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Abstract

Multilingual semantic parsing aims to lever-
age the knowledge from the high-resource lan-
guages to improve low-resource semantic pars-
ing, yet commonly suffers from the data im-
balance problem. Prior works propose to uti-
lize the translations by either humans or ma-
chines to alleviate such issues. However, hu-
man translations are expensive, while machine
translations are cheap but prone to error and
bias. In this work, we propose an active learn-
ing approach that exploits the strengths of both
human and machine translations by iteratively
adding small batches of human translations into
the machine-translated training set. Besides,
we propose novel aggregated acquisition cri-
teria that help our active learning method se-
lect utterances to be manually translated. Our
experiments demonstrate that an ideal utter-
ance selection can significantly reduce the er-
ror and bias in the translated data, resulting in
higher parser accuracies than the parsers merely
trained on the machine-translated data.

1 Introduction

Multilingual semantic parsing allows a single
model to convert natural language utterances from
multiple languages into logical forms (LFs). Due to
its wide applications in various research areas, e.g.
multilingual question answering and multilingual
virtual assistant, multilingual semantic parsing has
drawn more attention recently (Zou and Lu, 2018;
Sherborne et al., 2020; Li et al., 2021a).

Training a multilingual semantic parser (MSP)
requires training data from all target languages.
However, there is a severe imbalance of data avail-
ability among languages for current multilingual
semantic parsing research. The utterances in most
current semantic parsing datasets are in English,
while non-English data is scarce.

To overcome the data imbalance issue, prior stud-
ies translate utterances in the MSP datasets from
high-resource languages (e.g. English) to the target

low-resource languages of interest by either human
translators (Susanto and Lu, 2017; Duong et al.,
2017; Li et al., 2021a) or automatic machine trans-
lation (MT) (Moradshahi et al., 2020; Sherborne
et al., 2020). Unfortunately, human translation
(HT), though effective, is cost-intensive and time-
consuming. While the cost of MTs is much lower
than that of HTs, the low quality of the machine-
translated utterances severely weakens the perfor-
mance of the MSPs in the target languages.

We observe that the quality of MTs is lower than
that of HTs, mainly due to translation bias and er-
rors. First, MT systems are likely to be influenced
by algorithmic bias. Hence, the outputs of MT
systems are generally less lexically and morpholog-
ically diverse than human translations (Vanmassen-
hove et al., 2021). So, there is a lexical distribu-
tion discrepancy between the machine-translated
and the human-generated utterances. Second, MT
systems are prone to generate translations with er-
rors (Daems et al., 2017).

Prior study (Moradshahi et al., 2020) demon-
strates that adding only a small portion of human-
translated data into the complete set of machine-
translated training data significantly improves the
MSP performance on the test set of the target lan-
guage. Given this observation, we propose a novel
annotation strategy based on active learning (AL)
that benefits from both Human translations and
Automatic machine Translations (HAT). It initially
machine-translates all utterances in training sets
from the high-resource languages to target lan-
guages. Then, for each iteration, HAT selects a
subset of utterances from the original training set
to be translated by human translators, followed by
adding the HT data to the MT training data. The
multilingual parser is trained on the combination
of both types of translated data.

We further investigate how HAT can select ut-
terances whose HTs maximally benefit the parser
performance. We assume the performance improve-
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ment is ascribed to the less biased and erroneous
training set in a mixture of the MT and HT data.
We have found that resolving the bias and error
issues for the translations of the most semantically
diversified and representative utterances improves
the parser performance to the greatest extent. Given
this assumption, we provide an Aggregated acqui-
sition function that scores the utterances on how
much their HTs can mitigate the Bias and Error
issues for learning the multilingual parsers (ABE).
It aggregates four individual acquisition functions,
two of which measure the error and bias degree for
the translations of the source utterances. The other
two encourage the selection of the most representa-
tive and semantically diversified utterances.

Our key contributions are as follows:

• We propose a novel AL procedure, HAT, that
benefits from two popular annotation strate-
gies for training the MSP. HAT greatly boosts
the performance of the parser trained on MT
data while it requires only a small extra human
annotation cost. With only 16% of total utter-
ances translated by humans, the parser accura-
cies on the multilingual GEOQUERY (Susanto
and Lu, 2017) and NLMAP (Haas and Riezler,
2016) test sets can be improved by up to 28%
and 5%, respectively, compared to the accu-
racies of those trained on machine-translated
data, and are only up to 5% away from the
ORACLE parsers trained on all human data.

• We propose an aggregated acquisition func-
tion, coined ABE, specifically designed to se-
lect utterances where their HTs mitigate trans-
lation bias and error for learning a good MSP.
Compared to other SOTA acquisition base-
lines, given the same selection budget, our
experiments consistently show ABE consis-
tently results in the less biased and erroneous
training sets and higher parser accuracies on
the multilingual GEOQUERY and NLMAP

test sets.

