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Abstract

Pre-trained models have achieved remarkable
success in natural language processing (NLP).
However, existing pre-training methods under-
utilize the benefits of language understanding
for generation. Inspired by the idea of Genera-
tive Adversarial Networks (GANs), we propose
a GAN-style model for encoder-decoder pre-
training by introducing an auxiliary discrimi-
nator, unifying the ability of language under-
standing and generation in a single model. Our
model, named as GANLM, is trained with two
pre-training objectives: replaced token detec-
tion and replaced token denoising. Specifically,
given masked source sentences, the generator
outputs the target distribution and the discrim-
inator predicts whether the target sampled to-
kens from distribution are incorrect. The target
sentence is replaced with misclassified tokens
to construct noisy previous context, which is
used to generate the gold sentence. In gen-
eral, both tasks improve the ability of lan-
guage understanding and generation by selec-
tively using the denoising data. Extensive ex-
periments in language generation benchmarks
show that GANLM with the powerful language
understanding capability outperforms various
strong pre-trained language models (PLMs)
and achieves state-of-the-art performance.'

1 Introduction

The pre-training-then-fine-tuning paradigm has
been proven successful in many natural language
processing tasks (Devlin et al., 2019; Liu et al.,
2019; Schick and Schiitze, 2021). While there are
various pre-training approaches for the encoder-
only architectures (Clark et al., 2020; Conneau
et al., 2020), the encoder-decoder pre-training is un-
derexplored, which is essential for natural language
generation. To pre-train the entire encoder-decoder
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(a) Replaced Token Detection (b) Replaced Token Denoising

Figure 1: A pre-training sample of our method, where
replaced token detection (discriminator) and replaced
token denoising (generator) are used for pre-training.
The discriminator classifies each generated token into
REPLACED or ORIGINAL, where REPLACED denotes
the predicted token is different from the gold token. The
red fonts denote incorrect predictions.

model, BART (Lewis et al., 2020) proposes a de-
noising language model objective and T5 (Raffel
et al., 2020) pre-trains the models with a span cor-
ruption objective. Furthermore, mBART (Liu et al.,
2020) and mT5 (Xue et al., 2021) extend them to
be multilingual pre-trained language models.
Unlike most encoder-decoder pre-training meth-
ods that simply apply sequence-to-sequence tasks
on a single encoder-decoder architecture, we ex-
plore the approaches to pre-train the model in a
GAN-style manner with an auxiliary discrimina-
tor. GAN (Goodfellow et al., 2014) performs well
on both text and image generation tasks by com-
bining the generator and discriminator. It aims to
improve the ability of the generator to produce high-
quality samples, which is important for the encoder-
decoder pre-training when transferred to down-
stream generation tasks. Similarly, MaskGAN (Fe-
dus et al., 2018) shows the GAN-like training can
improve the quality of the autoregressive language
model. Therefore, it is intuitive to leverage GAN
to empower the encoder-decoder pre-training by
unifying language understanding and generation.
In this work, we propose a pre-training frame-
work GANLM, using GAN-style learning to im-
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prove the transferability of pre-trained language
models for the natural language generation. Specifi-
cally, the encoder reads the masked source sentence
and the generator obtains target distribution. Then,
the discriminator distinguishes whether each token
sampled from the target distribution matches the tar-
get gold sentence (replaced token detection). The
misclassified tokens by discriminator are regarded
as hard tokens for the generator to predict accu-
rately. We replace original tokens in the target sen-
tence with misclassified sampled ones to construct
the noisy previous context for predicting the target
sentence (replaced token denoising). In Figure 1,
the generator predicts the masked words “guardian
watered”’, where the incorrect token “guardian” and
correct token “watered” are both misclassified into
REPLACED and ORIGINAL by the discriminator.
Next, we resample a different token “watering”
from the generated distribution. Consequently, the
target tokens “gardener watered” are replaced with
the sampled tokens “guardian watering” to con-
struct the noisy sample. The generator predicts the
next word conditioned on previous noisy tokens
(replaced token denoising). Through combing two
tasks, GANLM strengthen generation performance
with the enhanced language understanding capabil-
ity from the replaced token detection task.

Our method is effective for text generation and
can be extended to natural language understanding
tasks. We pre-train GANLM model on large-scale
monolingual corpora and evaluate the performance
of our pre-trained English model GANLM and mul-
tilingual model GANLM-m on various downstream
tasks, including text summarization, machine trans-
lation, and data-to-text generation. Experimen-
tal results demonstrate that our method substan-
tially outperforms previous pre-trained encoder and
sequence-to-sequence models on generation tasks.
Our method is further tested on GLUE (Wang et al.,
2019) and XNLI (Conneau et al., 2018) to validate
the transferability of our pre-trained model. An-
alytic experiments emphasize the importance of
the discriminator in both the pre-training and fine-
tuning stage, leading to better performance.

2 GANLM
2.1 Model Overview

Our GAN-style pre-trained model comprises a gen-
erator (G) and discriminator (D), which are both
encoder-decoder frameworks and conditioned on
the same encoder (Enc). In Figure 2, the encoder

reads the masked sentence and the generator de-
coder obtains the target distribution. Then the dis-
criminator decoder distinguishes whether each to-
ken in the sampled target sentence matches the gold
reference. Tokens in the target gold sentence are
randomly replaced with misclassified ones by the
discriminator to construct the noisy sample, which
is fed into the generator decoder to predict the tar-
get sentence (replaced token denoising).

2.2 Masked Sequence Generator

Given a monolingual sentence z = (z1,...,%,)
with n words from the dataset Dy, of language Ly, €
Loy ={L1,...,Lr} (|Lau| = K), some random
spans of contiguous tokens in x are corrupted as
the source sentence, which is denoted as z°"¢ =
(T1,- s T\ywy - - - » Tn)- T\ysp 1S @ masked span of
Ty, Where the fragment from position u to v is
corrupted by [MASK]. Given z°", the generator
predicts the original identities of the masked tokens
a9 = (x\1,..., Ty, - - -, T\,,) AUtoregressively:

xy = Enc-Dec(z°", xtl?ffﬁ {0s,05}) M

where ¢ and g denote the encoder and decoder
parameters of the generator. Enc-Dec denotes an
encoder-decoder model. The generator predicts the
next position ¢ token xirg based on previous tokens.

The training objective of sequence-to-sequence
masked language modeling (S2S-MLM) on the
dataset Dy, of language Ly, is defined as:

Lg = Eq~p, [log Po (x'7912°7¢; { e, 0})] )

src

where 2°7¢ and !9 are derived from z.

