)

One can check that P , defined using P, is indeed
a probability measure on (Σ∗ ∪ Σ∞, σ(C)) and
hence (Σ∗ ∪ Σ∞, σ(C), P ) is a probability space.
We have therefore shown that, given any ASM,
we can construct an associated sequence model as
defined in Def. 3.3.

Under the formulation of a probability space to-
gether with a random variable, useful probability
quantities arise naturally and intuitively. In particu-
lar, when x ∈ Σ∗ is a finite string, we have

P (X = x)
def
= P (X ∈ {x}) = p(x) (14)

with the definition of p from §2. Additionally, as
we will show in the next section, the probability
of the set of infinite strings P (X ∈ Σ∞) is the
probability of generating an infinite string.13

Deriving EOS As an aside, the preceding section
allows us to motivate the EOS token in ASM as a
construct that emerges naturally. Specifically, for
any x ∈ Σ∗, rearranging Eq. (14):

p̄(EOS | x) = P (X=x)
p̄(x) = P (X=x)

P (X∈C(x)) (15a)

12In this definition, the position k ≤ ∞ of the first EOS—a
stopping time—is itself a random variable.

13An important detail left out in this discussion is that both
the singleton set {x} and Σ∞ need to be measurable in (Σ∗∪
Σ∞, σ(C)) for the above to make sense. This is addressed by
Prop. C.7 and Prop. C.8.

= P (X = x | X ∈ C(x)) (15b)

where we have used p̄(x) = P(C(x)) =
P(X−1(C(x))) = P (X ∈ C(x)). This means
that the EOS probability in an ASM emerges as
the conditional probability that, given that we must
generate a string with a prefix x ∈ Σ∗, the string is
exactly x.

4 Characterizing Tightness

Beyond the measure-theoretic formalization, a goal
of this paper is to provide an exact characterization
of tightness in ASMs. The results presented in
this section generalize Lemma 3.2 in Welleck et al.
(2020). First, we consider the event

Ak
def
= {ω ∈ Σ

∞
: ωk = EOS} (16)

in the probability space (Σ
∞
, σ(C),P). Intuitively,

Ak is the event that an EOS symbol appears at posi-
tion k in the string. Note that under this definition
the Ak are not disjoint. For example, the string
ω = ab EOS c EOS dd · · · lives in the intersection
of A3 and A5 since EOS appears at both position 3
and position 5. Using Eq. (16), we can express the
event consisting of all finite strings as

⋃∞
k=1Ak. It

follows that we can express the event of an infinite
string as (

⋃∞
k=1Ak)

c =
⋂∞
k=1A

c
k. Thus, using the

random variable X , we can express the probability
of generating an infinite string as

P (X ∈ Σ∞) = P(X−1(Σ∞)) (17a)

= P (
⋂∞
k=1A

c
k) . (17b)

Hence, we can now formalize the notion of tight-
ness, which we have introduced in §2 and Def. 3.4.

Definition 4.1. A sequence model P is said to be
tight if P (X ∈ Σ∞) = 0, in which case it is also
a language model (cf. Prop. C.9). Otherwise, we
say that it is non-tight.

Note that the definition of Ak only uses a
string’s k-prefix, and hence is a cylinder set of rank
k. Recalling that the cylinder sets are measurable
and so are the sets countably generated by them,
we see that both the event consisting of all finite
strings and the event consisting of all infinite
strings are measurable. Thus, P (∪∞k=1Ak) and
P (∩∞k=1A

c
k) are well defined.

4.1 A Lower Bound Result
We have characterized tightness in terms of the
probability of a specific event P (∩∞k=1A

c
k), a quan-

tity we now seek to determine.
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Lemma 4.2. If
∑∞

n=2 P
(
An | ∩n−1

m=1A
c
m

)
= ∞,

then P (∩∞m=1A
c
m) = 0.

Proof. See App. D. �

Using Lemma 4.2, we can derive the following
useful sufficient condition for a sequence model
derived from an ASM to be tight. It applies when
the probability of EOS does not decay too rapidly
with the length of the prefix.

Proposition 4.3. If p̄(EOS | x) ≥ f(t) for all
t ≥ 1,x ∈ Σt−1, and

∑∞
t=1 f(t) = ∞, then

P(∩∞k=1A
c
k) = 0. In other words, P is tight.

Proof. See App. D.2. �

This test implies tightness for all of the tight exam-
ples in §2, but not for the non-tight ones. Note that
the lower-bounding function f depends only on the
length of the prefix, not its content. f does not
have to be monotonic—in the case of the even/odd
example from §2, it is not.

4.2 The Borel–Cantelli Lemmata
It turns out that Prop. 4.3 admits a converse state-
ment in which we can prove a similar property of
p̄ by assuming that the model is tight. To prove
this result, we will use a fundamental inequality
from probability theory—the Borel–Cantelli lem-
mata. The Borel–Cantelli lemmata are useful for
our purposes because they relate the probability
measure of sets of the form

⋂∞
n=0An or

⋃∞
n=0An

to a series
∑∞

n=0 pn. We will only state the lem-
mata here without supplying their proofs;14 how-
ever, we point out that Lemma 4.2 can be viewed as
a parallel statement to the Borel–Cantelli lemmata
and one can prove the lemmata using a very similar
proof (cf. proof of Thm 2.3.7 in Durrett, 2019).

Concretely, given a sequence of events {An}∞n=1

in some probability space, the Borel–Cantelli lem-
mata are statements about the event

{An i.o.} def
=
⋂∞
m=1

⋃∞
n=mAn (18)

where i.o. stands for “infinitely often.” Intuitively,
{An i.o.} is the set of outcomes that appear in
infinitely many sets in the collection {An}∞n=1

(hence the name). We will not use Borel–Cantelli
directly, but they offer a probabilistic proof of a key
result (Cor. 4.6) which will in turn lead to the de-
sired statement about tightness. We formally state
the first and second Borel–Cantelli lemmata below.

14See §2.3 in Durrett (2019) or §4 in Billingsley (1995)
instead.

Lemma 4.4 (Borel–Cantelli I). If∑∞
n=1 P(An) <∞, then P(An i.o.) = 0.

Lemma 4.5 (Borel–Cantelli II). If∑∞
n=1 P(An) =∞, then P(An i.o.) = 1, provided

that {An} is a sequence of independent events.
Using the Borel–Cantelli lemmata, we can prove

the following useful fact.
Corollary 4.6. Given a sequence {pn} where pn ∈
[0, 1). Then,
∏∞
n=1(1− pn) = 0⇐⇒∑∞

n=1 pn =∞. (19)

Proof. See App. D.3. �

We now turn to proving a more general version
of Prop. 4.3, which would imply its converse. First,
we define the following quantity

p̃EOS(t)
def
= P(At | Ac

1 ∩ · · · ∩Ac
t−1) (20)

which can be viewed as the EOS probability at step
t, given that EOS was not generated at any earlier
step. In Eq. (48a) in App. D.2, we show that, when
p̃EOS(t) is defined, it has the same value as

p̃EOS(t) =

∑
ω∈Σt−1 p̄(ω)p̄(EOS | ω)∑
ω∈Σt−1 p̄(ω)

. (21)

We can now completely characterize the tightness
of an ASM with the following theorem.
Theorem 4.7 (Proposition 2.4 in Meister et al.,
2022). An ASM is tight if and only if p̃EOS(t) = 1
for some t or

∑∞
t=1 p̃EOS(t) =∞.

