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Abstract
Open Information Extraction (OpenIE) has
been used in the pipelines of various NLP tasks.
Unfortunately, there is no clear consensus on
which models to use for which tasks. Muddy-
ing things further is the lack of comparisons
that take differing training sets into account. In
this paper, we present an application-focused
empirical survey of neural OpenIE models,
training sets, and benchmarks in an effort to
help users choose the most suitable OpenIE
systems for their applications. We find that the
different assumptions made by different mod-
els and datasets have a statistically significant
effect on performance, making it important to
choose the most appropriate model for one’s
applications. We demonstrate the applicabil-
ity of our recommendations on a downstream
Complex QA application.

1 Introduction

Open Information Extraction (OpenIE) is the task
of extracting relation tuples from plain text (An-
geli et al., 2015). In its simplest form, OpenIE
extracts information in the form of tuples consist-
ing of subject(S), predicate(P), object(O), and any
additional arguments(A). OpenIE is an open do-
main, intended to be easy to deploy in different
domains without fine-tuning, with all relations ex-
tracted regardless of type. The increasing avail-
ability of semi-automatically generated training
datasets (Cui et al., 2018) as well as significant ad-
vances in deep learning techniques have led to the
development of state-of-the-art neural models (Cui
et al., 2018; Garg and Kalai, 2018).

Since its introduction in Etzioni et al. (2008),
OpenIE has attracted a large amount of attention by
the research community as a tool for a wide range
of downstream NLP tasks (Mausam, 2016). How-
ever, there is no real consensus on which OpenIE
model is best for each application. One example of
this lack of consensus in summarization, where dif-
ferent papers use OLLIE (Christensen et al., 2014),

Sentence
Bill Gates, former CEO of Microsoft, is a Harvard dropout.

OpenIE Extractions
(Bill Gates, was, former CEO of Microsoft)
(Bill Gates, is, a Harvard dropout)

Applications

QA Who was former CEO of Microsoft?
Where did Bill Gates dropout of?

Slot Filling (?, was, former CEO of Microsoft)
(?, is, a Harvard dropout)

Table 1: Sample relation tuples and examples of how
different applications use OpenIE extractions.

MinIE (Ponza et al., 2018), and Stanford CoreNLP
(Cao et al., 2018; Zhang et al., 2021) for extraction.
Different applications may also have different re-
quirements.As an example, choosing a model that
assumes all relations only have a subject and ob-
ject may not be suitable for event schema induction
since that excludes any event schemas with more
than two entities. The papers that introduce new
OpenIE models and datasets do not specify how
downstream applications would be impacted by
the different assumptions those models make about
extracted relations.

We find that prior OpenIE surveys are also insuf-
ficient to find the best OpenIE model for a given
application. The only previous application-focused
OpenIE survey we found was Mausam (2016).
However, this survey does not identify the desired
properties of OpenIE for those applications or pro-
vide an empirical comparison of OpenIE systems.
Glauber and Claro (2018), Claro et al. (2019), and
Zhou et al. (2022) also do not provide an empirical
application-focused survey.

Another obstacle is the lack of apples-to-apples
comparisons between OpenIE models. Compar-
isons should keep the training set, benchmark,
and evaluation metric constant to eliminate con-
founders. Unfortunately, the papers that intro-
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Question
Answering

Slot Filling
Event Schema

Induction
Summarization

Knowledge Base
Population

HR : Higher Recall ✓ ✓ ✓ ✓ ✓

HP : Higher Precision ✓ ✓

N-ary: N-ary Relation Extraction ✓ ✓ ✓

IN : Inferred Relation Extraction ✓ ✓ ✓ ✓

FE : Fast Extraction ✓

Table 2: Properties explicitly mentioned in application papers as motivation for choosing a particular OpenIE model
or as a way to improve performance within a case study. There are additional desired properties we omit that no
existing OpenIE models or datasets possess, such as the canonicalization of extracted relations and the ability to
extract relations from imperative sentences (Fader et al., 2013; Khot et al., 2017; Zhang et al., 2021).

duce new OpenIE models often do not provide
this apples-to-apples comparison. For example,
CopyAttention (Cui et al., 2018), SpanOIE (Zhan
and Zhao, 2020), IMoJIE (Kolluru et al., 2020b),
and OpenIE6 (Kolluru et al., 2020a) all compare
their model to models trained on different training
sets. OpenIE6 reports performance on the WiRe57
benchmark which Multi2OIE (Ro et al., 2020) does
not, but Multi2OIE reports performance on the
ReOIE2016 benchmark which OpenIE6 does not.
Because the training set can greatly affect the per-
formance of a neural model, we focus on selecting
both the appropriate OpenIE model and training
set, which we refer to as an OpenIE System.

To resolve our lack of understanding, we focus
on one particular question: How do I choose a
particular OpenIE system for a given application?
Different implicit assumptions about OpenIE may
have a significant impact on the performance of
downstream applications such as the assumptions
that all relations are verb-based (Zhan and Zhao,
2020) or that all relations have only a subject and
object (Kolluru et al., 2020b). To answer this ques-
tion an apples-to-apples comparison must be con-
ducted for different application settings.

Because it is impractical to find the best model
for every application given the many possible appli-
cations of OpenIE, we instead characterize appli-
cations based on what properties they desire from
OpenIE such as the desire for N-ary relation ex-
traction by event schema induction. We provide
an extensive apples-to-apples comparison of neural
OpenIE models such that a practitioner can uti-
lize our practical observations to effectively select
a neural OpenIE model and training set for their
downstream application. Finally, we apply our rec-
ommendations to a downstream Complex QA task.
In summary, our contributions are as follows:

• We propose a taxonomy that covers OpenIE
training sets, benchmarks, and neural models.

• We present an extensive empirical comparison
of different models on different datasets with
recommendations based on the results.

• We perform a case study on Complex QA to
show the efficacy of our recommendations.

To the best of our knowledge, our survey is the
only application-focused empirical survey on Ope-
nIE datasets, metrics, and neural OpenIE models.

2 Motivating Applications

In this section, we identify the properties of OpenIE
desired by 5 downstream applications: Slot Filling,
Question Answering (QA), Summarization, Event
Schema Induction, and Knowledge Base Popula-
tion. We survey how OpenIE is used and the prop-
erties explicitly desired by papers corresponding to
the application, either as motivation for choosing
a given OpenIE model or within a case study as a
property that would improve performance.

The desired properties we observe are Higher
Recall, Higher Precision, N-ary Relation Extrac-
tion, Inferred Relation Extraction, and Fast Ex-
traction. We define an "Inferred Relation" (IN )
to be a relation that contains words that are not
in the original sentence. For example, given the
sentence "Bill Gates, former CEO of Microsoft, is
a Harvard dropout", the relation (Bill Gates, was,
former CEO of Microsoft) can be inferred even
though "was" is not in the original sentence. We
define an "N-ary Relation" (N-ary) to be a relation
with more arguments than just (subject, predicate,
object). For example, the relation (Alice, went, to
the store, today) has an additional argument today.
Table 2 provides a summary the explicitly desired
properties of downstream applications.
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Dataset Creation Method Source #Extractions #IN #N-ary

Training
Sets

SpanOIE Weak Labeling Wikipedia 2,175K 2K 231K
OIE4 Weak Labeling Wikipedia 181K 3K 34K
IMoJIE Weak Labeling Wikipedia 215K 3K 0
LSOIE Weak Labeling QA-SRL 2.0 Wikipedia, Science 101K 0 32K

Test
Sets

OIE2016 Weak Labeling QA-SRL 1,730 359 708
WiRe57 Manual Annotation Wikipedia and Newswire 343 173 79
ReOIE2016 Manual Annotation OIE2016 1,508 155 611
CaRB Crowdsourced Annotation OIE2016 5,263 736 683
LSOIE Weak Labeling QA-SRL 2.0 Wikipedia, Science 22,376 0 4,920

Table 3: Comparison of the attributes of different datasets. #Extractions: Number of Extractions, #IN : Number of
inferred relations, #N-ary: Number of N-ary Relations.

Slot Filling Slot Filling is a task where an incom-
plete tuple must be completed using information
from a given corpus (Chen et al., 2019). For exam-
ple, the incomplete tuple (Obama, born in, ?) must
be completed as (Obama, was born in, Honolulu)
using information from the corpus. OpenIE can be
used to extract complete tuples which fill slots in
an incomplete tuple using entity linking. Soderland
et al. (2013), Angeli et al. (2015), Soderland et al.
(2015b), and Soderland et al. (2015a) take advan-
tage of how correct relations often appear multiple
times to match empty slots to the highest precision
OpenIE tuple. They state in their case studies they
would benefit from IN extraction and Soderland
et al. (2015b) and Soderland et al. (2015a) state
they would benefit from N-ary extraction. These
two properties allow more relation surface forms
to be extracted, which increases the chance an in-
complete tuple can be linked to a complete tuple.

