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Abstract

People often imagine relevant scenes to aid in
the writing process. In this work, we aim to uti-
lize visual information for composition in the
same manner as humans. We propose a method,
LIVE, that makes pre-trained language mod-
els (PLMs) Learn to Imagine for Visually-
augmented natural language gEneration. First,
we imagine the scene based on the text: we use
a diffusion model to synthesize high-quality
images conditioned on the input texts. Sec-
ond, we use CLIP to determine whether the text
can evoke the imagination in a posterior way.
Finally, our imagination is dynamic, and we
conduct synthesis for each sentence rather than
generate only one image for an entire paragraph.
Technically, we propose a novel plug-and-play
fusion layer to obtain visually-augmented rep-
resentations for each text. Our vision-text
fusion layer is compatible with Transformer-
based architecture. We have conducted exten-
sive experiments on four generation tasks us-
ing BART and T3, and the automatic results
and human evaluation demonstrate the effec-
tiveness of our proposed method. We will re-
lease the code, model, and data at the link:
https://github.com/RUCAIBox/LIVE.

1 Introduction

Natural language generation (NLG) is a fundamen-
tal technique for supporting a variety of down-
stream applications (Li et al., 2022b; Zhao et al.,
2023), e.g., text summarization, story genera-
tion, and data-to-text generation. As the main-
stream NLG approach, pre-trained language mod-
els (PLMs) can produce human-like text under the
guidance of input conditions. Despite their suc-
cess, these models are pre-trained on the text-only
corpora, and they cannot well capture visually-
grounded semantics, e.g., visual commonsense (Il-
harco et al., 2021), making it difficult to achieve
desired results when visual knowledge is required.
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To improve the generation capacity of PLMs, ex-
isting work has widely explored various methods to
incorporate visual knowledge into models, which
can be roughly divided into two lines of research.
The first line designs specific visually-enhanced
training tasks such as continual pre-training on
text-image data (Cho et al., 2021) or knowledge
distillation with vision-language models (Dai et al.,
2022). However, these methods usually perform
well only on multimodal generation tasks (e.g., vi-
sual question answering) but not text generation
tasks, due to the semantic disparity across modal-
ities (Tan and Bansal, 2020). As the second line,
several studies retrieve or synthesize images related
to the input and then fuse the image representations
into PLMs (Wang et al., 2022b; Zhu et al., 2022).
However, they simply treat the input as a whole
(even for long texts) for retrieving or synthesizing
related images, which cannot sufficiently leverage
fine-grained visual semantics.

Considering the above issues, we are motivated
by the process of human writing where they have
the ability to imagine relevant scenes from the con-
texts in their minds. These visual scenes convey
related experiences in the world that can inspire the
human’s writing (Bisk et al., 2020; Popham et al.,
2021). By imitating such behavior, we consider
NLG as a writing process of a human, where the
input text is conditioned on a set of dynamically
“imagined scenes”, i.e., synthesized images.

To this end, in this paper, we propose a novel
approach, LIVE, that enables PLMs to Learn to
Imagine for Visually-augmented natural language
gEneration. Different from previous methods, our
augmentation approach is relevant, selective, and
dynamic. To be relevant, we utilize the state-of-the-
art text-to-image model, Stable Diffusion (Rom-
bach et al., 2022), to synthesize realistic images for
fine-grained semantic units (i.e., sentences). Com-
pared to the retrieval-based approach, our method
can generate more relevant, diverse images that
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Figure 1: The overall illustration of our proposed approach LIVE, consisting of the text-related image generation
and the plug-and-play vision-text fusion layer. The fusion attention mask means that the first sentence x; lacks
visuality and will skip the fusion layer (green flow), while the second sentence x5 has high visuality, and each word
T9; of x4 will attend to the synthesized image to obtain visually-augmented text representations (red flow).

may not exist in real-world image databases. To be
selective, we evaluate the degree to which the text’s
meaning can be visualized in an image and only in-
voke the use of synthesized images when it is actu-
ally needed. To be dynamic, we synthesize images
for each sentence in the input text so that the visual
knowledge is more fine-grained compared to a sin-
gle image for the whole input. In order to deeply
fuse the visual knowledge of synthesized images,
we propose a plug-and-play vision-text fusion layer
for Transformer-based models. We also design spe-
cific mechanisms to support efficient text-image
cross-attention and enable the controllability of the
use of visual knowledge.