Proof. See App. D.4. The proof uses Cor. 4.6,
which accounts for the form of the condition. �

We remark that Thm. 4.7 is a generalization
of Prop. 4.3 since if p̃EOS(t) is lower-bounded by
f(t) whose series diverges, its own series would
also diverge. However, since p̃EOS(t) involves
the computation of a partition function in its
denominator, it can be intractable to calculate (Lin
et al., 2021). Hence, Prop. 4.3 will be our main
tool for determining tightness.

Finally, we note that Thm. 4.7 generalizes claims
in previous work. For example, Welleck et al.
(2020) require f(t) = c > 0 for some constant
c to determine tightness. Hence, their bound is
not helpful in determining the tightness in either
Ex. 2.4 or Ex. 2.5, because the EOS probability
can be arbitrarily small in both cases. Applying
Prop. 4.3, we see that (1) the ASM in Ex. 2.4 is
non-tight, because the series

∑∞
t=1

1
et+1 is conver-

gent, and (2) the ASM in Ex. 2.5 is tight, since the
series

∑∞
t=1

1
t+1 is divergent.
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5 Analysis of Common Language Models

We now put into practice the foundations built up
in the previous sections and discuss the tightness
of several classes of ASMs.

5.1 Stochastic Finite-State Language Models
Language modeling based on n-grams has been
historically influential in NLP (Jurafsky and Mar-
tin, 2009, Ch. 4). However, as Fig. 1 illustrates,
n-gram language models are specific cases of the
more general stochastic finite-state language mod-
els (Vidal et al., 2005). Tightness is more naturally
characterized in this more general setting, as it
turns out. We begin with a linear-algebraic defini-
tion of stochastic finite-state language models—or,
more precisely, sequence models, since in this pa-
per we do not consider the non-tight ones to be
language models.

Definition 5.1. A Q-state stochastic finite-
state sequence model (SFSSM) is a quadruple(
Σ, s, {P(a)}a∈Σ, t

)
, where Σ is an alphabet of

symbols, P(a) ∈ RQ×Q≥0 is a symbol-specific tran-

sition matrix for a ∈ Σ,15 s ∈ RQ≥0 is a vector of

initial state probabilities, and t ∈ RQ≥0 is a vector
of termination probabilities, i.e., probabilities of
generating EOS in each state.16 We further require
that

∑Q
q=1 sq = 1 and that tq +

∑Q
q′=1 Pqq′ = 1

for all 1 ≤ q ≤ Q, where P
def
=
∑

a∈Σ P(a) is the
transition sum matrix.

Given an SFSSM
(

Σ, s, {P(a)}a∈Σ, t
)

, the
probability of a string x ∈ Σ∗ is defined by

p̄(x1 · · ·xn) = s>
(∏n

t=1 P
(xt)
)
t. (22)

Definition 5.2. A state q of an SFSSM (1 ≤ q ≤
Q) is accessible if there is a positive-probability
path to q from some state r with sr > 0; it is co-
accessible if there is a positive-probability path
from q to some state r with tr > 0. It is useful if it
is both accessible and co-accessible, i.e., q appears
on some positive-probability accepting path.

Def. 5.2 allows a simple characterization of tight
SFSSMs, namely Thm. 5.3, and a straightforward
proof of Cor. 5.4.17

15For simplicity, we have disallowed ε-transitions.
16We use Q to denote the number of states as Q is the tradi-

tional notation for the set of states in a finite-state automaton.
17Cor. 5.4 is a special case of Chi and Geman (1998), who

showed that MLE estimates of PCFGs are tight.

Theorem 5.3. An SFSSM is tight iff all accessible
states are also co-accessible.

Proof. See App. E.1.1. �

Corollary 5.4. Maximum likelihood estimates of
n-gram models based on some corpus are tight.

Proof. See App. E.1.1. �

In fact, we can express the termination proba-
bility of an SFSSM in simple linear algebra terms.

Definition 5.5. Trimming an SFSSM means re-
moving its non-useful (useless) states to obtain a
substochastic finite-state sequence model.18 This
does not affect the string probabilities (22). Re-
moving the non-useful states means removing their
rows and columns from P as well as their rows from
s and t, yielding possibly smaller P′, s′ and t′.

Theorem 5.6. Let P′ be the transition sum matrix
of a trimmed substochastic FSSM. Then I−P′ is
invertible and P (X ∈ Σ∗) = s′>(I−P′)−1t′ ≤ 1.

Proof. See App. E.1.2. �

The well-known matrix inversion formula used
above finds the total weight of all accepting paths
in any weighted graph (Tarjan, 1981).19 The
formula can be seen as a special case of Lehmann’s
(1977) algebraic path algorithm.

5.2 Transformer Language Models
We now prove that all Transformer language mod-
els are tight. Key to our proof of the tightness of
various neural architectures, including the Trans-
former, is the following basic fact in topology.

Theorem 5.7. Let X be a compact topological
space and Y be any topological space. If f : X →
Y is continuous, then f(X) ⊆ Y is also compact.

Proof. See App. E.2. �

To address the variable-length nature of mod-
ern deep NLP models, we will mathematically
abstract them as a function on vector tuples,20

f :
(
Rd
)+ →

(
Rd
)+, that is length-preserving

in the sense that f
(
Rt×d

)
⊆
(
Rt×d

)
for all t > 0.

18We use the term substochastic rather than stochastic here
because the trimmed model satisfies t′q +

∑Q′
q′=1 P

′
qq′ ≤ 1,

but might no longer achieve equality as required by Def. 5.1.
19This is assuming the total weight is finite (which we

guarantee by substochasticity) and the matrix is invertible
(which we guarantee by trimming)

20Here
(
Rd
)+

is the set of nonempty tuples of vectors in Rd.
This is formally the disjoint union (coproduct)

∐
t∈Z>0

Rt×d.
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Intuitively, this definition is saying that f is a func-
tion that maps a nonempty vector tuple {vi}ti=1 to
another vector tuple {hi}ti=1 of the same length,

f(v1, . . . ,vt) = (h1, . . . ,ht) ∈ Rt×d, (23)

where vi ∈ Rd is commonly the embedding of
the input symbol xi. In particular, we can take the
function f :

(
Rd
)+ →

(
Rd
)+ to be the function

defined by a stack of Transformer layers. This
setup will help us state the following.

Lemma 5.8. Let f :
(
Rd
)+ →

(
Rd
)+ be the func-

tion defined by a finite number of Transformer lay-
ers (e.g., n layers) with any continuous activation
function. Given a compact set K ⊂ Rd. Then,
there exists a compact set K ′ ⊂ Rd such that for
every t ∈ Z>0,

f
(
Kt
)
⊆
(
K ′
)t
. (24)

Proof. See App. E.2. �

Recall that a Transformer language model—or
more precisely, a Transformer ASM—defines the
conditional probabilities using the softmax trans-
formation

p̄(xt+1 | x≤t) =
exp(u>xt+1

ht)∑
y∈Σ exp(u>y ht)

(25)

where ux ∈ Rd is the output symbol embedding of
x ∈ Σ and ht is defined from the input embeddings
of x≤t via Eq. (23). Using Lemma 5.8, together
with the finiteness of the vocabulary Σ and the con-
tinuity of the softmax transformation (25), readily
yields our main result on Transformers.

Theorem 5.9. The autoregressive sequence model
defined by any (fixed-depth) Transformer is tight.

