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Abstract
Large, multilingual language models exhibit
surprisingly good zero- or few-shot machine
translation capabilities, despite having never
seen the intentionally-included translation ex-
amples provided to typical neural translation
systems. We investigate the role of inciden-
tal bilingualism—the unintentional consump-
tion of bilingual signals, including translation
examples—in explaining the translation capa-
bilities of large language models, taking the
Pathways Language Model (PaLM) as a case
study. We introduce a mixed-method approach
to measure and understand incidental bilin-
gualism at scale. We show that PaLM is
exposed to over 30 million translation pairs
across at least 44 languages. Furthermore,
the amount of incidental bilingual content is
highly correlated with the amount of monolin-
gual in-language content for non-English lan-
guages. We relate incidental bilingual con-
tent to zero-shot prompts and show that it
can be used to mine new prompts to improve
PaLM’s out-of-English zero-shot translation
quality. Finally, in a series of small-scale abla-
tions, we show that its presence has a substan-
tial impact on translation capabilities, although
this impact diminishes with model scale.

1 Introduction

Recent work has shown that large language mod-
els (LLMs) exhibit impressive capabilities in per-
forming various natural language generation tasks,
even in the zero-shot paradigm. In particular, such
models have shown interesting machine translation
(MT) capabilities (Brown et al., 2020; Chowdhery
et al., 2022; Vilar et al., 2022)—especially when
translating into English, despite never having been
explicitly and intentionally exposed to translation
data in the way their supervised counterparts are.
This raises the question: where do these translation
capabilities come from?

We hypothesize that the translation capabilities
of LLMs connect to incidental bilingualism: the

unintentional consumption of bilingual text within
a single training instance. To test this hypothesis,
we take PaLM (Chowdhery et al., 2022)—a 540-
billion parameter Transformer language model—as
a case study. We first conduct a large-scale analy-
sis of its training data in order to characterize the
nature and quantity of bilingual text, then perform
experiments to assess the impact of this text on
translation performance.

To measure incidental bilingualism at scale, we
develop a processing pipeline that alternates be-
tween quantitative and qualitative analysis (§3):
first detect bilingual versus monolingual text us-
ing a language tagger, then qualitatively analyze
the nature of bilingual text, and finally measure
the amount of translation data within bilingual
instances. Our analysis spans 44 languages, for
which we study bilingualism paired with English.
Our findings are:

• In all, 1.4% of PALM’s training instances are
detected as bilingual, while 0.34% contain at
least one translated sentence pair. We were
able to mine such pairs across all languages
studied; therefore, none of these languages is
truly zero-shot in the context of translation.

• The number of monolingual instances in a lan-
guage is predictive of the number of instances
containing bilingual or translation content for
that language (paired with English).

After establishing that both bilingual and trans-
lation content are incidentally consumed during
PaLM’s training, we study how they connect to its
MT capabilities (§4). We run a series of training
and prompting experiments and found that:

• Prompting the full PaLM model with alter-
native, data-driven prompts improves out-
of-English zero-shot translation by 14 chrF
points on average across languages, indicating
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that its zero-shot translation capabilities were
underestimated due to sub-optimal prompts.

• Ablating detected translation pairs with
smaller versions of PaLM has a dramatic
effect on the translation capabilities of 1B-
parameter models for high-resource lan-
guages, reducing average into-English zero-
shot results by 7.4 BLEU and 5-shot results by
5.9 BLEU. The effect falls off but remains no-
table (+2-3 BLEU across several conditions)
as we scale to 8B-parameter models.

2 Related Work

Translation Capabilities of LLMs Large-scale
generative language models, such as GPT-3 (Brown
et al., 2020), PaLM (Chowdhery et al., 2022), and
XGLM (Lin et al., 2021) have been shown to exhibit
translation capabilities, despite not being explic-
itly trained to translate. These capabilities are sur-
prisingly strong, particularly when translating into
English with few-shot examples. One explanation
for this behavior is that it results from incidental
multitask learning (Radford et al., 2018; Sanh et al.,
2021). This hypothesis has not been explored for
MT, where recent work has mostly focused on im-
proving LLM translation capabilities by optimizing
few-shot prompting strategies (Vilar et al., 2022;
Agrawal et al., 2022). Rather than trying to im-
prove translation quality for LLMs, our goal is to
understand where their translation abilities stem
from by tracing them back to the properties of the
pretraining data.

Large-Scale Data Analysis LLMs rely on mas-
sive amounts of unlabeled corpora for training.
These corpora are primarily acquired by combining
heterogeneous online resources (e.g., Wikipedia,
Web forums, Common Crawl, etc.)—whose prop-
erties are usually unknown. Recent work on large-
scale analysis has shed some light: Dodge et al.
(2021) analyze C4 (Raffel et al., 2019)—a dataset
created from a snapshot of Common Crawl—and
show that it contains machine generated texts as
well as evaluation samples from commonly used
NLP benchmarks; Kreutzer et al. (2022) manually
audit the quality of multilingual datasets and find
systematic quality issues amongst popular pretrain-
ing datasets. Most related to our work, Blevins
and Zettlemoyer (2022) show that popular corpora
routinely used for training English-only LLMs con-
tain a non-negligible amount of non-English text,

which helps explain their cross-lingual capabilities.
Their manual analysis of corpus subsamples covers
several bilingual categories, including a translation
category. But where analysis of bilingualism is a
side result of their work, it is our primary contribu-
tion. We extend their work by proposing automatic
tools to quantify bilingualism at scale and directly
relate it to LLM translation performance.

Eliciting Knowledge from LLMs Prompting
language models to elicit knowledge acquired dur-
ing pre-training has received a lot of research inter-
est. Petroni et al. (2019) show that LLMs can recall
factual knowledge by answering queries structured
as cloze statements. Jiang et al. (2020) further show
that query-based prompts outperform manually cre-
ated cloze statements, suggesting that the latter
provide a lower bound estimate on the actual abili-
ties of LLMs. Follow-up work confirms those find-
ings by suggesting better prompts with automatic
generation methods (Shin et al., 2020) or prompt
engineering (Reynolds and McDonell, 2021). We
similarly explore how to extract translation knowl-
edge from LLMs using data-driven prompts.

3 Measuring & Understanding
Incidental Bilingualism

We introduce a mixed-method approach (Creswell
and Clark, 2017; Shorten and Smith, 2017) to mea-
sure and understand incidental bilingualism—the
unintentional consumption of bilingual signals—
at scale. Since we expect bilingual signals to be
rare, we explore the huge data space by alternating
between quantitative and qualitative steps, with re-
sults from each step complementing and informing
one another (Figure 1). The quantitative steps play
the role of inducing a smaller-scale focus space to
study, while the qualitative steps provide insights
into the nature of bilingual signals.

Preliminaries PaLM’s pretraining dataset con-
sists of 780 billion tokens from a mixture of multi-
lingual sources (social media conversations (50%),
filtered webpages (27%), and Wikipedia (4%)), pre-
sumably English sources (books (13%) and news
articles (1%)), and source code (5%). PaLM was
trained on 2,048-subword-token examples formed
by concatenating and truncating documents. As
PaLM is a multi-source LM, a document may be
a web page, a book, or a conversation, depending
on the source. Our primary units for data analy-
sis are instances we created by splitting training
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Figure 1: A mixed-method approach to measure and
understand incidental bilingualism at scale. We alter-
nate between quantitative and qualitative steps to de-
tect (§3.1) and analyze (§3.2) bilingual instances, then
detect (§3.3) and analyze (§3.4) translation instances.

examples along document boundaries. As such,
each instance is either a complete document or a
contiguous fragment of one, up to 2,048 tokens in
length. A more detailed discussion of instances is
given in Appendix A.

We study bilingualism between English and 44
other languages. We choose language pairs that: a)
are supported by our language identification mod-
els, and b) have FLORES-101 (Goyal et al., 2022)
evaluation data. We divide languages into high,
medium, and low-resource groups according to
their monolingual instance counts, as shown be-
low:

HIGH FR, DE, ES, IT

MEDIUM PT, RU, ZH, JA, AR, ID, KO, VI, FA, SR, UK

LOW PS, HY, IW, BG, KK, BE, HI, UR, EL, TH,
MK, KY, BN, KA, TG, SD, NE, TA, MN, PA,
TE, ML, MR, AM, MY, KN, KM, GU, LO

3.1 Detecting Bilingual Instances
Our first goal is to automatically detect all training
instances that contain bilingual text without presup-
posing a specific granularity for bilingualism. To
that end, we use CMX (Zhang et al., 2018)—a lan-
guage identification model for codemixed texts—to
produce a sequence of token-level language tags
for each training instance. An instance is labeled
as bilingual if it contains at least two contiguous
segments in different languages, each consisting
of at least N consecutive identical language tags.
Instances with more than two languages are inter-
preted as bilingual, as discussed in Appendix B.
One of the two languages must always be English,
both to simplify our analysis and to work within
the limits of the CMX tool.

Findings Figure 2 presents the per-language
monolingual and bilingual instance counts. We
include raw counts per language in Table 7. We

Figure 2: Number of monolingual, bilingual, and trans-
lation instances detected within PaLM’s training data.
PaLM consumes bilingual signals, including transla-
tion examples, across (at least) 44 languages.

observe that across the languages studied, PaLM
consumes bilingual instances that, in total, account
for 1.4% of its training instances.

3.2 Characterizing Bilingual Instances

Next, we turn to understanding the nature of bilin-
gual instances detected by the above procedure.
To make manual analysis easier, we used the
KnowYourData tool1 to highlight spans of the less
frequent language in each bilingual instance.