Question Answering We focus on two subtasks
of Question Answering (QA) that utilize OpenIE:
Open-domain QA (OpenQA) and Complex QA.
OpenQA involves answering questions given a
large database (Fader et al., 2014a). Complex
QA involves using information from multiple sen-
tences to find answers and requires inferring re-
lationships between multiple entities (Chali et al.,
2009). Fader et al. (2013, 2014b), Yin et al. (2015),
and Clark et al. (2018) are OpenQA methods that
use retrieval-based methods to match OpenIE ex-
tractions to questions. By rewriting queries into
incomplete tuples, such as rewriting "Where was
Obama born?" into (Obama, born in, ?), it is possi-
ble to use extracted relations to answer queries by
filling in the missing slots in the query. For Com-
plexQA, Khot et al. (2017) and Lu et al. (2019)
generate graphs from extracted relation tuples, then
reason over these graphs to answer questions. In

all QA applications surveyed, high recall (HR ) is
desired, with Lu et al. (2019) using a custom Ope-
nIE method specifically for higher recall. Yin et al.
(2015)’s case studies state that N-ary would be ben-
eficial while Lu et al. (2019) uses a custom OpenIE
method that supports IN.
Summarization OpenIE addresses the problems of
redundancy and fact fabrication in summarization.
Redundancy is when a fact is repeated multiple
times in the summary. To combat redundancy, Ope-
nIE is used to ensure that the generated summary
does not have repeated relations (Christensen et al.,
2014; Zhang et al., 2021). Fact fabrication is when
a fact that is not supported by the text being summa-
rized is in the summary. To combat fact fabrication,
OpenIE is used to ensure that the generated sum-
mary only contains relations from the original text
(Cao et al., 2018; Zhang et al., 2021). In summa-
rization tasks, HR is useful to ensure summaries
contain all information, with Ponza et al. (2018)
citing greater diversity of extractions as a way to
improve performance. high precision (HP ) is also
desired by Zhang et al. (2021) in order to reduce
redundant extractions.
Event Schema Induction Event Schema Induction
is the automatic discovery of patterns that indicate
events, agents, and the agents’ roles within that
event. Extracted relations can be used to find sur-
face forms of events, with redundant tuples being
used to induce event schemas. The open nature of
OpenIE allows for events to be found regardless
of the domain or surface form. HR is useful for
Event Schema Induction for the same reason it is
useful for Slot Filling: finding more surface forms
allows for more event schemas to be induced (Bala-
subramanian et al., 2013; Romadhony et al., 2019;
Sahnoun et al., 2020). Sahnoun et al. (2020) also
specifically desire IN so that more event schemas
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can be learned, while Balasubramanian et al. (2013)
state that N-ary would improve performance.
Knowledge Base Population The relations ex-
tracted by OpenIE can be used to automatically
populate knowledge bases (KBs), creating new
nodes and edges. Muhammad et al. (2020) and
Kroll et al. (2021) use learning-based OpenIE mod-
els because of their ability to generalize to unseen
relations and achieve HR. Kroll et al. (2021) also
explicitly chooses Stanford CoreNLP and OpenIE6
for their fast extraction times (FE ).

3 OpenIE Datasets

In this section, we discuss the differences between
different OpenIE training sets and benchmarks and
their shortcomings. We provide statistics about
different datasets in Table 3.

3.1 Training Datasets
Given how data-hungry deep learning models are
and how costly it is to manually label OpenIE
datasets, most OpenIE training sets are weakly la-
beled using high confidence extractions from prior
OpenIE models.
CopyAttention (Cui et al., 2018), SpanOIE (Zhan
and Zhao, 2020), and OIE4 (Kolluru et al., 2020b)
are training sets consisting of high confidence Ope-
nIE4 extractions from Wikipedia.
SpanOIE includes extractions of all confidences
unlike CopyAttention and OIE4 which only contain
extractions above a certain confidence threshold.
The IMoJIE dataset (Kolluru et al., 2020b) at-
tempts to get higher quality labels by combining
Wikipedia extractions from OpenIE4, ClausIE, and
RNNOIE, using a common scoring metric to com-
bine extractions and filter out repeated extractions.
The LSOIE training set (Solawetz and Larson,
2021) is composed of automatically converted Se-
mantic Role Labeling (SRL) extractions with high
inter-annotator agreement from the Wikipedia and
Science domain of the crowdsourced QA-SRL
Bank 2.0 dataset. Because this dataset is derived
from SRL, all relations are assumed to be verb-
based and none are inferred.

Issues with existing training sets
Current OpenIE training sets are limited to
Wikipedia and Science domains, which may not
generalize to certain other domains. Additionally,
all OpenIE training sets are weakly labeled, lead-
ing to noisy labels which may limit the capabilities
of neural OpenIE models. For example, there are

instances in LSOIE where the gold relation does
not contain a negation it should, resulting in a com-
pletely different semantic meaning. It is an open
question of how much noise exists within these
training sets.

3.2 Benchmarks
OIE2016 (Stanovsky and Dagan, 2016) is a bench-
mark for OpenIE automatically derived from the
crowdsourced QA-SRL dataset annotated on Prop-
Bank and Wikipedia sentences.
WiRe57 (Léchelle et al., 2018) consists of expert
annotations for 57 sentences.
CaRB (Bhardwaj et al., 2019) uses crowdsourcing
to re-annotate the sentences in the OIE2016 bench-
mark.
ReOIE2016 (Zhan and Zhao, 2020) uses manual
annotation to re-annotate OIE2016 to attempt to
resolve problems arising from incorrect extraction.
LSOIE (Solawetz and Larson, 2021) has bench-
marks derived using the same sources and rules as
the training sets.
BenchIE (Gashteovski et al., 2021) is derived from
CaRB and is based on the idea that extracted rela-
tions need to exactly match at least one relation out
of a "fact set" of semantically equivalent manually
annotated gold standard relations.

Are existing benchmarks sufficient?
Given how the OIE2016 benchmark has been re-
annotated three times, there is no real consensus
on how to annotate OpenIE. For example, CaRB
labels prepositions as part of the object and not the
predicate, but OIE2016 and ReOIE2016 do not. As
a result, it is very difficult for a single model to do
well on all benchmarks because each one makes
different assumptions. Although there are common
principles that guide OpenIE labeling, namely As-
sertedness, Minimal Propositions/Atomicity, and
Completeness and Open Lexicon (Stanovsky and
Dagan, 2016; Léchelle et al., 2018; Bhardwaj et al.,
2019), these principles are vague enough to be in-
terpreted in different ways.

4 Evaluation Metrics

In this section, we describe the different evalua-
tion metrics used to evaluate OpenIE models and
discuss their shortcomings.
OIE2016 introduces lexical matching, which treats
evaluation as a binary classification task. A pre-
dicted relation is matched to a gold standard rela-
tion if the heads of the predicate and all arguments
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Model Problem Formulation N-ary IN

SpanOIE Labeling ✓

IMoJIE Generation
Multi2OIE Labeling ✓

IGL-OIE Labeling ✓

CIGL-OIE Labeling ✓

OpenIE6 Labeling ✓

DetIE Labeling ✓

Table 4: Comparison of neural OpenIE models.

are the same.
WiRe57 and CaRB use word-level matching,
which calculate recall and precision based on the
proportion of matching tokens in the predicted and
gold standard relations. WiRe57 gives a greater
penalty to recall than CaRB if there are fewer pre-
dicted relations than gold standard relations.
BenchIE uses sentence-level matching, which re-
quires an exact match of the predicate and argu-
ments to a relation in the fact set. Because of
BenchIE’s reliance on fact sets which other bench-
marks lack, the BenchIE metric is only compatible
with BenchIE and no other metrics can be used
with the BenchIE dataset. As a result, an apples-
to-apples comparison of the BenchIE dataset and
metric with other datasets and metrics is not possi-
ble, so we do not report performance on BenchIE.

Is AUC a useful metric?
When comparing OpenIE systems, we place a
greater emphasis on F1 score than AUC. The
original implementations of CaRB, OIE2016, and
WiRe57 use the trapezoidal rule to calculate AUC
which leads to inflated AUC scores for certain sys-
tems without low recall points. As a result, we
consider the highest F1 score on the PR curve to
be a better metric than AUC.

Are existing metrics sufficient?
All existing OpenIE metrics are lexical metrics, and
lexical metrics are merely a proxy for comparing
the semantic meanings of the predicted relations
with the gold standard relations. For instance, ex-
isting OpenIE metrics only give small penalties for
omitting negations from predicted relations, even
though this changes the semantic meaning. This
issue can be also observed in lexical metrics used
for summarization (Saadany and Orasan, 2021).

5 Neural OpenIE Models

In this section, we describe neural OpenIE models
and the properties and assumptions they make that

set them apart. Neural OpenIE models can be cate-
gorized based on how they formulate the OpenIE
problem: as a text generation or labeling problem.
We provide overviews of the models in Table 4.

5.1 Generative Problem Formulation

Generative OpenIE models cast OpenIE as a
sequence-to-sequence problem, taking the sentence
as input and attempting to generate all relations in
the sentence as output. The generative models we
survey rely on a copy mechanism to copy vocabu-
lary from the original sentence, meaning they can
not extract IN relations.
CopyAttention (Cui et al., 2018) generates ex-
tractions using GloVe embeddings and a 3-layer
stacked Long Short-Term Memory (LSTM) as the
encoder and decoder.
IMoJIE (Kolluru et al., 2020b) builds upon Copy-
Attention by using BERT embeddings and intro-
ducing iterative extraction to combat repeated ex-
tractions. Iterative extraction is repeated extraction
from the same sentence with previously extracted
relations appended to the end so the model can
identify what relations have previously been ex-
tracted.

5.2 Labeling Problem Formulation

Labeling OpenIE models cast OpenIE as a se-
quence labeling problem, usually using a BIO tag-
ging scheme to label tokens in the sentence. They
can be subdivided into Piecewise and Holistic La-
beling models.

5.2.1 Piecewise Labeling
Piecewise labeling models first label predicates and
then label arguments for each extracted predicate
to extract relation tuples.
RnnOIE (Stanovsky et al., 2018) is a bi-directional
LSTM (BiLSTM) transducer inspired by SRL that
uses BIO tags.
SpanOIE (Zhan and Zhao, 2020) is also based on
SRL, using a BiLSTM to perform span classifica-
tion instead of BIO tagging. In span classification,
spans of tokens of varying length are classified as
parts of the relation instead of individual tokens.
Span classification allows for the use of span fea-
tures, which can be richer than word-level features.
Multi2OIE’s (Ro et al., 2020) novelty is multi-
head attention and BERT embeddings. After la-
beling the predicates, multi-head attention is used
between the predicate and the rest of the sentence
to label the arguments.
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MILIE (Kotnis et al., 2021) introduces iterative
prediction, the process of extracting one argument
of the relation tuple at a time, for multilingual Ope-
nIE. Extraction can be performed predicate, subject,
or object first, in case other languages benefit from
different extraction orders.