Our contributions are summarized as follows:

* We propose a new approach, called LIVE, to
learning to use synthesized images to improve nat-
ural language generation, imitating the process of
human writing.

* We propose a plug-and-play vision-text fusion
layer to incorporate visual knowledge and obtain
visually-augmented text representations.

* We verify the effectiveness of our approach
with BART and TS5 on four text generation tasks:
LIVE consistently outperforms these PLMs, with
an average improvement ratio of 2.44%.

2 Related Work

Pre-Trained Models. In recent years, large-scale
pre-training has achieved remarkable success and
has become the dominant technique in the NLP
community (Devlin et al., 2019; Raffel et al., 2020;
Brown et al., 2020; Zhao et al., 2023). Pre-trained
on massive text corpora, models can learn contex-
tualized representations that include both linguistic
and world knowledge (Jiang et al., 2021). Since
PLMs are trained with pure text corpora without
connection to the visual world, vision-language pre-
training (VLP) leverages image-text pairs to learn
cross-modal representations (Gan et al., 2022; Su
et al., 2020; Li et al., 2020; Radford et al., 2021).
It has been discovered that VLP models have more
visual knowledge than PLMs (Ilharco et al., 2021),
however, they cannot perform well on text-only
tasks such as language understanding (Yun et al.,
2021). In this work, we mainly focus on incorporat-
ing visual knowledge to enhance the performance
of natural language generation tasks based on ex-
isting text-only models.

Visually-Augmented Language Learning. Con-
sidering the leakage of visual knowledge in lan-
guage models, many researchers attempt to en-
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hance text-only tasks with visual information,
which is known as visually-augmented (aided or
grounded) language learning. Vokenization (Tan
and Bansal, 2020) and iACE (Lu et al., 2022) pro-
pose to treat contextualized-related images as vo-
kens and pre-train a text model to predict them
for fusing visual information. Similarly, Vid-
LanKD (Tang et al., 2021) extends finite image vo-
kens to diverse video frames and employs a knowl-
edge distillation method to acquire visual knowl-
edge. The subsequent works leverage CLIP (Rad-
ford et al., 2021) as the vision source to integrate
visual information into PLMs via CLIP output em-
beddings (Wang et al., 2022b; Guo et al., 2022)
or knowledge transfer methods (Dai et al., 2022;
Jin et al., 2022). The majority of these works
can outperform PLMs on language understanding
tasks. As for natural language generation tasks, re-
searchers mainly focus on finding suitable images
and fusing the visual representations into text-only
models using a shallow module. Some works ap-
ply generation models, such as GAN-based mod-
els (Long et al., 2021; Zhu et al., 2022) and VAE-
based models (Fang and Feng, 2022), to synthesize
(latent) images, while Liang et al. (2021), Shen
et al. (2021), and Su et al. (2022) propose to em-
ploy contextualized text embeddings to retrieve
relevant images. In our work, we utilize the su-
perior diffusion model (Rombach et al., 2022) to
synthesize high-quality images and propose a plug-
and-play vision-text fusion layer to deeply integrate
visual knowledge into PLMs and obtain visually-
augmented text representations.

Multimodal Language Generation. Multi-
modal language generation aims to produce fluent
and coherent text based on the input text or image.
Different from unimodal language generation, the
additional image serves as the background for gen-
eration. Multimodal language generation includes
tasks such as image caption (Lin et al., 2014),
visual question answering (Zhang et al., 2016),
multimodal machine translation (Elliott et al.,
2016), multimodal text summarization (Jangra
et al., 2021), visual dialog (Das et al., 2017), and
visual story telling (Huang et al., 2016). However,
the construction of these datasets requires costly
manual annotation, which hinders their widespread
application. In contrast, we do not require
text-image pairs as input and instead utilize Stable
Diffusion (Rombach et al., 2022), a text-to-image
model, to synthesize images for input texts.