Findings Our qualitative analysis of a sample
of 100 English-French bilingual instances reveals
that bilingualism manifests in various cross-lingual
phenomena (examples of bilingual instances are
presented in Table 8 of Appendix E). Our detec-
tion approach is reasonably accurate: only 5% of
instances correspond to errors mostly attributed
to language identification issues (i.e., the detected
instances are indeed bilingual, but at least one of
the two languages is not English or French). Each
correctly detected bilingual instance is annotated
as belonging to one of five categories, with the
typology shown in Figure 3.

Most bilingual instances (55%) fall under the
broader class of “Not Translations” and cover cases

1https://knowyourdata.withgoogle.com
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Figure 3: Typology of bilingual instances, along with
their distribution within an EN-FR annotated sample.
Bilingual instances cover a range of cross-lingual phe-
nomena, including cases of translated content.

where the two languages encode information that
does not correspond to translation content. This
class is further decomposed into three sub-classes.
First, we found a few instances (10%) of code-
switching where one or two speakers alternate be-
tween two languages in the context of a single
conversation. As expected, most code-switching
instances were spotted in social media conversa-
tions, as it is primarily used within multilingual
communities in informal communication. Second,
we observed that many bilingual instances (21%)
are attributed to references, where named entities
or bibliography entries are cited in their native lan-
guage, such as instances drawn from Wikipedia.
Third, we also found a considerable number of
bilingual instances (24%) that include completely
unrelated content in the two languages that just
happened to co-exist within the same web page.

The remaining bilingual instances are evenly
distributed (20%) across two categories that fall
loosely under the rubric of “Translations”. Here,
we distinguish between cases where some amount
of the text expresses a typical translation relation
and cases where content across languages is se-
mantically related, but not exactly by translation.
The latter involves a rich spectrum of cross-lingual
semantic relations, including cross-lingual entail-
ment, summarization, and paraphrasing, mainly
noticed within books in the genre of literary crit-
icism and interpretation. We also spotted a few
cases of forum discussions around explanations of
translation or stylistic manipulation of translations.

3.3 Detecting Translation Pairs

Our manual analysis exposed an opportunity to au-
tomatically extract and count translated sentence
pairs (translation pairs for short). We cast the

problem of within-instance translation detection
as a local mining task following recent advances
in parallel text acquisition. Concretely, for each
bilingual instance from §3.1, we run a sentence
breaker and extract two pools of candidate sen-
tences x and y in the two languages. The language
of each sentence is inferred by majority voting over
token-level language tags. Whichever language has
fewer sentences is labeled the embedded language
and the other becomes the primary. Each candidate
sentence is then encoded to a vector representation
using the LABSE (Feng et al., 2022) cross-lingual
sentence encoder. Translation pairs are extracted by
finding the most similar primary sentence for each
embedded sentence and then checking whether the
cosine distance of their representations falls below
a threshold. We choose a threshold of 0.6 on the
cosine distance to mine plausible translation pairs,
following Feng et al. (2022). We also apply a series
of length-and-language-based heuristic data quality
filters, adapted from Alibaba’s WMT Data Filter-
ing submissions (Lu et al., 2018, 2020), described
in Appendix C.

Note that this extraction process is oblivious to
document structure: the instance may be formatted
as parallel sentences, paragraphs, documents, or
as a free-form discussion that happens to mention
both a sentence and its translation. Our extraction
is also incapable of detecting translation relations
below the sentence level. If we can extract at least
one translation pair from an instance, then we label
it as a translation instance.

Findings We find that 0.34% of PaLM’s train-
ing instances contain at least one translation pair.
Note that this number provides a lower bound on
the amount of incidental bilingualism and trans-
lation that PaLM consumes, as we are restricted
to a specific set of language pairs, and we only
study bilingualism with English. Figure 4 presents
the number of translation pairs we mined within
PaLM’s training instances between English and
each language. At a minimum, PaLM consumes
thousands of parallel texts for all language pairs
studied, while for high-resource languages it sees
more than a million translation pairs.

Furthermore, we investigate the correlation be-
tween the number of monolingual instances in each
language and their bilingual and translation coun-
terparts. Our results in Figure 5 indicate that, sur-
prisingly, the monolingual counts in each language
correlate strongly with the bilingual (r=0.944) and
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Figure 4: Number of mined translation pairs within
PaLM’s training instances. PaLM consumes thousands
of translation pairs across (at least) 44 languages.

translation (r=0.938) counts. This strong correla-
tion implies that, when working at scale, we can
predict the bilingual and translation sizes for a
given language (within an error rate) by simply
counting monolingual instances.

3.4 Discovering Natural Prompts
After identifying a smaller-scale set consisting of
training instances that contain translation pairs, we
further manually inspect them to understand how
the translation task is naturally modeled by PaLM.
We find that sentence-level translations are pre-
sented within a training instance in three ways. The
majority of them appear across paragraphs and do
not follow a canonical pattern. Among the remain-
der, we noticed two canonical patterns: translation
pairs that belong to stacked translated paragraphs
(e.g., {x1, x2, y1, y2}) and interleaved translations
where a sentence and each translation are adjacent
to each other (e.g., {x1, y1, x2, y2}). Among the
latter, we saw an opportunity to extract natural
prompts automatically. We do so by analyzing
the prefixes of the translation pairs mined in §3.3.
Drawing on our manual observations, we mine the
most frequent prefixes per language pair that fol-
low a simple colon prompt format: any sequence
of non-whitespace characters followed by a colon.
Finally, we manually filter the automatically mined

(a) r = 0.944

(b) r = 0.938

Figure 5: Pearson correlations between counts of
monolingual instances with (a) bilingual and (b) trans-
lation instances. The number of bilingual and transla-
tion instances correlates strongly with the number of
monolingual instances.

Default Code Native Translation
HIGH 1,207 506 781 831
MEDIUM 219 62 136 352
LOW 38 0 64 122
ALL 1,464 568 981 1,305

Table 1: Data-driven prompt counts within PaLM’s
translation pairs, grouped by resourcedness.

prefix lists to look for consistent natural prompt
patterns across languages.

Findings Table 1 presents the results of our
prompt discovery module followed by manual fil-
tering to extract plausible translation prefixes. First,
we found empirically that one of the most frequent
translation prompts that naturally arises in the data
is the default prompt adopted by most MT research
with LLMs: source and target language names
in English followed by a colon (e.g., “French:”).
We also found three alternative prompts that are
frequently presented within incidental translation
pairs: i) code: source and target ISO language
codes (e.g., “FR:”), ii) native: source and target
language names in their respective languages (e.g.,
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Default (zero) Code (zero) Native (zero) Translation (zero) Default (few) Native (few)
QUAL. LANG.% QUAL. δ LANG.% QUAL. δ LANG.% QUAL. δ LANG.% QUAL. LANG.% QUAL. δ LANG.%

EN→XX

HIGH 52.8 81.5 56.7 4.0 89.7 60.8 8.0 99.5 59.1 6.3 96.2 62.9 99.7 63.1 0.2 99.7
MEDIUM 30.6 64.8 17.2 −13.4 33.4 46.1 15.5 92.8 44.6 14.0 81.7 53.4 99.7 53.4 −0.0 99.7
LOW 28.3 69.0 2.7 −25.6 3.4 42.3 14.0 98.6 38.1 9.8 82.4 47.4 100.0 47.4 0.0 100.0
ALL 31.1 69.1 11.2 −19.9 18.8 45.0 13.8 97.2 41.6 10.5 83.5 50.3 99.9 50.3 0.0 99.9

XX→EN

HIGH 37.6 99.7 38.5 0.9 99.6 37.7 0.1 99.7 35.4 −2.2 99.1 40.6 99.7 40.8 0.2 99.7
MEDIUM 36.9 99.5 34.8 −2.1 94.0 36.6 −0.3 99.1 35.1 −1.8 95.7 40.0 99.6 40.0 0.2 99.6
LOW 30.9 99.3 28.5 −2.3 93.7 28.4 −2.5 98.8 28.8 −2.1 90.3 35.4 99.7 35.4 0.0 99.6
ALL 33.0 99.4 31.0 −2.0 94.3 31.3 −1.7 99.0 31.0 −2.0 92.4 37.0 99.7 37.0 0.0 99.6

Table 2: Comparison of prompt selection on FLORES devtest, for zero- and few (5)-shot prompting. QUAL. corre-
sponds to translation quality (chrF for EN→XX, BLEU for XX→EN), LANG.% represents PaLM’s sentence-level
accuracy in producing text in the correct target language, and δ gives the translation quality difference from the
“Default" prompt. Native data-driven prompts improve zero-shot, out-of-English (EN→XX) translation quality
largely by guiding PaLM to generate text in the correct target language.

“Français:”), iii) translation: source language in
English, and the word “translation” in the target lan-
guage (e.g., “Traduction:”). Interestingly, prompt
types are not evenly distributed across our language
groups: language codes appear primarily with high-
resource languages, while low-resource languages
favor prompts written in their native language. We
include a complete list of prompt counts per lan-
guage in Figure 6 of Appendix E.

4 Analyzing the Impact of Bilingualism

We analyze the impact of bilingualism on the trans-
lation capabilities of PaLM with a series of MT ex-
periments on the FLORES-101 (Goyal et al., 2022)
evaluation set, which provides translations of a
common set of English Wikipedia sentences into
all of our 44 languages. We report results on the
1,012 sentence devtest set. We use the 997 sen-
tence dev set primarily as a source of randomly-
drawn exemplars when reporting 5-shot results.
We report BLEU (Papineni et al., 2002) for into-
English translation and chrF (Popović, 2015) for
out-of-English translation, both computed by Sacre-
bleu (Post, 2018) with default settings. For LLM-
based translation, we follow the template from Vi-
lar et al. (2022) unless stated otherwise:

[source]: [X]

[target]:

where [source], and [target] are the source and
target language names (in English) and [X] is the
source text. When present, few-shot exemplars are
provided above the template in the same format, as
detailed in Appendix D.