Uniquely, piecewise labeling models label all
predicates in a sentence simultaneously and assume
that for each predicate, there is only one set of
arguments. This means that they can not extract
multiple relations that share the same predicate,
unlike generative and holistic labeling models.

5.2.2 Holistic Labeling
Holistic labeling models label predicates and argu-
ments simultaneously.
OpenIE6 (Kolluru et al., 2020a) introduces grid
labeling, constraint rules, and conjunction rules.
Grid labeling is the simultaneous extraction of mul-
tiple relations from a sentence. Constraint rules
penalize certain things like repeated extractions or
not extracting a relation for a head verb. Conjunc-
tion rules split relations containing conjunctions
into two separate relations. IGL-OIE is the first
stage, using only grid labeling; CIGL-OIE is the
second stage, adding in constraint rules; OpenIE6
is the final stage, adding conjunction rules.
DetIE (Vasilkovsky et al., 2022) uses ideas from
single-shot object detection to make predictions
more quickly than previous methods. Labeling
models generally can not label tokens that are not
in the original sentence, meaning they can not ex-
tract IN relations. However, the more recent mod-
els IGL-OIE, CIGL-OIE, OpenIE6, and DetIE ex-
plicitly add "be", "of", and "from" to the end of
sentences to allow for the extraction of inferred
relations with those predicates.

5.3 Model Hyperparameters

The sensitivity to hyperparameters of the models
we survey is unclear. Of the works we survey,
Multi2OIE and OpenIE6 describe how they per-
form hyperparameter tuning and provide the hy-
perparameters they tested. SpanOIE, IMoJIE, and
DetIE do not provide details of how they obtained
the hyperparameters they use. None of these works
provide an in-depth analysis of how the perfor-
mance was affected by different hyperparameter
values. As a result, we perform our own sensitiv-
ity analysis using Multi2OIE. The results of this
analysis can be found in Appendix B.

In our own experiments, we observed only minor

increases in performance from changing the hyper-
parameters in a few cases. On average, the per-
formance changes were negligible. When making
recommendations, we consider the performance
over many different combinations of model, train-
ing, and test set. Minor differences in a handful of
cases do not impact our overall conclusions. As
a result, we use the default hyperparameters used
by Ro et al. (2020) for Multi2OIE. Because other
models did not report any particular sensitivity to
hyperparameters, we generalize this result to all
models we use and use the final set of hyperparam-
eters those authors use.

5.4 Existing Model Limitations

Models are often developed with specific datasets
in mind. Some papers introducing new models also
introduce new training sets such as CopyAttention
(Cui et al., 2018), SpanOIE (Zhan and Zhao, 2020),
and IMoJIE (Kolluru et al., 2020b) which may influ-
ence model assumptions. SpanOIE also introduces
its own manually annotated benchmark, which may
have informed the assumptions SpanOIE makes.
The lack of consensus on how to label OpenIE
makes it difficult to perform apples-to-apples com-
parisons because certain models can not extract
some relations due to the assumptions they make.

OpenIE has also largely been limited to English.
MILIE makes assumptions that allow for differ-
ent extraction methods depending on the language,
but other OpenIE models that support multilingual
extraction largely treat extraction from other lan-
guages the same as extraction from English. Multi-
lingual OpenIE remains an open field of study.

6 Experiments

In this section, we describe how we compare Ope-
nIE models and datasets for the sake of recom-
mendation. To find the best system for different
applications, we test whether the properties of Ope-
nIE models and training sets have a statistically
significant effect on accuracy in test sets with corre-
sponding properties.We are also interested in how
the choice of model affects efficiency in order to
satisfy the fast extraction property (FE ). We answer
the following questions:
R1: How does whether a model supports N-ary
relation (N-ary) extraction and whether the training
set contains N-ary affect the F1 score of a model
on test sets with or without N-ary?
R2: How does whether a model supports inferred
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relation (IN ) extraction and whether the training
set contains IN affect the F1 score of a model on
test sets with or without IN?
R3: How does the model type affect efficiency as
measured by the number of sentences processed
per second (Sen./Sec)?

6.1 Experimental Setup

Models: We compare SpanOIE, IMoJIE,
Multi2OIE, the 3 stages of OpenIE6: IGL-OIE,
CIGL-OIE, and OpenIE6, and DetIE. For each
model, we train them with their paper’s original
dev set and their original hyperparameters. We run
all experiments on a Quadro RTX 5000 GPU.
Training Datasets: We train models on the
SpanOIE, OIE4, IMoJIE, and LSOIE training sets.
We combine the Science and Wikipedia domain
for both the training and benchmark of LSOIE, en-
suring there are no duplicate sentences from over-
lapping sentences in the domains. Due to the in-
put structure of SpanOIE and Multi2OIE, they can
not be trained on training datasets with inferred
relations. Subsequently, we remove any inferred
relations from the training sets of those models.
Similarly, as IMoJIE , OpenIE6, and DetIE can
not extract N-ary relations, we convert all N-ary
relations in the training set into binary relations
by moving additional arguments into the object.
For instance, the relation (Alice, went, to the store,
today) is converted into (Alice, went, to the store
today). Inferred and N-ary relations were not re-
moved from the gold standards of the test sets.
Benchmarks: We evaluate all the models on the
publicly available English benchmarks OIE2016,
WiRe57, ReOIE2016, CaRB, and LSOIE.
Evaluation Metrics: We use OIE2016’s,
WiRe57’s, and CaRB’s metrics for evaluation. We
perform student’s t-test between OpenIE system,
test set, and evaluation metric configurations to an-
swer R1, R2, and R3. For R1 and R2 the t-scores
are computed using the per-sentence F1 scores of
each method. For R3 the t-scores are computed us-
ing the mean sentences per second for each training
set and test set combination for a given model.

7 Results

In this section, we perform an apples-to-apples
comparison among different OpenIE systems to
determine the SoTA OpenIE model and the best
general-purpose OpenIE training dataset.
Best OpenIE Model We compare the different

models on different evaluation metrics averaged
across different training and test sets in Table
5. We observe that across all evaluation metrics
Multi2OIE and CIGL-OIE have the highest or sec-
ond highest F1 score. We also observe that IGL-
OIE and CIGL-OIE are the most efficient models.
Best OpenIE Training Set Because performance
on a test set is also greatly dependent on the train-
ing set depending on the domain and generation
methods, we determine the best training set for
each test set. In Table 6, we compare different
training and test set combinations with different
evaluation metrics averaged across models. We
observe that the models trained on LSOIE perform
best on the OIE2016 and LSOIE test sets. This is
because the LSOIE training set and the OIE2016
and LSOIE test sets are derived from different ver-
sions of QA-SRL and generated using the same
rules. On the WiRe57, ReOIE2016, and CaRB
test sets, we observe that the models trained on the
OIE4 and SpanOIE training sets generally perform
the best. It is likely because the OIE4 and SpanOIE
training sets contain both N-ary and IN relations
like the WiRe57, ReOIE2016, and CaRB test sets
while LSOIE and IMoJIE don’t.

Of the two models with the highest aver-
age CaRB F1 scores, Multi2OIE and CIGL-OIE,
Multi2OIE has higher average precision while
CIGL-OIE has higher average recall. CIGL-OIE
tends to extract longer objects than Multi2OIE as
seen in Table 7, which may explain this difference.
Overall, OpenIE models have the poorest perfor-
mance when extracting the object, which may be
due to the variance in object length from additional
arguments compared to the subject and predicate.

7.1 Research Questions

To answer our research questions, we perform stu-
dent’s t-test using the CaRB F1 scores of the high-
est scoring model, training set, and test set combi-
nations for each setting. We perform comparisons
of OpenIE systems, where one aspect (model or
training set) is changed and the other aspects are
kept constant. Then, we choose the test set and
evaluation metric for the two settings that results in
the highest t-score between methods.

For R1, we conclude (1) regardless of training
set, the best N-ary models perform better than the
best non-N-ary models; (2) regardless of the model,
training on the best N-ary training sets results in
higher performance than training on the best non-
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Model Sen./Sec.
CaRB WiRe 57

P R F1 P R F1

SpanOIE 13.40 0.474 0.464 0.433 0.474 0.374 0.375
IMoJIE 2.07 0.598 0.431 0.488 0.598 0.355 0.428
Multi2OIE 29.22 0.626 0.501 0.552 0.624 0.419 0.488
IGL-OIE 84.07 0.574 0.442 0.497 0.574 0.365 0.434
CIGL-OIE 68.80 0.490 0.531 0.503 0.489 0.429 0.442
OpenIE6 28.36 0.394 0.518 0.438 0.394 0.463 0.413
DetIE 29.06 0.603 0.436 0.502 0.603 0.353 0.435

Table 5: Performance of different models with different evaluation metrics averaged across training and test data.

Training Set Test Set
CaRB WiRe 57

P R F1 P R F1

SpanOIE OIE2016 0.495 0.491 0.478 0.493 0.410 0.433
OIE4 OIE2016 0.541 0.487 0.510 0.540 0.404 0.458
LSOIE OIE2016 0.629 0.537 0.569 0.629 0.443 0.509
IMoJIE OIE2016 0.469 0.433 0.424 0.468 0.363 0.381

SpanOIE WiRe57 0.420 0.372 0.386 0.423 0.199 0.263
OIE4 WiRe57 0.473 0.378 0.420 0.472 0.211 0.290
LSOIE WiRe57 0.355 0.210 0.261 0.355 0.127 0.184
IMoJIE WiRe57 0.436 0.364 0.378 0.434 0.215 0.264

SpanOIE ReOIE2016 0.650 0.625 0.618 0.650 0.612 0.612
OIE4 ReOIE2016 0.725 0.568 0.606 0.725 0.555 0.599
LSOIE ReOIE2016 0.632 0.525 0.562 0.632 0.513 0.555
IMoJIE ReOIE2016 0.620 0.570 0.560 0.619 0.551 0.548

SpanOIE CaRB 0.539 0.440 0.472 0.535 0.306 0.377
OIE4 CaRB 0.606 0.446 0.512 0.606 0.311 0.408
LSOIE CaRB 0.539 0.344 0.415 0.539 0.252 0.337
IMoJIE CaRB 0.539 0.414 0.446 0.536 0.300 0.354

SpanOIE LSOIE 0.470 0.561 0.501 0.470 0.516 0.479
OIE4 LSOIE 0.505 0.558 0.529 0.505 0.512 0.505
LSOIE LSOIE 0.658 0.676 0.659 0.658 0.622 0.629
IMoJIE LSOIE 0.441 0.492 0.444 0.441 0.460 0.431

Table 6: Performance of different training and test sets
averaged across models.