2.3 Replaced Token Detection

The generator outputs the distribution of each target
token and we create a sampled sentence £/" by ran-
domly sampling tokens from the distribution. The
discriminator distinguishes whether each token in
279 is replaced compared to 2'"9. Given the target
distribution Pg(z!"|2*"¢) (x"9 € x!"9) from the
generator, we construct £/ for the discriminator:

&9 = REPLACE(z""?; z})

’ tr src tr tr (3)
w.rt. xp ~ Po(z2*" ) ANz, € 9

where REPLACE(-) replaces target ¢-th position un-
masked token in z'"9 with the sampled token z}

from the generated distribution Pg (x}"9|257¢).
Given the source sentence x°"¢ and the en-
coder ¢, the decoder of the discriminator 6p ob-
tains a sequence of hidden representations H; =
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Original Sentence: The gardener watered the flowers

Discriminator REI’&ACED ORIAGINAL Generator gardener  watered [E?S]
Encoder — Decoder Encoder — Decoder
3 ¥ ¥ ¥ ¥ ¥ ¥
The [MASK] the flowers|| Weight guardian watered The [MASK] the flowers || #eight [BOS] guardian  watering
Tying ‘ Sampling Tying Re.mmplingf
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(a) Replaced Token Detection

(b) Replaced Token Denoising

Figure 2: Overview of GANLM, including (a) replaced token detection and (b) replaced token denoising. The
encoder reads the source sentence and the generator obtains target distribution, where the generator and discriminator
are supervised by the gold labels in (a). The discriminator distinguishes whether the sampled tokens “guardian
watered” are replaced (both tokens are misclassified in this example). For the correct predicted token “watered”, we
obtain a different token “watering” by resampling. The target tokens are replaced with the misclassified tokens to
construct the noisy input, which are used to predict the gold sentence “gardener watered [EOS]” in (b).

(h1,...,hy) by feeding the sampled sentence 29
to the discriminator decoder:

H, = Enc-Dec(z*", &""9; {0, 0p}) 4)

where 6¢ and 6p denote the encoder and decoder
parameters of the discriminator. The decoder of the
discriminator 6p adopts the bidirectional language
model to classify each input token by extracting
the past and future representations.

Given the representations H;, the discriminator
classifies sampled tokens 29 into the REPLACED
or ORIGINAL label with a sigmoid function o:

V =o(HaWa) 5)

where W, € R%*? is the matrix projects the token
representations to two categories (REPLACED or
ORIGINAL) and d, is the model hidden size.

The training objective of the replaced token de-
tection task for the discriminator is:

Lp =Epup, (377 = 2"9) log V + 1(3"79 # 279) log(1 — V)]

©)
where I(-) is the indicator function.

2.4 Replaced Token Denoising

Although our model structure is similar to GAN,
the generator is trained with maximum likelihood
rather than the standard GAN objective due to the
difficulty of the GAN training in NLP. We replace
tokens in x!"9 with misclassified tokens by dis-
criminator to construct the noisy previous context

x?g . If the sampled token /"9 = z; is labeled

with ORIGINAL, we will resample the token x}
(x} # x;) from target distribution as the misclassi-
fied token to modify z; in 2"9. When #/"9 = x|
(x} # x¢) is labeled with REPLACED, the mis-
calssified token z; directly replaces x; in the target
sentence. Given the target sentence z/"9 and gen-
erated probabilities Pg, we replace tokens in "9

with sampled tokens as the previous noisy context:

2t — 29, ztre
x 7 = REPLACE(z 752, 7)

M

w.rt. #)79 ~ Pg(at™ |2 YAt € v
where v = {vy,...,v,} (Jv] = p) denotes the
positions in 29 of the misclassified tokens.
The training objective of the replaced token de-

noising (DG) task based on the source sentence
2°7¢ and target noisy context x?g is described as:

Lpg =Eenp, [~log P29z, 259 {0g,0p})]  (8)

where 279 is predicted by the previous noisy to-
kens $?g instead of previous gold context.

2.5 Multi-task Learning

Given multilingual corpora Dy = {D,..., Dk}
of K languages, the pre-trained model with pa-
rameters {0¢, 0g, Op} is jointly trained over K lan-
guages to optimize the combined self-supervised
objective as below:

Lp=Ep,er,,[Lg+ Ip + Lpg] )

where A = 10.0 is the discriminator weight and
Ly = {L1,...,Lg}. To improve model effi-
ciency, a tiny discriminator decoder (4 layers) is
adopted to help the generator decoder (12 layers).
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3 Discriminator-enhanced Fine-tuning

To fully utilize the pre-trained parameters, we keep
the auxiliary discriminator in downstream genera-
tion tasks (discriminator-enhanced fine-tuning) to
enhance the generator, where both the pre-trained
generator and discriminator are recycled. Given
the annotated corpus D, of K languages, the pre-
trained model {0¢, 0p, 0g} is optimized by:

Lr =FEey~p,[Ls+ AD + Lpg] (10)

where x and y are the parallel pair from D;. The ob-
jective in the fine-tuning stage use the original pair
x and y without S2S-MLM. The generator {0, 6}
are kept for inference by throwing out the discrimi-
nator decoder fp. Alternatively, the discriminator
(D: {6¢,0p}) or generator (G:{0¢s,0g}) can also
be separately fine-tuned on the downstream task.

4 Experiment Setting

4.1 Pre-training Details

Model Configuration In the experiments, we
adopt a sequence-to-sequence base-setting Trans-
former architecture with 768 hidden size, 3072
FFN (feed-forward network) dimension, 12 atten-
tion heads, and 12 encoder/decoder layers. The
maximum sequence length of learned positions em-
beddings in the encoder/decoder is set as 1024. All
token embedding matrices and output projection
matrix parameters are shared for model efficiency.

Dataset Following the previous work (Liu et al.,
2019), our English pre-trained model GANLM is
trained on 160GB English monolingual data from
BookCorpus, CC-News, OpenWebText, and CC-
Stories. In addition, we pre-train GANLM-m with
6TB multilingual data as the pioneering work (Ma
etal., 2021), which is a combination of CC100, CC-
Net, and Wikipedia, covering 100 languages. All
texts are tokenized by SentencePiece (Kudo and
Richardson, 2018) and encoded by the dictionary
from XLM-R (Conneau et al., 2020).

Optimization For S2S-MLM, we randomly
mask 15% of the words in each instance with an
average span length of 3 (Raffel et al., 2020). For
the replaced token detection, we set the discrimi-
nator weight A = 10.0. We adopt Adam (Kingma
and Ba, 2015) with a learning rate of 3e-4 and
10K warm-up steps for pre-training. The model is
trained on 128 NVIDIA A100 GPUs (40GB) from
scratch and each batch contains 8K samples. The

English pre-trained model GANLM and multilin-
gual model GANLM-m are trained for 500K steps.
Specifically, all methods in Table 1 are pre-trained
with 500K steps for a fair comparison.