2 Related Work

Multilingual Semantic Parsing. Multilingual se-
mantic parser is an emerging field that parses ut-
terances from multiple languages using one model.
Almost all the current MSP data are obtained by
translating the utterances in existing semantic pars-
ing datasets in the high-resource languages by the
automatic translation services (Moradshahi et al.,

2020; Sherborne et al., 2020) or human transla-
tors (Susanto and Lu, 2017; Duong et al., 2017;
Li et al., 2021a; Li and Haffari, 2023). They
don’t consider conventional data collection strate-
gies (Wang et al., 2015) for monolingual semantic
parsing as they require expert knowledge in LFs,
which is more expensive than bilingual knowledge.
Therefore, our work follows the same strategies to
leverage the knowledge from high-resource to low-
resource languages. Moradshahi et al. (2020) tries
to mix the human-translated data with machine-
translated data to improve the parser accuracies.
However, their work is only in a supervised learn-
ing setting, while our work studies how to itera-
tively collect utterances in an AL scenario.

Active Learning. AL is to select the most valu-
able unlabeled instances to be annotated in order
to maximize the model’s performance and hence
reduce the annotation cost for data-hungry machine
learning models. AL has been used to MT (Haffari
and Sarkar, 2009), sequence labelling (Vu et al.,
2019), text classification (McCallum et al., 1998;
Vu et al., 2023), and semantic parsing (Duong et al.,
2018; Ni et al., 2020; Li and Haffari, 2023). Fol-
lowing most deep learning AL methods (Duong
et al., 2018; Ni et al., 2020; Li and Haffari, 2023),
our work also adopts a pool-based query strategy,
which means we sample batches from a large pool
of unlabelled data instead of evaluating examples
one by one from an incoming stream. Among all
the AL for semantic parsing works, Li and Haffari
(2023) is the one most similar to ours, which se-
lects utterances to be translated. However, they do
not utilize MT systems.

3 Multilingual Semantic Parsing with
Automatic Machine Translation

An MSP is a parametric model Pθ(y|x) that maps
a natural language utterance x ∈ X into a for-
mal meaning representation y ∈ Y , where X =⋃

l∈LXl includes utterances in different languages
L. The standard training objective for a multilin-
gual parser is,

argmax
θ

∏

x,y∈DL

Pθ(y|x) (1)

where DL =
⋃

l∈LDl includes training data where
utterances are from multiple languages L.
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Metrics
GEOQUERY(DE) GEOQUERY(TH) GEOQUERY(EL) NLMAP(DE)
HT MT HT MT HT MT HT MT

Accuracy↑ 78.14 47.21 79.29 56.93 80.57 68.5 81.57 67.86
BT Discrepancy Rate↓ 2% 11% 3% 12% 3% 10% 2% 10%

JS↓ 36.67 59.95 32.02 73.83 33.67 56.36 33.78 46.84
MAUVE↑ 96.01 22.37 97.52 8.48 97.12 45.01 97.34 70.24
MTLD↑ 26.02 22.50 20.74 19.07 28.16 27.08 44.80 42.38

Table 1: The scores of five metrics to measure the qual-
ity of the HTs and MTs in German (De), Thai (Th)
and Greek (El) of the utterances in GEOQUERY and
NLMAP. ↑/↓ means the higher/lower score the better.
See Evaluation in Sec. 5 for the details of Accuracy,
MTLD, JS, MAUVE and BT Discrepancy Rate

3.1 Difficulties for Multilingual Semantic
Parsing Utilizing Machine Translation

Although using an MT system to train an MSP
is cost-effective, the parser performance is usu-
ally much lower than the one trained with human-
translated data. For example, as shown in Table 1,
the parsers trained on HTs all have significantly
higher accuracies than those trained on MTs in dif-
ferent settings. Such performance gaps are due to
two major issues of the MT data, discussed below.

Translation Bias. Many existing MT systems
amplify biases observed in the training data (Van-
massenhove et al., 2021), leading to two problems
that degrade the parsers’ performance trained on
MT data:

• The MTs lack lexical diversity (Vanmassen-
hove et al., 2021). As shown in Table 1,
MTLD (Vanmassenhove et al., 2021) values
show that the HTs of utterances in multilin-
gual GEOQUERY and NLMAP are all more
lexically diversified than MTs. Several stud-
ies (Shiri et al., 2022; Xu et al., 2020; Wang
et al., 2015; Zhuo et al., 2023; Huang et al.,
2021) indicate that lexical diversity of training
data is essential to improving the generaliza-
tion ability of the parsers.

• The lexical distribution of the biased MTs
is different to the human-written text. The
two metrics, Jensen–Shannon (JS) diver-
gence (Manning and Schutze, 1999) and
MAUVE (Pillutla et al., 2021), in Table 1
show the HTs of utterances in GEOQUERY

and NLMAP are more lexically close to the
human-generated test sets than MTs.

Translation Error. MT systems often generate
translation errors due to multiple reasons, such as
underperforming MT models or an absence of con-
textual understanding (Wu et al., 2023; Wu et al.),
leading to discrepancies between the source text

and its translated counterpart. One common er-
ror type is mistranslation (Vardaro et al., 2019),
which alters the semantics of the source sentences
after translation. Training an MSP on the mistrans-
lated data would cause incorrect parsing output, as
LFs are the semantic abstraction of the utterances.
BT Discrepancy Rate in Table 1 demonstrates the
mistranslation problem is more significant in the
machine-translated datasets.