N-ary training sets. Therefore if an application
benefits from N-ary, then the best OpenIE sys-
tem should include either a N-ary model, N-ary
training set, or both, with both being preferred.

For R2, we conclude that (1) IN models are
better than non-IN models when there is either a
IN training and IN test set, or a non-IN training and
non-IN test set; (2) IN training sets are better than
non-IN training sets when there is an IN model and
IN test set. Therefore if an application benefits
from IN, then the chosen training set and model
should either both be IN or both be non-IN.

For R3, we compare the efficiency of the sole
generative model, IMoJIE, to the efficiency of ev-
ery other model. We observe that every other model
is faster than IMoJIE and the difference is sta-
tistically significant. This matches expectations,
since it has been previously shown that IMoJIE is
slower than other OpenIE models (Kolluru et al.,
2020a).Therefore if an application is concerned

Sentence According to the 2010 census, the population
of the town is 2,310.

Multi2OIE (the population of the town; is; 2,310)

CIGL-OIE (the population of the town; is; According to
the 2010 census, 2,310)

Table 7: A demonstration that CIGL-OIE tends to ex-
tract longer objects than Multi2OIE. Both are trained on
SpanOIE. The sentence is from the CaRB test set.

about efficiency, then the chosen OpenIE model
should not be a generative model.

8 A Case Study: Complex QA

To verify our recommendations, we perform a case
study using QUEST (Lu et al., 2019), a Complex
QA method that uses OpenIE to extract entities
and predicates from the question and from docu-
ments to generate knowledge graphs. The nodes
are entities derived from subjects and objects, while
the edges are predicates. The knowledge graph is
matched to the entities in the question and traversed
to find potential answers. Because more extractions
result in a larger knowledge graph, QUEST ben-
efits from HR which the authors use their own
rule-based OpenIE method to achieve.

8.1 Experimental Setup

To test our recommendations, we replace the Ope-
nIE method used by the authors with Multi2OIE
trained on SpanOIE, CIGL-OIE trained on OIE4,
and OpenIE6 trained on OIE4. We chose these
models and training sets because they have the
highest overall CaRB recall and F1 scores.

One caveat is that in order for QUEST to connect
entities from multiple sentences, they must have
the same surface form. Because OpenIE methods
often extract long subjects and objects that include
adjectives and modifiers, if the subject or object of
an extraction contains entities extracted by QUEST,
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OpenIE Questions Documents MRR P@1 Hit@5

QUEST CQ-W Top 10 0.132 0.080 0.167

CIGL-OIE CQ-W Top 10 0.111 0.060 0.167
OpenIE6 CQ-W Top 10 0.104 0.060 0.147
Multi2OIE CQ-W Top 10 0.094 0.053 0.140

Table 8: Performance of QUEST using different OpenIE
methods on the CQ-W dataset using the Top 10 Google
documents.

we add additional relations using those entities.
For example, in the sentence "Hector Elizondo
was nominated for a Golden Globe for his role
in Pretty Woman," QUEST may extract the entities
"Hector Elizondo," "Golden Globe," and "Pretty
Woman." If an OpenIE method were to extract the
triple ("Hector Elizondo", "was nominated", "for
a Golden Globe for his role in Pretty Woman"),
we would add the additional extractions ("Hec-
tor Elizondo", "was nominated", "Golden Globe")
and ("Hector Elizondo", "was nominated", "Pretty
Woman"). QUEST also replaces pronouns with the
entities they refer to because nodes in the knowl-
edge graph can not be made using pronouns.We
replace pronouns using the same method QUEST
does before running any OpenIE method.

We run QUEST using the CQ-W question set
and search for answers in the Top-10 Google docu-
ment set used in their paper. Because CIGL-OIE
has the highest CaRB recall and OpenIE6 has the
highest WiRe57 recall, we expect that using either
of them will result in higher downstream perfor-
mance than using Multi2OIE.

8.2 Evaluation

We compare the Mean Reciprocal Rank (MRR),
Precision@1 (P@1), and Hit@5 for each OpenIE
model. The results of our case study are summa-
rized in Table 8. We observe higher performance
of CIGL-OIE and OpenIE6 than Multi2OIE on
QUEST, which matches our expectations based
on the higher recall of CIGL-OIE and OpenIE6
and the desired property of HR but not HP for QA.
Our case study demonstrates the applicability of
our empirical study to the use of OpenIE methods
in downstream applications.

An important note is that oftentimes a great deal
of pre- and post-processing is necessary to adapt
OpenIE for different downstream applications. Re-
moving pronouns and adding additional entity-
based extractions was necessary to achieve reason-
able performance in QUEST. Even after modifying

Multi2OIE, CIGL-OIE, and OpenIE6 in this way,
their performance is less than the original perfor-
mance of QUEST. As a result, it is important to
not just consider the performance and properties of
OpenIE models, but also how to adapt models to
their specific needs.

9 Challenges and Future Directions

Even with the introduction of neural models, Ope-
nIE systems still have significant room for improve-
ment. In Table 2 we state that canonicalizing ex-
tractions is desired by QA while extracting from
imperative sentences is desired by both QA and
summarization, but no existing model or dataset
addresses these properties. In sections 3.1 and 3.2
we note the lack of consensus on how to label Ope-
nIE and the issues with weak labeling. Existing
metrics also have issues with semantic meaning
as discussed in section 4, which is exacerbated by
errors caused by weak labeling. The lack of con-
sensus in how to label OpenIE relations results in a
diverse set of models as we discuss in section 5.4.
The different assumptions these models make are
also largely constrained to English syntax, leaving
future work in multilingual OpenIE open.

10 Conclusion

In this paper, we presented an application-focused
empirical comparison of recent neural OpenIE
models, training sets, and benchmarks. Our experi-
ments showed that the different properties of Ope-
nIE models and datasets affect the performance,
meaning it is important to choose the appropriate
system for a given application and not just choose
whatever model is state-of-the-art. We hope that
this survey helps users identify the best OpenIE
system for their downstream applications and in-
spires new OpenIE research into addressing the
properties desired by downstream applications.

Limitations

Although this work aims to be as comprehensive as
possible, there are several limitations to this paper.

Our comparisons only consider neural OpenIE
models despite rule-based methods being very pop-
ular among downstream applications. This is be-
cause of the lack of recent surveys on neural Ope-
nIE methods and the difficulties we personally en-
countered when trying to determine which OpenIE
method was state-of-the-art. We acknowledge that
there are many cases where rule-based methods

937



may be preferable to neural models due to being
faster or more tailor-made for a specific application.
However, we feel that focusing on neural OpenIE
methods is not a detriment because we are inter-
ested in which methods work best "out of the box".
Based on the results reported in these neural Ope-
nIE papers, we believe they are currently the best
out-of-the-box OpenIE models using the metrics
we report in this paper on the test sets covered in
this paper.

The corpora we chose are all limited to English.
As a result, our results are not generalizable to any
downstream task that relies on different languages.

In our experiments, we do not report results for
the BenchIE test set or using the BenchIE met-
ric. This is because the BenchIE test set uniquely
can only be evaluated using the BenchIE metric,
and the BenchIE metric can only be applied to the
BenchIE test set. We do not feel that its exclu-
sion hurts our final conclusions about the relative
performance of OpenIE methods.

We perform a case study using Complex QA
only, which we generalize to other applications.

For our case study, we were unable to replicate
the results reported in the original QUEST paper
(Lu et al., 2019). We have been in correspondence
with the authors to address this issue, but we still
feel that our results are valid given that we use the
publicly available code and data and adapted it to
use our OpenIE methods to the best of our ability.

Similarly, we report different results to the effi-
ciency and performance of DetIE reported in the
original paper (Vasilkovsky et al., 2022). We have
been in contact with the original authors and dif-
ferences in efficiency can be attributed to differing
hardware while differences in performance can be
attributed to different preprocessing of training and
test sets. For instance, the authors of DetIE do not
remove duplicate sentences when combining the
Science and Wiki domains of LSOIE.

We do not make specific observations based on
the different evaluation metrics, mainly focusing
on CaRB and WiRe57 F1 score for our evaluation.
We give our experimental results within appendix
A so that future researchers can make observations
and draw conclusions based on OIE2016.