3 Method

3.1 Task Formulation

Natural language generation (a.k.a., text genera-
tion) aims to capture the semantic mapping relation
from an input text X = (z1, ..., T, ..., ) tO an
output text Y = (y1, ..., Yk, ---, Yn ), Where x; and
i, denote the k-th sentences of the input and output
texts, respectively. In this paper, we focus on the
task of visually augmented natural language gen-
eration (VA-NLG). Following prior works (Zhang
et al., 2020; Wang et al., 2022b), VA-NLG further
assumes text-related image data can be obtained to
help text generation. Here, we consider a general-
ized way (e.g., retrieval and synthesis) to obtain the
related images with an image augmenter J, where
JF takes as input a sentence z (or a text) and outputs
an image i, related to z: F(z) — 1.

The goal of VA-NLG is to generate readable and
plausible output texts ) based on input texts X’ and
image augmenter J, which is formally defined as:

P(Y|X) =H (Y| X, y<is F), 1)

where yj, denotes previously-generated sentences.

With this formulation, there are two key issues
for this task: (1) how to design the image aug-
menter to obtain potentially useful images, and (2)
how to use the augmented images for improving
text generation. Considering the two issues, we
propose LIVE, a general approach to augmenting
NLG tasks with related images, with sentence-level
image synthesis via text-to-image diffusion model
(Section 3.2) and plug-and-play vision-text fusion
for using augmented images (Section 3.3).

3.2 Text-Related Image Generation

Although it is intuitive to augment PLMs with vi-
sual images, it is challenging to obtain appropriate
and helpful images for given texts. Some previous
work (Zhang et al., 2020; Tan and Bansal, 2020)
utilizes retrieval-based methods to search images
from text-image databases, such as MS COCO (Lin
et al., 2014). However, these static image resources
are limited in both guantity and content, which is
likely to result in inaccurate image retrieval.

Synthesizing Relevant Images. To circumvent
the limitation of static image resources, we instead
propose to automatically generate images for given
texts by leveraging text-to-image generation mod-
els. In contrast to previous works that utilize GAN-
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based (Esser et al., 2021) or auto-regressive (Wang
et al., 2022a) generation models, we use the state-
of-the-art Stable Diffusion model (Rombach et al.,
2022), a probabilistic diffusion model guided by
CLIP-encoded input text representations, to synthe-
size high-quality images. With Stable Diffusion,
we can flexibly perform image generation based on
different text units. Here, we consider sentences as
synthesis units, which contain a moderate amount
of information for an image. Compared with the
previous work that synthesize a single image for
the whole input, our sentence-level generation is
more fine-grained. It is inspired by the writing be-
havior of people: one would switch the imagined
scenes for different sentences.

For each input sentence xj, we apply Stable
Diffusion to synthesize its corresponding creative
image 7., . Equipped with the acceleration method
of DDIM (Song et al., 2021), Stable Diffusion is
able to synthesize photographic images normally
in 50 steps (Rombach et al., 2022). In practice,
we empirically find that using a 25-step synthesis
can usually lead to a decent performance in our
task (see Section 5.4 for more analysis about the
diffusion quality and efficiency).

Evaluating the Text Visuality. Although the
generation-based method is flexible to produce im-
ages on various topics, not all texts can inspire the
generative model to generate meaningful images,
such as the rule text “ACL 2023 requires all papers
to have a clear discussion of limitations”. Only
texts with visually rich content can be associated
with images. Previous work usually synthesizes
or retrieves images without considering the visu-
ality of texts, tending to incorporate irrelevant or
noisy images. However, it is difficult to directly
measure the visuality of a text. As a compromise,
we estimate the similarity score in a posterior way
between a sentence x; and a synthesized image 7,
using CLIP (Radford et al., 2021):

~ = CLIP(zy, ig,) € [~1,1]. )

CLIP is a vision-language model pre-trained on
a massive amount of text-image pairs using con-
trastive learning which excels at evaluating the sim-
ilarity between text and image. In our work, we
manually set a threshold value 6. If v exceeds the
threshold value, the text is considered to have high
visuality; otherwise, we consider that the text has
weak visuality and discard the synthesized image.
We will discuss the influence of 8 in Section 5.3.