4 Combining Human and Automatic
Translations with Active Learning

To mitigate the negative effect of translation bias
and error in the MT data, we propose HAT, which
introduces extra human supervision to machine su-
pervision when training the MSPs. Two major
intuitions motivate our training approach:

• Adding the HTs to the training data could
enrich its lexical and morphological diver-
sity and ensure that the lexical distribution
of the training data is closer to the human test
set, thus improving the parsers’ generaliza-
tion ability (Shiri et al., 2022; Xu et al., 2020;
Wang et al., 2015).

• HTs are less erroneous than MTs (Freitag
et al., 2021). The parser could learn to pre-
dict correct abstractions with less erroneous
training data.

Our HAT AL setting considers only the bilingual
scenario. One of the languages is in high-resource,
and the other one is in low-resource. However,
it is easy to extend our method to more than two
languages. We assume access to a well-trained
black-box multilingual MT system, gmt(·), and
a semantic parsing training set that includes ut-
terances in a high-resource language ls (e.g. En-
glish) paired with LFs, Ds = {(xi

s,y
i)}Ni=1, two

human-generated test sets Ts = {(xi
s,y

i)}Mi=1 and
Tt = {(xi

t,y
i)}Mi=1 with utterances in high and

low-resource languages, respectively. Each ut-
terance xs in Ds is translated into the utterance
x̂t = gmt

s→t(xs) in the target language lt by the MT
system, D̂t = {(x̂i

t,y
i)}Ni=1. The goal of our AL

method is to select an optimal set of utterances from
the training data in the source language, D̃s ∈ Ds,
and ask human translators to translate them into the
target language, denoted by D̄t = ghts→t(D̃s), for
training a semantic parser on the union of D̄t and
D̂t. The selection criterion is based on the acquisi-
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tion functions that score the source utterances. Fol-
lowing the conventional batch AL setting (Duong
et al., 2018), there are Q selection rounds. At the
qth round, AL selects utterances with a budget size
of Kq.

The detailed HAT AL procedure iteratively per-
forms the following steps as in Algorithm. 1.

Algorithm 1: HAT procedure
Input :Initial training set D0 = Ds ∪ D̂t, source

utterance pool Ds, budget size Kq , number
of selection rounds Q, human annotators
ght(·)

Output :A well-trained multilingual parser Pθ(y|x)
# Train the initial parser on the initial data
Update θ of Pθ(y|x) with∇θL(θ) on D0

Evaluate Pθ(y|x) on Ts and Tt
Estimate the acquisition function ϕ(·)
D̄0

t = ∅ # Empty set of human-translated data
D̄0

s = Ds # Initial source utterance pool
for q ← 1 to Q do

# Select a subset D̃q
s ∈ Dq−1

s of the size Kq with
the highest scores ranked by the acquisition
function ϕ(·)
D̃q

s = TopK(ϕ(D̄q−1
s ),Kq)

D̄q
s = D̄q−1

s \ D̃q
s

# Translate the utterances in D̃q
s into the target

language lt by human annotators
Dq

t = ghts→t(D̃q
s)

# Merge all human-translated data
D̄q

t = D̄q−1
t ∪Dq

t

# Add the human-translated data into the
training data
Dq = Ds ∪ D̂t ∪ D̄q

t

# Train the parser on the updated data
Update θ of Pθ(y|x) with∇θL(θ) on Dq

Evaluate Pθ(y|x) on Ts and Tt
Re-estimate ϕ(·)

end

4.1 Acquisition Functions

The acquisition functions assign higher scores to
those utterances whose HTs can boost the parser’s
performance more than the HTs of the other utter-
ances. The prior AL works (Sener and Savarese,
2018; Zhdanov, 2019; Nguyen and Smeulders,
2004) suggest that the most representative and di-
versified examples in the training set improve the
generalization ability of the machine learning mod-
els the most. Therefore, we provide a hypothesis
that we should select the representative and diver-
sified utterances in the training set, whose current
translations have significant bias and errors. We
postulate fixing problems of such utterances im-
proves the parsers’ performance the most. We de-
rive four acquisition functions based on this hypoth-
esis to score the utterances. Then, ABE aggregates

these acquisition functions to gain their joint ben-
efits. In each AL round, the utterances with the
highest ABE scores are selected.

Translation Bias. We assume an empirical con-
ditional distribution, P q

e (xt|xs), for each utterance
xs in Ds at qth AL selection round. Intuitively, the
xs with the most biased translations should be the
one with the most skewed empirical conditional
distribution. Therefore, we measure the translation
bias by calculating the entropy of the empirical con-
ditional distribution, H(P q

e (xt|xs)), and select the
xs with the lowest entropy. Since the translation
space Xt is exponentially large, it is intractable to
directly calculate the entropy. Following (Settles
and Craven, 2008), we adopt two approximation
strategies, N-best Sequence Entropy and Maximum
Confidence Score, to approximate the entropy.
• N-best Sequence Entropy:

ϕb(xs) = −
∑

x̂t∈N
P̂ q
e (x̂t|xs) log P̂

q
e (x̂t|xs) (2)

where N = {x̂1
t , ..., x̂

N
t } are the N -best hy-

pothesis sampled from the empirical distribution
P q
e (xt|xs). P̂ q

e (x̂t|xs) is re-normalized from
P q
e (x̂t|xs) over N , which is only a subset of Xt.