Ethics Statement

We did not create any of the models, datasets, or
applications covered in this paper. Any ethical
issues with the preexisting OpenIE datasets we use

in this paper will reflect on this work.
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A Empirical Results

Model Performance In this section, we report the
empirical results of training each model on a variety
of training sets and evaluating them on a variety of
test sets with different evaluation metrics. Sen./Sec.
refers to the number of sentences that could be
processed per second, which we use to compare the
efficiency of different models. We report Precision
(P), Recall (R), F1 Score (F1), and Area Under the
Curve (AUC) for the OIE2016, WiRe57, and CaRB
metrics. We make observations using these results
in Section 7.
Table 9 shows the performance of different OpenIE
models trained on different training sets on the
OIE2016 benchmark.
Table 10 shows performance on WiRe57.
Table 11 shows performance on ReOIE2016.
Table 12 shows performance on CaRB.
Table 13 shows performance on LSOIE.
Research Questions We also report the empirical
results of our student’s t-tests comparing different
OpenIE systems, which we use to answer the re-
search questions we raise in section 6. For each
research question, we report the number of statis-
tical significance tests that had a t-score above or
below 0 and had a p-value above or below 0.05. We
use these results to answer those research questions
in section 7.1.
Table 14 shows the results of the statistical signifi-
cance tests used to answer R1 from section 6.
Table 15 shows results for R2.
Table 16 shows results for R3.
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Model Training set Test set Sen./Sec
OIE2016 WiRe57 CaRB

P R F1 AUC P R F1 AUC P R F1 AUC

SpanOIE SpanOIE OIE2016 16.65 0.704 0.792 0.745 0.675 0.576 0.376 0.455 0.296 0.576 0.459 0.511 0.362
IMoJIE SpanOIE OIE2016 2.61 0.755 0.851 0.8 0.614 0.575 0.389 0.464 0.212 0.575 0.466 0.515 0.253
Multi2OIE SpanOIE OIE2016 28.21 0.724 0.915 0.809 0.719 0.558 0.439 0.491 0.29 0.566 0.521 0.542 0.348
IGL-OIE SpanOIE OIE2016 67.55 0.733 0.768 0.75 0.585 0.551 0.347 0.426 0.211 0.551 0.419 0.476 0.253
CIGL-OIE SpanOIE OIE2016 50.61 0.711 0.981 0.824 0.737 0.375 0.474 0.419 0.212 0.375 0.592 0.459 0.263
OpenIE6 SpanOIE OIE2016 38.38 0.519 0.975 0.678 0.532 0.269 0.492 0.348 0.177 0.269 0.556 0.362 0.2
DetIE SpanOIE OIE2016 26.42 0.775 0.787 0.781 0.699 0.55 0.351 0.429 0.272 0.55 0.423 0.478 0.328

SpanOIE OIE4 OIE2016 16.19 0.703 0.813 0.754 0.692 0.584 0.37 0.453 0.293 0.584 0.454 0.511 0.36
IMoJIE OIE4 OIE2016 3.44 0.695 0.824 0.754 0.495 0.553 0.399 0.464 0.196 0.553 0.474 0.51 0.231
Multi2OIE OIE4 OIE2016 31.14 0.747 0.864 0.801 0.72 0.595 0.4 0.478 0.261 0.597 0.491 0.539 0.32
IGL-OIE OIE4 OIE2016 70.02 0.718 0.84 0.774 0.661 0.544 0.39 0.455 0.257 0.544 0.48 0.51 0.313
CIGL-OIE OIE4 OIE2016 49.26 0.718 0.92 0.806 0.726 0.529 0.436 0.478 0.289 0.529 0.537 0.533 0.356
OpenIE6 OIE4 OIE2016 24.20 0.557 0.922 0.694 0.615 0.413 0.467 0.438 0.278 0.415 0.523 0.463 0.314
DetIE OIE4 OIE2016 26.29 0.787 0.855 0.82 0.764 0.563 0.366 0.443 0.286 0.563 0.453 0.502 0.354

SpanOIE LSOIE OIE2016 15.36 0.657 0.804 0.723 0.666 0.657 0.432 0.521 0.358 0.657 0.521 0.581 0.432
IMoJIE LSOIE OIE2016 1.00 0.852 0.766 0.807 0.577 0.719 0.339 0.461 0.216 0.719 0.411 0.523 0.261
Multi2OIE LSOIE OIE2016 31.00 0.758 0.894 0.821 0.767 0.728 0.484 0.582 0.401 0.728 0.585 0.649 0.483
IGL-OIE LSOIE OIE2016 68.27 0.762 0.823 0.791 0.634 0.636 0.394 0.487 0.27 0.636 0.485 0.551 0.331
CIGL-OIE LSOIE OIE2016 52.40 0.74 0.947 0.831 0.738 0.568 0.494 0.528 0.314 0.568 0.618 0.592 0.391
OpenIE6 LSOIE OIE2016 24.56 0.542 0.924 0.683 0.563 0.41 0.541 0.466 0.279 0.41 0.609 0.49 0.315
DetIE LSOIE OIE2016 26.16 0.857 0.879 0.868 0.816 0.687 0.419 0.521 0.354 0.687 0.528 0.597 0.445

SpanOIE IMoJIE OIE2016 7.16 0.188 0.975 0.316 0.579 0.084 0.394 0.138 0.213 0.084 0.428 0.14 0.232
IMoJIE IMoJIE OIE2016 1.68 0.779 0.905 0.837 0.607 0.551 0.381 0.451 0.191 0.551 0.451 0.496 0.225
Multi2OIE IMoJIE OIE2016 31.58 0.764 0.842 0.801 0.739 0.596 0.378 0.463 0.252 0.599 0.453 0.516 0.302
IGL-OIE IMoJIE OIE2016 63.00 0.775 0.797 0.786 0.592 0.545 0.323 0.406 0.194 0.545 0.396 0.459 0.238
CIGL-OIE IMoJIE OIE2016 49.62 0.775 0.928 0.845 0.69 0.509 0.375 0.432 0.21 0.509 0.482 0.495 0.269
OpenIE6 IMoJIE OIE2016 36.42 0.582 0.91 0.71 0.511 0.386 0.416 0.4 0.184 0.386 0.484 0.43 0.215
DetIE IMoJIE OIE2016 26.75 0.856 0.709 0.775 0.658 0.606 0.275 0.379 0.221 0.606 0.337 0.433 0.271

Table 9: A table that lists performance of different OpenIE systems on the OIE2016 benchmark.

Model Training set Test set Sen./Sec
OIE2016 WiRe57 CaRB

P R F1 AUC P R F1 AUC P R F1 AUC

SpanOIE SpanOIE WiRe57 9.10 0.87 0.72 0.788 0.673 0.464 0.194 0.274 0.142 0.464 0.372 0.413 0.272
IMoJIE SpanOIE WiRe57 0.91 0.863 0.644 0.738 0.465 0.461 0.154 0.231 0.061 0.461 0.313 0.373 0.123
Multi2OIE SpanOIE WiRe57 23.17 0.9 0.758 0.823 0.698 0.498 0.203 0.288 0.097 0.498 0.391 0.438 0.186
IGL-OIE SpanOIE WiRe57 9.34 0.916 0.638 0.753 0.604 0.482 0.167 0.248 0.097 0.482 0.333 0.394 0.189
CIGL-OIE SpanOIE WiRe57 7.75 0.889 0.84 0.864 0.77 0.281 0.195 0.231 0.069 0.283 0.406 0.333 0.145
OpenIE6 SpanOIE WiRe57 4.93 0.74 0.831 0.783 0.641 0.304 0.28 0.291 0.127 0.28 0.408 0.332 0.167
DetIE SpanOIE WiRe57 27.16 0.948 0.743 0.833 0.724 0.47 0.197 0.278 0.145 0.47 0.381 0.421 0.28

SpanOIE OIE4 WiRe57 9.07 0.895 0.743 0.812 0.704 0.526 0.217 0.307 0.166 0.526 0.397 0.453 0.303
IMoJIE OIE4 WiRe57 1.19 0.823 0.665 0.735 0.433 0.414 0.189 0.26 0.059 0.414 0.35 0.379 0.109
Multi2OIE OIE4 WiRe57 19.65 0.921 0.717 0.807 0.67 0.537 0.197 0.289 0.104 0.537 0.37 0.439 0.194
IGL-OIE OIE4 WiRe57 8.19 0.931 0.673 0.782 0.653 0.452 0.174 0.251 0.111 0.457 0.337 0.388 0.22
CIGL-OIE OIE4 WiRe57 6.82 0.9 0.787 0.84 0.742 0.436 0.196 0.27 0.123 0.436 0.391 0.413 0.247
OpenIE6 OIE4 WiRe57 3.47 0.799 0.755 0.777 0.662 0.451 0.295 0.357 0.192 0.451 0.397 0.423 0.261
DetIE OIE4 WiRe57 27.02 0.929 0.843 0.884 0.813 0.491 0.209 0.293 0.156 0.491 0.405 0.444 0.302

SpanOIE LSOIE WiRe57 8.52 0.759 0.534 0.627 0.469 0.357 0.135 0.196 0.092 0.357 0.209 0.263 0.142
IMoJIE LSOIE WiRe57 0.46 0.961 0.574 0.719 0.534 0.351 0.094 0.148 0.026 0.351 0.182 0.24 0.052
Multi2OIE LSOIE WiRe57 18.31 0.851 0.534 0.656 0.485 0.44 0.128 0.198 0.067 0.44 0.202 0.276 0.106
IGL-OIE LSOIE WiRe57 9.54 0.92 0.571 0.705 0.549 0.32 0.099 0.151 0.034 0.32 0.183 0.233 0.063
CIGL-OIE LSOIE WiRe57 7.65 0.933 0.694 0.796 0.671 0.301 0.114 0.165 0.044 0.301 0.223 0.256 0.082
OpenIE6 LSOIE WiRe57 3.81 0.766 0.688 0.725 0.554 0.311 0.194 0.239 0.086 0.311 0.247 0.275 0.114
DetIE LSOIE WiRe57 27.02 0.916 0.571 0.704 0.547 0.403 0.124 0.19 0.087 0.403 0.223 0.287 0.157

SpanOIE IMoJIE WiRe57 7.33 0.303 0.898 0.454 0.585 0.087 0.274 0.133 0.149 0.087 0.364 0.141 0.198
IMoJIE IMoJIE WiRe57 1.17 0.911 0.778 0.84 0.622 0.517 0.224 0.313 0.116 0.517 0.404 0.454 0.207
Multi2OIE IMoJIE WiRe57 24.83 0.9 0.706 0.791 0.692 0.539 0.195 0.287 0.12 0.539 0.373 0.44 0.228
IGL-OIE IMoJIE WiRe57 10.36 0.934 0.7 0.8 0.65 0.48 0.157 0.236 0.08 0.485 0.291 0.364 0.144
CIGL-OIE IMoJIE WiRe57 7.83 0.926 0.799 0.858 0.744 0.44 0.196 0.271 0.099 0.44 0.395 0.417 0.197
OpenIE6 IMoJIE WiRe57 5.76 0.802 0.781 0.792 0.648 0.452 0.292 0.355 0.144 0.459 0.393 0.424 0.2
DetIE IMoJIE WiRe57 27.71 0.965 0.65 0.777 0.639 0.526 0.165 0.251 0.126 0.526 0.328 0.404 0.25