4.2 Downstream Tasks

Monolingual Summarization CNN/DailyMail
(See et al., 2017) is an abstractive summarization
dataset aiming at generating a concise summary
from an English news article in CNN and Dai-
lyMail. As a popular abstractive summarization
dataset, XSum (Narayan et al., 2018) compresses a
BBC news article to a short one-sentence summary.

Multilingual Summarization To test the capa-
bility of our multilingual pre-trained model, a
large-scale multilingual dataset named WikiLin-
gua (Ladhak et al., 2020) of 18 languages from
WikiHow is used to evaluate multilingual abstrac-
tive summarization systems.

Bilingual Translation For the bilingual task,
we use the WMT-14 English-German, WM'T-
14 English-French, and WMT-16 English-
Romanian dataset for evaluation. WMT-14 En-De
from WMT consists of 4.5M sentence pairs and the
newstest2014 is used as the test set. WMT-14 En-
Fr is a large-scale dataset containing nearly 41M
sentence pairs and newstest2014 is adopted for eval-
uation. WMT-16 En-Ro is comprised of original
parallel sentences and back-translation data.

Multilingual Translation IWSLT-17 of 5 lan-
guages and WMT-10 of 11 languages are utilized
for multilingual translation. For IWSLT-17, En-
glish (En), German (De), Italian (It), Dutch (NI),
and Romanian (Ro) corpora are downloaded from
the IWSLT-2017 benchmark. We use dev2010 for
validation and tst2017 for test. For WMT-10, we
use the parallel data of 11 languages from the WMT
benchmark for evaluation (Wang et al., 2020).

Data-to-Text Generation Data-to-text genera-
tion accepts multiple triplets and produces a de-
scription. WebNLG (Gardent et al., 2017) contains
parallel DBpedia triple sets and short texts. The En-
En direction contains 17K triple sets and 45K short
texts and the En-Ru direction contains 7K triple
sets and 19K texts in Russian. The ROUGE scores
on the valid set are reported for a fair comparison
with the previous work (Gehrmann et al., 2021).
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ID Model Pre-training Objective Summarization Translation
RG-1/RG-2/RG-L  Avgensx Avgx_pen Avgan

@  Transformer w/o Pretraining 32.36/11.46/25.47 214 25.5 23.5
@  BERT/mBERT (Devlin et al., 2019) Masked Language Model 36.93/15.00/29.62 26.4 29.6 28.0
®  ELECTRA (Clark et al., 2020) Replaced Token Detection 43.02/19.94/34.83 29.1 32.8 30.3
@ BART (Lewis et al., 2020)/mBART (Liu et al., 2020)  Denoising Autoencoder 44.13/21.04/36.02 30.3 333 314
® T (Raffel et al., 2020)/mT5 (Xue et al., 2021) Span Corruption 44.22/21.06/36.12 304 33.6 317
® GANLM/GANLM-m (ours) Replaced Token Detection + Replaced Token Denoising ~ 45.36/21.98/36.84 31.2 342 32.8
@  ® - Discriminator-enhanced Fine-tuning Replaced Token Detection + Replaced Token Denoising ~ 44.74/21.47/36.40 31.1 34.0 32.6
@ - Replaced Token Denoising Replaced Token Detection 44.28/21.14/36.24 30.6 33.6 32.1

Table 1: Comparison of different pre-training objectives. Particularly, all methods in this table use the base-setting
model and are pre-trained with S00K steps on the same corpora for a fair comparison. We report ROUGE scores for
abstractive text summarization (XSum) and BLEU scores for multilingual machine translation (IWSLT-17).

Model #Corpus  XSum
RG-1/RG-2/RG-L

28.10/8.02/21.72

39.75/17.24/31.95
38.76/16.33/31.15

CNN / DailyMail
RG-1/RG-2/RG-L

39.53/17.28/36.38

42.12/19.50/39.01
41.72/19.39/38.76

PTRNET (See et al., 2017)

MASS (Song et al., 2019) -
BERTSUMABS (Liu, 2019) 16GB

RoBERTa (Liu et al., 2019) 160GB 42.19/19.22/34.23  41.28/19.11/38.57
ERNIE-GEN (Xiao et al., 2020) 16GB - 42.30/19.92/39.68
TS5 (Raffel et al., 2020) 750GB 42.05/20.34/39.40
UniLM (Dong et al., 2019) 16GB - 43.08/20.43/40.34
UniLMv2 (Bao et al., 2020) 160GB 44.00/21.11/36.08 ~ 43.16/20.42/40.14
RoBERTa + 52s-ft (Bao et al., 2021)  160GB 43.39/20.55/35.63  42.28/20.21/39.87
UniLMv2 + s2s-ft (Bao et al., 2021)  160GB 44.37/21.54/36.61 43.89/21.05/41.02
GANLM (ours) 160GB 45.36/21.98/36.84  44.15/21.12/41.32

Table 2: Abstractive summarization results on the test
set of CNN / DailyMail, and XSum. The evaluation
metric is the F1 score of ROUGE (RG) scores.

Model En Zh Avgig

Transformer (Vaswani et al., 2017)  35.9/13.3/29.6  32.1/16.2/26.6  29.9/10.7/25.0
XLM-R (Conneau et al., 2020) 41.4/17.6/34.5 42.2/23.8/34.9 37.5/16.0/31.2
mBART (Liu et al., 2020) 44.2/20.0/32.1 44.8/25.8/37.6  40.1/18.2/33.7
GANLM-m (ours) 44.7/20.6/37.8  45.7/26.4/38.0  40.5/18.6/34.0

Table 3: Results of our method and other baselines
on multilingual abstractive summarization. We report
the RG-1/RG-2/RG-L (ROUGE) F1 scores of the 18
WikiLingua languages and the average scores.

4.3 Fine-tuning Details

Abstractive Summarization During fine-tuning,
we use the Adam (Kingma and Ba, 2015) optimizer
with an initial learning rate of 1e-4 and the batch
size is set as 2048 tokens on 8 V100 GPUs. The
models are trained with the label smoothing cross-
entropy with a smoothing ratio of 0.1.

Neural Machine Translation For the large-scale
multilingual dataset WMT-10, our pre-trained
model is fine-tuned on 32 V100 GPUs with a learn-
ing rate of 3e-4. For all bilingual translation tasks
and the IWSLT-2017 benchmark, we adopt Adam
with a learning rate of le-4 and set the batch size
as 2048 tokens on 8§ V100 GPUs.

Data-to-text Generation We use Adam with a
learning rate of {8e-5,1e-4} and set the batch size
as 16 sentences on the WebNLG dataset.