• Maximum Confidence Score (MCS):

ϕb(xs) = logP q
e (x

′
t|xs) (3)

s.t.x′
t = argmax

xt

P q
e (xt|xs) (4)

It is difficult to obtain the empirical distribution
as we know neither of the two distributions that
compose the empirical distribution. Therefore, we
use distillation training (Hinton et al.) to train a
translation model that estimates P q

e (xt|xs) on all
the bilingual pairs (xs,xt) in the MSP training
data Dq. Another challenge is that Dq is too small
to distil a good translation model that imitates the
mixture distribution. Here, we apply a bayesian
factorization trick that factorizes P q

e (xt|xs) =∑
y∈Y P q

e (xt|y)P q
e (y|xs), where y ranges over

LFs representing the semanics. As there is a deter-
ministic mapping between xs and the LF, P q

e (y|xs)
is an one-hot distribution. Thus, we only need to es-
timate the entropy, H(P q

e (xt|y)). This has a nice
intuition: the less diversified data has less lexically
diversified utterances per each LF. Note that if we
use this factorization, all xs that share the same LF
have the same scores.
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We use the lightweight, single-layer, recurrent
neural network-based Seq2Seq model to estimate
P q
e (Xt|xs) or P q

e (xt|y). It only takes approxi-
mately 30 seconds to train the model on GEO-
QUERY. Ideally, every time a new source utterance
xs is selected, P q

e (xt|xs) should be re-estimated.
However, we only re-estimate P q

e (xt|xs) once at
the beginning of each selection round to reduce the
training cost.

Translation Error. Similar to Haffari et al.
(2009), we leverage back-translations (BTs) to
measure the translation error. We conjecture
that if the translation quality for one source ut-
terance xs is good enough, the semantic parser
should be confident in the LF of the source ut-
terance conditioned on its BTs. Therefore, we
measure the translation error for each xs as the
expected parser’s negative log-likelihood in its
corresponding LF yxs over all the BTs of xs,
EP q

e (xt|xs)[− log(P q
θ (yxs |gmt

t→s(xt)))], where P q
θ

is the parser trained at qth round. To approximate
the expectation, we apply two similar strategies as
mentioned in Translation Bias.
• N-best Sequence Expected Error:

ϕe(xs) = −
∑

x̂t∈Nyxs

P̂ q
e (x̂t|xs) logPθ(yxs |gmt

t→s(xt))

(5)

where Nyxs
is the set of translations in Dq that

share the same LF yxs with xs. We only back-
translate utterances in Dq to reduce the cost of
BTs.
• Maximum Error:

ϕe(xs) = − logP q
θ (yxs |gmt

t→s(x
′
t)) (6)

s.t.x′
t = argmax

xt

P q
e (xt|xs) (7)

We use the same distilled translation model
P q
e (xt|xs) used in Translation Bias.

Semantic Density. The previous AL
works (Nguyen and Smeulders, 2004; Don-
mez et al., 2007) have found that the most
representative examples improve the model per-
formance the most. Therefore we desire to reduce
the translation error and bias for the translations of
the most representative source utterances. As such,
the utterances should be selected from the dense
regions in the semantic space,

ϕs(xs) = logP (xs). (8)

We use kernel density estimation (Botev et al.,
2010) with the exponential kernel to estimate
P (xs), while other density estimation methods
could be also used. The feature representation of
xs for density estimation is the average pooling of
the contextual sequence representations from the
MSP encoder. The density model is re-estimated
at the beginning of each query selection round.

Semantic Diversity. The role of the semantic di-
versity function is twofold. First, it prevents the AL
method from selecting similar utterances. Resolv-
ing the bias and errors of similar utterances in a
small semantic region does not resolve the training
issues for the overall dataset. Second, semantic
diversity correlates with the lexical diversity, hence
improving it also enriches lexical diversity.

ϕd(xs) =

{
0 if c(xs) /∈ ⋃

xi
s∈S c(xi

s)

−∞ Otherwise
(9)

where c(xs) maps each utterance xs into a cluster
id and S is the set of cluster ids of the selected
utterances. We use a clustering algorithm to diver-
sify the selected utterances as in (Ni et al., 2020;
Nguyen and Smeulders, 2004). The source utter-
ances are partitioned into |C| clusters. We select
one utterance at most from each cluster. Notice the
number of clusters should be greater than or equal
to the total budget size until current selection round,
|C| ≥ ∑q

i=1Ki. The clusters are re-estimated ev-
ery round. To ensure the optimal exploration of
semantic spaces across different query rounds, we
adopt Incremental K-means (Liu et al., 2020) as
the clustering algorithm. At each new round, Incre-
mental K-means considers the selected utterances
as the fixed cluster centres, and learns the new clus-
ters conditioned on the fixed centres. The feature
representation of xs for Incremental K-means is
from MSP encoder as well.

Aggregated Acquisition. We aggregate the four
acquisition functions into one,

ϕA(xs) =
∑

k

αkϕk(xs)

where αk’s are the coefficients. Each ϕk(xs) is
normalized using quantile normalization (Bolstad
et al., 2003). Considering the approximation strate-
gies we employ for both Translation Bias and
Translation Error, ABE can be denoted as either
ABE(N-BEST) or ABE(MAX). The term ABE(N-
BEST) is used when we apply N-best Sequence
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Entropy and N-best Sequence Expected Error. On
the other hand, ABE(MAX) is used when we imple-
ment Maximum Confidence Score and Maximum
Error strategies.