Proof. See App. E.2. �

5.3 Recurrent Neural Language Models
Recall that the hidden state of an RNN is typically
defined by the recurrence

ht = σ (Wvt +Uht−1 + b) (26)

where vt ∈ Rd is the embedding of the input sym-
bol xt, as above, and σ(·) is some activation func-
tion (Elman, 1990). The conditional probabilities
are usually defined in the same way as Eq. (25).
Using Thm. 5.7 and the same strategy of proof as
in Thm. 5.9, one can also easily prove the tightness
of any RNN ASM with bounded activations (e.g.,

tanh or sigmoid). However, as we saw in Ex. 2.4,
an unbounded activation function (e.g., ReLU) can
indeed lead to non-tightness by making the proba-
bility of EOS decay too fast. The condition derived
in Thm. 4.7 precisely determines how fast such
decay can be without losing the tightness of the
language model. Below, we generalize this result
as well as Lemma 3.2 of Welleck et al. (2020), and
show that if the norm of the activations eventually
grows sub-logarithmically, the RNN is still tight.

Proposition 5.10. Given an RNN ASM over Σ.
Again let the output symbol vector be ux ∈ Rd

for x ∈ Σ, and set k def
= supx∈Σ ‖ux − uEOS‖2.

Additionally, for each t > 0, let ‖ĥt‖2 be the max-
imum attainable hidden state norm for any con-
text x ∈ Σt. Such a sequence model is tight if
k‖ĥt‖2 ≤ log t for all sufficiently large t.

Proof. See App. E.3. �

This result is weaker than Thm. 5.9 because in
an RNN, unlike a Transformer, the depth of the
computation graph grows with the sequence length.

6 Conclusion

This paper presents a measure-theoretic treatment
of language modeling and its tightness. Practi-
cal implications of our results include determining
when sampling from an autoregressive sequence
model is guaranteed to terminate and whether
MCMC algorithms over such models will mix to
the correct distribution.

To this end, we first defined various components
of language modeling in measure-theoretic termi-
nology. This in turn allows us to understand the por-
tion of probability mass allocated to infinite-length
strings. Importantly, this presentation formalizes
a definition of sequence modeling under which
the probability of producing an infinite-length se-
quence is non-zero; while today’s models are often
capable of producing such strings, previously there
was no rigorous treatment of this case.

Indeed, such a definition is useful when consider-
ing a number of neural architectures (e.g., a simple
RNN as in Elman, 1990) and language generation
systems (e.g., the distribution induced by nucleus
sampling; Holtzman et al., 2020). In particular, we
showed that perhaps the most commonly-used NLP
architecture, the Transformer language model, is
indeed a language model—a tight distribution over
finite strings—a property that had been called into
question by previous work.
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Limitations

Our discussion in this paper leaves out the consider-
ation of computability of measures over languages.
Specifically, we note that there exist works on com-
putable measure theory developed in the context
of theoretical computer science (de Leeuw et al.,
1956) and probabilistic programming languages
(Roy, 2011). Additional machinery needs to be
developed in order for a proper treatment and we
leave this for future work.

Another notable limitation is that we exclusively
focused on the autoregressive production of lan-
guage. Importantly, our formalism might not be
compatible with other models of language produc-
tion such as those induced by a PCFG.

Finally, our proofs of Thm. 5.9 and Prop. 5.10
exploit the strictly positive property of the softmax
function. Importantly, they do not apply to models
with sparse distributions (Martins and Astudillo,
2016; Peters et al., 2019; Martins, 2021).
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A Related Work

The issue of tightness has been studied extensively in the context of probabilistic context-free grammars
(PCFG; Chi and Geman, 1998; Chi, 1999; Cohen and Johnson, 2013), although Chi (1999) refers to
non-tight models as improper. Specifically, Chi (1999) gave algorithms for determining the tightness of
a PCFG by formalizing a PCFG as a branching process. Chi (1999) further proved that any maximum-
likelihood estimator yields a tight PCFG. Several previous works study the ability of language models to
place probability mass on infinite-length strings (Booth and Thompson, 1973; Nederhof and Satta, 2006;
Chen et al., 2018; Welleck et al., 2020), where they refer to the non-tight language models as inconsistent.
In some cases, this behavior can be attributed to the discrepancy between the language model itself and
the distribution induced by a (possibly stochastic) decoding algorithm: the decoder may have a lower
probability of generating the EOS token. For example, on the tight bigram model of Ex. 2.3, a greedy
decoder will always generate a and never EOS. Yet in other examples, it is the model itself that leaks
probability mass to infinite-length strings, i.e., it may be non-tight, which is the problem we focus on in
this work, providing a characterization of tightness. Notably, the conditions we propose are more general
than those of Welleck et al. (2020).

Several other works consider the limitations of common neural network architectures for modeling
distributions over finite sequences (strings), albeit focusing specifically on other attributes, such as their
computational complexity for problems like equivalence or undecidability (Chen et al., 2018; Lin et al.,
2021; Lin and McCarthy, 2022; Lin, 2022). In contrast, this work provides a formal treatment of language
models by enlarging the sample space to Σ∗ ∪ Σ∞, although to ensure tightness, Σ∞ must receive
probability 0. Such definitions are not uncommon in probability theory. For example, while the Wiener
process (i.e., the standard Brownian motion) is a distribution over all functions, the definition ensures that
the set of discontinuous functions is assigned probability 0 (Durrett, 2019, Ch. 7).

Meister et al. (2022) similarly address the notion of a language model as a distribution over infinite
sequences by casting such models as stochastic processes. They use this framing in order to motivate
decoding, without providing comprehensive measure-theoretic foundations of such distributions.

B Details for Motivating Ex. 2.3

Here, we lay out the steps to calculate P(Σ∗) from Fig. 1b:

P(Σ∗) =
∞∑

n=0

(
P(an+1) +

∞∑

m=0

P(an+1bm+1)

)
(27a)

=

∞∑

n=0

(
1 · (0.7)n · 0.1 +

∞∑

m=0

1 · (0.7)n · 0.2 · (0.9)m · 0.1
)

(27b)

=
∞∑

n=0

(0.7)n ·
(

0.1 + 0.2 ·
( ∞∑

m=0

(0.9)m

)
· 0.1

)
(27c)

=

∞∑

n=0

(0.7)n ·
(

0.1 + 0.2 · 1

1− 0.9
· 0.1

)
(27d)

=
∞∑

n=0

(0.7)n · 0.3 =
0.3

1− 0.7
= 1 (27e)

C Measure Theory Details

C.1 Proofs and Details in §3.3

C.1.1 Details of Thm. 3.5
Theorem 3.5. Assuming the Axiom of Choice and the Continuum Hypothesis, there exists no probability
measure P over ({H, T}∞,P({H, T}∞)) such that P({ω}) = 0 for each ω ∈ {H, T}∞.
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This theorem is an impossibility of measure theorem. Generally speaking, the existence of a
non-measurable set implies some form of impossibility of measure. The most famous example of
non-measurable sets are Vitali sets, which exist given the Axiom of Choice. Vitali’s 1905 construction
is typically described in introductory texts on measure theory (Royden, 1988; Billingsley, 1995; Axler,
2020). The existence of Vitali sets shows that it is impossible to define a probability measure that
satisfies translational invariance on the measurable space

(
[0, 1),P([0, 1))

)
. Thus, to achieve translational

invariance, Lebesgue measure uses a σ-algebra smaller than P([0, 1)), in which the Vitali sets are
among the non-measurable sets. However, the translational invariance desideratum is not relevant to our
space of discrete sequences. A theorem by Ulam (1930) reveals a deeper reason that some sets must be
non-measurable. We shall state the theorem below as given in Oxtoby (1980) and omit its proof. We refer
interested readers to Chapter 5 in Oxtoby (1980), which contains an accessible proof and an excellent
discussion of the theorem including its generalizations and historical context.