Table 10: A table that lists performance of different OpenIE systems on the WiRe57 benchmark.
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Model Training set Test set Sen./Sec
OIE2016 WiRe57 CaRB

P R F1 AUC P R F1 AUC P R F1 AUC

SpanOIE SpanOIE ReOIE2016 16.87 0.741 0.842 0.788 0.733 0.772 0.595 0.672 0.527 0.772 0.61 0.681 0.54
IMoJIE SpanOIE ReOIE2016 2.71 0.773 0.84 0.805 0.627 0.785 0.601 0.681 0.456 0.785 0.607 0.684 0.46
Multi2OIE SpanOIE ReOIE2016 27.70 0.737 0.932 0.823 0.753 0.749 0.688 0.717 0.586 0.749 0.698 0.723 0.596
IGL-OIE SpanOIE ReOIE2016 67.16 0.762 0.784 0.773 0.653 0.756 0.557 0.641 0.455 0.756 0.569 0.649 0.465
CIGL-OIE SpanOIE ReOIE2016 49.33 0.688 0.991 0.812 0.733 0.437 0.663 0.527 0.35 0.437 0.69 0.535 0.365
OpenIE6 SpanOIE ReOIE2016 37.80 0.498 0.988 0.662 0.532 0.314 0.628 0.419 0.268 0.314 0.636 0.42 0.272
DetIE SpanOIE ReOIE2016 26.63 0.802 0.801 0.802 0.722 0.734 0.55 0.629 0.477 0.734 0.562 0.636 0.487

SpanOIE OIE4 ReOIE2016 16.72 0.729 0.839 0.78 0.726 0.815 0.604 0.694 0.548 0.815 0.617 0.702 0.56
IMoJIE OIE4 ReOIE2016 3.00 0.75 0.155 0.257 0.095 0.756 0.119 0.205 0.075 0.756 0.119 0.206 0.075
Multi2OIE OIE4 ReOIE2016 27.74 0.773 0.869 0.818 0.746 0.813 0.635 0.713 0.55 0.813 0.647 0.72 0.561
IGL-OIE OIE4 ReOIE2016 64.23 0.751 0.877 0.809 0.72 0.732 0.615 0.668 0.52 0.732 0.629 0.677 0.531
CIGL-OIE OIE4 ReOIE2016 51.78 0.74 0.948 0.831 0.776 0.698 0.675 0.686 0.564 0.698 0.697 0.698 0.582
OpenIE6 OIE4 ReOIE2016 23.30 0.559 0.938 0.701 0.642 0.506 0.671 0.577 0.467 0.506 0.679 0.58 0.472
DetIE OIE4 ReOIE2016 26.36 0.798 0.858 0.827 0.771 0.757 0.569 0.65 0.5 0.757 0.587 0.662 0.516

SpanOIE LSOIE ReOIE2016 16.33 0.65 0.814 0.723 0.672 0.69 0.53 0.6 0.448 0.69 0.536 0.603 0.453
IMoJIE LSOIE ReOIE2016 1.03 0.836 0.726 0.778 0.525 0.747 0.409 0.529 0.279 0.747 0.414 0.533 0.283
Multi2OIE LSOIE ReOIE2016 31.24 0.759 0.845 0.8 0.736 0.746 0.582 0.654 0.49 0.746 0.586 0.657 0.495
IGL-OIE LSOIE ReOIE2016 69.48 0.742 0.786 0.763 0.602 0.626 0.453 0.525 0.312 0.626 0.472 0.538 0.325
CIGL-OIE LSOIE ReOIE2016 53.49 0.715 0.93 0.808 0.716 0.548 0.559 0.553 0.351 0.548 0.582 0.564 0.365
OpenIE6 LSOIE ReOIE2016 24.94 0.518 0.924 0.664 0.53 0.374 0.562 0.45 0.275 0.374 0.574 0.453 0.281
DetIE LSOIE ReOIE2016 27.39 0.847 0.85 0.848 0.785 0.692 0.493 0.575 0.417 0.692 0.513 0.589 0.434

SpanOIE IMoJIE ReOIE2016 7.36 0.175 0.993 0.298 0.584 0.099 0.527 0.166 0.289 0.099 0.535 0.167 0.294
IMoJIE IMoJIE ReOIE2016 1.84 0.802 0.947 0.868 0.65 0.713 0.592 0.647 0.388 0.713 0.603 0.653 0.395
Multi2OIE IMoJIE ReOIE2016 30.72 0.794 0.863 0.827 0.793 0.812 0.606 0.694 0.534 0.817 0.614 0.701 0.542
IGL-OIE IMoJIE ReOIE2016 68.80 0.799 0.817 0.808 0.644 0.728 0.508 0.599 0.403 0.728 0.53 0.614 0.42
CIGL-OIE IMoJIE ReOIE2016 49.48 0.796 0.919 0.853 0.723 0.671 0.579 0.621 0.431 0.674 0.622 0.647 0.464
OpenIE6 IMoJIE ReOIE2016 40.95 0.584 0.925 0.716 0.514 0.483 0.601 0.535 0.33 0.483 0.623 0.544 0.342
DetIE IMoJIE ReOIE2016 26.83 0.905 0.717 0.8 0.683 0.829 0.442 0.577 0.404 0.829 0.46 0.592 0.421

Table 11: A table that lists performance of different OpenIE systems on the ReOIE2016 benchmark.

Model Training set Test set Sen./Sec
OIE2016 WiRe57 CaRB

P R F1 AUC P R F1 AUC P R F1 AUC

SpanOIE SpanOIE CaRB 17.14 0.81 0.778 0.794 0.704 0.609 0.273 0.377 0.219 0.609 0.403 0.485 0.324
IMoJIE SpanOIE CaRB 3.12 0.836 0.794 0.814 0.639 0.629 0.283 0.39 0.17 0.629 0.416 0.5 0.25
Multi2OIE SpanOIE CaRB 22.39 0.826 0.878 0.851 0.793 0.59 0.315 0.411 0.22 0.609 0.458 0.523 0.326
IGL-OIE SpanOIE CaRB 69.67 0.831 0.771 0.8 0.672 0.611 0.267 0.371 0.184 0.611 0.399 0.483 0.275
CIGL-OIE SpanOIE CaRB 52.62 0.789 0.986 0.876 0.818 0.379 0.331 0.354 0.148 0.379 0.508 0.434 0.228
OpenIE6 SpanOIE CaRB 41.02 0.643 0.981 0.777 0.671 0.335 0.406 0.367 0.181 0.338 0.489 0.399 0.223
DetIE SpanOIE CaRB 25.79 0.866 0.788 0.825 0.735 0.595 0.266 0.368 0.212 0.595 0.406 0.483 0.324

SpanOIE OIE4 CaRB 16.92 0.804 0.777 0.79 0.701 0.646 0.28 0.39 0.23 0.646 0.413 0.503 0.339
IMoJIE OIE4 CaRB 3.83 0.804 0.816 0.81 0.572 0.624 0.304 0.408 0.17 0.624 0.442 0.517 0.247
Multi2OIE OIE4 CaRB 33.37 0.838 0.831 0.835 0.761 0.647 0.298 0.408 0.213 0.647 0.442 0.525 0.317
IGL-OIE OIE4 CaRB 72.82 0.82 0.834 0.827 0.734 0.607 0.298 0.399 0.219 0.607 0.438 0.509 0.323
CIGL-OIE OIE4 CaRB 58.49 0.814 0.908 0.858 0.796 0.584 0.326 0.418 0.237 0.584 0.479 0.526 0.35
OpenIE6 OIE4 CaRB 24.93 0.685 0.903 0.779 0.716 0.518 0.395 0.448 0.281 0.518 0.482 0.499 0.346
DetIE OIE4 CaRB 26.28 0.862 0.843 0.852 0.785 0.614 0.277 0.382 0.223 0.614 0.425 0.502 0.343

SpanOIE LSOIE CaRB 16.59 0.741 0.731 0.736 0.636 0.561 0.244 0.34 0.191 0.561 0.334 0.418 0.26
IMoJIE LSOIE CaRB 1.05 0.896 0.702 0.788 0.569 0.615 0.195 0.296 0.109 0.615 0.281 0.386 0.157
Multi2OIE LSOIE CaRB 33.89 0.818 0.81 0.814 0.738 0.611 0.267 0.372 0.189 0.611 0.369 0.461 0.262
IGL-OIE LSOIE CaRB 67.65 0.825 0.743 0.782 0.616 0.529 0.215 0.305 0.127 0.529 0.304 0.386 0.178
CIGL-OIE LSOIE CaRB 49.70 0.814 0.897 0.853 0.753 0.475 0.273 0.346 0.149 0.475 0.386 0.426 0.21
OpenIE6 LSOIE CaRB 28.14 0.667 0.898 0.766 0.627 0.403 0.333 0.365 0.168 0.403 0.389 0.396 0.198
DetIE LSOIE CaRB 26.27 0.904 0.8 0.849 0.762 0.578 0.234 0.334 0.185 0.578 0.343 0.43 0.27