5 Experiments

Datasets. We evaluate our AL method for MSP
on two datasets, GEOQUERY (Susanto and Lu,
2017) and NLMAP (Haas and Riezler, 2016) with
multilingual human-translated versions. GEO-
QUERY includes 600 utterances-LF pairs as the
training set and 280 pairs as the test set. NLMAP

includes 1500 training examples and 880 test ex-
amples.

In our work, we consider English as the resource-
rich source language and use Google Translate Sys-
tem1 to translate all English utterances in GEO-
QUERY into German (De), Thai (Th), Greek (El)
and the ones in NLMAP into German, respectively.
The AL methods actively sample English utter-
ances, the HTs of which are obtained from the
multilingual GEOQUERY and NLMAP.

Active Learning Setting. The HAT active learn-
ing procedure performs five rounds of query, which
accumulatively samples 1%, 2%, 4%, 8% and 16%
of total English utterances in GEOQUERY and
NLMAP. We only perform five rounds as we found
the performance of the multilingual parser is satu-
rated after sampling 16% of examples with most
acquisition functions.

Base Parser. We use BERT-LSTM as our mul-
tilingual parser (Moradshahi et al., 2020). It is a
Seq2Seq model with the copy mechanism (Gu et al.,
2016) that applies Multilingual BERT-base (Devlin
et al., 2018) as the encoder and LSTM (Hochreiter
and Schmidhuber, 1997) as the decoder.

Baselines. We compare ABE with eight acquisi-
tion baselines and an oracle baseline.

1. Random randomly selects English utterances
in each round.

2. Cluster (Ni et al., 2020; Li et al., 2021b) parti-
tions the utterances into different groups using
K-means and randomly selects one example
from each group.

3. LCS (FW) (Duong et al., 2018) selects En-
glish utterances for which the parser is least

1https://translate.google.com/

confident in their corresponding LFs, x =
argminx pθ(y|x).

4. LCS (BW) (Duong et al., 2018), on the op-
posite of LCS (BW), trains a text generation
model to generate text given the LF. The En-
glish utterances are selected for which the
text generation model is least confident con-
ditioned on their corresponding LFs, x =
argminx pθ(x|y).

5. Traffic (Sen and Yilmaz, 2020) selects utter-
ances with the lowest perplexity and highest
frequency in terms of their corresponding LFs.

6. CSSE (Hu and Neubig, 2021) combines the
density estimation and the diversity estimation
metrics to select the most representative and
semantically diversified utterances.

7. RTTL (Haffari et al., 2009; Haffari and
Sarkar, 2009) uses BLEU (Papineni et al.,
2002) to estimate the translation information
losses between the BTs and the original utter-
ances to select utterances with highest losses.

8. LFS-LC-D (Li and Haffari, 2023) is the se-
lection method for MSP, which enriches the
diversity of lexicons and LF structures in the
selected examples.

9. ORACLE trains the parser on the combina-
tion of English data, machine-translated data,
and the complete set of human-translated data.

Evaluation. We evaluate the AL methods by
measuring the accuracy of the MSP, the bias of
the training set, and the semantic discrepancy rate
between the selected utterances and their BTs.

• Accuracy: To evaluate the performance of
the MSP, we report the accuracy of exactly
matched LFs as in (Dong and Lapata, 2018)
at each query round. As the parser accuracies
on the English test sets are not relevant to
evaluating the active learning method, we only
report the accuracies on the test sets in the
target languages. See Appendix A.2 for the
English results.

• Bias of the Training Set: We use three met-
rics to measure the bias of the training data in
the target language at each query round.
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1. Jensen–Shannon (JS) divergence (Pil-
lutla et al., 2021) measures the JS di-
vergence between the n-gram frequency
distributions of the utterances in the train-
ing set D̂t ∪ D̄q

t generated by each AL
method and test set Tt.

2. MAUVE (Pillutla et al., 2021) compares
the learnt distribution from the train-
ing set to the distribution of human-
written text in the test set Tt using Kull-
back–Leibler divergence (Kullback and
Leibler, 1951) frontiers. Here we use n-
gram lexical features from the text when
calculating MAUVE. JS and MAUVE to-
gether measure how lexically "human-
like" the generated training set is.

3. MTLD (McCarthy, 2005) reports the
mean length of word strings in the ut-
terances in D̂t∪D̄q

t that maintain a given
TTR (Templin, 1957) value, where TTR
is the ratio of different tokens to the to-
tal number of tokens in the training data.
MTLD evaluate the lexical diversity of
the training set.

• BT Discrepancy Rate: Since we do not pos-
sess bilingual knowledge, we use BT to access
the translation quality (Tyupa, 2011). At each
query round, we randomly sample 100 utter-
ances from the utterances selected by each ac-
quisition in 5 seeds’ experiments. The BT is
obtained by using Google Translation to trans-
late the MTs of the 100 sampled utterances
back to English. Two annotators manually
check the percentage of the BTs which are
not semantically equivalent to their original
utterances. We only consider a BT discrep-
ancy when both annotators agree. Ideally, the
utterances with fewer mistranslations would
see fewer semantic discrepancies between the
BTs and the original.