S Comparing Pre-training Objectives

To verify the potential of our pre-training task
under a fair comparison, we re-implement pre-
vious pre-training tasks and pre-trains baselines
on the same corpora with 500K steps, including
BERT/mBERT (Devlin et al., 2019), ELECTRA
(Clark et al., 2020), BART (Lewis et al., 2020)/
mBART (Liu et al., 2020), and TS5 (Raffel et al.,
2020)/mT5 (Xue et al., 2021). Table 1 reports
the ROUGE and BLEU points on the summariza-
tion dataset XSum and multilingual translation
dataset IWSLT-17. All models have 12 encoder
and 12 decoder layers with a hidden size of 768.
We observe that the encoder-decoder pre-trained
model (T5/mT5) outperforms the pre-trained en-
coder (ELECTRA, BERT/mBERT), which corrob-
orates the encoder-decoder pre-training is more
beneficial to the downstream generation task. Ex-
periments ®~® show the importance of the dis-
criminator and replaced token denoising. Experi-
ment ® demonstrates that only the replaced token
detection task can still bring improvement through
strengthening the encoder shared by both genera-
tor and discriminator. Besides, the replaced token
detection task is also helpful to downstream lan-
guage understanding tasks with a powerful encoder.
Lastly, the results verify that fine-tuning with the
help of the pre-trained auxiliary discriminator fur-
ther improves performance.

6 Results of GANLM

The English pre-trained model GANLM is eval-
uated on the abstractive text summarization task
with the ROUGE (Lin, 2004) scores.

XSum As shown in Table 2, the pre-training
methods achieve significant improvements over the
strong baseline PTRNET without pre-training. The
sequence-to-sequence pre-trained model such as
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UniLMv?2 + s2s-ft outperforms other pre-training
baselines, where the pseudo-masked technique is
applied to the fine-tuning stage. Our method beats
all pre-training baselines by a large margin with the
discriminator-enhanced fine-tuning strategy. It em-
phasizes the importance of the fine-tuning strategy
for the performance of downstream tasks.

CNN / DailyMail Our method is also evaluated
on the CNN / DailyMail dataset in Table 2. The
comparisons further indicate that our method ob-
tains strong performance on generation by leverag-
ing the discriminator.

7 Results of GANLM-m

To evaluate the multilingual pre-trained model
GANLM-m, we report the BLEU (Papineni et al.,
2002) scores for machine translation and ROUGE
(Lin, 2004) scores for text summarization and data-
to-text generation.

WikiLingua Table 3 reports the average ROUGE
scores of 18 WikiLingua languages. The large im-
provement over other pre-training method demon-
strate the summarization ability of our GANLM-m.

WMT14 En-De The results on the bilingual
translation are presented at Table 4. We observe
that the proposed GANLM outperforms all previ-
ous works in the high-resource machine translation
scenario (> 4M sentence pairs).

WMT14 En-Fr We further conduct experiments
on the WMT14 En-Fr bilingual translation task.
Table 4 GANLM-m shows that GANLM-m still
brings significant improvement to the downstream
task with large-scale machine translation fine-
tuning data (> 40M sentence pairs).

WMT16 En-Ro For the low-resource setting (<
1M sentence pairs), there is an average gain of +4
BLEU points compared to the Transformer base-
line in Table 5. With the same back-translation
data, GANLM-m further improves the model per-
formance and still beats other baselines.

WMT-10 For the multilingual translation, we
compare GANLM-m with the strong multilingual
pre-trained models in Table 7 and Table 6, such as
mBART (Liu et al., 2020). It is notable our method
outperforms large pre-trained model mBART with
1024 hidden size by a large margin (+1~2 BLEU
points). Plus, there is a +1.5 BLEU gain over XLM-

Model | En—»De De—En En—Fr Fr—En
Transformer (Vaswani et al., 2017) | 27.8 30.7 38.2 37.4
mBERT (Devlin et al., 2019) 28.0 30.8 38.0 37.8
XLM-R (Conneau et al., 2020) 29.4 314 39.5 38.7
mBART (Conneau et al., 2020) 29.5 332 42.0 39.2
mT5 (Conneau et al., 2020) 28.8 32.1 39.8 38.6
GANLM-m (ours) 30.6 34.0 429 39.8

Table 4: Comparison with other pre-training approaches
on the WMT 14 En-De and WMT 14 En-Fr benchmark.

Model | En>Ro Ro—En Ro—En (+BT)
Transformer (Vaswani et al., 2017) \ 34.0 333 36.4
XLM (Conneau and Lample, 2019) - 35.6 385
MASS (Song et al., 2019) - - 39.1
BART (Lewis et al., 2020) - - 38.0
BART-En (Liu et al., 2020) 36.0 35.8 374
BART-Ro (Liu et al., 2020) 37.6 36.8 38.1
XLM-R (Conneau et al., 2020) 35.6 35.8 -
mBART (Liu et al., 2020) 37.7 37.8 38.8
mT5 (Liu et al., 2020) 37.1 37.2 38.0
GANLM-m (ours) 383 38.0 39.3

Table 5: Comparison with other pre-training methods
on the WMT16 En-Ro benchmark.

R, whose encoder and decoder are initialized by the
cross-lingual pre-trained encoder (Ma et al., 2020).

WebNLG Table 8 presents the performance on
the data-to-text generation task, showing that
GANLM outperforms multilingual sequence-to-
sequence pre-training baselines mBART and mT5
by +2 ROUGE-L points on both languages.

8 Analysis

Ablation Study To analyze the effect of the pro-
posed pre-training and fine-tuning strategies, we
conduct an ablation study of each component of
our method in Table 9. Experiment @ and ® verify
the merits of the replaced token detection and re-
placed token denoising. Furthermore, experiment
@ shows that our model with the replaced token de-
noising task obtains the best performance by jointly
fine-tuning generator (G) and discriminator (D).

Low-resource Setting To further analyze the per-
formance of GANLM-m given different sizes of
downstream parallel data, we randomly extract K
percentage of the whole sentence pairs as the fine-
tuned parallel data from the full WMT-16 En—Ro
training data. We set K = {10%, 20%, ..., 100%}
and compare our method with the Transformer
baseline model. Figure 3 shows the BLEU points of
our pre-trained multilingual model and the baseline.
When the parallel data size is small, the baseline
without pre-trained model produces unsatisfactory
results. Similarly, in Figure 3(a), GANLM fine-
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En—X test sets ‘ #Params ‘ Fr Cs De Fi Lv Et Ro Hi Tr Gu ‘ Avgio
1—1 BiNMT (Vaswani et al., 2017) ‘ 242M/10M ‘ 36.3 223 402 152 16.5 15.0 23.0 122 133 79 ‘ 20.2
MNMT (Vaswani et al., 2017) 242M 342 209 40.0 15.0 18.1 209 26.0 145 17.3 132 | 220
mBART (Liu et al., 2020) 611M 337 20.8 389 145 182 20.5 26.0 153 16.8 129 | 21.8
1—-N | XLM-R (Conneau et al., 2020) 362M 347 21,5 40.1 152 18.6 20.8 264 156 174 149 | 225
GANLM (ours) 430M 360 224 421 165 19.7 215 270 174 18.6 163 | 23.8
MNMT (Vaswani et al., 2017) 242M 342 21.0 394 152 18.6 204 26.1 151 17.2 13.1 | 220
mBART (Liu et al., 2020) 611M 324 19.0 37.0 132 17.0 19.5 25.1 157 16.7 142 | 21.0
N—N | XLM-R (Conneau et al., 2020) 362M 342 214 397 153 189 20.6 265 156 17.5 145 | 224
GANLM-m (ours) 430M 350 21.8 402 16.1 192 219 267 162 179 144 | 229

Table 6: En—X evaluation results for bilingual (1— 1), one-to-many (1—N), and many-to-many (N—N) models on

WMT-10. The languages are ordered from high-resource languages (left) to low-resource languages (right).