Theorem C.1 (Ulam, 1930). Assuming the Axiom of Choice, a finite measure µ defined for all subsets of
a set X of cardinality ℵ1 vanishes identically [that is, equals zero for all subsets] if it is equal to zero for
every one-element subset.

In the statement above, ℵ1 denotes the cardinality of the first uncountable ordinal. We can see that
Thm. 3.5 is a straightforward consequence of Thm. C.1.

Proof of Thm. 3.5. Recall that card({H, T}∞) = 2ℵ0 . Assuming the Continuum Hypothesis, 2ℵ0 = ℵ1,
and hence by Thm. C.1, such a measure is uniformly 0, and hence cannot be a probability measure. �

C.1.2 Other Proofs in §3.3
Lemma 3.9. C ⊂ P(Ω) is an algebra over Ω = Σ

∞.

Proof. First, Ω ∈ C since it is a cylinder set of rank 0 or indeed of any rank k: Ω = C(Σ
k
) ∈ Ck ⊂ C.

Second, C is closed under complements: given a cylinder set of rank k, that is, C(H) where H ⊆ Σ
k, its

complement
(
C(H)

)c
= C

(
Σ
k \H

)
is also a cylinder set of rank k. Finally, C is closed under union:

the union of cylinder sets of ranks k1 ≤ k2 is a cylinder set of rank k2, since both can be regarded as
cylinder sets of rank k2. Hence, C is an algebra over Ω. �

Proposition C.2. P0 as defined in Eq. (8) is a well-defined function.

Proof. Suppose a cylinder set arises in two ways, C(H1) = C(H2), where H1 ⊆ Σ
k1 and H2 ⊆ Σ

k2 .
We must show

∑
x∈H1

p̄(x) =
∑

x′∈H2
p̄(x′). Without loss of generality, assume that k1 ≤ k2. The

definition of C(H2) (Def. 3.8) implies that H2 consists of all length-k2 prefixes of strings in C(H2). But
C(H2) = C(H1), so the definition of C(H1) (Def. 3.8) implies that its length-k2 prefixes are exactly
the strings of the form xy where x ∈ H1,y ∈ Σ

k2−k1 . Hence we can write H2 in terms of H1 as
H2 = {xy : x ∈ H1,y ∈ Σ

k2−k1}. Thus
∑

x′∈H2

p̄(x′) =
∑

x∈H1

∑

y∈Σ
k2−k1

p̄(xy) =
∑

x∈H1

p̄(x) (28)

where the last equality is true because p̄ is defined by the locally normalized product (9). �

Lemma 3.10. P0 is a pre-measure over C.

For the proof of Lemma 3.10, we will mostly follow the proof of Thm 2.3 in Billingsley (1995), with
the exception of invoking the Tychonoff theorem directly. This proof depends on the following lemma,
which is Example 2.10 in Billingsley (1995). We repeat the statement and proof here for the reader’s
convenience.

Lemma C.3. Let P0 be a finitely additive probability pre-measure over C such that, given a decreasing
sequence of sets A1 ⊃ A2 ⊃ · · · in C where

⋂∞
n=1An = ∅, limn→∞ P0(An) = 0. Then, P0 is also

countably additive over C.
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Proof. Let {An} be a sequence of disjoint sets in C such that A =
⋃
nAn ∈ C. Then, defining

Bn =
⋃
m>nAm, we see that B1 ⊃ B2 ⊃ · · · and

⋂
nBn = ∅. Notice that

A = A1 ∪B1 = A1 ∪A2 ∪B2 = · · · = A1 ∪ · · · ∪An ∪Bn (29)

for any n and hence by finite additivity of P0

P0(A) = P0(A1) + · · ·+ P0(An) + P0(Bn) (30)

or equivalently

P0(A1) + · · ·+ P0(An) = P0(A)− P0(Bn). (31)

Since, Bn ↓ ∅ implies that P0(Bn) ↓ 0 by assumption, taking the limits on both sides of Eq. (31) yields

∑

n

P0(An) = lim
n→∞

∑

i≤n
P0(Ai) = P0(A)− lim

n→∞
P0(Bn) = P0(A) (32)

which shows countable additivity. �

We also recall the Tychonoff theorem.21

Theorem C.4 (Tychonoff). Let {Xα}α∈J be an indexed family of compact topologies. Then, their product
topology

∏
α∈J Xα is also compact.

We can now give the proof for Lemma 3.10.

Proof of Lemma 3.10. We first show that P0 is finitely additive over C. Let C(H1) and C(H2) be two
disjoint cylinder sets. By Prop. C.2, we can assume they are of the same rank without loss of generality.
Then,

C(H1) ∪ C(H2) =
⋃

x∈H1

{xω : ω ∈ Σ
∞} ∪

⋃

x∈H2

{xω : ω ∈ Σ
∞} (33a)

=
⋃

x∈H1∪H2

{xω : ω ∈ Σ
∞} (H1 and H2 equal rank and disjoint) (33b)

= C(H1 ∪H2) (33c)

which leads to

P0(C(H1) ∪ C(H2)) = P0(C(H1 ∪H2)) =
∑

x∈H1∪H2

p̄(x) = P0(C(H1)) + P0(C(H2)). (34a)

Hence, P0 is finitely additive.
Now, equip Σ with the discrete topology. Since Σ is finite, it is compact under the discrete topology

and so is Σ
∞ by Thm. C.4. Then, by properties of the product topology over discrete finite spaces, all

cylinder sets in Σ
∞ are compact. To apply Lemma C.3, let C1 ⊃ C2 ⊃ · · · be a decreasing sequence of

cylinder sets with empty intersection. Suppose to the contrary that P0 (
⋂
nCn) > 0. This would imply

that all Cn are nonempty (any of these being empty would result in a measure 0). However, by Cantor’s
intersection theorem22,

⋂
nCn is nonempty, contradicting the assumption. Hence, P0 (

⋂
nCn) = 0, and

by Lemma C.3, P0 is countably additive. �
21See §37 in Munkres (2000) for a detailed and well-written treatise.
22Cantor’s intersection theorem states that a decreasing sequence of nonempty compact sets have a nonempty intersection. A

version of this result in introductory real analysis is the Nested Interval Theorem.
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C.2 Details in §3.4
C.2.1 Carathéodory’s Extension Theorem
Theorem 3.11 (Carathéodory’s Extension Theorem). Given an algebra A over some set Ω and a prob-
ability pre-measure P0 : A → [0, 1], there exists a probability space (Ω,F ,P) such that A ⊂ F and
P|A = P0. Furthermore, the σ-algebra F depends only on A and is minimal and unique—thus we may
denote it by σ(A)—and the probability measure P is unique.

Proof Sketch. First, construct an outer measure by approximation with countable coverings. Then, show
that the collection of sets that is measurable with respect to this outer measure is a σ-algebra F that
containsA. Finally, restricting the outer measure to this σ-algebra, one is then left with a probability space.
To show minimality, one can show that F is contained in any σ-algebra that contains A. Uniqueness is
given by applying Dynkin’s π-λ theorem (Theorem 3.2 in Billingsley, 1995).