4.1 Prompting PaLM with Natural Prompts
We prompt the original 540B parameter PaLM
model with templates that use naturally-occurring

prefixes of incidental translations, as discussed
in §3.4. In our template, we replace [source]
and [target] with each alternative, data-driven
prompt. We experiment with zero-shot and 5-shot
prompting.

Findings Table 2 presents average translation
quality results for different prompts across high,
medium, and low resource settings. We present the
complete, per language results in Table 9 of Ap-
pendix E. When translating into English (XX→EN),
the default prompt yields the best results, while al-
ternative prompts result in a small degradation in
quality; overall, translating into English seems to
be robust across different prompts supported by
our data. On the other hand, PaLM’s translation
quality is surprisingly sensitive to the choice of
prompt when translating out of English (EN→XX):
simply changing the default prompt to its native
variant improves quality by 14 chrF points, with
most of the improvement reported in medium and
low-resource languages. The “translation” prompt
also yields consistent improvements over the de-
fault. Finally, prompting with language codes only
improves translation out of English for the high-
resource group—this is expected as this prompt
was only present for a few high-resource languages.
Further analysis of out-of-English results reveals
that native prompts trigger text in the desired lan-
guage, while the default prompt results in high rates
of generating the wrong target language (see gray
percentages in Table 2). The output’s target lan-
guage is determined by a sequence-level language-
identification tool (Botha et al., 2017).

Finally, although choosing natural prompts that
arise from the data can help us better understand
PaLM’s zero-shot capabilities, large differences
between prompts do not carry over to the few-shot
setting (right-most columns of Table 2).
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4.2 Extrinsic Evaluation of Translation Pairs

It is one thing to report counts of translation pairs
mined from bilingual instances, but is the result-
ing bitext of high quality? We adopt the paral-
lel text quality evaluation framework of the WMT

Shared Task on Parallel Corpus Filtering and Align-
ment (Koehn et al., 2020) and train supervised neu-
ral machine translation models from scratch on the
mined translations. This allows us to jointly assess
the quality of PaLM’s translation content and our
extraction heuristics. We focus this analysis on
FR→EN, PaLM’s highest-resource language pair.

Data For PaLM translation pairs, we explore a
number of thresholds on the LABSE distance. To
put our results in perspective, we additionally train
a model on all pairs from the WMT14 FR→EN

task (Bojar et al., 2014) and on random samples
thereof to establish fair data comparison points at
notable LABSE thresholds. Sentence counts for all
conditions are shown in Table 3.

Architecture We adopt the 6-layer encoder-
decoder Transformer Base (Vaswani et al., 2017)
architecture, with minimal hyper-parameter tun-
ing. Shared sentence piece (Kudo and Richard-
son, 2018) vocabularies with 32K tokens are con-
structed from bitext for each scenario. Dropout is
set to 0.3 for all systems except for the full WMT

system, which uses 0.1. Systems are trained up to
450K steps with a batch size of 1,024. Checkpoints
are selected by FLORES dev BLEU.

Findings Table 3 presents the results of our anal-
ysis. In general, the mined translation pairs from
our analysis pipeline provide useful signal for train-
ing supervised MT systems with reasonable trans-
lation quality (i.e., 37 to 38 BLEU across various
thresholds, compared to 41 that we achieve using
40M translations from available WMT parallel cor-
pora). Moreover, these results confirm that 0.6
seems to be the right threshold for detecting trans-
lation pairs that are useful, or at least not harmful
in the presence of other positive signals (i.e., at 0.6
we are within 1 BLEU point of a system trained on
the same amounts of WMT parallel text).

4.3 Ablating Incidental Bilingualism

We now explore the impact of bilingualism on the
translation capabilities of PaLM. To do so, we con-
duct smaller-scale experiments by training 1B and
8B parameter models on different training samples

t #TRANSLATIONS PaLM (mined) WMT

N/A 40,836,876 7 42.0
0.90 9,084,429 33.7
0.80 7,056,441 35.7
0.70 4,874,173 36.4
0.60 3,341,187 37.3 38.1
0.50 2,474,703 37.2
0.40 1,948,820 37.1
0.30 1,477,535 38.4 36.5
0.20 906,937 37.8
0.15 549,705 36.3

Table 3: BLEU scores for FR→EN NMT models trained
on various translation pairs, evaluated on FLORES de-
vtest. t corresponds to the LABSE threshold. PaLM-
mined translation pairs provide useful signal for train-
ing supervised NMT models.

to measure the effect of removing various types of
multilingual data.

Architecture Our 1B and 8B models are scaled-
down versions of PaLM with small changes. Like
PaLM, each is a decoder-only model trained with
a causal language modeling objective, using a
dense transformer architecture and a sentence piece
tokenizer (Kudo and Richardson, 2018) that re-
tains spacing information. Unlike PaLM, we do
not share key and value tensors across attention
heads (Shazeer, 2019), which should affect only
decoding speed. We include a hyper-parameter
summary in Table 6 in Appendix E. Also, we use a
smaller vocabulary size of 128K tokens compared
to PaLM’s 256K tokens, a concession to fit the
models onto available hardware. Both 1B and 8B
train on examples of 2,048 tokens with a batch size
of 512 for 100K steps. Note that using the same
number of examples for both scales means that
the 8B models are likely under-trained; however,
holding data quantity constant is useful for directly
measuring the effect of model scale.

Data To simulate PaLM’s data conditions with
smaller models, we begin by partitioning PaLM’s
training instances into four non-overlapping groups:
ENG: English instances, NEN: non-English (ex-
cluding bilingual) instances, BIL: bilingual (ex-
cluding translation) instances, and TRA: transla-
tion instances. We then merge instances within
their groups into 2,048 token examples. Count-
ing examples from each group allows us to de-
termine the full data’s implicit mixture of these
groups: ENG: 84.4%; NEN: 14.1%; BIL: 1.0%;
TRA: 0.5%. These should not match the instance-
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EN→XX (0-shot) EN→XX (5-shot) XX→EN (0-shot) XX→EN (5-shot)
FULL -TRA -BIL -NEN FULL -TRA -BIL -NEN FULL -TRA -BIL -NEN FULL -TRA -BIL -NEN

HIGH 15.7 16.4 15.6 15.1 30.9 18.7 15.8 8.0 12.5 5.1 3.9 1.1 14.8 8.9 6.1 6.1
MEDIUM 3.8 4.6 3.6 3.7 11.3 8.1 6.9 3.2 2.9 0.8 1.0 0.2 5.7 2.1 1.7 1.7
LOW 0.6 0.6 0.5 0.5 6.3 6.7 5.6 3.4 0.3 0.3 0.3 0.1 0.8 0.5 0.2 0.2

S=
1B

ALL 2.8 3.0 2.7 2.6 9.8 8.2 6.9 3.8 2.1 0.8 0.8 0.2 3.3 1.6 1.1 1.1

HIGH 21.5 17.7 20.4 17.9 47.7 44.7 40.7 25.8 24.0 22.2 22.4 17.3 30.4 27.4 25.9 25.9
MEDIUM 5.1 4.6 5.3 4.7 26.5 23.6 20.3 4.9 13.0 10.2 11.9 4.7 21.4 18.7 16.3 16.3
LOW 1.2 0.7 1.1 0.8 8.8 8.3 7.4 2.2 2.6 2.0 2.9 0.4 6.6 5.0 4.7 4.7

S=
8B

ALL 4.0 3.2 3.9 3.3 16.8 15.5 13.6 5.1 7.2 5.9 6.9 3.0 12.4 10.5 9.5 9.5

Table 4: Translation results on the FLORES devtest for small-scale PaLM models trained on various ablation condi-
tions. EN→XX translation quality is measured by chrF and XX→EN by BLEU. Ablating translation pairs (-TRA) has
a significant impact on the translation capabilities of S=1B (5-shot) for HIGH resource pairs; this impact decreases
with scale (i.e., S=8B model).

ENG NEN BIL TRA
FULL 43, 186, 985 7, 224, 737 517, 688 270, 590
-TRA 43, 186, 985 7, 224, 737 788, 279 7

-BIL 43, 186, 985 8, 013, 015 7 7

-NEN 51, 200, 000 7 7 7

Table 5: Data statistics for small-scale PaLM ablation
experiments in number of 2,048 token examples.

level proportions reported earlier, as these count
examples, which are merged instances. Also, they
will not match the multilinguality proportions re-
ported by Chowdhery et al. (2022), as we have
removed non-natural-language (code) data and any
non-English text not in our 44-language set. We
can now sample examples from our partitions to
create a smaller training set with the same pro-
portions of incidental bilingualism. No attempt
is made to retain PaLM’s original proportions for
other aspects like data source or language. Counts
for this sample are shown as FULL in Table 5.

We ablate each group in the following order:
TRA, BIL and then NEN. At each step, we re-
place ablated examples with examples from the
next group in the chain. The counts for all ablation
conditions are shown in Table 5. The -NEN setting
corresponds to the English-only setting studied by
Blevins and Zettlemoyer (2022), but as they show,
this will contain some non-English content due to
language-identification errors. Analogous provi-
sos exist for each ablation, as all our automatic
tools make errors. We aim to measure the effect of
removing most of a type of content, not all of it.

Findings Table 4 presents the results of our
ablation—the complete, per language, results are in
Table 10 of Appendix E. Focusing on our 1B model,
we note that examples containing translation pairs
(TRA) have an outsized impact on translation qual-
ity for being only 0.5% of the training data. In the
high-resource XX→EN, zero-shot scenario, replac-

ing TRA examples with BIL results in a drop of
7.4 BLEU. With TRA removed, the additional im-
pact of removing the remaining bilingual instances
(BIL) is much smaller: 1.2 BLEU. One might ex-
pect the utility of translation data to fall off as we
add 5-shot examples at inference time, but TRA is
still quite important, with its removal resulting in
a reduction of 5.9 BLEU. The importance of TRA
holds throughout our 1B experiments, to the extent
that the system cannot translate at all, i.e. for 5-shot
versions of XX→EN MEDIUM and EN→XX HIGH.