X—En test sets ‘ #Params ‘ Fr Cs De Fi Lv Et Ro Hi Tr Gu ‘ Avgio
1—1 | BiNMT (Vaswani et al., 2017) \ 242M/10M \ 36.2 285 402 192 175 19.7 29.8 14.1 151 93 \ 23.0
MNMT (Vaswani et al., 2017) 242M 348 29.0 40.1 21.2 204 262 348 228 238 192 | 272
mBART (Liu et al., 2020) 611M 36.2 299 40.0 222 206 272 372 233 257 21.7| 284
N—1 | XLM-R (Conneau et al., 2020) 362M 35.6 30.2 409 227 21.7 284 373 254 262 22.6| 29.1
GANLM (ours) 430M 369 31.8 424 232 225 294 379 272 279 229 | 30.2
MNMT (Vaswani et al., 2017) 242M 359 29.2 40.0 21.1 204 263 355 23.6 243 20.6 | 27.7
mBART (Liu et al., 2020) 611M 348 289 394 207 202 258 359 225 250 219 | 275
N—N | XLM-R (Conneau et al., 2020) 362M 357 30.3 41.0 222 21.3 28.1 37.0 254 26.1 219 | 289
GANLM-m (ours) 430M 37.0 31.1 424 227 225 281 371 253 269 227 | 29.6

Table 7: X—En evaluation results for bilingual (1— 1), one-to-many (1—N), and many-to-many (N—N) models on
WMT-10. The languages are ordered from high-resource languages (left) to low-resource languages (right).

Model En

RG-1/RG-2/RG-L
83.4/63.1/70.3

Ro
RG-1/RG-2/RG-L

34.8/13.4/33.0

mBART (Liu et al., 2020)

mMT5gman (Gehrmann et al., 2021) 78.8/59.2/67.2 29.7/10.5/28.4
mT5hee (Gehrmann et al., 2021) 82.3/62.1/69.7 33.0/12.7/31.3
GANLM-m (ours) 83.8/63.9/71.2 35.2/15.0/33.4

Table 8: Results on data-to-text generation (WebNLG).

Xsum
ID | Method P 9| RG-IRG2RGL
@ | Transformer w/o Pre-training v’ | 32.36/11.46/25.47
@ | @+ S2S-MLM V' | 44.44/21.25/36.22
® | @ + Replaced Token Detection | v/ 42.11/18.58/33.21
@ | @ + Replaced Token Detection V| 44.28/21.14/36.24
® | @ + Replaced Token Denoising | v/ 42.41/18.98/34.31
® | @ + Replaced Token Denoising V' | 44.74/21.47/36.40
@ | @ + Replaced Token Denoising | v v | 45.36/21.98/36.84

Table 9: Ablation study of our method on the test set of
the abstractive summarization benchmark XSum, where
GANLM is fine-tuned on the downstream task with
different pre-training and fine-tuning strategies.

tuned on nearly half data (purple line, 50%) defeats
the baseline trained on all pairs (green line, 100%),
exemplifying the effectiveness of our method in
low-resource scenarios.

Discussion on Discriminator The weight value
A and layer number of the discriminator are key fac-
tors to our pre-training task. As shown in Figure 4,

BLEU Scores
BLEU Scores
5 8 B

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Ratio (¥

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
(%) Ratio (%

i0 (%)

(a) En—Ro (b) Ro—En

Figure 3: Comparison between Transformer and our
method on WMT-16 (a) En—Ro and (b) Ro— En.

we vary discriminator weight in Figure 4(a) to find
a balance between the generator and discriminator
objective. To this end, we study the performance
of GANLM with different A, where A ranges from
5.0 to 100.0. When the weight of the discriminator
is 10.0, multiple pre-training tasks are balanced.
Moreover, we find it more efficient to have a tiny
discriminator (3 ~ 6 layers) in Figure 4(b).

Multilingual Representations We randomly se-
lect 1000 parallel sentences of each language
in WMT-10 and visualize their representations
(Maaten and Hinton, 2008) of the last two encoder
layers in Figure 5 using our multilingual model
fine-tuned on WMT-10 and the multilingual base-
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BLEU Scores

204

202

1 2 3 a 5 6 7 8 12

T 25 30 35 4
Discriminator Weight Discriminator Layer

(a) Discriminator Weight (b) Discriminator Layer

Figure 4: Effect of (a) discriminator weight and (b)
Discriminator layer on the WMT14 En—De task.

(a) 11-th (b) 12-th (c) 11-th (d) 12-th

Figure 5: (a) and (b) are representations of the baseline
from the 11-th and 12-th encoder layers while (c) and
(d) are counterparts of the fine-tuned model. Each color
denotes one language (11 languages in WMT-10).

line. The first hidden state of the encoder is adopted
as the sentence representation. Compared to Figure
5(a) and 5(b) of the baseline, different languages be-
come closer and likely to overlap with each other in
Figure 5(c) and 5(d) of our method, demonstrating
that our method effectively aligns representations
of different languages to the shared space.

Massively Multilingual Translation We com-
pare GANLM-m with the state-of-the-art multilin-
gual NMT model M2M-124 (Goyal et al., 2021).
M2M-124,ge and DeltalLM + Zcode both have a
large hidden size of 1024. Our pre-trained model
is fine-tuned on the same training data as DeltaLM
+ Zcode (Yang et al., 2021). Compared to M2M-
1241315, GANLM-m with fewer training data and
only 430M parameters depends more on the trans-
ferability of the cross-lingual pre-training model.
In Table 10, our method outperforms the Deltal. M +
Zcode in zero-shot translation direction (Avgx _y)
by +1.5 BLEU points, benefiting from our pre-
trained model in cross-lingual zero-shot transfer.