3.3 Plug-and-Play Vision-Text Fusion

After synthesizing relevant images for given texts,
we study how to leverage visual images for improv-
ing text generation. Instead of using VLP mod-
els, we aim to fuse the visual knowledge into a
PLM-based backbone, since text generation is es-
sentially a language modeling task. To enhance the
cross-modality fusion, we propose a plug-and-play
vision-text fusion module to obtain deeply-fused
visually-augmented text representations.

Vision-Text Fusion for PLMs. Our fusion
module is a plug-and-play attention layer for
Transformer-based (Vaswani et al., 2017) models,
such as BART (Lewis et al., 2020) and T5 (Raf-
fel et al., 2020). We insert the fusion layer after
the self-attention layer in the encoder. Our fusion
layer is a layer-wise cross-attention module to aug-
ment the word representations with visual informa-
tion. In particular, for a sentence x; and the cor-
responding synthesized image ¢, , we first utilize
CLIP to encode the image into patch representa-
tions I, € RP*¢. Then, we feed the sentence into
the Transformer model and obtain the output rep-
resentation Sy, ; for the self-attention sub-layer in
the [-th layer of the encoder. Finally, we pass Sy,
to our [-th plug-and-play fusion layer to obtain the
visually-augmented text representations:

v=0
v<0’

3)
where + is the similarity score computed in Equa-
tion 2, and FusionLayer; conducts multi-head at-
tention on the query, key, and value matrices, fol-
lowed by residual connection and layer normaliza-
tion. Here, we introduce «y to control whether a
generated image will be used or not.

FusionLayer; (S ;, I, I),
Fi, =
Sk,

In general, such a fusion layer can be applied
to various Transformer-based PLMs and LLMs.
Note that each sentence attends to no more than
one image, as depicted in the attention matrix in
Figure 1. Compared to simply concatenating im-
ages and text as input (Liang et al., 2021), our
cross-attention-based mechanism is more efficient
while maintaining performance (see Section 5.2).
Besides, our fusion is more controllable and can
achieve fine-grained cross-attention. For example,
we can choose only nouns to be attended with im-
ages since they contain more visual information
(see Section 5.2).

9471



3.4 Optimization

In order to achieve decent performance, we can
pre-train the key component of our approach, i.e.,
the fusion layer (Section 3.3), with text-image
paired datasets. Specially, we collect the image
caption datasets MS COCO (Lin et al., 2014),
Flickr30k (Plummer et al., 2015), CC3m (Sharma
et al., 2018), and Visual Genome (Krishna et al.,
2017) as text-image pairs, and utilize the caption
text to synthesize images using Stable Diffusion to
enrich the pre-training pairs. In this way, we can
obtain 9 million text-image pairs in total. Then,
we apply image-based denoising autoencoding as
the pre-training objective, which teaches the model
to recover the caption based on a noisy text. Such
a pre-training strategy can make the fusion layer
better map the visual knowledge into text space.

Next, we describe the overall optimization pro-
cess of our approach. During pre-training, we
freeze the PLM backbone and only pre-train the
fusion layer; therefore, if we plug-out the fusion
layer, the PLM retains its original language gen-
eration ability. The fusion layer is a lightweight
module and has 18M parameters for BART g4
(140M). During fine-tuning, we utilize Stable Dif-
fusion and CLIP models to synthesize images and
compute similarity scores. These operations can
be done offline for efficiency, and the diffusion and
CLIP models will not be updated. We only need to
fine-tune the whole PLM as usual, in addition to
the small pre-trained fusion layer.