5.1 Main Results and Discussion.
Effectiveness of HAT. Fig. 1 shows that HAT
significantly improves the parser accuracies on all
test sets by adding only a small amount of HTs into
the machine-translated training set. For example,
with 16% of English utterances translated by hu-
mans, HAT improves the parser accuracies by up
to 28% and 25%, respectively, on GEOQUERY(DE)
and GEOQUERY(TH) test sets. On the other hand,
on GEOQUERY(EL) and NLMAP(DE) test sets,

the accuracy improvement by HAT is only up to
5% because the parser has already achieved a de-
cent performance after it is trained on the MT data.
According to Table 1, we speculate that the training
sets of GEOQUERY(EL) and NLMAP(DE) are less
biased than those of GEOQUERY(TH) and GEO-
QUERY(DE). Overall for all dataset settings, if we
apply HAT with ABE, the multilingual parsers can
perform comparably to the ORACLE parsers with
no more than 5% differences in terms of accuracies
at an extra expense of manual translating 16% of
English utterances.

Effectiveness of ABE. The ABE method has
been demonstrated to consistently achieve supe-
rior performance over the baselines by utilizing a
combination of four important measurements. In
contrast, the acquisition baselines focus on only
one or two of these measurements, and as a result,
they fail to effectively address issues of bias and er-
ror across all datasets and languages. Despite this,
these baselines may still perform well in certain
specific settings, such as LFS-LC-D performing
slightly better than ABE on the GEOQUERY(TH)
dataset. However, it should be noted that this per-
formance is not consistent across all settings. Three
baselines, LCS(FW), LCS(BW), and RTTL, con-
sistently perform lower than the others. LCS(FW)
tends to select similar examples, which lack se-
mantic diversity. RTTL is designed to choose the
utterances with the most erroneous translations,
while such utterances are mostly the tail examples
given our inspection. ABE overcomes this issue
by balancing the Translation Error term with the
Semantic Density. LCS(BW) has an opposite ob-
jective with our Translation Bias, which means it
selects the utterances with the most translation bias.
Therefore, though LCS(BW) performs well in the
AL scenario in Duong et al. (2018) for semantic
parsing, it performs worst in our scenario.

Bias, Error and Parser Performance. As in
Table 2, we also measure the bias of the training
set and the BT discrepancy rates of the selected
utterances at the final selection round for each ac-
quisition function. We can see that the parser accu-
racy directly correlates with the training set’s bias
degree. The bias of the training set acquired by
RANDOM, TRAFFIC and CLUSTER, LFS-LC-D,
and ABE score better in general than the other
baselines in terms of the bias metrics, resulting in a
better parser accuracy. RTTL and LCS(FW) that

9517



Figure 1: The parser accuracies at different query rounds using various acquisitions on the test sets of GEO-
QUERY(DE), GEOQUERY(TH), GEOQUERY(EL) and NLMAP(DE). Orange dash lines indicate the accuracies of
ORACLE multilingual parsers. All experiments are run 5 times with a different seed for each run.

Metric No HT RANDOM CLUSTER CSSE RTTL LCS(FW) LCS(BW) TRAFFIC LFS-LC-D ABE(N-BEST) ABE(MAX) ORACLE

BT Discrepancy Rate - 11% 14% 11% 21% 22% 8% 14% 10% 17% 18% -
JS↓ 59.95 54.15 54.71 55.53 54.56 54.38 56.13 54.58 54.26 54.16 53.97 45.12

MAUVE↑ 22.37 36.99 36.12 34.52 35.53 31.61 29.75 35.67 36.87 38.96 35.13 73.04
MTLD↑ 22.50 23.79 23.32 22.65 22.89 23.00 22.27 23.42 23.97 23.80 23.78 24.23

Table 2: Using different acquisitions at the final query round, we depict the scores of the metrics to measure the bias
of the training sets in GEOQUERY(DE) and the BT discrepancy rates of the total selected utterances.

select utterances with more erroneous translations
do not necessarily guarantee better accuracies for
parsers. Our following ablation study shows that
the parser performance can be improved by correct-
ing the translation errors for the most representative
utterances.

Figure 2: Using ABE(N-BEST) with each term removed,
we depict the parser accuracies on the GEOQUERY(DE)
test set, the MAUVE and MTLD scores of the GEO-
QUERY(DE) training sets and the BT Discrepancy rate
of the selected utterances from English GEOQUERY at
each query round.

5.2 Ablation Study.

Influence of different Acquisition Functions.
As in Fig. 2, we evaluate the effectiveness of each
acquisition by observing how removing each ac-
quisition from ABE(N-BEST) influences the parser
performance, the bias of the training set and the BT
Discrepancy rate of the selected utterances. We can
see that removing all terms degrades the parser per-
formance. However, each acquisition contributes
to the parser accuracy due to different reasons.

Translation Bias and Semantic Diversity con-
tribute to the parser performance mainly due to
alleviating the bias of the training set. Excluding
Translation Bias does not influence the lexical di-
versity, while the lexical similarity between the
training and test sets becomes lower. Removing
Semantic Diversity drops the lexical similarity as
well. But it more seriously drops the lexical diver-
sity when the sampling rates are high.