Comparison of Pre-training Cost Our English
pre-trained model GANLM is trained for nearly
2 weeks on 128 A100 GPUs (40GB), with 500K
training steps and a batch size of 8K sequences.
Compared to the re-implemented T5 (Raffel et al.,
2020), our method is only 0.5 times slower than
TS5 with the same training steps but gets a signifi-
cant improvement on the machine translation, text

Model ‘ #Params ‘ AVgx _En AVE8En—y AvEx_y

M2M-1244, (Goyal et al., 2021) 175M 15.43 12.02 5.85
M2M-124j5 (Goyal et al., 2021) 615M 20.03 16.21 7.66
DeltalLM + Zcode (Yang et al., 2021) | 711M 30.39 23.52 11.21
GANLM-m (ours) 430M 30.70 24.83 13.65

Table 10: Massively multilingual translation average
results (102 x 101 translation directions) on the devtest
sets of the flores benchmark.

Model MNLI SST-2 MRPC RTE QNLI QQP Avgg

BERT (Devlin et al., 2019) 84.5 93.2 873 686 917 913 86.1
XLNet (Yang et al., 2019) 86.8 94.7 88.2 740 917 914 878
RoBERTa (Liu et al., 2019)  87.6 94.8 90.2 787 928 919 893
GANLM-m (D) 89.0 94.7 90.6 832 939 917 905
GANLM-m (G) 89.3 95.0 90.5 850 942 92,0 910

Table 11: Results of base-setting models on the valid set
of GLUE. We report accuracy for classification tasks.

summarization, and data-to-text generation tasks.

Training of replaced token denoising To fully
understand the training procedure of the replaced
token denoising, we plot the training loss of
sequence-to-sequence masked language modeling
Lg, replaced token detection, and replaced token
denoising in Figure 6. Furthermore, we investi-
gate how many tokens in the target sentence are
replaced with the misclassified tokens by discrimi-
nator in Figure 7. We define p, as the replaced rate
in the target gold sentence. Nearly 7.5% tokens
of the target previous tokens are replaced with the
misclassified tokens to construct the noisy input
samples for the generator decoder.

Language Understanding Our method can be
easily extended to various downstream language
understanding tasks. We use the GLUE benchmark
(Wang et al., 2019) to estimate English pre-trained
model GANLM and the XNLI dataset (Conneau
et al., 2018) to evaluate the capability of the mul-
tilingual language understanding. Our method is
tested on each language separately by fine-tuning
generator (G) or discriminator (D) on the XNLI
dataset. In Table 11, Our English pre-trained model
performs better than RoBERTa. Additionally, our
pre-trained model outperforms the previous cross-
lingual pre-trained encoder XLM and pre-trained
encoder-decoder model mT5 in Table 12.

9 Related Work

Pre-training for Generation Language model-
ing based on the self-supervised learning training
objective and large-scale data has been widely used
to acquire contextual representations. Pre-training
a large Transformer encoder (Vaswani et al., 2017;
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Models En De Th Tr Vi Avgis

Fine-tuning on English training set (Cross-lingual zero-shot transfer)

XLM (Conneau and Lample, 2019) 85.0 77.8 73.2 725 76.1 75.1

mT5 (Xue et al., 2021) 847 774 732 728 742 754
GANLM-m (D) 850 786 743 744 772 758
GANLM-m (G) 863 79.0 742 745 765 755

Fine-tuning on each training set (Translate-train)

XLM (Conneau and Lample, 2019) 85.0 80.3 755 747 76.6 76.7
mT5 (Xue et al., 2021) 84.7 - - - -

GANLM-m (D) 850 80.7 769 744 79.1 779
GANLM-m (G)) 86.3 808 774 745 792 78.0

Fine-tuning on all training sets (Translate-train-all)

XLM (Conneau and Lample, 2019) 85.0 80.3 76.0 756 785 77.8

mT5 (Xue et al., 2021) 82.0 77.7 750 748 745 759
GANLM-m (D) 87.3 831 803 799 813 805
GANLM-m (G) 872 827 79.8 79.6 81.6 80.6

Table 12: Analysis of multilingual classification on the
XNLI test set. The evaluation metric is accuracy (%).

Training Loss

w

10 20 30 40 50
Steps (100K)

Figure 6: The training loss of sequence-to-sequence lan-
guage modeling, replaced token detection, and replaced
token denoising in the pre-training stage of our English
pre-trained model GANLM.

Devlin et al., 2019; Joshi et al., 2019; Liu et al.,
2019) with the masked language modeling (MLM)
task brings significant improvement for various
downstream natural language understanding (NLU)
tasks. Many enhanced versions of MLM tasks
(Joshi et al., 2019; Sun et al., 2019; Liu et al., 2019;
Clark et al., 2020) are proposed to further enhance
the capability of the pre-trained model. Besides,
pre-training a Transformer decoder (Radford et al.,
2018, 2019; Schick and Schiitze, 2021) is beneficial
for unconditional text generation. There have been
numerous attempts for pre-training a sequence-to-
sequence Transformer model by adding generative
training objectives, such as MASS (Song et al.,
2019) and BART (Lewis et al., 2020). Further-
more, TS5 (Raffel et al., 2020) explores different
pre-training tasks and proposes to corrupt consecu-
tive span of tokens for pre-training. Different from
previous works, our work focuses on leveraging the
auxiliary discriminator ameliorate encoder-decoder
pre-training on language generation tasks.

Multilingual Pre-training Inspired the success
of pre-training in a single language such as English,

0.075 L\__R
o
T 0.050
2

0.025

0.000

10 20 30 40 50
Steps (100K)

Figure 7: The replaced rate of the replaced token de-
noising task in the pre-training stage of our English
pre-trained model GANLM

recent works (Conneau and Lample, 2019; Con-
neau et al., 2020; Yang et al., 2022a, 2020; Chi
et al., 2021b; Yang et al., 2022b,c, 2021) aim to
learn cross-lingual representations with different
training objectives in multiple languages. For the
sequence-to-sequence model, mBART (Liu et al.,
2020) pre-trains a Transformer model by denoising
training objective in multiple languages. mT5 (Xue
et al., 2021) extends the span corruption task for
multilingual training and mT6 (Chi et al., 2021a)
amplify generation task by introducing a partially
non-autoregressive objective. Along the line of re-
search, different multilingual pre-trained models
(Ma et al., 2020; Chi et al., 2020) are proposed to
solve downstream cross-lingual generation tasks.

10 Conclusion

In this work, we introduce GANLM, a state-of-
the-art pre-training encoder-decoder framework
for both language generation and understanding
tasks trained on large-scale corpora. Our GAN-
style models are pre-trained with replaced token
detection and replaced token denoising by intro-
ducing an auxiliary discriminator. Extensive ex-
periments prove the effectiveness of GANLM on
various language generation and translation bench-
mark datasets. We further verify the capability of
the pre-trained model on multiple downstream un-
derstanding tasks.
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A Statistics of Datasets

WMT-14 En-De WMT-14 En-De consists of
4.5M sentence pairs. The validation set is de-
vtest2014, and the test set is newstest2014.2

WMT-16 En-Fr WMT-14 En-Fr is a large-scale
dataset containing nearly 41M sentence pairs,
where newstest2014 is employed for evaluation.