4 Experiment

4.1 Experimental Setup
4.1.1 Dataset

We conduct experiments on four text generation
datasets with diverse tasks and domains:

* E2E (Novikova et al., 2017) is a data-to-
generation task with the aim of converting multiple
input meaning representations into fluent texts.

* CommonGen (Lin et al., 2020) requires the
model to generate a coherent and reasonable text
given a collection of common concepts.

* SAMSum (Gliwa et al., 2019) is a dialogue
summarization dataset that evaluates the model’s
summary and dialogue understanding abilities.

* ROCStories (Mostafazadeh et al., 2016) con-
sists of five-sentence stories, and we utilize the first
sentence as input to generate the remaining four.

The details of the statistics and license of each

Dataset #Train #Valid #Test License
CommonGen 67,389 993 — MIT
E2E  42.061 547 630 CCBY-SA 4.0
ROCStories 176,688 9,816 4,909 N/A
SAMSum 14,732 818 819 CC BY-NC-ND 4.0

Table 1: The statistics and licenses of datasets.

dataset are listed in Table 1. For each dataset, we
utilize NLTK' to tokenize the input texts into sen-
tences, except that we treat each key-value pair in
the input as a sentence for the E2E dataset.

4.1.2 Evaluation Metrics

We adopt five automatic metrics, namely
BLEU (Papineni et al., 2002), ROUGE (Lin, 2004),
CIDEr (Vedantam et al., 2015), SPICE (Anderson
et al., 2016), and Distinct (Li et al., 2016), to
compare the performance of different methods.
BLEU, ROUGE, and CIDEr compute the n-gram
overlap between the candidate text and the
reference text(s). SPICE further takes semantic
meaning into consideration. Distinct mainly
evaluates the diversity of the generated texts and is
always used in open-ended generation tasks, such
as story generation. We also conduct the human
evaluation in Section 5.5.

4.1.3 Baseline Models

We utilize two commonly used text generation
PLMs, BART (Lewis et al., 2020) and T5 (Raf-
fel et al., 2020), as text-only baselines. We further
compare them to two multimodal VLP models:

* BLIP (Li et al., 2022a) uses a multimodal mix-
ture of encoder-decoder with the objectives of text-
image contrast, text-image matching, and language
modeling on bootstrapped text-image pairs.

* OFA (Wang et al., 2022a) unifies text and im-
age modalities using a unified architecture and
multi-task sequence-to-sequence learning. In addi-
tion, we consider a variant and attempt to use OFA
with only text, denoted by OFA w/o image.

We integrate our LIVE framework with BART
and TS5, and consider the following visually-
augmented methods as comparisons:

* VL (Cho et al., 2021) adds visual embeddings
for the original BART and T5 and conducts contin-
ued pre-training on text-image pairs.

* iINLG (Zhu et al., 2022) guides the PLM with
the machine-generated image as the visual prefix.

lhttps ://www.nltk.org/
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E2E CommonGen SAMSum ROCStories
Methods
B-4 R-L ME B-4 CIDEr SPICE R-1 R-2 R-L B-1 D-4
BLIP 45.05 5435 34.84 13.30 5.84 18.62 22.54 4.07 20.56 28.29 66.93
OFA 6720 69.18 45.12 29.34 1548 30.79 4742 2320 4345 31.70 68.16
OFA w/o image 67.63 69.08 45.19 29.54 15.46 30.84 48.12 2333 43.81 3251 70.99
BART 67.38 69.57 45.04 30.30 16.05 31.16 4992 2555 4561 3298 76.77
VL-BART 68.53 69.57 45.17 29.51 15.19 29.54 45.02 2022 40.83 3276 76.32
iNLG-BART 6471 67.19 43.14 29.80 15.80 30.78 50.75 2620 4636 3325 50.87
LIVE-BART 69.24 70.59 45.60 31.47 16.55 31.89 51.31 26.67 47.08 3346 79.98
T5 66.54 68.02 4471 26.70 15.66 30.96 4927 25.30 45.18 33.14 75.11
VL-T5 66.96 70.09 44.66 2729 1531 29.78 4991 2495 4520 33.07 75.09
LIVE-T5 68.34 71.11 46.09 2794 1584 31.36 4999 2516 45.84 33.22 77.28

Table 2: The results of four text generation tasks. B, R, ME, and D are short for BLEU, ROUGE, METEOR, and
Distinct, respectively. The best results are highlighted in bold. These setups and abbreviations are the same below.