Removing Translation Error significantly de-
creases the parser accuracy and BT Discrepancy
rate in the low sampling regions. However, when
the selection rate increases, gaps in parser accura-
cies and BT Discrepancy rates close immediately.
Translation Error also reduces the bias by introduc-
ing correct lexicons into the translations.

Removing Semantic Density also drops the
parser performance as well. We inspect that Seman-
tic Density contributes to parser accuracy mainly
by combing with the Translation Error term. As in
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Appendix A.3, using Translation Error or Semantic
Density independently results in inferior parser per-
formance. We probe that Translation Error tends to
select tail utterances from the sparse semantic re-
gion given the TSNE (Van der Maaten and Hinton,
2008) plots at Appendix A.7.

Influence of MT Systems. As in Fig. 3 (Right),
at all query rounds, the multilingual parsers per-
form better with MT data in the training set, show-
ing that MT data is essential for improving the
parser’s performance when a large number of HTs
is not feasible. The quality of the MT data also sig-
nificantly influences the parser performance when
having no HT data in the training set. The accuracy
difference between the parsers using Google and
Bing translated data is greater than 10% when ac-
tive learning has not been performed. However, af-
ter obtaining the HT data by HAT, the performance
gaps close immediately, although the MT data of
better quality brings slightly higher performance.
When having all utterances translated by humans,
the performance differences between parsers with
different MT systems can be negligible.

Fig. 3 also demonstrates that ABE(N-BEST) out-
performs RANDOM, a strong acquisition baseline,
with all three different MT systems. ABE(N-BEST)
is also more robust to the MT systems than RAN-
DOM. The performance gaps for the parsers with
ABE(N-BEST) are much smaller than those with
RANDOM when applying different MT systems.

Figure 3: The parser accuracies across various query
rounds on the GEOQUERY(DE) test set. We use two
selection methods: ABE(N-BEST) (shown on the left)
and RANDOM (shown on the right). For each method,
we use data from different MT systems - Google, Bing,
and our bespoke manually trained MT system. This
manual MT system was developed without any pre-
training weight, utilizing a limited set of bilingual data.
The model architecture was based on the framework
proposed by Ott et al. (2018). In addition to these, we
also conducted tests without utilizing any MT data.

6 Conclusion

We have tackled the problem of data imbalance
when adapting an MSP to a low-resource language.
We presented methods to efficiently collect a small
amount of human-translated data to reduce bias
and error in the training data, assuming a realistic
scenario with an MT system and budget constraints
for human annotation. Our experiments show that
by manually translating only 16% of the dataset,
the parser trained on this mixed data outperforms
parsers trained solely on machine-translated data
and performs similarly to the parser trained on a
complete human-translated set.

Limitations

One of the limitations is the selection of hyperpa-
rameters. At present, we determine the optimal
hyperparameters based on the performance of the
selection methods on an existing bilingual dataset.
For example, to identify the appropriate utterances
to be translated from English to German, we would
adjust the hyperparameters based on the perfor-
mance of the methods on existing datasets in En-
glish and Thai. However, this approach may not
always be feasible as such a dataset is not always
available, and different languages possess distinct
characteristics. As a result, the process of tuning
hyperparameters on English-Thai datasets may not
guarantee optimal performance on English-German
datasets. As a future direction, we intend to in-
vestigate and develop more effective methods for
hyperparameter tuning to address this limitation.
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A Appendix

A.1 Sensitivity Analysis

Fig. 4 shows the parser results on GEOQUERY(DE)
test sets when we apply different coefficients or
cluster sizes to the four independent acquisitions
in ABE(N-BEST). As we can see, tuning the pa-
rameters on an existing bilingual dataset does not
necessarily bring optimal parser performance, indi-
cating there is still potential in our approach if we
can find suitable hyperparameter tuning methods.
Another finding is that the ABE(N-BEST) is robust
to the hyperparameters changes. Although chang-
ing the weights or cluster sizes for each term could
influence the parser performances, the parser ac-
curacies do not drop significantly. In addition, we
have found that the Semantic Density and Seman-
tic Diversity are more critical to ABE(N-BEST) as
there are more fluctuations in the parser accuracies
when we adjust the parameters of Semantic Density
and Semantic Diversity.

Figure 4: The parser accuracies across various query
rounds on the GEOQUERY(DE) test set by employing
the ABE(N-BEST) method. This method incorporates
varying coefficients, denoted by α, for each term. In
addition to this, we also analyze the influence of the
proportional rate, denoted by k, which represents the
number of clusters in proportion to the budget size at
each round.

A.2 Parser Accuracies on English Test Sets

Fig. 5 shows the parser accuracies on the English
test sets in different dataset settings. As we can see,
the behaviours of the acquisition, ABE(N-BEST),

on the target languages do not influence the perfor-
mance of parsers on the source languages.

Figure 5: The accuracies on the English test sets af-
ter training the parsers on the training sets of GEO-
QUERY(DE), GEOQUERY(TH), GEOQUERY(EL) and
NLMAP(DE) acquired by ABE(N-BEST) at different
query rounds.