WMT-16 En-Ro  WMT-16 En-Ro is comprised
of original parallel sentences and back-translation
data. We use newsdev2016 for validation and new-
stest2016 for test. Following the previous work
(Liu et al., 2020), we use the same back-translation
data for a fair comparison.’

IWSLT-2017 We download English (En), Ger-
man (De), Italian (It), Dutch (N1), and Romanian
(Ro) corpora from the IWSLT-2017 benchmark.
The dev2010 is used for validation and tst2017 for
test.*

WMT-10 Table 13 lists the detailed statistics of
10 language pairs from WMT-10, which is a col-
lection of parallel data in different languages from
the WMT datasets. The parallel data is paired with
English and other 10 languages, including French
(Fr), Czech (Cs), German (De), Finnish (Fi), Lat-
vian (Lv), Estonian (Et), Romanian (Ro), Hindi
(Hi), Turkish (Tr) and Gujarati (Gu). The corpora
of the WMT benchmark, exclude WikiTiles, from
the latest available year of each language are cho-
sen. After removing the duplicated samples, we
limit the size of each parallel language pair data
up to 10 million by randomly sampling from the
whole corpus. We adopt the same valid and test sets
from the WMT benchmark as the previous work
(Wang et al., 2020).

WikiLingua To test the capability of our multi-
lingual pre-trained model, a large-scale multilin-
gual dataset named WikiLingua (Ladhak et al.,
2020) of 18 languages from WikiHow is used to
evaluate multilingual abstractive summarization
systems.’

https://statmt.org/wmt14/
translation-task.html

*https://www.statmt .org/wnt16/
translation-task.html

4https://sites.google.com/site/
iwsltevaluation2017/TED-tasks

‘https://github.com/esdurmus/
Wikilingua

Code Language #Bitext Training Valid Test
Fr French 10M  WMTI5 Newstestl3 Newstestl5
Cs Czech 10M  WMTI9 Newstestl6 Newstestl8
De German 46M  WMTI19 Newstestl6 Newstestl8
Fi Finnish 48M  WMTI19 Newstestl6 Newstestl8
Lv Latvian 14M  WMTI17 Newsdevl7 Newstestl7
Et Estonian 0.7M  WMTI18 Newsdevl8 Newstestl8
Ro Romanian 0.5M  WMTI16 Newsdevl6 Newstestl6
Hi Hindi 0.26M  WMTI14 Newsdevl4 Newstestl4
Tr Turkish 0.18M WMTI8 Newstestl6 Newstestl8
Gu Gujarati  0.08M  WMTI19 Newsdevl9 Newstestl9

Table 13: Statistics and sources of the training, valid,
and test sets from WMT between English and other
languages.

B Pre-training and Fine-tuning Details

Pre-training Hyper-parameters Table 14 sum-
marizes the hyper-parameters for pre-training
GANLM and GANLM-m The task-specific hyper-
parameters for the downstream language genera-
tion and understanding tasks are in Table 15.

Abstractive Summarization During fine-tuning,
we use the Adam (Kingma and Ba, 2015) optimizer
with an initial learning rate of 1e-4 and the batch
size is set as 2048 tokens on 8 V100 GPUs. The
models are trained with the label smoothing cross-
entropy with a smoothing ratio of 0.1. The last 5
checkpoints are averaged for evaluation.

Neural Machine Translation We adopt Adam
with a learning rate of 1e-4 and set the batch size
as 2048 tokens on 8 V100 GPUs for all bilingual
translation tasks and the IWSLT-2017 benchmark.
For the large-scale multilingual dataset WMT-10,
our pre-trained model is fine-tuned on 32 V100
GPUs with a learning rate of 3e-4. For a fair com-
parison, we adopt the same architecture and model
size as our pre-trained model.

Data-to-text Generation We use Adam with a
learning rate of {8e-5,1e-4} and set the batch size
as 16 sentences on the WebNLG dataset.

Multi-lingual Fine-tuning Following the previ-
ous work (Wang et al., 2020; Ma et al., 2021), we
adopt a dynamic temperate-based sampling strat-
egy to mitigate the unbalance of the multilingual
corpora, where we gradually sample more pairs in
low-resource languages with the number of epochs
increasing. The temperature of the i-th epoch is
calculated by:

(11)

7; = min (1, 79 + i(7’ —170))

N
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Hyper-parameter GANLM GANLM-m

Number of Encoder Layers 12 12
Number of Generator Layers 12 12
Number of Discriminator Layers 4 4
Hidden size 768 768
FEN hidden size 3072 3072
Attention heads 12 12
Attention head size 64 64
Dropout 0.1 0.1
Attention Dropout 0.1 0.1
Warmup Steps 10k 10k
Peak Learning Rate 4e-4 Se-4
Batch Size 8K 8K
Weight Decay 0.01 0.01
Max Steps 500k 500k
Learning Rate Decay Linear Linear
Adam (3 0.9 0.9
Adam [ 0.98 0.98
Gradient Clipping 0.0 0.0

Table 14: Hyper-parameters for pre-training GANLM
and GANLM-m.

where 79 is the initial temperature, 71 is the peak
temperature, and N is the number of warm-up
epochs. We set 79 = 1.0, 71 = 5.0, and N = 5 for
all multilingual experiments for a fair comparison.

Given the temperature 7; i-th epoch, we can cal-
culate the real sampling ratio of the language Ly,

where Ly, € Loy ={L1,...,Lx}:
1
. .
qr,, (i) = —*—+ (12)
K Ty
D1 Pr;

where qr, (4) is the sampling ratio of the language
Ly, in the i-th epoch. py, is the real data ratio of the
language L, in all languages. 7; is the temperature
of the i-th epoch, as described in Equation 11.

C Results on Downstream Task

GLUE For each classification task of the GLUE
(Wang et al., 2019), we conduct 5 experiments with
different seeds {1, 2, 3, 4,5} and report the average
accuracy of 5 experiments.

XNLI We also conduct 5 experiments with dif-
ferent seeds {1,2,3,4,5} and report the average
accuracy of 5 experiments.

FLORES Since the corpora of X — Y are com-
monly scarce, the performance of low-resource
translation direction Avgy_,y mainly depends on
the zero-shot cross-lingual transferability of the
pre-trained model. Our model with the 12 encoder

layers and 12 decoder layers significantly outper-
forms the previous state-of-the-art model M2M-
124 with large model size. In Figure 8, we re-
port the multilingual model initialized by our pre-
trained model in all translation directions, where
the languages are ordered alphabetically by the lan-
guage code. Following the previous work (Yang
et al., 2021), we use the same training data, includ-
ing CCAligned (El-Kishky et al., 2020), CCMatrix
(Schwenk et al., 2021), OPUS-100 (Zhang et al.,
2020), JW300 (Agic and Vulic, 2019), Tatoeba
(Tiedemann, 2012), WMT2021 news track®, multi-
lingual track data’.