Since iNLG does not offer a TS5 version, we can
only combine it with BART for comparison.

4.1.4 Implementation Details

For all baselines, we utilize the base versions of
PLMs, i.e., BARTgasg, TSpase, BLIPgass, and
OFAg,si, which have a comparable number of pa-
rameters to ensure a fair comparison. For BLIP,
OFA, VL-BART, and VL-T5, we provide the same
synthesized image as our method, and we fine-tune
them similarly to how they perform VQA tasks.
For iNLG, we utilize its official implementation?.

As for our method, we employ Stable Diffusion
v1.4 with half precision® to synthesize images in 25
timesteps for efficiency. Then, we adopt CLIP-ViT-
B/32 to judge the similarity between text-image
pairs and extract image features. We empirically
set the threshold value § = 0.27. After extraction,
an MLP layer is appended to project the image rep-
resentation into the text space and obtain an image
representation I; € R%0*7%® The aforementioned
operations can be performed offline for efficiency.

In the pre-training stage of our fusion layer, we
mask 50% of the input text with span lengths drawn
from a Poisson distribution with A = 3.5 for BART
and force the model to recover the input with the
image. As for TS5, we split the caption into two
parts and train the model to generate the second
part using the first part and the image. We pre-
train the fusion layer with a batch size of 384, opti-
mize BART using AdamW (Loshchilov and Hutter,
2019) with a constant learning rate of 1 x 1075, and
optimize TS5 using Adafactor (Shazeer and Stern,
2018) with a learning rate of 1 x 1073,

Zhttps://github.com/VegB/iNLG
Shttps://huggingface.co/CompVis/
stable-diffusion-vi-4

In the fine-tuning stage, we tune the entire
model, including the PLM backbone and the fu-
sion layer. We set the batch size to 32 and em-
ploy the same optimizer and learning rate as in
pre-training. We optimize the model using cross-
entropy sequence-to-sequence loss with a label
smoothing factor (Szegedy et al., 2016) of 0.1. Dur-
ing inference, we choose the checkpoint with the
highest validation metric score for generation. Dur-
ing generation, we apply beam search with a beam
size of 5 for E2E, CommonGen, and SAMSum,
while utilizing the nucleus sampling with p = 0.9
and ¢t = 0.7 for ROCStories.

All the experiments are conducted using the text
generation library TextBox (Tang et al., 2022) on
NVIDIA GeForce RTX 3090 24GB GPUs using
Ubuntu 20.04.1 SMP. All these hyper-parameters
are identical for our method and baselines.

4.2 Experimental Results

Based on the results in Table 2, we can find that:

Firstly, the results of multimodal models (i.e.,
BLIP and OFA) cannot achieve satisfactory results
when compared with text-only models (i.e., BART
and T5) on pure text tasks. This finding further
proves the existence of semantic disparity (Tan and
Bansal, 2020) across modalities of generation tasks.
OFA without images even outperforms OFA with
images slightly, which indicates that images may be
a burden for text generation tasks when the fusion
method is not appropriate.

Secondly, the visually-augmented methods (i.e.,
VL-BART, VL-T5, and iNLG) can achieve supe-
rior performance than their base PLMs on certain
tasks but cannot achieve overall improvement on all
tasks. A major reason might be that they synthesize
only one image for each input without considering
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0.1% 0.3% 1% 3%
Methods
B-4 R-L ME B-4 R-L ME B-4 R-L ME B-4 R-L ME
BART 50.58 57.95 3237 56.18 6234 36.02 62.11 6638 3934 6525 68.15 42.18
iNLG-BART 2840 53.89 2598 39.15 58.63 30.05 4866 62.12 3331 61.74 6575 38.05
LIVE-BART 51.67 6041 33.06 60.87 6432 38.22 63.31 67.00 4030 6599 69.08 43.00