Turning to our 8B model, we see that translation
content continues to have a substantial impact on
translation quality, though the absolute score dif-
ferences have diminished, hovering between 2-3
BLEU or 3-4 chrF, depending on the scenario. This
result, where a 4x increase in parameters leads to
a roughly 2x reduction in the absolute impact of
TRA suggests that it would be interesting to build
scaling laws to study the impact of incidental trans-
lation data, which we leave to future work. Also,
for 5-shot scenarios, there is no longer such a big
difference between the impact of BIL and TRA data.
Given exemplars, the larger model seems to be able
to make better use of weaker bilingual signals.

Surprisingly, the 8B model that does not have
access to multilingual content (-NEN), exhibits
some translation capabilities for XX→EN HIGH

(i.e., 17.3 and 25.9 BLEU for zero- and few-shot,
respectively). A closer look at the per-language
breakdown (see Table 10) reveals that those capa-
bilities are restricted to languages written in Latin
script. This adds evidence for larger models being
better equipped to leverage either sparse signals
(i.e., language-identification failures during abla-
tion) and weak signals (i.e., language similarities
from shared scripts). As expected, non-English
content is critical for translation out of English.
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5 Conclusion

We explore the role of incidental bilingualism—the
unintentional consumption of bilingual signals—
in PaLM’s translation capabilities. We introduce
a mixed-method approach that alternates between
quantitative and qualitative analyses to measure
and understand incidental bilingualism at scale by
processing 780 billion tokens. Our work shows
that PaLM consumes a significant amount of bilin-
gual text: 1.4% of training instances in natural
language are bilingual. At the same time, it is nat-
urally exposed to translation signals, having seen
more than 30 million translation pairs in 44 lan-
guages paired with English. Furthermore, we ex-
trinsically evaluate the quality of these translations,
showing that they can be used to train supervised
models that roughly match the quality of equal
amounts of WMT data. Finally, we show that
incidental bilingualism connects to the machine
translation capabilities of PaLM. First, we show
that data-driven prompts extracted from incidental
translations can improve the zero-shot abilities of
PaLM when translating out of English by 14 chrF
on average. Second, we provide empirical evidence
that bilingual and translation signals can partially
explain the translation capabilities of smaller-scale
LLMs.

Limitations

Our findings should be interpreted considering a
series of problem definitions and design choices.
First, our quantitative results on measuring inci-
dental bilingualism at scale are subject to language
identification, sentence splitting, and mining errors.
Our qualitative analysis for the English-French lan-
guage pair revealed that those errors are reasonably
small (see §3.2). However, we expect the accuracy
of our tools to vary across languages and, crucially,
exhibit unanticipated failure modes on web text
and low-resource languages (Caswell et al., 2020).
Second, our findings are restricted to quantifying
bilingualism and translations within a limited set of
language pairs and only paired with English. Thus,
by problem definition, we are limited to computing
a lower-bound estimate on incidental bilingualism
of PaLM. The above limitations should also be
taken into consideration when interpreting our ab-
lation results. Although we attempted to remove
most bilingual signals in our series of MT exper-
iments, it is still possible that bilingualism slips
through due to either model errors or due to bilin-

gual signals beyond our focus set of languages.
Finally, any results and findings of our work are
restricted to PaLM; the single LLM studied in this
work. However, our finer-grained analysis (see
Table 11 of Appendix E) reveals that incidental
bilingualism, including translation signals, is ob-
served across various data sources (e.g., webpages,
books, etc.) that are commonly included in the
training data of other popular LLMs.
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A Units of Analysis of Training text

Throughout this paper we have adopted special
meanings for the common (often interchangeable)
terms document, example and instance. Here we
make those terms concrete and justify our use of
the instance as our primary unit of analysis.

Document A document is a logical unit of text
from one of our source corpora: a web page or wiki
page from a web-crawled corpus, a conversation
from a chat or forum corpus, or a book from a
books corpus.

Example Each PaLM training example is exactly
2,048 subword tokens. These are assembled by
concatenating and/or splitting documents to the
appropriate length. As such, an example may con-
tain several short documents, and a long document
may be spread over several examples. Multiple
documents concatenated into a single example are
separated by special document-boundary tokens.
The relevant features of examples that make them
more useful for analysis than documents are:

• We know exactly which examples PaLM saw
during training.

• Examples reflect when co-occurring textual
information (for example, a translation pair)
was lost due to a document being split into
multiple examples.

However, examples can also introduce spurious
co-occurrences from merged documents. We as-
sume that a language model can and will ignore any
merge-induced co-occurrences due to the presence
of document separator tokens; therefore, we should
ignore them as well. This leads us to our next and
final unit.

Instance Instances are created by splitting ex-
amples according to document-separator tokens.
Therefore, each instance is either a complete doc-
ument or a fragment of a single document, and is
up to 2,048 tokens in length. Instances have all of
the advantages of examples, without introducing
spurious co-occurrences, hence why they are our
primary unit of analysis.

B Bilingual Detection Pipeline Details

CodeMixer Model Details We use the CMX

(CodeMixer) model (Zhang et al., 2018)—a token-
level language identification model, to detect bilin-
gual instances. CMX is a simple feed-forward

model that takes as input a set of character and
word-level features and produces a distribution
over a set of languages for each token. The en-
tire sequence of language tags is obtained using
constrained decoding over a pre-defined set of per-
mitted languages. The model is trained on a combi-
nation of synthetic and real-world translation data
(both monolingual and code-mixed with English)
for 100 languages. Note that CMX predicts code-
mixing between a pair of languages, as a result, it
does not reliably predict language tags for multilin-
gual instances involving more than two languages.
For example, if an instance actually contains En-
glish, French, and German text, with German being
the least frequent, it will be tagged as containing
only English and French; all German words will be
mislabeled as one of the other two languages or as
“undefined.”

Algorithmic Description of Bilingual Detection
Given a training instance t = {ti}ni=1, a focus set L
of the 44 studied languages, and a threshold N , we
detect bilingual instances based on the following
steps: (i) We start by extracting a sequence of lan-
guage tags, using the CMX model. (ii) We mark the
most frequent language as the primary language,
and the other (if exists) as the embedded. (iii) If
the primary and the embedded languages do not
fall under our focus set L, we exclude it from our
analysis. (iv) If a training instance contains more
than 10% of “undefined” predictions (e.g., resulting
from non-linguistic content), it is not annotated as
bilingual. (v) Finally, if a training instance contains
at least two contiguous segments—consisting of
at least N consecutive identical language tags—in
different languages, it is annotated as bilingual.

Given that the CMX model is known to over-
predict English tags, we employ a stricter thresh-
old on defining contiguous segments for English
(N = 10) compared to the rest of the languages
(N = 5). For all languages we operate at the token-
level, with the exception of Chinese, Japanese, and
Korean for which we apply the above algorithm at
the character-level.

C Heuristic Translation Pair Filters

When extracting translation pairs found within a
bilingual instance, our primary quality signal is
from the cosine distance between cross-lingual
LABSE sentence embeddings. However, we also
apply a suite of heuristic filters which help catch
non-translations that slip through this primary fil-
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ter. These filters are adapted from Alibaba’s WMT
Data Filtering submissions (Lu et al., 2018, 2020).
When a tokenization is required for token counts
or edit distance, we use tokens from the mBERT
tokenizer (Devlin et al., 2019). The filters are as
follows: 1. both sentences must respect a min (3)
and max (200) token length; 2. we enforce a max
length ratio (2x) between sentences; 3. we enforce
a min edit distance (2) and a min edit distance ratio
(0.1) between sentences; 4. we apply a secondary,
sequence-level language-identification tool (Botha
et al., 2017) to re-identify each side of the pair
and ensure that the two halves are written in dif-
ferent languages. When extracting sentences to
train Transformer Base MT systems in §4.2, the
different-language check is replaced by a check
to ensure that the translation pair respects the lan-
guage pair being studied, i.e.: one sentence is in
English and the other is in French.

D Prompting Details

For 5-shot prompting experiments we used the fol-
lowing format (e.g., for French to English transla-
tion):

French: [X1]

English: [Y1 ]

...

French: [X5]

English: [Y5 ]

French: [X ]

English:

Each slot (Xi, Yi) is filled with five translation ex-
amples that are randomly sampled from the devtest
split of the FLORES dataset, while the final slot X ,
is filled with the source text that comes from the
test split of FLORES.

E Additional Tables and Figures
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#LAYERS #HEADS DIMENSION DATA SIZE COMPUTATION

1B 16 8 2,048 0.1T 128 TPUv3 chips for 3 days
8B 32 16 4,096 0.1T 512 TPUv3 chips for 5 days
PALM 118 48 18,432 2.0T See Chowdhery et al. (2022)

Table 6: Ablation hyper-parameters. FEED-FORWARD DIMENSION is always DIMENSION times 4. Training data
size is measured in trillions (T) of subword tokens.