Great care must be taken in each step involved in the outline above. To address these is well beyond the
scope of this paper and we refer reader to the many excellent texts with a proof of this theorem, such as
Chapter 12 in Royden (1988) and Chapter 11 in Billingsley (1995). �

C.2.2 The Space of Non-measurable Sets
Non-measurable sets are, in general, difficult to find. Even when we can exhibit such sets, they tend to
be very abstract and counter-intuitive. Vitali’s and Bernstein’s sets are two prominent examples for the
Lebesgue measure. Blackwell and Diaconis (1996) offers a construction of a non-measurable set in the
cylinder σ-algebra.23

As another approach to understand this better, we can consider how our collection σ(C) of all measurable
sets, i.e., our σ-algebra, is constructed from our algebra C of cylinder sets (as opposed to simply knowing
from Carathéodory’s Extension Theorem that it exists). Concretely, as in §1.6 in Folland (1999), we
can intuitively consider the following process to build from the collection of cylinder sets C, which is a
countable collection, all the way up to its generated σ-algebra, whose cardinality is unknown just yet:

• Let C0 = C,
• Let C1 be the set that includes all countable unions of sets in C0 or the complements of such,
• Repeat this process to build Cn for every n ∈ N.

One might then take the union
⋃
n∈N Cn of this increasing sequence of collections of sets, and ask if it

is the same as σ(C). In general, the answer is no (as one might expect if one is familiar with the Borel
Hierarchy). However, we can obtain σ(C) if we perform this construction for every countable ordinal α.
Abbreviating the operation in the second step above as δ, i.e., C1 = δ(C0), and letting ω1 be the collection
of all countable ordinals,24 we can define

Cα =

{
δ(Cβ) if α = β + 1 for some β ∈ ω1,⋃
β∈ω1:β<α Cβ otherwise.

(35)

This will give us the desired set as follows:

Proposition C.5 (Proposition 1.23, Folland, 1999). σ(C) =
⋃
α∈ω1

Cα.

Next, we recall the following basic fact from cardinality theory.

Proposition C.6 (Proposition 0.14, Folland, 1999). If card(A) ≤ 2ℵ0 and card(Xα) ≤ 2ℵ0 for all α ∈ A,
then card

(⋃
α∈AXα

)
≤ 2ℵ0 .

Noting that card(ω1) ≤ 2ℵ0 and card(C) = ℵ0, we can conclude that card(σ(C)) ≤ 2ℵ0 from
Prop. C.5 and Prop. C.6. In other words, the cardinality of σ(C) is at most that of the continuum, and since
card

(
P(Σ

∞
)
)

= 22ℵ0 (= i2), σ(C) is, in terms of cardinality, an almost negligible subset of P(Σ
∞

)!
That is, most subsets in Σ

∞ are non-measurable—though explicit examples have rarely been constructed
23The following assumes basic familiarity with the theory of ordinal numbers. Readers without such background may skip to

the last paragraph for conclusion.
24ω1 is, in fact, the same as the first uncountable ordinal. Its existence (and hence the existence of the collection of all

countable ordinals) can be guaranteed by exhibiting a well-ordered uncountable set using the Axiom of Choice.
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(Blackwell and Diaconis, 1996). App. C.3 below establishes that common subsets of Σ
∞ that we work

with are measurable.

C.3 Proofs in §3.5
Proposition 3.13. The function X : (Σ

∞
, σ(C))→ (Σ∗ ∪Σ∞, σ(C)) defined in Eq. (12) is a measurable

mapping.

Proof. To show that X is measurable, it suffices to show the measurability of preimages of a generating
set25 of the σ-algebra σ(C) on Σ∗ ∪ Σ∞. Such a generating set is formed by the thin cylinders C(x)

def
=

C({x}) for x ∈ Σ∗. (Recall that cylinders in Σ∗ ∪ Σ∞ are defined by Eq. (11).) Given x ∈ Σ∗:

X−1(C(x)) =X−1({xω : ω ∈ Σ∗ ∪ Σ∞}) (36a)

=X−1({xω : ω ∈ Σ∗}) ∪X−1({xω : ω ∈ Σ∞}) (36b)

=

( ⋃

ω∈Σ∗
C(xω EOS)

)
∪
(
C(x) ∩

∞⋂

k=1

Ac
k

)
(36c)

Note that the set Ak above, defined by Eq. (16), is a cylinder of Σ
∞, representing the event of terminating

by step k. Then, from the derivation above, we can see thatX−1(C(x)) is formed by countable operations
over measurable sets (cylinders) of Σ

∞, and is hence measurable. So X is a measurable function. �

Proposition C.7. In measure space (Σ∗ ∪ Σ∞, σ(C)), {x} is measurable for all x ∈ Σ∗.

Proof. We will show that {x} = C(x) \⋃a∈ΣC(xa) and hence is measurable. By definition in Eq. (11),
for any x ∈ Σ∗,

C(x) = {xω : ω ∈ Σ∗ ∪ Σ∞} (37a)

= {xω : ω ∈ Σ∗} ∪ {xω : ω ∈ Σ∞} (37b)

where

{xω : ω ∈ Σ∗} = {x} ∪
⋃

a∈Σ

{xaω : ω ∈ Σ∗} (38a)

and

{xω : ω ∈ Σ∞} =
⋃

a∈Σ

{xaω : ω ∈ Σ∞}. (39)

So

C(x) = {x} ∪
⋃

a∈Σ

(
{xaω : ω ∈ Σ∗} ∪ {xaω : ω ∈ Σ∞}

)
(40a)

= {x} ∪
⋃

a∈Σ

C(xa) (40b)

where the union is disjoint. This implies {x} = C(x) \⋃a∈ΣC(xa) as desired. �

Proposition C.8. In the measure space (Σ∗ ∪ Σ∞, σ(C)), Σ∞ is measurable.

Proof. First, Σ∗ ∪ Σ∞ is the entire outcome space, which is measurable by the definition of σ-algebra.
Notice that

Σ∞ = (Σ∗ ∪ Σ∞) \
⋃

x∈Σ∗
{x}. (41)

Since each {x} in the above is measurable by Prop. C.7 and Σ∗ is a countable set, Σ∞ is then measurable.
�

25A set G is said to be a generating set of a σ-algebra F if F is the smallest σ-algebra that contains G.
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The measurability of Σ∞ in (Σ∗ ∪ Σ∞, σ(C)) (Prop. C.8) was assumed by our definition of tightness
(Def. 4.1). As we have also established that each {x} is measurable (Prop. C.7), we can give an alternative
characterization.

Proposition C.9. A sequence model (Σ∗ ∪ Σ∞, σ(C), P ) is tight if and only if
∑

x∈Σ∗ P ({x}) = 1.

Proof. We defined a sequence model to be tight if and only if P (Σ∞) = 0 (Def. 4.1). By Propositions C.7
and C.8, we can write

1 = P (Σ∗ ∪ Σ∞) = P (Σ∞) + P (Σ∗) (finite additivity) (42a)

= P (Σ∞) +
∑

x∈Σ∗
P ({x}). (countable additivity) (42b)

Hence, a sequence model is tight if and only if
∑

x∈Σ∗ P ({x}) = 1. �

D Proofs on Characterizing Tightness (§4)

D.1 Proof of Lemma 4.2
The result below is stated without proof as Exercise 4.3.5 in Durrett (2019).

Lemma 4.2. If
∑∞

n=2 P
(
An | ∩n−1

m=1A
c
m

)
=∞, then P (∩∞m=1A

c
m) = 0.