A.3 Ablation Study of Single Terms

Figure 6: The parser accuracies at different query rounds
using each single term in ABE(N-BEST).

A.4 Ablation Study of Factorization

As in Fig. 7, at several query rounds, the parser
accuracy can be 3% - 6% higher than that using
no factorization in N-best Sequence Entropy. But
factorization does not help ABE(MAX) improve
the parser performance at all.

A.5 Ablation Study of Error Term

As in Fig. 8, we combine Translation Error
with different acquisition terms in ABE(N-BEST).
Combing Translation Error and Translation Error
achieves the best result in the low sampling re-
gions. The accuracy is even 4% higher than the
aggregated acquisition, ABE(N-BEST), when the
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Figure 7: The parser accuracies using ABE(N-BEST)
(Left) and ABE(MAX) (Right) with or without factor-
ization.

sampling rate is 1%, suggesting that resolving trans-
lation error issues for semantically representative
utterances benefits the parser more than resolving
issues for tail utterances.

Figure 8: Combining Translation Error with different
acquisition terms in ABE(N-BEST), we depict the parser
accuracies using different acquisition combinations at
each query round.

A.6 BT Discrepancy Pattern

We observe that the BT discrepancy patterns vary
as in Fig. 9. For instance, the semantics of the BTs
for Thai in GEOQUERY are altered dramatically
due to the incorrect reorder of the words. Within
NLMAP, the meanings of some German locations
are inconsistent after the BT process.

A.7 T-SNE of Ablation Results

Fig. 10 shows the T-SNE plot of the representations
of sampled utterances among all the utterances in
the training set using ABE(N-BEST) and its various
ablation settings. We encode the utterances with
the pre-trained language model in the encoder of
BERT-LSTM. We can see if we only use Semantic
Density alone, the utterances are more likely to be
in the dense region while not semantically diversi-
fied. On the contrary, the Translation Error tends
to select tail utterances in the sparse semantic re-
gions while they also lack semantic diversity. Both
terms independently result in inferior parser per-
formances. The Translation Bias and Translation
Diversity collect utterances from diverse areas, thus

Figure 9: The original utterances and their correspond-
ing machine translations and back-translations from
GEOQUERY(DE), GEOQUERY(EL), GEOQUERY(TH)
and NLMAP(DE).

providing better parser accuracies as in Fig. A.3.
Removing Semantic Diversity from ABE(N-BEST)
drops the parser performance most. As we observe,
after removing Semantic Diversity, the utterances
become more semantically similar compared to
the utterances selected by ABE(N-BEST). Over-
all, the T-SNE plot can be supplementary proof to
our claim that we should retain the representative-
ness and diversity of the utterances to guarantee
the parser performance.
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Figure 10: The representations of the English utterances selected by ABE(N-BEST) (black star) and the ablation
settings (blue cross). Red dots are the representations of all the English utterances in the training set.9525



A.8 Evidence Lower Bound (ELBO)
The maximum likelihood estimation objective of our parser is:

argmax
θ

(

˚

xs∈Xs,xt∈Xt,y∈Y
Pθ(y,xt,xs) dxs dxt dy) (10)

where xt is latent for most source utterance xs. We assume Pe(xt|xs) is a variational distribution.

logPθ(y,xs) = EPe(xt|xs)[logPθ(y,xs)]

= EPe(xt|xs)[log(
Pθ(xt,y,xs)

Pθ(xt|y,xs)
)]

If we assume a conditional independence:

≡ EPe(xt|xs)[log(
Pθ(xt,y,xs)

Pθ(xt|xs)
)]

= EPe(xt|xs)[log(
Pθ(xt,y,xs)

Pe(xt|xs)

Pe(xt|xs)

Pθ(xt|xs)
)]

= EPe(xt|xs)[log(
Pθ(xt,y,xs)

Pe(xt|xs)
] + EPe(xt|xs)[log

Pe(xt|xs)

Pe(xt|xs)
)]

= EPe(xt|xs)[log(
Pθ(xt,y,xs)

Pe(xt|xs)
)] +DKL(Pe||Pθ)

(11)

where E denotes the expectation function over a specified distribution and DKL denotes the Kull-
back–Leibler divergence between two distributions. Therefore the ELBO of logPθ(y,xs) is
EPe(xt|xs)[log(

Pθ(xt,y,xs)
Pe(xt|xs)

)].

ELBO(Pθ(y,xs)) = EPe(xt|xs)[log(
Pθ(xt,y,xs)

Pe(xt|xs)
)]

= EPe(xt|xs)[logPθ(xt,y,xs)− logPe(xt|xs)]

= EPe(xt|xs)[logPθ(y|xt)]−DKL(Pe||Pθ) + EPe(xt|xs)[logPθ(xs)]

= EPe(xt|xs)[logPθ(y|xt)]−DKL(Pe||Pθ) + logPθ(xs)

(12)
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�7 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
The space is limited.

�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
In the Experiment section.

�3 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
In the experiment section.

D �3 Did you use human annotators (e.g., crowdworkers) or research with human participants?
In the experiment section.

�7 D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
Space is limited.

�3 D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
We just use local students.

�7 D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
Left blank.

�7 D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
Left blank.

�7 D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
Left blank.
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