LANGUAGE ISO MONOLINGUAL BILINGUAL TRANSLATION PARALLEL TEXTS
English EN 2,086,622,555,000
French FR 109,994,921 6,743,637 1,929,032 6,618,381
German DE 100,952,945 7,258,561 1,826,701 5,780,856
Spanish ES 75,311,571 5,860,634 1,538,549 5,717,352
Italian IT 42,071,597 2,204,919 591,329 2,128,730
Portuguese PT 23,175,895 2,685,160 317,735 1,048,717
Russian RU 18,307,304 2,045,770 527,159 2,142,065
Chinese ZH 16,196,482 2,075,947 271,496 706,948
Japanese JA 11,364,144 1,271,193 222,164 601,810
Arabic AR 11,239,689 689,215 160,554 420,851
Indonesian ID 9,294,576 1,157,443 211,183 738,329
Korean KO 8,777,321 465,821 120,648 518,738
Vietnamese VI 8,588,200 767,309 91,666 268,573
Farsi FA 8,106,752 145,498 31,685 79,731
Serbian SR 8,092,018 70,905 17,333 49,316
Ukrainian UK 5,392,948 275,623 65,468 191,624
Pashto PS 2,481,255 32,304 6,208 12,841
Armenian HY 2,251,041 92,786 24,777 65,745
Hebrew IW 1,956,133 123,641 37,904 111,172
Bulgarian BG 1,702,418 119,188 30,991 83,672
Kazakh KK 1,681,552 22,784 5,826 23,800
Belarusian BE 1,681,272 47,284 11,646 35,535
Hindi HI 1,356,198 250,512 42,737 121,092
Urdu UR 1,326,867 46,973 11,564 32,654
Greek EL 1,256,535 205,986 52,194 156,933
Thai TH 1,169,865 79,211 11,157 28,125
Macedonian MK 1,006,741 59,532 10,885 38,521
Kyrgyz KY 872,384 79,955 17,107 37,484
Bengali BN 826,933 64,012 16,138 43,046
Georgian KA 757,142 70,220 15,457 34,939
Tajik TG 734,888 40,146 5,503 27,889
Sindhi SD 695,331 36,728 5,054 11,373
Nepali NE 676,940 59,159 12,009 30,789
Tamil TA 667,148 47,225 13,408 41,466
Mongolian MN 541,745 23,328 4,180 12,861
Panjabi PA 526,042 43,196 11,592 56,377
Telugu TE 508,026 24,401 6,462 27,349
Malayalam ML 503,762 36,652 8,235 18,412
Marathi MR 363,791 14,544 4,209 15,684
Amharic AM 297,463 33,604 9,098 29,355
Burmese MY 278,933 12,989 2,547 7,020
Kannada KN 231,308 12,386 3,430 11,589
Sinhala KM 152,630 9,652 15,99 5,661
Gujarati GU 146,990 5,662 1,514 5,333
Lao LO 130,284 10,478 5,806 25,202

Table 7: Numbers of monolingual, bilingual, and translation instances across the 44 languages studied.
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NOT TRANSLATION SIGNAL

Code-Switching Voilà j’ai un problème avec certaines cinématiques du jeu. Je ne peux pas voir l’introduction
ni les présentations de races par contre je peux voir les présentations de classes... Si
quelqu’un pouvait m’aider ce serait sympa. Merci d’avance. I can understand french only
a bit... Can you see this folder and if yes is anything into this folder? J’ai bien un dossier
raw/fr mais à l’intérieur il n’y a pas introcinematic. Well, could take a look into the folder
"raw/en" or/and "raw/de", is there a folder called "introcinematic"? Dans raw/de je n’ai
rien non plus mais dans raw/en j’ai bien le dossier.

References Lagrange derives the integrals of momentum, moment of momentum, and energy, use of
special properties of the potential function tends to conceal their meanings. For three
bodies, the results are given in § II of his "Essai sur le problcme des trois corps," Prix de
Vacad. sci. Paris Finally, the principle of virtual work for dynamics, on which the entire
Micbanique Analitique is founded, had been given more than twenty years earlier in §IV of
his "Recherchcs sur la libration de la lune, dans lesquelles on tache dc rcsoudre la question
proposce par l’Academie royale des sciences pour le prix de 1’annee 1764," Prix de Vacad.
sci. Paris 9, 1764—Euvres 6, 5− 61).

Unrelated . . . PICASSO (1881-1973) Autoportrait, 15 ans Né en 1881 à Malaga, il passe sa jeunesse en
Espagne. En 1891, son père, peintre, accepte un poste d’ enseignant à l’école de dessin "La
Corogne", Picasso a 10 ans et il s’exerce au dessin alors qu’il sait à peine lire. En 1895,
il s’installe avec sa famille à Barcelone, son père enseigne à l’école très académique des...
This pragmatic viewpoint has been the subject of quite a few post-holiday discussions at
Rubberbond. We wanted to explore this in greater depth and find a resolution to the debates
we’d had over the years...

TRANSLATION SIGNAL

Translation Pairs In 1910 E. Cartan constructed the canonical frame and found the most symmetric case for
maximally nonholonomic rank 2 distributions in R5. We solve the analogous problems for
rank 2 distributions in Rn for arbitrary n>5. Our method is a kind of symplectification of the
problem and it is completely different from the Cartan method of equivalence. En 1910 E.
Cartan a construit un repère canonique et a trouvé le cas le plus symétrique des distributions
de rang 2 et non holonômes de manière maximale dans R5. Nous résolvons ici des problèmes
analogues pour les distributions de rang 2 dans Rn avec n>5 arbitraire. Notre méthode est
une sorte de symplectification du problème et est complètement différente de la méthode par
équivalence de Cartan.

Entailment Angels, according to Consuelo’s own view, no longer intervene directly in human affairs,
making it necessary for humans to help one another: "Dans un temps ou Ton ne croit plus a
la reVelation directe et a la manifestation sensible de la Divinite, la protec- tion et le secours
du ciel se traduisent sous la forme d’assistance, d’affection et de devouement de la part de
nos semblables" (3: 265). Consuelo is a supreme example of this transfer of the divine role
of care and love to man, or more accurately, to woman. Women also play a central role in
the other spiritual force celebrated in the novel: art, in particular music: "La musique et la
poesie sont les plus hautes expressions de la foi, et la femme douee de genie et de beaute est
preteresse, sibylle et iniatiatrice"

Explanation Can someone suggest how I can say Sorry, I have been very disorganized recently as I have
been busy Thanks. I’m not sure to get what you mean. Do you mean that you’ve been quite
chaotic because of being busy? If yes, I would maybe simply say: "Désolé, j’ai été très
désorganisé récemment, du fait d’avoir été occupé". Sounds however quite "negative". Yes
that is what I mean. I have been been very busy and have therefore only just got round
to answering a colleagues question. I want to express my apologies and explain that I’ve
been disorganised as things have been choatic in the office. Thanks very much Hmm I don’t
know how to say it, but désorganisé when referencing a human being sounds more like a
personality trait than like a temporary state, and thus would give a negative image of yourself
like mentionned above.

Table 8: Examples of bilingual instances detected within PaLM training data.
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Figure 6: Data-driven prompt counts within PaLM’s translation pairs across 44 languages.
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Default (zero) Code (zero) Native (zero) Translation (zero) Default (few) Native (few)
QUAL. LANG.% QUAL. δ LANG.% QUAL. δ LANG.% QUAL. δ LANG.% QUAL. LANG.% QUAL. δ LANG.%