Proof. First, recall an elementary inequality that for x > 0,

x− 1 ≥ log x ⇔ 1− x ≤ log
1

x
. (43)

Note that P(∩nm=1A
c
m) > 0 for any n, for otherwise the conditional probabilities would be undefined. Let

pn
def
= P(∩nm=1A

c
m). Then we have that pn > 0 for all n, and

∞ =
∞∑

n=2

P(An | ∩n−1
m=1A

c
m) (44a)

=

∞∑

n=2

1− P(Ac
n | ∩n−1

m=1A
c
m) (44b)

= lim
N→∞

N∑

n=2

1− P(Ac
n | ∩n−1

m=1A
c
m) (44c)

≤ lim
N→∞

N∑

n=2

log 1/P(Ac
n | ∩n−1

m=1A
c
m) (by Eq. (43)) (44d)

= lim
N→∞

N∑

n=2

log
P(∩n−1

m=1A
c
m)

P(∩nm=1A
c
m)

(44e)

= lim
N→∞

N∑

n=2

log
pn−1

pn
(44f)

= lim
N→∞

N∑

n=2

(log pn−1 − log pn) (44g)

= lim
N→∞

(log p1 − log pN ) (44h)

= log p1 − lim
N→∞

log pN (44i)

which implies that

lim
N→∞

log pN = −∞ (45a)

9761



⇔ lim
N→∞

pN = 0 (45b)

⇔ lim
N→∞

P(∩Nm=1A
c
m) = 0 (45c)

⇔ P(∩∞m=1A
c
m) = 0. (by continuity of measure) (45d)

�

D.2 Proof of Prop. 4.3
Proposition 4.3. If p̄(EOS | x) ≥ f(t) for all t ≥ 1,x ∈ Σt−1, and

∑∞
t=1 f(t) =∞, then P(∩∞k=1A

c
k) =

0. In other words, P is tight.

Proof. In the proof, we rename the index t to n to match the usual presentation of the Borel-Cantelli
lemmata. We are given that p̄(EOS | x) ≥ f(n) for all x ∈ Σn−1. To apply Lemma 4.2, we observe that

An ∩ (Ac
1 ∩ · · · ∩Ac

n−1) ={ω ∈ Σ
∞

: ωn = EOS} ∩
(
n−1⋂

i=1

{ω ∈ Σ
∞

: ωi 6= EOS}
)

(46a)

={ω ∈ Σ
∞

: ω = EOS,∀ i < n,ω 6= EOS} (46b)

={ω ∈ Σ
∞

: ω’s first EOS is at position n} (46c)

and similarly

Ac
1 ∩ · · · ∩Ac

n−1 = {ω ∈ Σ
∞

: there is no EOS in ω’s first n− 1 positions} (47)

Setting G def
= {ω EOS : ω ∈ Σn−1} ⊂ Σ

n, we get

P(An | Ac
1 ∩ · · · ∩Ac

n−1) =
P(An ∩ (Ac

1 ∩ · · · ∩Ac
n−1))

P(Ac
1 ∩ · · · ∩Ac

n−1)
(48a)

=
P(C(G))

P(C(Σn−1))
(definition of G) (48b)

=

∑
ω∈Σn−1 p̄(EOS | ω)p̄(ω)∑

ω∈Σn−1 p̄(ω)
(by Eq. (8)) (48c)

≥
∑

ω∈Σn−1 f(n)p̄(ω)∑
ω∈Σn−1 p̄(ω)

(definition of f(n)) (48d)

= f(n)

∑
ω∈Σn−1 p̄(ω)∑
ω∈Σn−1 p̄(ω)

(48e)

= f(n). (48f)

Since
∑∞

n=1 f(n) = ∞ and hence
∑∞

n=2 f(n) = ∞, the above inequality shows that the condition
of Lemma 4.2 holds. Hence by Lemma 4.2, the event of a string never terminating, i.e., ∩∞k=1A

c
k, has

probability measure P(∩∞k=1A
c
k) = 0.

In summary, if the EOS probability of a language model is lower-bounded at ever steps by the terms of
a divergent series, then the event that this language model terminates has probability 1. �

D.3 Proof of Cor. 4.6
To show Cor. 4.6, we first show the following simple consequence of Borel–Cantelli.

Corollary D.1. If P(An i.o.) = 1, then
∑∞

n=1 P(An) =∞.

Proof. Suppose to the contrary that
∑∞

n=1 P(An) < ∞, then, by Borel–Cantelli I (Lemma 4.4),
P(An i.o.) = 0, which contradicts the assumption. Hence,

∑∞
n=1 P(An) =∞.

�

Cor. 4.6 below is also stated without proof as Exercise 4.3.4 in Durrett (2019).

9762



Corollary 4.6. Given a sequence {pn} where pn ∈ [0, 1). Then,
∏∞
n=1(1− pn) = 0⇐⇒∑∞

n=1 pn =∞. (19)

Proof. We can use a product measure to construct a sequence of independent events {An}∞n=1 such that
P(An) = pn. (The product measure ensures independence.) Then, by definition in Eq. (18),

{An i.o.}c =
∞⋃

m=1

⋂

n≥m
Ac
n (49)

So,

1− P(An i.o.) = P


⋃

m

⋂

n≥m
Ac
n


 (50a)

= lim
m→∞

P


 ⋂

n≥m
Ac
n


 (50b)

= lim
m→∞

∏

n≥m
P(Ac

n) (An are independent by construction) (50c)

= lim
m→∞

∏

n≥m
(1− pn) (50d)

(⇒): Assume
∏∞
n=1(1− pn) = 0. Then, for any m,

0 =
∏

n≥1

(1− pn) =


 ∏

1≤n<m
(1− pn)




︸ ︷︷ ︸
>0


∏

n≥m
(1− pn)


 (51)

So it must the case that, for any m,
∏
n≥m(1− pn) = 0. Therefore,

1− P(An i.o.) = lim
m→∞

∏

n≥m
(1− pn) = 0 (52)

which implies P(An i.o.) = 1. Cor. D.1 implies that
∑∞

n=1 pn =∞.

(⇐): Assume
∑∞

n=1 pn =∞. Then by Borel–Cantelli II (Lemma 4.5), P(An i.o.) = 1 which implies

0 = 1− P(An i.o.) = lim
m→∞

∏

n≥m
(1− pn) (53)

Observe that
{∏

n≥m(1− pn)
}
m

is a non-decreasing sequence in m; to see this, note that as m grows

larger we multiply strictly fewer values (1 − pn) ∈ (0, 1]. However, since we know the sequence is
non-negative and tends to 0, it follows that for any m, we have

∏

n≥m
(1− pn) = 0. (54)

It follows that, for any m, we have

∞∏

n=1

(1− pn) =
∏

n<m

(1− pn)
∏

n≥m
(1− pn)

︸ ︷︷ ︸
=0

=
∏

n<m

(1− pn) · 0 = 0. (55)

�
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D.4 Proof of Thm. 4.7
Theorem 4.7 (Proposition 2.4 in Meister et al., 2022). An ASM is tight if and only if p̃EOS(t) = 1 for some
t or

∑∞
t=1 p̃EOS(t) =∞.

Proof. Recall the definition of p̃EOS, as previously defined in Eq. (20), is

p̃EOS(t)
def
= P(At | Ac

1 ∩ · · · ∩Ac
t−1). (56)

Case 1. Suppose that p̃EOS(t) < 1 for all t. Consider the termination probability again:

P

( ∞⋂

t=1

Ac
t

)
= lim

T→∞
P

(
T⋂

t=1

Ac
t

)
(57a)

= lim
T→∞

T∏

t=1

P(Ac
t | Ac

1 ∩ · · · ∩Ac
t−1) (57b)

= lim
T→∞

T∏

t=1

(1− p̃EOS(t)) (57c)

=

∞∏

t=1

(1− p̃EOS(t)). (57d)

In the above, we have assumed that P(Ac
1 ∩ · · · ∩ Ac

t) > 0 for all t, which is true by assumption that
p̃EOS(t) < 1.. Hence, by Cor. 4.6, Eq. (57d) is 0 if and only if

∑
t p̃EOS(t) =∞.