SpanOIE IMoJIE CaRB 7.41 0.265 0.979 0.417 0.619 0.131 0.4 0.198 0.226 0.131 0.438 0.202 0.248
IMoJIE IMoJIE CaRB 1.77 0.863 0.914 0.888 0.696 0.633 0.306 0.413 0.179 0.633 0.457 0.531 0.266
Multi2OIE IMoJIE CaRB 31.22 0.848 0.813 0.83 0.771 0.645 0.28 0.39 0.201 0.648 0.418 0.508 0.301
IGL-OIE IMoJIE CaRB 73.88 0.865 0.803 0.833 0.681 0.615 0.252 0.357 0.165 0.615 0.384 0.473 0.252
CIGL-OIE IMoJIE CaRB 55.01 0.855 0.909 0.881 0.768 0.563 0.286 0.379 0.178 0.574 0.437 0.496 0.274
OpenIE6 IMoJIE CaRB 37.82 0.715 0.898 0.796 0.633 0.498 0.365 0.421 0.204 0.503 0.44 0.47 0.252
DetIE IMoJIE CaRB 27.16 0.932 0.69 0.793 0.667 0.67 0.21 0.32 0.175 0.67 0.327 0.439 0.273

Table 12: A table that lists performance of different OpenIE systems on the CaRB benchmark.
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Model Training set Test set Sen./Sec
OIE2016 WiRe57 CaRB

P R F1 AUC P R F1 AUC P R F1 AUC

SpanOIE SpanOIE LSOIE 18.56 0.745 0.851 0.794 0.742 0.537 0.388 0.451 0.298 0.537 0.551 0.544 0.423
IMoJIE SpanOIE LSOIE 2.92 0.631 0.866 0.73 0.499 0.53 0.516 0.523 0.244 0.53 0.537 0.534 0.253
Multi2OIE SpanOIE LSOIE 27.55 0.618 0.909 0.736 0.646 0.525 0.596 0.558 0.364 0.525 0.628 0.571 0.383
IGL-OIE SpanOIE LSOIE 205.07 0.636 0.815 0.714 0.582 0.529 0.484 0.505 0.295 0.529 0.506 0.517 0.308
CIGL-OIE SpanOIE LSOIE 159.43 0.634 0.975 0.769 0.653 0.379 0.601 0.464 0.284 0.379 0.633 0.474 0.3
OpenIE6 SpanOIE LSOIE 123.55 0.458 0.965 0.622 0.468 0.268 0.562 0.363 0.215 0.268 0.58 0.366 0.222
DetIE SpanOIE LSOIE 29.52 0.664 0.806 0.728 0.671 0.519 0.466 0.491 0.354 0.519 0.489 0.503 0.371

SpanOIE OIE4 LSOIE 19.48 0.737 0.848 0.788 0.736 0.541 0.382 0.447 0.294 0.541 0.541 0.541 0.416
IMoJIE OIE4 LSOIE 3.62 0.61 0.89 0.724 0.442 0.52 0.541 0.53 0.239 0.52 0.564 0.541 0.248
Multi2OIE OIE4 LSOIE 39.12 0.642 0.877 0.742 0.637 0.547 0.517 0.532 0.309 0.547 0.547 0.547 0.327
IGL-OIE OIE4 LSOIE 196.72 0.628 0.896 0.738 0.659 0.521 0.54 0.53 0.361 0.521 0.566 0.543 0.378
CIGL-OIE OIE4 LSOIE 191.90 0.617 0.945 0.747 0.692 0.505 0.587 0.543 0.392 0.505 0.621 0.557 0.414
OpenIE6 OIE4 LSOIE 64.24 0.47 0.924 0.623 0.587 0.394 0.537 0.455 0.342 0.394 0.557 0.462 0.354
DetIE OIE4 LSOIE 30.26 0.667 0.854 0.749 0.712 0.51 0.482 0.496 0.364 0.51 0.509 0.51 0.385

SpanOIE LSOIE LSOIE 18.09 0.715 0.888 0.792 0.762 0.666 0.474 0.554 0.394 0.666 0.65 0.658 0.541
IMoJIE LSOIE LSOIE 1.09 0.741 0.891 0.809 0.563 0.748 0.571 0.648 0.379 0.748 0.597 0.664 0.395
Multi2OIE LSOIE LSOIE 37.98 0.662 0.935 0.775 0.707 0.745 0.676 0.709 0.557 0.745 0.703 0.723 0.579
IGL-OIE LSOIE LSOIE 201.64 0.679 0.891 0.771 0.651 0.697 0.611 0.652 0.485 0.697 0.65 0.673 0.515
CIGL-OIE LSOIE LSOIE 183.46 0.643 0.978 0.776 0.705 0.621 0.717 0.666 0.529 0.621 0.767 0.686 0.566
OpenIE6 LSOIE LSOIE 65.63 0.473 0.954 0.633 0.529 0.438 0.723 0.546 0.428 0.438 0.75 0.553 0.447
DetIE LSOIE LSOIE 28.19 0.739 0.893 0.809 0.776 0.694 0.579 0.631 0.49 0.694 0.618 0.654 0.523

SpanOIE IMoJIE LSOIE 7.19 0.226 0.996 0.368 0.61 0.085 0.389 0.139 0.211 0.085 0.439 0.142 0.238
IMoJIE IMoJIE LSOIE 2.98 0.681 0.945 0.792 0.532 0.517 0.497 0.507 0.225 0.517 0.523 0.52 0.236
Multi2OIE IMoJIE LSOIE 33.67 0.651 0.882 0.749 0.703 0.554 0.502 0.527 0.333 0.554 0.527 0.54 0.348
IGL-OIE IMoJIE LSOIE 218.05 0.691 0.863 0.767 0.567 0.517 0.443 0.477 0.241 0.517 0.472 0.493 0.256
CIGL-OIE IMoJIE LSOIE 189.39 0.678 0.934 0.785 0.6 0.489 0.503 0.496 0.262 0.489 0.551 0.518 0.286
OpenIE6 IMoJIE LSOIE 124.62 0.502 0.924 0.651 0.452 0.353 0.506 0.416 0.207 0.353 0.534 0.425 0.219
DetIE IMoJIE LSOIE 30.12 0.742 0.755 0.748 0.657 0.569 0.377 0.454 0.296 0.569 0.4 0.47 0.314

Table 13: A table that lists performance of different OpenIE systems on the LSOIE benchmark.

Independent Var. Constants
p-value ≤ 0.05 p-value > 0.05

t-score > 0 t-score < 0 t-score > 0 t-score < 0

non-N-ary model vs.
N-ary model

non-N-ary train, N-ary test 2 5 3 5

N-ary train, N-ary test 3 5 1 6

non-N-ary train vs.
N-ary train

non-N-ary model, N-ary test 0 11 0 4

N-ary model, N-ary test 4 9 0 2

Table 14: Statistical significance tests to answer R1. Each number represents the number of test set and evaluation
metric combinations with the corresponding t-score and p-value. When t-score is greater than 0, non-N-ary
outperforms N-ary, and when t-score is less than 0, N-ary outperforms non-N-ary.

Independent Var. Constants
p-value ≤ 0.05 p-value > 0.05

t-score > 0 t-score < 0 t-score > 0 t-score < 0

non-IN model
vs.

IN model

non-IN train, IN test 9 0 2 1

IN train, IN test 0 4 7 1

non-IN train, non-IN test 0 1 2 0

IN train, non-IN test 3 0 0 0

non-IN train
vs.

IN train

non-IN model, IN test 6 6 0 0

IN model, IN test 2 7 0 3

non-IN model, non-IN test 2 1 0 0

IN model, non-IN test 2 0 1 0

Table 15: Statistical significance tests to answer R2. Each number represents the number of test set and evaluation
metric combinations with the corresponding t-score and p-value. When t-score is greater than 0, non-IN outperforms
IN, and when t-score is less than 0, IN outperforms non-IN.
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Configuration 1 Configuration 2
t-Score p-value

Model Sen./Sec Model Sen./Sec

IMoJIE 2.070 Multi2OIE 29.225 -21.621 1.50E-15
IMoJIE 2.070 IGL-OIE 84.072 -5.501 2.63E-05
IMoJIE 2.070 CIGL-OIE 68.800 -4.929 9.31E-05
IMoJIE 2.070 OpenIE6 28.357 -5.813 1.31E-05

Table 16: Statistical significance tests to answer R3 with Generative Model vs. Non-generative Model independent
variable . Sentences per second is averaged over all training and test sets.

B Hyperparameter Sensitivity Study

In this section, we report the empirical results of
training Multi2OIE on a variety of hyperparame-
ters. For each combination of training and test set,
we start with the original hyperparameters used
by Ro et al. (2020), then modify one. The differ-
ent hyperparameter values we test are values the
authors test in their hyperparameter search. The
hyperparameters the authors change are the number
of epochs used for training, the dropout rate for the
multi-head attention blocks, the dropout rate for
the argument classifier, the batch size, the learn-
ing rate, the number of multi-head attention heads,
the number of multi-head attention blocks, and the
number of dimensions for the position embeddings.
The original hyperparameter values Ro et al. (2020)
use are in table 17.
Table 18 shows the CaRB score of Multi2OIE
trained with different hyperparameters, averaged
over all training and test sets.
Table 19 shows the CaRB score averaged over all
training sets on the OIE2016 test set.
Table 20 shows the CaRB score averaged over all
training sets on the WiRe57 test set.
Table 21 shows the CaRB score averaged over all
training sets on the ReOIE2016 test set.
Table 22 shows the CaRB score averaged over all
training sets on the CaRB test set.
Table 23 shows the CaRB score averaged over all
training sets on the LSOIE test set.