EN→XX

FR 57.8 79.2 63.6 5.8 90.4 68.1 10.3 99.5 65.4 7.5 94.8 70.7 99.6 70.9 0.2 99.7
DE 52.3 76.7 59.5 7.2 92.6 63.0 10.7 99.7 62.2 9.9 97.8 65.4 99.9 65.3 −0.0 99.9
ES 49.8 86.5 51.6 1.9 91.4 54.4 4.6 99.5 53.6 3.8 97.2 56.3 99.7 56.4 0.1 99.6
IT 51.1 83.4 52.2 1.1 84.4 57.7 6.6 99.3 55.0 3.9 94.8 59.2 99.7 59.7 0.5 99.7
PT 61.1 85.0 62.7 1.6 89.2 69.0 7.9 99.7 67.0 5.9 96.4 70.6 99.7 70.5 −0.1 99.8
RU 32.4 58.1 43.2 10.8 77.5 55.3 22.9 99.8 51.3 18.9 90.0 57.6 99.9 57.5 −0.1 99.9
ZH 20.3 76.0 24.8 4.5 83.5 29.2 8.9 99.9 31.3 11.0 99.6 37.0 100.0 36.9 −0.1 100.0
JA 22.2 75.1 13.9 −8.3 49.1 33.8 11.6 100.0 33.7 11.6 99.0 40.1 100.0 39.9 −0.2 100.0
AR 20.0 39.4 0.7 −19.2 0.1 50.9 31.0 98.8 39.2 19.3 73.0 53.7 100.0 53.7 −0.1 100.0
ID 58.9 81.4 12.2 −46.7 3.3 27.3 −31.6 26.8 60.3 1.4 68.3 68.8 96.9 68.7 −0.1 97.0
KO 16.4 63.1 18.3 1.9 64.4 29.2 12.7 99.8 30.0 13.5 96.9 33.6 100.0 34.2 0.6 100.0
VI 41.5 68.9 10.1 −31.4 0.0 55.8 14.3 99.5 55.5 14.0 98.1 57.9 100.0 57.8 −0.1 100.0
FA 24.7 51.2 1.1 −23.6 0.3 47.5 22.7 98.3 42.9 18.2 85.1 51.4 100.0 51.2 −0.2 100.0
SR 3.3 48.5 1.0 −2.3 0.4 55.3 52.1 98.7 29.1 25.8 2.0 59.9 100.0 60.0 0.1 100.0
UK 35.5 66.0 0.6 −34.9 0.0 54.0 18.5 99.9 50.4 14.9 90.5 56.6 100.0 56.5 −0.1 100.0
PS 20.0 64.7 1.2 −18.8 0.0 28.5 8.5 99.9 30.8 10.7 99.0 33.6 99.9 34.4 0.8 100.0
HY 30.5 62.1 1.1 −29.4 1.6 50.0 19.5 99.5 47.2 16.7 92.8 54.7 100.0 54.4 −0.3 100.0
IW 23.0 46.6 1.0 −22.0 0.0 51.8 28.9 99.1 43.4 20.4 88.1 55.9 99.6 55.9 −0.0 99.8
BG 43.7 74.1 31.1 −12.6 49.7 59.6 15.9 99.8 47.1 3.4 57.7 62.8 100.0 62.5 −0.2 100.0
KK 29.9 71.1 0.7 −29.2 0.0 42.2 12.3 98.7 33.5 3.6 73.9 49.7 100.0 49.8 0.1 100.0
BE 32.7 78.3 0.7 −32.0 0.0 41.5 8.9 99.9 39.0 6.3 90.7 44.0 100.0 44.0 0.0 100.0
HI 31.7 65.8 1.1 −30.6 1.2 46.7 15.0 99.0 34.9 3.2 63.3 51.6 99.9 51.3 −0.3 100.0
UR 21.2 49.6 0.4 −20.8 0.0 40.5 19.2 98.5 36.8 15.5 87.3 44.7 100.0 44.9 0.1 100.0
EL 26.6 55.8 18.6 −7.9 37.5 49.1 22.6 100.0 46.2 19.7 92.6 51.1 100.0 51.2 0.1 100.0
TH 34.8 81.1 3.4 −31.4 5.7 48.7 13.9 99.9 50.5 15.8 99.9 52.4 100.0 52.7 0.4 100.0
MK 47.6 81.3 1.9 −45.7 2.3 58.1 10.5 99.6 40.1 −7.5 30.0 60.6 99.9 60.8 0.2 99.9
KY 18.4 54.8 0.7 −17.7 0.1 33.0 14.7 87.7 34.8 16.5 85.9 43.2 100.0 42.9 −0.3 100.0
BN 27.8 66.5 0.5 −27.3 0.2 43.5 15.7 99.5 40.6 12.8 90.4 47.2 100.0 47.1 −0.1 100.0
KA 29.5 73.7 0.8 −28.6 0.2 43.1 13.6 99.6 40.0 10.5 89.5 48.1 100.0 48.2 0.1 100.0
TG 29.6 70.4 0.8 −28.7 0.0 44.1 14.6 97.8 44.0 14.4 94.7 49.1 100.0 49.0 −0.0 99.9
SD 24.1 65.3 0.7 −23.4 0.0 39.5 15.3 97.9 33.6 9.5 81.0 45.1 100.0 45.3 0.2 100.0
NE 26.4 63.4 0.8 −25.6 0.0 41.3 14.9 94.6 23.2 −3.2 11.4 48.4 99.8 48.5 0.1 99.8
TA 31.3 69.5 0.6 −30.8 0.0 47.2 15.9 99.0 44.0 12.7 90.6 51.2 100.0 51.6 0.4 100.0
MN 20.9 68.0 0.6 −20.3 0.3 32.5 11.5 99.6 23.8 2.9 69.3 40.4 99.9 40.4 −0.0 99.9
PA 20.6 50.3 0.6 −20.0 0.0 41.3 20.6 99.5 40.9 20.3 94.8 45.1 100.0 45.1 0.0 100.0
TE 34.9 84.2 1.3 −33.6 0.0 42.8 7.9 99.7 37.0 2.1 84.0 50.3 100.0 50.4 0.0 100.0
ML 30.8 73.0 0.5 −30.2 0.0 43.2 12.5 99.7 42.6 11.9 95.8 48.9 100.0 49.0 0.0 100.0
MR 26.3 67.3 0.5 −25.8 0.0 36.0 9.7 94.6 33.4 7.1 74.6 43.4 99.9 43.7 0.2 100.0
AM 15.2 76.6 0.6 −14.6 0.0 23.6 8.4 97.2 16.1 0.9 60.5 30.6 99.9 30.2 −0.4 100.0
MY 23.4 67.7 0.6 −22.8 0.1 38.0 14.7 99.8 38.3 15.0 98.5 43.8 100.0 43.9 0.1 100.0
KN 30.5 71.6 0.7 −29.9 0.1 44.2 13.7 100.0 44.8 14.2 98.1 49.0 100.0 48.9 −0.1 100.0
KM 28.6 84.2 2.0 −26.6 0.0 37.7 9.1 99.9 37.9 9.3 99.5 39.3 100.0 39.4 0.1 100.0
GU 30.8 83.1 1.1 −29.8 0.9 39.2 8.4 99.9 37.9 7.1 96.8 44.4 100.0 44.4 −0.1 100.0
LO 30.9 80.2 3.5 −27.4 0.0 40.5 9.6 99.6 43.2 12.3 98.8 46.0 99.8 45.8 −0.1 99.9

XX→EN

FR 44.9 99.6 45.7 0.8 99.6 45.2 0.3 99.6 42.5 −2.4 99.5 47.2 99.6 47.6 0.5 99.6
DE 43.7 99.7 44.2 0.5 99.5 44.1 0.5 99.8 41.5 −2.1 99.1 45.9 99.8 46.0 0.1 99.8
ES 29.4 99.8 30.1 0.7 99.6 29.2 −0.2 99.6 27.4 −2.0 99.4 32.9 99.6 33.5 0.6 99.6
IT 32.5 99.7 34.1 1.6 99.6 32.2 −0.3 99.6 30.2 −2.4 98.5 36.4 99.6 36.2 −0.1 99.6
PT 49.1 99.7 49.8 0.7 99.6 49.1 0.0 99.7 46.5 −2.6 98.9 50.9 99.7 51.5 0.6 99.7
RU 34.8 99.6 36.1 1.3 99.6 35.3 0.5 99.5 33.2 −1.6 97.9 38.5 99.7 38.2 −0.4 99.6
ZH 28.5 99.1 26.5 −2.0 92.3 29.2 0.8 98.9 27.4 −1.1 95.2 31.3 99.5 31.4 0.0 99.6
JA 26.9 99.5 26.4 −0.4 96.7 27.8 1.0 99.6 25.6 −1.2 96.6 30.0 99.7 30.0 0.0 99.7
AR 39.4 99.6 39.5 0.1 95.2 37.2 −2.2 98.8 38.8 −0.6 98.2 43.0 99.7 43.2 0.1 99.5
ID 44.0 99.3 40.4 −3.6 96.8 40.1 −4.0 96.1 39.1 −4.9 91.5 46.8 99.6 46.6 −0.2 99.5
KO 28.9 99.7 27.0 −1.9 94.4 29.4 0.5 99.3 27.8 −1.1 95.8 31.7 99.5 31.4 −0.2 99.4
VI 37.2 99.4 23.0 −14.2 69.8 37.5 0.3 99.4 34.4 −2.8 93.0 39.5 99.4 39.4 −0.1 99.5
FA 35.5 99.6 33.3 −2.2 93.3 34.3 −1.1 99.5 34.8 −0.7 95.9 39.3 99.6 39.3 −0.0 99.6
SR 43.6 99.7 43.1 −0.4 98.4 44.5 0.9 99.8 41.7 −1.9 95.4 46.5 99.8 46.5 −0.1 99.8
UK 38.5 99.6 37.7 −0.8 97.6 38.6 0.2 99.7 37.0 −1.5 94.0 42.0 99.7 42.3 0.2 99.7
PS 28.3 99.3 16.8 −11.5 95.2 28.0 −0.3 99.3 28.9 0.6 93.8 33.9 99.7 34.0 0.1 99.5
HY 37.7 99.4 31.6 −6.2 92.6 17.9 −19.9 97.6 36.6 −1.1 93.8 40.9 99.5 41.1 0.2 99.5
IW 42.9 99.5 41.8 −1.1 94.9 42.5 −0.4 99.3 41.5 −1.4 92.4 46.0 99.7 46.4 0.4 99.6
BG 40.6 99.6 40.7 0.1 99.4 41.2 0.6 99.5 38.4 −2.2 97.0 42.9 99.6 43.4 0.5 99.6
KK 29.8 99.6 26.2 −3.6 93.5 27.1 −2.7 99.2 27.8 −2.0 92.6 34.3 99.9 34.3 0.0 99.8
BE 20.4 99.6 22.3 1.9 99.4 19.9 −0.6 99.6 17.8 −2.6 83.1 24.2 99.7 24.1 −0.1 99.6
HI 36.5 99.3 34.2 −2.2 96.6 32.1 −4.4 98.9 30.2 −6.3 85.2 40.2 99.6 39.6 −0.6 99.3
UR 31.3 99.5 30.2 −1.2 97.3 30.2 −1.2 99.4 29.9 −1.4 92.5 35.7 99.7 35.4 −0.3 99.8
EL 35.5 99.8 34.8 −0.8 96.4 35.8 0.3 99.7 33.7 −1.8 99.5 38.5 99.7 38.7 0.2 99.7
TH 28.1 99.1 25.6 −2.5 86.6 28.0 −0.1 98.9 27.1 −1.0 91.4 33.0 99.7 33.2 0.2 99.5
MK 43.2 99.5 42.0 −1.1 96.3 42.8 −0.4 99.5 40.4 −2.8 94.6 45.9 99.6 45.6 −0.2 99.5
KY 21.1 99.6 19.1 −2.1 95.8 20.6 −0.5 99.5 16.9 −4.2 84.8 25.2 99.8 24.6 −0.6 99.7
BN 30.8 99.3 29.6 −1.1 97.3 28.6 −2.2 99.0 30.6 −0.1 97.7 35.4 99.8 35.3 −0.1 99.7
KA 26.7 99.5 21.9 −4.9 83.5 22.6 −4.1 99.5 24.5 −2.2 90.2 30.4 99.8 30.4 0.0 99.6
TG 33.0 99.5 31.2 −1.8 95.8 32.8 −0.2 99.5 30.2 −2.8 88.1 36.1 99.6 36.2 0.0 99.7
SD 33.2 98.9 29.7 −3.4 85.1 34.0 0.8 99.3 25.7 −7.5 78.8 39.4 99.8 39.6 0.2 99.7
NE 32.8 99.5 30.8 −2.1 96.1 27.4 −5.4 97.3 29.8 −3.0 90.1 37.2 99.7 37.6 0.4 99.6
TA 29.0 99.3 26.6 −2.4 94.3 26.7 −2.3 99.5 28.3 −0.7 94.5 33.1 99.5 33.2 0.1 99.7
MN 22.2 99.4 19.4 −2.8 90.3 21.0 −1.2 99.1 21.4 −0.8 87.1 28.2 99.5 28.2 −0.0 99.6
PA 34.9 99.5 31.9 −3.0 96.2 28.0 −6.9 97.0 31.8 −3.1 89.4 39.5 99.7 39.3 −0.2 99.7
TE 31.3 98.8 29.5 −1.8 94.0 28.7 −2.6 98.8 30.1 −1.3 92.3 37.9 99.6 37.9 0.0 99.5
ML 28.5 99.5 27.0 −1.5 94.4 26.8 −1.7 99.0 29.2 0.7 95.0 34.3 99.7 34.5 0.2 99.7
MR 28.6 99.4 28.8 0.2 94.9 27.0 −1.6 98.8 27.8 −0.9 90.9 35.2 99.8 34.9 −0.3 99.7
AM 28.1 99.4 25.4 −2.8 95.4 24.4 −3.8 97.3 28.7 0.6 94.8 32.8 99.7 32.9 0.1 99.5
MY 21.4 98.8 19.8 −1.7 91.6 19.1 −2.4 98.5 19.8 −1.6 81.8 26.8 99.5 26.5 −0.2 99.6
KN 27.2 98.7 24.5 −2.7 88.0 24.8 −2.4 98.1 26.5 −0.7 92.9 32.3 99.7 32.2 −0.1 99.7
KM 27.8 98.6 26.4 −1.4 89.8 28.6 0.8 96.9 22.0 −5.8 73.7 33.3 99.5 33.7 0.4 99.6
GU 32.6 99.4 28.7 −3.9 93.0 27.1 −5.5 98.8 31.3 −1.3 92.5 37.5 99.7 37.3 −0.3 99.6
LO 31.0 99.3 30.9 −0.0 93.9 29.7 −1.2 98.5 27.9 −3.0 87.0 36.2 99.5 36.4 0.2 99.6