D Weight Sharing

Our pre-trained model includes the discriminator
(D : {0¢,0p}) and generator (G : {0¢,0g}). We
can use a 12-layer generator decoder g and a 4-
layer tiny discriminator decoder fp for replaced
token denoising. We propose a weight sharing
strategy to improve the model efficiency of the pre-
training by sharing weights among the generator
and decoder (0p = 0g) by setting the discrimina-
tor generator and generator decoder as the same
size (both 12 layers). Table 18 lists the results of
different weight sharing strategies. It turns out the
sharing decoder setting performs worse than not
sharing. It is reasonable since the generator de-
coder is used for sequence generation whereas the
discriminator decoder is a classifier.

®http://statmt.org/wmt21/
translation-task.html

"http://data.statmt.org/wmt21/
multilingual-task/
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Task Learning Rate ‘Warmup Steps Batch Size Weight Decay Max Epoch Gradient Clipping Max Source Positions Max Target Positions
Text Summarization

CNN / DailyMail le-4 1000 2048 (Tokens) 0.0 16 0.0 608 160
XSum le-4 1000 2048 (Tokens) 0.0 16 0.0 720 48
WikiLingua le-4 1000 2048 (Tokens) 0.0 16 0.0 512 160
Machine Translation

‘WMT14 En-De le-4 4000 2048 (Tokens) 0.0 50 0.0 512 512
WMT14 En-Fr le-4 4000 2048 (Tokens) 0.0 50 0.0 512 512
WMT14 En-Ro le-4 4000 2048 (Tokens) 0.0 16 0.0 512 512
IWSLT17 le-4 4000 2048 (Tokens) 0.05 16 0.0 512 512
WMTI10 3e-4 4000 2048 (Tokens) 0.0 8 0.0 512 512
Data-to-Text

WebNLG {2.5e-5, 5e-5} 1000 2048 (Tokens) 0.05 16 0.0 512 512
Natural Language Understanding

XNLI {2.5¢-5, 5e-5} 4000 16 (Sentences) 0.05 30 1.0 512 512
GLUE {le-5, 2.5e-5, 5e-5} 4000 {8,16} (Sentences) 0.05 30 1.0 512 512

Table 15: Task-specific hyper-parameters for downstream language generation and understanding benchmarks.

Seed MNLI

SST-2 MRPC RTE

QNLI QQP Avgg

Fine-tuning on Discriminator (D)

1 88.9 94.5 89.7 838 938 916 904
2 89.1 94.7 90.0 848 939 91.7 90.7
3 88.9 94.5 91.7 83.0 937 919 90.6
4 89.0 94.7 90.9 84.1 938 91.8 90.7
5 89.2 95.2 90.7 80.1 942 91.7 90.2
Avg 89.0 94.7 90.6 832 939 91.7 905
Fine-tuning on Generator (G)

1 89.2 95.1 90.4 85.6 94.1 91.9 91.0
2 89.1 95.2 90.9 856 943 921 912
3 89.2 95.0 90.4 845 941 919 909
4 89.4 95.1 90.9 84.8 94.1 92.1 91.1
5 89.6 94.8 89.7 845 942 91.8 908
Avg 89.3 95.0 90.5 850 942 920 91.0

Table 16: The accuracy scores of the base-setting mod-
els on the valid set of GLUE classification tasks.
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Model En Ar Bg De El Es Fr Hi Ru Sw Th Tr Ur Vi Zh | Avgss
Cross-lingual zero-shot transfer (models fine-tune on English data only)
mBERT 80.8 643 68.0 700 653 735 734 589 678 49.7 541 609 572 693 678 | 654
XLM 85.0 73.1 774 778 76.6 789 787 69.6 753 684 732 725 673 76.1 765 | 75.1
mT5-Small 79.6 652 713 692 686 727 70.7 625 70.1 59.7 663 644 599 663 658 | 675
mT5-Base 847 733 786 774 77.1 803 79.1 708 77.1 694 732 728 683 742 741 | 754
GANLM-m (D) | 859 726 78.6 78.6 76.6 80.7 79.8 704 760 644 743 744 665 772 759 | 755
GANLM-m (G) | 863 732 779 79.0 765 803 804 708 76.7 629 742 745 66.6 76.5 757 | 754
Translate-train (models fine-tune on English training data plus translations in all target languages)
XLM 850 765 793 803 78.1 803 802 723 781 709 755 747 632 76.6 78.6| 76.6
GANLM-m (D) | 859 769 799 80.7 79.5 81.6 809 742 787 71.8 769 769 658 79.1 80.0 | 77.9
GANLM-m (G) | 86.3 76.7 79.7 808 79.7 816 820 746 786 70.8 774 771 653 792 793 | 779
Translate-train (models fine-tune on English training data plus translations in all target languages)
XLM 850 77.6 809 803 79.1 813 808 729 783 728 760 756 685 785 795 | 778
mT5-Small 69.5 637 675 657 664 675 673 619 664 59.6 639 635 604 633 645 | 64.7
mT5-Base 82.0 744 785 777 781 79.1 779 722 765 715 750 748 704 745 76.0| 759
GANLM-m (D) | 87.3 783 82.7 831 822 838 833 773 813 731 803 799 712 813 81.8| 80.5
GANLM-m (G) | 87.2 783 833 827 823 84.0 836 77.1 814 745 798 79.6 713 81.6 81.6| 80.6
Table 17: XNLI accuracy scores for each language.

Xsum WMT16 En-Ro
b ‘ #Params | Strategy ‘ RG-1/RG-2/RG-L | En—Ro/Ro—En
@ 390M 0 = 6p | 43.26/19.82/35.02 37.4/37.2
@ 430M 0g # 6p | 45.36/21.98/36.84 38.3/38.0

Table 18: Evaluation results with different weight shar-
ing strategies on the test set of the Xsum summarization
task and WMT16 En-Ro translation task. Both gener-
ator decoder ¢ and discriminator decoder fp have 12
layers in Experiment @ by sharing decoder parameters.
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Figure 8: Evaluation results of our multilingual model on all translation directions on the FLORES-101 devtest
set, where our model consists of 12 encoder and 12 decoder layers with a hidden size of 768. We fine-tune the
multilingual encoder-decoder pre-trained model GANLM-m on the large-scale dataset. The language x in the i-th
row and language y in the j-th column denotes the translation direction from the language x to language y. For
example, the cell of the 1-st row (af) and the 3-nd column (ar) represents the result of the translation direction af—ar.
The table shows the results of all translation directions of 102 languages.
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