Case 2. If p̃EOS(t) = 1 is true for some t = t0, then P(Ac
1 ∩ · · · ∩Ac

t0) = 0 and hence P (
⋂∞
t=1A

c
t) = 0

and such a language model is guaranteed to terminate at t0. �

E Proofs for Analyses of Common Language Models (§5)

E.1 Proofs for FSSMs (§5.1)
E.1.1 Proofs for Stochastic FSSMs
Theorem 5.3. An SFSSM is tight iff all accessible states are also co-accessible.

Proof. We refer to a state q as initial if sq > 0 and as final if tq > 0. (These are sometimes called source
and sink states.) We prove each direction of the theorem in turn:

(⇒): Assume the SFSSM is tight. Let q be an accessible state. Since the SFSSM has at least one
positive-probability path from an initial state, there is a positive probability of reaching q during generation.
If there were no positive-probability path from q to a final state, then the SFSSM would never terminate on
the occasions when it reached q, contradicting the assumption of tightness. Hence q must be co-accessible.

(⇐): Assume that all accessible states are co-accessible. We construct a Markov chain whose states are
the SFSSM’s accessible states QA ⊆ {1, . . . , Q} together with an EOS state. In this Markov chain, the
initial probability of q is given by sq when q ∈ QA and by 0 when q = EOS; the transition probability from
q to q′ is given by Pqq′ when q, q′ ∈ QA, by tq when q ∈ QA and q′ = EOS, by 1 when q = q′ = EOS,
and by 0 otherwise. The probability that the Markov chain is in state q ∈ QA after t steps equals the
probability that the SFSSM is in state q after t steps (note that the SFSSM never reaches any state q /∈ QA).
The probability that it is in state EOS after t steps equals the probability that the SFSSM has terminated
after ≤ t steps.

Clearly EOS is an absorbing state of the Markov chain, meaning that once the Markov chain reaches
this state, it never leaves. A fundamental result on finite-state Markov chains (Grinstead and Snell, 1997,
Theorem 11.3) is that if every state can reach an absorbing state, then with probability 1, the chain reaches
an absorbing state (“is absorbed”) in finite time. Every state can in fact reach EOS, by coaccessibility
of QA. This further implies that EOS is the only absorbing state (as an absorbing state cannot reach any
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other state). So by the result cited above, the Markov chain reaches EOS with probability 1 in finite time.
Consequently, the SFSSM terminates after finitely many steps with probability 1; that is, the SFSSM is
tight. �

Corollary 5.4. Maximum likelihood estimates of n-gram models based on some corpus are tight.

Proof. The SFSSM for an n-gram model has states that correspond to (n − 1)-grams and transitions
that correspond to characters (unigrams), as illustrated by Fig. 1. When the SFSSM’s probabilities are
estimated with MLE, the accessible states are (n − 1)-grams that have appeared in some string in the
corpus. Such states must also be co-accessible so that they can generate the rest of that string. Hence, by
Thm. 5.3, this SFSSM is tight. �

E.1.2 Proofs for Substochastic FSSMs
To prove Thm. 5.6, we will make use of the following useful lemma.

Lemma E.1. Let P′ be the transition sum matrix of a trimmed substochastic FSSM. Then ρ(P′) < 1
where ρ(·) denotes the spectral radius.

Proof. To begin with, we wish to apply the following result, which connects the row sums of a matrix to
its spectral radius. Below, Mn denotes the set of n× n matrices, and |||A|||∞ = max1≤i≤n

∑n
j=1 |Aij |

denotes the operator∞-norm.

Proposition E.2 (§6.2.P8, Horn and Johnson, 2012). For any A ∈Mn, ρ(A) ≤ |||A|||∞. Additionally, if
A is irreducible and not all absolute row sums of A are equal, then ρ(A) < |||A|||∞.

However, the transition sum matrix P of a substochastic FSSM may be reducible, whereas the irre-
ducibility condition in Prop. E.2 cannot be dropped. Hence, we need to “decompose” P′ in a way that
recovers irreducibility. We use the Frobenius normal form (also known as irreducible normal form) to
achieve this.

Proposition E.3 (§8.3.P8, Horn and Johnson, 2012). Let A ∈ Mn be non-negative. Then, either A is
irreducible or there exists a permutation matrix Π such that

Π>AΠ =



A1 ∗

. . .
0 Ak


 (58)

is block upper triangular, and each diagonal block is irreducible (possibly a 1 × 1 zero matrix). This
is called a Frobenius normal form (or irreducible normal form) of A. Additionally, λ(A) = λ(A1) ∪
· · · ∪ λ(Ak) where λ(·) denotes the set of eigenvalues of a matrix.

Notice that the permutation in the Frobenius normal form merely renumbers the states of the trimmed
FSSM. We may check that as a result, the termination probability given in Thm. 5.6 is unchanged:26

(Π>s′)>(Π>P′Π)k(Π>t′) = (s′>Π)(Π>P′kΠ)(Π>t′) = s′>P′kt′ (59)

Hence, with an appropriate renumbering, we may assume without loss of generality that P is already
given in Frobenius normal form

P′ =



P′1 ∗

. . .
0 P′k


 (60)

where each P′i is irreducible.
Since the transition sum matrix P′ of a trimmed substochastic FSSM is a substochastic matrix, each P′i

is also substochastic. In fact, each P′i is strictly substochastic, meaning that there is at least one row that
26The equalities here use the fact that the inverse of a permutation matrix Π is its transpose: Π Π> = I .
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sums to less than 1. To see this, suppose to the contrary that there is a stochastic P′i. Since the FSSM is
trimmed, every state is both accessible and co-accessible. Being accessible implies that there is a positive
probability of reaching every state in P′i. However, the stochasticity of P′i forces the corresponding t′

entries to be 0. Hence, none of these states can transition to EOS, meaning that they’re not co-accessible,
contradicting the assumption. Hence, every P′i is strictly substochastic. Then, either all row sums of
P′i are less than 1 (in which case |||P′i|||∞ < 1) or some row sums are 1 and some are less than 1 (in
which case |||P′i|||∞ = 1 and P′ has unequal absolute row sums). In either case, Prop. E.2 implies that
ρ(P′i) < 1, for all 1 ≤ i ≤ k.

Finally, the last sentence of Prop. E.3 entails that ρ(P′) = max{ρ(P′1), . . . , ρ(P′k)}. Since each
ρ(P′i) < 1, we have ρ(P′) < 1. �

Theorem 5.6. Let P′ be the transition sum matrix of a trimmed substochastic FSSM. Then I − P′ is
invertible and P (X ∈ Σ∗) = s′>(I−P′)−1t′ ≤ 1.

Proof. By Lemma E.1, ρ(P′) < 1, in which case I−P′ is invertible and the Neumann series
∑∞

k=0 P
′k =

I + P′ + P′2 + · · · converges to (I−P′)−1 (Horn and Johnson, 2012, §5.6). Thus

P (Σ∗) =

∞∑

k=0

P (Σk) =

∞∑

k=0

s′>P′kt′ = s′>
( ∞∑

k=0

P′k
)
t′ = s′>(I−P′)−1t′. (61)

�

E.2 Proofs for Transformer Result (§5.2)
Again, the following theorem is well-known:

Theorem 5.7. Let X be a compact topological space and Y be any topological space. If f : X → Y is
continuous, then f(X) ⊆ Y is also compact.