Table 3: The few-shot experiments on the E2E dataset.

its relevance and sentence-level semantics.
Finally, our LIVE method can outperform all
baselines on all four text generation tasks. Equip-
ping BART with our LIVE method, LIVE-BART
can outperform its text-only counterpart BART by
2.80% in ratio. LIVE can also work with T35, yield-
ing an average improvement of 2.08%. These au-
tomatic results demonstrate the effectiveness and
compatibility of our text-related image generation
approach and plug-and-play fusion layer.

5 Further Analysis

In this section, we conduct various experiments to
test the efficacy of our methods. The tuning details
are identical to those introduced in Section 4.1.4.

5.1 Few-Shot Results

We investigate the performance of our LIVE meth-
ods in a low-resource situation. We keep 0.1%,
0.3%, 1%, and 3% of the training set for the E2E
dataset. For each split, we choose five independent
groups to decrease the randomness. From the re-
sults in Table 3, we can observe that our methods
remarkably boost the performance under few-shot
settings compared with baselines, especially in ex-
treme situations (0.1% and 0.3%). We assume that
synthesized images can provide visual knowledge
as a supplement when training data is scarce.

5.2 Ablation Study

To examine the effectiveness of the different factors
of our LIVE methods, we conduct four groups of
experiments for ablation. The results are reported
in Tables 4 and 5. First, we can see that the pre-
training of the vision-text fusion layer is beneficial.

Second, we replace the image augmenter F Sta-
ble Diffusion with two variants: a text-image re-
triever CLIP (Radford et al., 2021) and a text-to-
image synthesizer VQGAN (Esser et al., 2021).
We can find that the synthesis-based methods are
superior to the retrieval-based ones since they can
generate relevant images which may not exist in a
static database. Compared with VQGAN, Stable

B-4 R-L ME

LIVE-BART 69.24 70.59 45.60

w/o pre-training  68.02  69.72  45.33
Image augmenter

CLIP 65.70 68.65 44.63

VQGAN 67.13 69.42 45.15
Fusion method

Concatenation 67.30 69.37 45.12

Self-attention 68.08 69.72 45.28

Table 4: Ablation analysis on the E2E dataset. The
experiments with different image augmenters and fusion
methods are conducted without pre-training.

Image source B-4 R-L ME

Sent-level (Ours) 69.24 70.59 45.60
Doc-level 68.25 70.24 4526
Selective sent-level  69.30 70.62  45.69
‘Word-level 67.67 69.58 4536

Table 5: Further analysis on the different granularities
of different image synthesis strategies.

Diffusion can synthesize high-quality images and
provide more visual knowledge for text generation.

Third, we investigate the fusion method of visual
representations and make two variants of our cross-
attention-based fusion. “Concatenation” means to
concatenate the image representations and the en-
coder output as the input for the decoder, while
“Self-attention” means to concatenate the image
representations and the text representations as the
input for the encoder. The results indicate that
the deep fusion of text and vision representations
is beneficial and the cross-attention-based method
and self-attention-based method are comparable,
which is consistent with Gan et al. (2022). Thus,
we utilize cross-attention as the fusion method be-
cause it is more efficient and controllable.

Finally, we explore our dynamic and controllable
fusion layer. To be dynamic, we synthesize one im-
age for each sentence in the input (denoted as “Sent-
level”) and attempt two variants that synthesize one
image for the whole document (“Doc-level”) or
each word in the document (“Word-level”). The re-

9474



71
-m BLEU

ROUGE
70

Score
D
=

681

6
0 0.24 0.26 0.28 0.3 032 1
6

Figure 2: Varying the similarity threshold value 6.

68.51

68.0

67.59

67.04

66.5 1

Rand. Neg. 25 50 100 200 400

Figure 3: Varying the number of diffusion steps.

sults prove the effectiveness of our sentence-level
synthesis compared with previous method (Zhu
et al., 2022) that only generates one image for the
input. However, too many images actually lead
to poor performance. In addition, we investigate
a fine-grained cross-attention based on sentence-
level synthesis (“Selective sent-level”). We only
make noun words visually-augmented and make
the other words skip the fusion layer. The results
show that the fine-grained fusion may be promising,
and we leave it for future work.