Table 9: Comparison of prompt selection on FLORES devtest, for zero- and few-shot prompting. QUAL. corre-
sponds to translation quality (chrF for EN→XX and BLEU for XX→EN), LANG.% represents PaLM’s accuracy
in producing text in the correct target language, and δ gives the translation quality difference from the “Default"
prompt.
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EN→XX (0-shot) EN→XX (5-shot) XX→EN (0-shot) XX→EN (5-shot)
FULL -TRA -BIL -NEN FULL -TRA -BIL -NEN FULL -TRA -BIL -NEN FULL -TRA -BIL -NEN Latin Script

FR 16.3 19.0 16.8 16.7 35.1 18.7 15.8 10.6 14.9 7.5 6.1 1.8 18.0 12.6 8.3 8.3 3

DE 16.4 15.1 14.3 15.4 29.2 18.9 14.9 7.4 15.0 6.2 4.4 1.2 16.4 8.2 6.9 6.9 3

ES 15.3 14.6 16.0 14.8 32.3 20.2 16.8 6.7 10.6 3.1 3.2 0.9 12.3 8.3 5.0 5.0 3

IT 14.7 16.8 15.2 13.3 26.9 17.1 15.9 7.2 9.3 3.7 1.8 0.6 12.4 6.7 4.4 4.4 3

PT 15.7 18.7 15.4 15.9 30.2 16.7 16.0 9.7 15.4 4.7 5.5 0.8 21.1 8.0 7.6 7.6 3

RU 0.7 0.9 0.5 0.6 18.9 11.2 7.5 3.8 5.9 1.1 1.2 0.1 9.5 3.3 2.7 2.7 7

ZH 1.1 1.9 1.4 1.4 6.3 2.7 1.6 0.4 0.4 0.3 0.0 0.1 5.5 2.1 1.1 1.1 7

JA 0.5 0.8 0.6 0.5 2.8 1.9 1.6 0.4 1.3 0.3 0.1 0.0 1.7 1.3 0.8 0.8 7

AR 0.5 0.6 0.5 0.4 7.4 5.0 6.0 1.2 1.6 0.2 0.2 0.0 3.2 0.5 0.5 0.5 7

ID 12.8 15.4 11.4 12.9 21.4 16.4 15.1 9.6 3.2 1.0 2.0 0.2 7.3 3.0 2.9 2.9 3

KO 1.4 2.1 1.6 1.4 1.5 1.3 1.3 0.4 0.2 0.2 0.1 0.1 0.7 0.5 0.3 0.3 7

VI 7.3 8.5 6.6 6.4 13.3 10.9 8.9 1.5 2.4 0.4 0.6 0.1 4.4 1.6 0.8 0.8 3

FA 0.6 0.7 0.6 0.7 4.2 4.9 3.9 1.5 0.5 0.2 0.2 0.0 1.8 0.4 0.3 0.3 7

SR 0.6 0.7 0.6 0.6 8.5 8.9 6.5 3.7 0.0 0.2 0.5 0.1 3.3 0.7 0.4 0.4 7

UK 0.5 0.6 0.5 0.4 9.6 9.2 7.1 2.6 1.1 0.5 0.6 0.0 4.4 2.0 1.0 1.0 7

PS 0.8 0.9 0.6 0.9 4.2 4.6 3.7 3.9 0.1 0.2 0.1 0.1 0.4 0.2 0.1 0.1 7

HY 0.3 0.5 0.2 0.2 11.0 11.6 10.0 4.7 0.0 0.2 0.2 0.0 0.2 0.2 0.0 0.0 7

IW 0.7 0.9 0.8 0.8 6.2 7.0 5.9 1.1 0.4 0.2 0.3 0.0 0.8 0.6 0.4 0.4 7

BG 0.6 0.7 0.5 0.5 9.5 9.7 6.5 3.3 0.9 0.4 0.8 0.0 4.7 1.6 0.9 0.9 7

KK 0.7 0.6 0.6 0.4 3.8 4.9 5.5 2.8 0.1 0.1 0.3 0.0 0.6 0.4 0.2 0.2 7

BE 0.4 0.4 0.3 0.4 8.4 9.9 7.2 4.4 0.2 0.1 0.2 0.0 0.8 0.4 0.3 0.3 7

HI 0.6 0.6 0.5 0.5 3.2 3.7 3.6 1.4 0.2 0.1 0.2 0.0 0.5 0.3 0.1 0.1 7

UR 0.3 0.4 0.3 0.3 3.1 3.2 3.4 2.0 0.1 0.0 0.1 0.0 0.3 0.2 0.1 0.1 7

S=
1B

EL 1.0 0.9 0.7 0.7 10.1 9.0 7.9 2.8 2.0 0.5 0.5 0.1 2.9 1.1 0.6 0.6 7

TH 0.6 0.9 0.5 0.6 7.7 6.3 5.4 1.8 0.9 0.6 0.4 0.1 2.6 1.7 0.5 0.5 7

MK 0.6 0.6 0.6 0.6 9.8 10.1 8.7 4.7 0.1 0.1 0.5 0.0 3.2 0.9 0.4 0.4 7

KY 0.6 0.5 0.5 0.4 4.0 4.0 3.8 3.6 0.1 0.1 0.1 0.0 0.5 0.3 0.1 0.1 7

BN 0.3 0.4 0.4 0.5 3.6 3.9 4.4 1.8 0.1 0.1 0.2 0.0 0.2 0.2 0.1 0.1 7

KA 0.6 0.6 0.5 0.5 8.3 8.8 7.2 3.5 0.1 0.2 0.4 0.0 0.5 0.2 0.1 0.1 7

TG 0.6 0.5 0.5 0.6 6.4 6.6 6.6 4.8 0.1 0.2 0.4 0.0 0.2 0.2 0.1 0.1 7

SD 0.4 0.4 0.4 0.3 3.8 4.3 3.5 3.8 0.1 0.2 0.1 0.0 0.3 0.2 0.0 0.0 7

NE 0.6 0.3 0.4 0.4 3.2 3.8 3.8 2.4 0.2 0.2 0.3 0.1 0.5 0.5 0.2 0.2 7

TA 0.5 0.4 0.5 0.4 8.1 7.0 6.2 3.9 0.2 0.1 0.2 0.1 0.3 0.2 0.1 0.1 7

MN 0.4 0.4 0.3 0.3 3.1 3.2 3.0 2.9 0.1 0.0 0.1 0.1 0.4 0.4 0.1 0.1 7

PA 0.4 0.4 0.4 0.5 6.2 7.7 6.1 3.8 0.2 0.2 0.2 0.0 0.1 0.1 0.0 0.0 7

TE 0.8 1.0 0.9 0.7 5.0 6.2 5.0 4.9 0.3 0.2 0.2 0.1 0.4 0.4 0.1 0.1 7

ML 0.4 0.4 0.4 0.4 7.0 7.6 7.2 4.9 0.1 0.1 0.5 0.0 0.2 0.2 0.2 0.2 7

MR 0.4 0.5 0.4 0.4 4.1 4.2 3.9 2.2 0.1 0.1 0.2 0.0 0.4 0.2 0.1 0.1 7

AM 0.5 0.4 0.4 0.5 3.1 3.7 2.3 0.6 0.2 0.2 0.3 0.0 0.1 0.2 0.1 0.1 7

MY 0.3 0.3 0.4 0.3 9.3 14.2 8.1 7.8 0.4 0.4 0.3 0.1 0.2 0.3 0.0 0.0 7

KN 0.5 0.5 0.5 0.4 8.2 8.0 6.2 1.2 0.3 0.3 0.2 0.0 0.4 0.2 0.1 0.1 7

KM 1.1 0.8 0.8 1.1 8.3 8.4 8.8 4.9 0.2 0.9 0.9 0.5 0.4 0.6 0.6 0.6 7

GU 0.5 0.5 0.5 0.5 5.1 4.8 2.0 3.2 0.0 0.1 0.0 0.0 0.1 0.1 0.1 0.1 7

LO 1.7 1.2 1.0 0.8 9.3 8.7 7.6 5.5 1.0 1.6 1.1 0.3 0.8 0.7 0.6 0.6 7

FR 22.4 18.5 21.0 17.8 52.5 49.8 46.0 30.4 29.1 27.3 27.3 23.1 37.0 33.0 29.1 29.1 3

DE 21.0 16.0 19.8 17.3 48.6 45.3 41.0 25.5 26.5 26.2 25.4 19.3 33.6 32.1 31.1 31.1 3

ES 22.0 19.7 21.8 18.2 44.7 43.1 39.1 26.0 18.0 15.4 18.4 14.3 24.3 22.4 20.4 20.4 3

IT 20.5 16.8 19.1 18.2 44.8 40.6 36.9 21.2 22.4 19.7 18.4 12.6 26.4 22.1 22.9 22.9 3

PT 23.0 19.5 24.0 20.7 52.8 48.5 44.1 22.4 24.3 23.1 29.6 24.6 38.0 37.1 33.5 33.5 3

RU 1.5 0.7 2.2 0.9 36.3 35.0 31.4 9.1 20.2 16.0 17.2 7.4 26.5 23.9 21.0 21.0 7

ZH 1.6 1.4 1.5 1.3 15.7 15.3 10.4 1.0 10.9 6.5 4.9 3.5 16.2 13.6 11.2 11.2 7