Proof. Let {Uα}α∈A be any open cover of f(X). By continuity, f−1(Uα) ⊂ X is open for any α ∈ A,
and hence {f−1(Uα)}α∈A is also an open cover ofX . By the compactness ofX , there is a finite sub-cover
{f−1(Uαi)}ni=1, in which case {Uαi}ni=1 forms a finite sub-cover for f(X). �

Lemma 5.8. Let f :
(
Rd
)+ →

(
Rd
)+ be the function defined by a finite number of Transformer layers

(e.g., n layers) with any continuous activation function. Given a compact set K ⊂ Rd. Then, there exists
a compact set K ′ ⊂ Rd such that for every t ∈ Z>0,

f
(
Kt
)
⊆
(
K ′
)t
. (24)

Note. We make use of the following notations in the proof below: 4t−1 = {y ∈ Rt : y ≥ 0,1>y = 1}
denotes the (t − 1)-dimensional simplex; Br(z) = {v ∈ Rn : dist(z,v) < r} denotes the open ball
centered at z with radius r; A denotes the closure of set A.

Proof. Let K0 = K. In an autoregressive transformer, each of the n layers consists of two blocks: a
self-attention block and a feedforward block. We will use induction on the 2n blocks to build up compact
sets K1,K2, . . . ,K2n that contain the output vectors of these respective blocks, and then take K ′ = K2n.

The self-attention block is a function on (Rd)+ → (Rd)+. So, let t ∈ Z>0 be arbitrary and consider
any sequence of input vectors (v1, . . . ,vt) such that for all i, vi ∈ K0. Denote the output vectors of the
attention block with (v′1, . . . ,v

′
t). By definition of attention, each output vector v′j =

∑t
i=1 α

(j)
i vi where

α(j) ∈ 4t−1 are the attention weight vectors obtained through the softmax function. Compact sets in
Rd are bounded (by the Heine–Borel theorem), and hence there exists M > 0 such that K0 ⊆ BM (0).
Noting that the norm function ‖ · ‖ on Rd is convex, we have the following

‖v′j‖ =

∥∥∥∥∥
t∑

i=1

α
(j)
i vi

∥∥∥∥∥ (62a)
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≤
t∑

i=1

α
(j)
i ‖vj‖ (∗)

≤
t∑

i=1

α
(j)
i M = M (62b)

where (∗) results from Jensen’s inequality. Eq. (62b) shows that each of the output vectors v′j lies in
BM (0) which is compact. Hence, setting K1 = BM (0), we have shown that, for any t ∈ Z>0, the
attention block maps Kt

0 into Kt
1.

Note that we cannot use Thm. 5.7 here because the attention block defines a different function on
Rt×d → Rt×d for each t, and Thm. 5.7 only implies that there exists a separate length-dependent output
compact set Kt ⊂ Rt×d for each t, which is different from this lemma’s statement.

The feedforward function is a continuous function on Rd → Rd, and therefore, by Thm. 5.7, maps its
input compact set K1 to an output compact set, which we call K2.

Finally, residual connections and layer norms are also continuous functions acting on each of the input
vectors, and hence by the same reasoning would also preserve compactness.

Now we can use induction and show that there exist compact sets K3,K4, . . . ,K2n−1,K2n where K2n

contains the output set of the final layer. Set K ′ = K2n and we have proven the statement. �

Theorem 5.9. The autoregressive sequence model defined by any (fixed-depth) Transformer is tight.

Proof. Given the Transformer, there exists a fixed compact set K that will contain all inputs vi ∈ Rd to
the first layer. This is true because each vi is the sum of a word embedding, which falls in a finite set
since Σ is finite, and a position embedding, which lies in the compact set [−1, 1]d. Hence, by Lemma 5.8,
there exists a fixed compact set K ′ that contains all output embedding vectors (regardless of how long the
sequence is).

The final output probability is given by a multiplication with the word embedding matrix followed
by the softmax function as in Eq. (25). This process amounts to composing two continuous functions.
In particular, we can extract the EOS probability as a continuous R-valued function gEOS : K ′ →
(0, 1) (neither 0 or 1 is in the range of the softmax function). By continuity of gEOS and Thm. 5.7,
K ′′ def

= gEOS(K ′) ⊆ (0, 1) is compact. Since K ′′ is compact, and hence closed, inf K ′′ ∈ K ′′. Thus
inf K ′′ ∈ (0, 1) and in particular inf K ′′ > 0. Therefore, taking ε = inf K ′′, we have shown that the EOS

probability of a Transformer is bounded below by some ε > 0 (regardless of the length of the sequence).
Hence, by Prop. 4.3, any Transformer ASM is tight and thus defines a language model. �

E.3 Proofs for RNN Result (§5.3)

Proposition 5.10. Given an RNN ASM over Σ. Again let the output symbol vector be ux ∈ Rd for x ∈ Σ,
and set k def

= supx∈Σ ‖ux − uEOS‖2. Additionally, for each t > 0, let ‖ĥt‖2 be the maximum attainable
hidden state norm for any context x ∈ Σt. Such a sequence model is tight if k‖ĥt‖2 ≤ log t for all
sufficiently large t.

Proof. Let Xt(ω) be the random variable that is equal to the tth token in an outcome ω ∈ Ω. Also let hx

be the hidden representation of the RNN after processing some finite list of tokens x ∈ Σ∗. Further, let
ux ∈ Rd be the output embedding of x ∈ Σ, Then for any t ∈ N and any x ∈ Σt, we have:

P(Xt+1 = EOS | X≤t = x) =
expu>EOShx∑
y∈Σ expu>y hx

(63a)

=
1∑

y∈Σ expu>y hx / expu>EOShx
(63b)

=
1

1 +
∑

y∈Σ exp(uy − uEOS)>hx
(63c)
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≥ 1

1 +
∑

y∈Σ exp (‖uy − uEOS‖2‖hx‖2)
(Cauchy–Schwarz) (63d)

≥ 1

1 +
∑

y∈Σ exp(k‖hx‖2)
(63e)

=
1

1 + |Σ| exp(k ‖hx‖2)
(63f)

Now define ‖ĥt‖2 def
= supx∈Σt ‖hx‖2. We then have that ∀t ∈ N and ∀x ∈ Σt:

P(Xt+1 = EOS | X≤t = x) ≥ 1

1 + |Σ| exp(k‖ĥt‖2)
(64)

Now, by Prop. 4.3, we have that if
∑∞

t=0
1

1+|Σ| exp(k ‖ĥt‖2)
diverges, then the language model is tight.

We will show that this condition holds if ∃N ∈ N such that ∀t ≥ N , k‖ĥt‖2 ≤ log t.
First, note that limt→∞ 1

t
1+|Σ|t

1 = limt→∞ 1
t + |Σ| = |Σ| ∈ (0,∞). Hence, by the limit comparison

test, since
∑∞

t=1
1
t diverges, this means

∑∞
t=1

1
1+|Σ|t must also diverge.

Now, suppose there exists N such that that k ‖ĥt‖2 ≤ log t for all t ≥ N . This implies that for t ≥ N
we have 1

1+|Σ| exp(k‖ĥt‖2)
≥ 1

1+|Σ|t , which combined with the above and the comparison test, implies that
∑∞

t=N
1

1+|Σ| exp(k‖ĥt‖2)
diverges. This in turn means that

∑∞
t=0

1

1+|Σ| exp(k‖ĥt‖2)
diverges.

Hence, if k ‖ĥt‖2 ≤ log t for all sufficiently large t (that is, for all t ≥ N ), then the RNN ASM is tight
and thus defines a language model.

�
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etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
No response.

C �7 Did you run computational experiments?
Left blank.

� C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
No response.
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� C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
No response.

� C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
No response.

� C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
No response.

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
No response.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
No response.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
No response.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No response.
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