The largest difference in CaRB F1 score from the
original model hyperparameters was for Multi2OIE
tested on WiRe57. However, it should be noted
that WiRe57 only consists of 57 sentences with
343 relations. An incorrect prediction on a single
sentence may lead to a significant F1 difference
overall. Therefore, we feel that this difference is
not due to sensitivity to hyperparameters, but rather
due to the sensitivity of WiRe57. For other test
sets, we observe much smaller effects of different

Hyperparameter Value
Epochs 1
Multi-head Attention Dropout 0.2
Argument Classifier Dropout 0.2
Batch Size 128
Learning Rate 3e-5
Multi-head Attention Heads 8
Multi-head Attention Blocks 4
Position Embedding Dimensions 64

Table 17: The original hyperparameters used by
Multi2OIE.

hyperparameters on the CaRB score.
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Hyperparameter
Changed

Average Difference from
Original Hyperparameters Max CaRB F1

Increase
Max CaRB F1

Decrease
CaRB P CaRB R CaRB F1

Epochs
2 0.0027 -0.0028 -0.0007 0.0200 -0.0130

3 0.0028 -0.0025 -0.0003 0.0160 -0.0090

Multi-head
Attention Dropout

0.0 0.0028 -0.0039 -0.0023 0.0020 -0.0150

0.1 0.0006 -0.0027 -0.0015 0.0030 -0.0120

Argument
Classifier Dropout

0.0 0.0003 -0.0013 -0.0011 0.0040 -0.0110

0.1 -0.0005 0.0002 -0.0003 0.0050 -0.0110

Batch Size 64 0.0005 -0.0001 -0.0004 0.0040 -0.0050

Learning Rate
2e-5 -0.0010 0.0029 0.0012 0.0070 -0.0050

5e-5 0.0031 -0.0061 -0.0033 0.0090 -0.0160

Multi-head
Attention Heads

4 -0.0008 0.0013 0.0008 0.0150 -0.0150

Multi-head
Attention Blocks

2 0.0011 -0.0009 -0.0006 0.0040 -0.0100

Position Embedding
Dimensions

128 -0.0007 -0.0044 -0.0033 0.0030 -0.0130

256 -0.0019 0.0023 0.0010 0.0140 -0.0110

Table 18: CaRB scores averaged over all training and test set combinations when using Multi2OIE. Each row
represents a change of a single hyperparameter from the final hyperparameters used by Ro et al. (2020). The
different hyperparameter values tested are the same ones tested by Ro et al. (2020).

Test Set Hyperparameter
Changed

Average Difference from
Original Hyperparameters Max CaRB F1

Increase
Max CaRB F1

Decrease
CaRB P CaRB R CaRB F1

OIE2016 Epochs
2 0.0017 -0.0067 -0.0040 -0.0010 -0.0100

3 0.0027 -0.0020 -0.0003 0.0040 -0.0050

OIE2016
Multi-head
Attention Dropout

0.0 0.0013 -0.0020 -0.0010 0.0020 -0.0030

0.1 0.0020 -0.0020 -0.0007 0.0020 -0.0050

OIE2016
Argument
Classifier Dropout

0.0 0.0020 -0.0020 -0.0003 0.0000 -0.0010

0.1 0.0040 0.0017 0.0023 0.0050 -0.0020

OIE2016 Batch Size 64 0.0007 0.0017 0.0010 0.0040 -0.0020

OIE2016 Learning Rate
2e-5 0.0003 0.0007 0.0010 0.0070 -0.0050

5e-5 0.0043 -0.0073 -0.0033 0.0050 -0.0110

OIE2016
Multi-head
Attention Heads

4 0.0030 0.0017 0.0020 0.0070 -0.0010

OIE2016
Multi-head
Attention Blocks

2 0.0003 -0.0013 -0.0010 0.0040 -0.0040

OIE2016
Position Embedding
Dimensions

128 0.0007 -0.0080 -0.0050 -0.0010 -0.0110

256 -0.0017 -0.0027 -0.0023 0.0030 -0.0110

Table 19: CaRB scores averaged over all training sets on the OIE2016 test set when using Multi2OIE.

945



Test Set Hyperparameter
Changed

Average Difference from
Original Hyperparameters Max CaRB F1

Increase
Max CaRB F1

Decrease
CaRB P CaRB R CaRB F1

WiRe57 Epochs
2 0.0047 0.0013 0.0037 0.0200 -0.0130

3 0.0087 0.0030 0.0063 0.0160 -0.0030

WiRe57
Multi-head
Attention Dropout

0.0 0.0077 -0.0097 -0.0070 -0.0020 -0.0150

0.1 0.0050 -0.0057 -0.0023 0.0030 -0.0120

WiRe57
Argument
Classifier Dropout

0.0 0.0017 -0.0060 -0.0047 0.0040 -0.0110

0.1 -0.0007 -0.0047 -0.0033 0.0010 -0.0110

WiRe57 Batch Size 64 0.0067 -0.0033 -0.0017 0.0020 -0.0050

WiRe57 Learning Rate
2e-5 0.0043 0.0000 0.0010 0.0070 -0.0030

5e-5 0.0063 -0.0080 -0.0053 0.0090 -0.0160

WiRe57
Multi-head
Attention Heads

4 -0.0020 0.0020 0.0020 0.0150 -0.0150

WiRe57
Multi-head
Attention Blocks

2 0.0013 -0.0020 -0.0013 0.0030 -0.0100

WiRe57
Position Embedding
Dimensions

128 0.0000 -0.0080 -0.0060 0.0030 -0.0130

256 -0.0007 0.0033 0.0037 0.0140 -0.0060

Table 20: CaRB scores averaged over all training sets on the WiRe57 test set when using Multi2OIE.

Test Set Hyperparameter
Changed

Average Difference from
Original Hyperparameters Max CaRB F1

Increase
Max CaRB F1

Decrease
CaRB P CaRB R CaRB F1

ReOIE2016 Epochs
2 -0.0023 -0.0043 -0.0037 -0.0010 -0.0090

3 -0.0030 -0.0070 -0.0060 -0.0040 -0.0090

ReOIE2016
Multi-head
Attention Dropout

0.0 0.0010 -0.0040 -0.0017 0.0000 -0.0040

0.1 -0.0017 -0.0040 -0.0030 -0.0020 -0.0040

ReOIE2016
Argument
Classifier Dropout

0.0 -0.0020 0.0007 -0.0003 0.0020 -0.0020

0.1 -0.0060 0.0020 -0.0013 0.0000 -0.0020

ReOIE2016 Batch Size 64 -0.0050 0.0017 -0.0010 0.0000 -0.0020

ReOIE2016 Learning Rate
2e-5 -0.0037 0.0047 0.0017 0.0060 -0.0010

5e-5 -0.0037 -0.0060 -0.0050 -0.0030 -0.0080

ReOIE2016
Multi-head
Attention Heads

4 -0.0037 0.0023 0.0003 0.0040 -0.0050

ReOIE2016
Multi-head
Attention Blocks

2 0.0013 -0.0007 -0.0003 0.0000 -0.0010

ReOIE2016
Position Embedding
Dimensions

128 -0.0043 -0.0027 -0.0033 0.0000 -0.0060

256 -0.0043 0.0043 0.0010 0.0060 -0.0050

Table 21: CaRB scores averaged over all training sets on the ReOIE2016 test set when using Multi2OIE.
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Test Set Hyperparameter
Changed

Average Difference from
Original Hyperparameters Max CaRB F1

Increase
Max CaRB F1

Decrease
CaRB P CaRB R CaRB F1

CaRB Epochs
2 0.0070 -0.0030 -0.0003 0.0020 -0.0030

3 0.0027 -0.0033 -0.0017 0.0010 -0.0040

CaRB
Multi-head
Attention Dropout

0.0 0.0040 -0.0040 -0.0020 0.0000 -0.0030

0.1 -0.0023 -0.0020 -0.0020 0.0000 -0.0030

CaRB
Argument
Classifier Dropout

0.0 0.0003 -0.0003 -0.0003 0.0010 -0.0030

0.1 0.0010 -0.0003 -0.0003 0.0000 -0.0010

CaRB Batch Size 64 0.0007 -0.0003 -0.0003 0.0010 -0.0010

CaRB Learning Rate
2e-5 -0.0017 0.0020 0.0007 0.0010 0.0000

5e-5 0.0053 -0.0047 -0.0020 0.0010 -0.0060

CaRB
Multi-head
Attention Heads

4 -0.0010 -0.0007 -0.0010 0.0030 -0.0030

CaRB
Multi-head
Attention Blocks

2 0.0043 -0.0023 -0.0003 0.0010 -0.0010

CaRB
Position Embedding
Dimensions

128 0.0017 -0.0027 -0.0017 0.0000 -0.0040

256 -0.0007 0.0000 0.0000 0.0020 -0.0030

Table 22: CaRB scores averaged over all training sets on the CaRB test set when using Multi2OIE.

Test Set Hyperparameter
Changed

Average Difference from
Original Hyperparameters Max CaRB F1

Increase
Max CaRB F1

Decrease
CaRB P CaRB R CaRB F1

LSOIE Epochs
2 0.0027 -0.0013 0.0007 0.0080 -0.0040

3 0.0030 -0.0030 0.0003 0.0080 -0.0040

LSOIE
Multi-head
Attention Dropout

0.0 0.0000 0.0003 0.0003 0.0010 0.0000

0.1 0.0000 0.0003 0.0003 0.0010 -0.0010

LSOIE
Argument
Classifier Dropout

0.0 -0.0007 0.0010 0.0003 0.0010 0.0000

0.1 -0.0007 0.0023 0.0010 0.0020 0.0000

LSOIE Batch Size 64 -0.0003 -0.0003 0.0000 0.0020 -0.0020

LSOIE Learning Rate
2e-5 -0.0043 0.0073 0.0017 0.0050 -0.0030

5e-5 0.0030 -0.0047 -0.0007 0.0040 -0.0040

LSOIE
Multi-head
Attention Heads

4 -0.0003 0.0013 0.0007 0.0020 -0.0010

LSOIE
Multi-head
Attention Blocks

2 -0.0017 0.0017 0.0000 0.0010 -0.0010

LSOIE
Position Embedding
Dimensions

128 -0.0013 -0.0007 -0.0007 0.0000 -0.0010

256 -0.0020 0.0067 0.0027 0.0050 0.0000

Table 23: CaRB scores averaged over all training sets on the LSOIE test set when using Multi2OIE.
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