JA 1.0 0.6 1.4 0.7 12.6 10.8 8.1 1.2 6.8 6.5 4.3 1.3 13.1 9.7 7.9 7.9 7

AR 0.8 0.8 1.4 1.2 21.7 18.2 15.6 1.8 8.5 3.6 8.4 0.6 19.9 15.9 11.7 11.7 7

ID 15.3 15.0 14.4 15.0 45.2 41.3 37.3 8.8 19.4 16.0 18.2 9.6 28.5 23.7 22.7 22.7 3

KO 1.7 1.8 1.8 1.4 5.4 3.7 2.9 0.4 4.7 2.6 4.1 0.8 10.5 8.2 6.1 6.1 7

VI 8.4 8.0 8.6 7.8 34.5 30.5 23.2 3.2 9.8 6.9 9.1 1.5 19.6 18.6 13.4 13.4 3

FA 1.0 0.9 1.1 0.9 16.6 12.8 12.3 1.2 6.6 3.2 6.9 0.4 15.2 11.9 11.1 11.1 7

SR 0.9 0.8 1.3 0.8 22.8 19.7 16.8 2.9 13.5 12.3 12.5 1.0 23.1 21.0 17.3 17.3 7

UK 0.7 0.7 1.0 0.8 27.6 23.9 20.7 2.5 18.4 15.3 15.4 1.0 24.6 22.1 23.7 23.7 7

PS 1.1 1.2 0.6 0.9 3.9 3.7 3.6 1.7 0.8 0.6 0.9 0.2 4.5 2.9 3.6 3.6 7

HY 1.2 1.4 3.0 0.5 12.9 13.4 12.7 4.4 2.6 2.2 3.2 0.2 8.9 5.0 5.6 5.6 7

IW 2.6 1.2 1.5 1.1 15.1 12.7 12.2 1.0 8.3 6.3 6.5 0.2 19.3 14.9 14.1 14.1 7

BG 0.8 0.8 0.8 0.8 28.7 25.7 21.3 3.2 13.6 12.8 14.3 1.4 23.6 21.3 20.6 20.6 7

KK 0.9 0.7 0.6 0.7 4.5 4.5 4.3 1.6 0.7 0.8 1.3 0.3 3.5 3.4 3.0 3.0 7

BE 0.7 0.7 0.5 0.5 16.4 14.7 14.4 2.3 6.8 4.7 7.6 0.2 12.0 9.3 9.3 9.3 7

HI 0.9 0.6 1.2 0.8 7.0 5.1 4.1 1.3 2.6 1.2 1.6 0.3 9.7 5.9 4.7 4.7 7

UR 0.9 0.6 1.2 0.7 5.1 4.1 4.0 1.5 0.7 0.5 2.0 0.2 5.1 3.6 3.4 3.4 7

S=
8B

EL 1.5 1.0 2.0 0.9 23.7 20.5 17.7 3.4 14.1 11.1 12.1 1.5 20.3 18.0 14.0 14.0 7

TH 1.4 0.8 1.5 1.0 24.3 23.0 16.0 1.6 5.2 3.2 4.7 1.0 14.0 12.6 9.2 9.2 7

MK 0.6 0.6 0.8 0.8 21.9 19.8 17.9 2.8 11.4 8.7 14.3 0.9 26.1 21.2 19.6 19.6 7

KY 0.6 0.6 0.6 0.6 4.4 4.9 4.0 1.8 0.3 0.4 0.7 0.2 2.1 1.5 1.6 1.6 7

BN 1.5 0.4 1.5 0.8 4.6 3.6 3.9 1.2 1.2 0.7 1.4 0.2 5.8 2.8 2.7 2.7 7

KA 1.7 0.7 1.7 0.9 8.2 7.7 7.4 2.4 1.3 1.0 1.6 0.2 4.7 2.7 3.4 3.4 7

TG 0.6 0.6 0.5 0.7 5.7 5.6 4.8 3.3 0.7 0.9 1.4 0.2 4.6 3.1 3.1 3.1 7

SD 0.5 0.5 0.5 0.5 4.4 3.9 3.2 1.5 1.2 0.5 1.5 0.2 4.1 3.2 3.4 3.4 7

NE 1.0 0.7 1.0 0.6 4.4 4.0 3.1 1.5 1.0 0.6 1.4 0.2 4.9 3.3 3.2 3.2 7

TA 2.0 0.6 0.9 0.9 5.1 4.9 4.5 2.0 0.5 0.3 0.8 0.2 2.6 1.3 1.5 1.5 7

MN 0.6 0.3 0.3 0.4 3.0 3.3 3.2 1.5 0.2 0.3 0.7 0.2 1.1 1.6 1.3 1.3 7

PA 0.8 0.4 0.6 0.9 6.6 7.6 6.4 2.2 0.1 0.1 0.4 0.1 0.9 0.2 0.5 0.5 7

TE 1.4 1.0 1.1 1.5 4.0 3.7 3.6 3.3 0.3 0.3 0.6 0.3 1.3 0.6 0.7 0.7 7

ML 1.8 0.5 0.8 1.0 4.9 5.6 4.9 2.7 0.3 0.2 0.6 0.1 1.0 0.4 1.0 1.0 7

MR 0.9 0.6 1.1 0.8 3.9 4.2 3.1 1.2 0.7 0.4 0.8 0.1 3.7 2.1 2.0 2.0 7

AM 0.7 0.6 0.9 0.7 2.0 2.0 2.0 0.3 0.2 0.2 0.4 0.1 0.8 0.4 0.6 0.6 7

MY 0.9 0.3 1.1 0.4 7.2 8.5 7.5 4.4 0.2 0.2 0.3 0.2 1.3 0.6 0.7 0.7 7

KN 1.6 0.5 1.4 0.6 4.8 4.5 4.5 0.5 0.2 0.2 0.6 0.2 1.3 0.5 0.9 0.9 7

KM 1.6 1.4 1.2 1.5 6.6 7.4 9.7 4.2 0.4 0.3 0.0 0.6 1.5 1.0 1.3 1.3 7

GU 1.2 0.5 0.9 0.6 3.5 4.7 3.3 1.3 0.1 0.2 0.4 0.1 0.8 0.3 0.4 0.4 7

LO 1.9 1.6 1.5 2.1 8.3 8.7 7.0 5.0 0.6 0.5 0.3 1.1 1.5 1.1 1.6 1.6 7

Table 10: Translation results between 44 languages and English on FLORES devtest for small-scale PaLM models.
EN→XX results are reported in chrF, and XX→EN results are report in BLEU.

9449



SOURCE EN NEN BIL TRA
Raw counts (tokens)

Social media conversations (multilingual) 50% 756,378,913,006 169,908,649,039 6,404,486,427 1,448,443,476
Filtered webpages (multilingual) 27% 459,437,466,428 38,653,502,458 7,387,577,398 4,260,754,907
Wikipedia (multilingual) 4% 12,851,315,601 42,010,300,146 2,514,892,098 1,403,598,754
Books (English) 13% 258,396,969,011 597,753,715 1,605,687,335 2,323,744,561
News (English) 1% 26,244,234,449 26,445,407 45,117,552 5,554,488

Normalized by bilinguialism
Social media conversations (multilingual) 50% 49.98% 67.64% 35.66% 15.34%
Filtered webpages (multilingual) 27% 30.36% 15.39% 41.14% 45.13%
Wikipedia (multilingual) 4% 0.85% 16.72% 14.00% 14.87%
Books (English) 13% 17.07% 0.24% 8.94% 24.61%
News (English) 1% 1.73% 0.01% 0.25% 0.06%

Normalized by source
Social media conversations (multilingual) 50% 80.97% 18.19% 0.69% 0.16%
Filtered webpages (multilingual) 27% 90.13% 7.58% 1.45% 0.84%
Wikipedia (multilingual) 4% 21.86% 71.47% 4.28% 2.39%
Books (English) 13% 98.28% 0.23% 0.61% 0.88%
News (English) 1% 99.71% 0.10% 0.17% 0.02%

Table 11: Number (in terms of token counts) and proportions of English (EN), non-English (NEN), bilingual (BIL),
and translation (TRA) instances for each source in PaLM’s dataset mixture. Bilingual and translation instances are
found within all of PaLM’s sources except News articles.
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