5.3 Model Sensitivity w.r.t. the Similarity
Threshold Value ¢

In Section 3.2, we set a threshold value 6 to mea-
sure the text visuality. Here, we investigate the
model’s performance when 6 varies. If § = 0, all
the sentences will be visually-augmented. If § = 1,
all the sentences will not be visually-augmented,
and it degenerates to text-only BART. As shown in
Figure 2, LIVE-BART with § = 0.27 achieves the
best performance, and we find that 0.27 is close to
the median of text visuality scores, i.e., nearly half
of the sentences will be augmented and the others
will not be. Therefore, we set § = 0.27 for our
LIVE methods in experiments.

Datasets LIVE+BART wins Ties BART wins
E2E 29% 56% 15%
CommonGen 24% 58% 18%
SAMSum 40% 34% 26%
ROCStories 48% 11% 41%

Table 6: Human evaluation on four generation tasks.

5.4 Model Sensitivity w.r.t. the Synthesized
Images

In this subsection, we first demonstrate that visual
information is truly favorable for text generation.
Following the previous works (Zhang et al., 2020),
we replace the image representations with random
noise or utilize the input text as a negative prompt
to synthesize irrelevant images. The results in Fig-
ure 3 further prove the necessity of visual knowl-
edge for text generation. Moreover, we vary the
number of diffusion steps since it is a trade-off
between synthesis quality and efficiency. Surpris-
ingly, increasing the diffusion steps will not lead
to performance gains. We speculate that diffusion
with certain steps can provide enough visual knowl-
edge for the PLM, and more steps may just help to
achieve higher resolution. Thus, we only synthe-
size for 25 steps considering the efficiency.

5.5 Human Evaluation

Considering that the automatic evaluation may be
inconsistent with human judgments, we further in-
vite five college students to assess the generated
texts. We randomly choose 100 samples from the
test set of each dataset and showcase the generated
texts of both BART and LIVE-BART. The annota-
tors should choose which one is better or choose
a tie based on their subjective feelings. From the
results in Table 6, we can observe that our LIVE
method can make BART generate more satisfactory
texts in all tasks.

6 Conclusion

In this paper, we present the LIVE method for
natural language generation. First, we propose an
imagination-based method, imitating the process
of human writing. It is a relevant, selective, and dy-
namic approach that leverages Stable Diffusion to
synthesize images for each input sentence and dis-
card the images with lower text visuality computed
by CLIP. Furthermore, we introduce a plug-and-
play vision-text fusion layer to deeply incorporate
visual knowledge into PLMs and obtain visually-
augmented text representations for text generation.
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Extensive experiments have demonstrated that our
LIVE methods are compatible with two PLMs (i.e.,
BART and T5) and can achieve superior perfor-
mance over all the baseline models.

In future work, we will investigate how to syn-
thesize more relevant images based on the input
prompt and design a finer fusion method for better
aligning different words and images. We will also
attempt to extend our methods to more tasks (e.g.,
language understanding) and PLMs (e.g., BERT).
Besides, it is meaningful to explore the probability
of combining our LIVE method with existing large
language models (Zhao et al., 2023) to enhance
their representation and generation capabilities.
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Limitations

We only conduct experiments on four natural lan-
guage generation tasks without considering the ex-
pandability to more NLP tasks, such as language
understanding or reasoning. It is also meaning-
ful to investigate the robustness of our methods
with different text formats (e.g., text length and
literary form), i.e., examine which situations and
why our methods can achieve better performance.
Due to the limitation of computing power, we do
not explore the effectiveness of our methods under
different PLMs with various scales. Besides, we
utilize CLIP to evaluate the text visuality and en-
code images into representations, and this is also
interesting to research which vision encoder has
higher suitability with PLMs.
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