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Abstract

Improving text representation has attracted
much attention to achieve expressive text-to-
speech (TTS). However, existing works only
implicitly learn the prosody with masked token
reconstruction tasks, which leads to low train-
ing efficiency and difficulty in prosody model-
ing. We propose CLAPSpeech, a cross-modal
contrastive pre-training framework that explic-
itly learns the prosody variance of the same
text token under different contexts. Specifi-
cally, 1) We encourage the model to connect
the text context with its corresponding prosody
pattern in the joint multi-modal space with the
elaborate design of the encoder inputs and con-
trastive loss; 2) We introduce a multi-scale pre-
training pipeline to capture prosody patterns
in multiple levels. We show how to incor-
porate CLAPSpeech into existing TTS mod-
els for better prosody. Experiments on three
datasets not only show that CLAPSpeech could
improve the prosody prediction for existing
TTS methods, but also demonstrate its gener-
alization ability to adapt to multiple languages
and multi-speaker TTS. We also deeply ana-
lyze the principle behind the performance of
CLAPSpeech. Ablation studies demonstrate
the necessity of each component in our method.
Source code and audio samples are available at
https://clapspeech.github.io.

1 Introduction

With the development of deep learning, the audio
quality of modern TTS systems has been improved,
yet prosody modeling is still a challenging problem.
Previous works on expressive TTS have utilized
external variation predictors (prediction-based, PB)

∗Equal contribution.
†Corresponding author.

(Ren et al., 2021a) and variational generative mod-
els (variation-based, VB) (Kim et al., 2020; Liu
et al., 2022) to inject prosody variance into the
TTS model. Another popular direction is to learn
better text representation for prosody prediction
(Tan et al., 2021). However, the existing text rep-
resentation learning methods for TTS are either
based on the masked language model task (Devlin
et al., 2019; Jia et al., 2021; Chen et al., 2021)
(i.e., learn a BERT-like large language model on a
text corpus) or masked acoustic model task (Chen
et al., 2020; Bai et al., 2022) (i.e., reconstruct the
masked mel-spectrogram based on the input text),
which result in two disadvantages. Firstly, they
only implicitly learn prosody with reconstruction
losses, which distracts the model from improving
the prosody modeling. Secondly, they do not de-
couple the pronunciation space and prosody space,
which leads to low training efficiency and a waste
of model capacity. We perform a case study in
Section 4.3.1, in which we can see that previous
text representation used in TTS cannot capture the
prosody variance under different text contexts.

Technically, prosody can be regarded as the
pitch and duration variance of the same token un-
der different conditions (such as text contexts and
speakers) (Tan et al., 2021). This paper mainly
studies the prosody correlated to the text context.
For instance, for the same word "higher", saying
"higher up" or "slightly higher" can lead to dif-
ferent prosodies. Inspired by recent cross-modal
contrastive learning works in the text-to-image task
(Radford et al., 2021; Elizalde et al., 2022), we
propose a contrastive learning method that con-
nects the text context and the high-level prosody
pattern in the text-speech joint multi-modal space,
namely Contrastive Language-Audio Pre-Training
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Figure 1: The contrastive pre-training process of CLAPSpeech. For clarity, we only show the word-level pre-training
here. Note that we also perform a phoneme-level pre-training.

for Text-to-Speech (CLAPSpeech). Specifically,
we learn a text encoder to predict the prosody
from the text context and a prosody encoder to
extract the ground-truth (GT) prosody from the
speech segment of the selected token. During train-
ing, we select N text-speech pairs that contain the
same pronounceable token (e.g., the word "higher"
or phoneme "AE0"). By aligning the text token
with its corresponding prosody (extracted from GT
speech) and pushing away the prosody representa-
tion from other text contexts, the text encoder is
encouraged to extract prosody from the text context.
An intuitive example of pre-training CLAPSpeech
can be found in Figure 1. We also observe that the
prosody pattern can be expressed at multiple levels.
Therefore, we propose a multi-scale pre-training
framework that learns two CLAPSpeech models
to capture the prosody information at the phoneme
and word levels, respectively. After the pre-training
stage, our CLAPSpeech can be regarded as a plug-
in text encoder applicable to all TTS models to
provide fine-grained prosody representation.

To prove the effectiveness and generalizability
of our approach, we use two large-scale automatic
speech recognition (ASR) datasets (LibriSpeech
(Panayotov et al., 2015) for English and Wenet-
Speech (Zhang et al., 2022) for Chinese) to pre-
train the CLAPSpeech model. The pre-trained
text encoder of CLAPSpeech is then plugged into
prediction/variation-based TTS baselines to demon-
strate the improvement of CLAPSpeech to the exist-

ing expressive TTS systems. We then evaluate the
performance on three TTS datasets, including one
single-speaker English dataset, one single-speaker
Chinese corpus, and one multi-speaker English
dataset. Experiments on all datasets show that
CLAPSpeech improves the prosody of the TTS
models and outperforms previous representation
learning methods.

To summarize, CLAPSpeech has three promi-
nent advantages: 1) It can provide better prosody
representation than previous representation learn-
ing methods with a much smaller model scale,
thanks to its contrastive objective that explicitly
learns the prosody. 2) The text representation of
CLAPSpeech can be conveniently used in existing
TTS systems, only with a minor modification of the
front-end network architecture. 3) We also show its
potential applications such as fine-grained prosody
transfer in Section 4.3.2.

2 Related Work

2.1 Expressive TTS
In the past few years, modern neural TTS has made
significant progress in high practicality and audio
quality (Ren et al., 2019; Kim et al., 2020; Huang
et al.; Elias et al., 2021; He et al., 2022; Miao et al.,
2021; Kim et al., 2021; Donahue et al., 2021; Jiang
et al., 2022; Huang et al., 2022c; He et al., 2023;
Jiang et al., 2021; Huang et al., 2022b,a). However,
modeling expressive prosody given the plain in-
put text is still challenging. To achieve expressive
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TTS, one common practice is to use a reference
encoder and style tokens (Wang et al., 2018; Jia
et al., 2018). But it is difficult to select appropriate
reference audios during inference (Tan et al., 2021).
Other works seek to improve prosody modeling
with advanced network designs, which can be cate-
gorized into two classes: (1) the prediction-based
(PB) TTS systems (Ren et al., 2021a) learn several
external predictors to predict the prosody attributes
such as pitch contour, duration, and energy; (2) the
variation-based (VB) TTS systems leverage varia-
tional auto-encoder (VAE) (Ren et al., 2021b) or
normalizing flow (Kim et al., 2020) to model the
prosody in the latent space.

There are also some works that explore provid-
ing better text presentation with rich prior knowl-
edge to help the prosody prediction. For instance,
Liu et al. (2021) and Ye et al. (2022) incorpo-
rate syntax information through dedicated mod-
eling methods such as graph networks. Represen-
tation learning methods for text pre-training and
speech pre-training also show improvements in the
prosody of TTS. We will discuss the representation
learning works for TTS in the next section.

2.2 Representation Learning for TTS

Self-supervised pre-training methods have been
leveraged in TTS to enhance text processing or
speech generation capabilities (Chung et al., 2019;
Zhang et al., 2019). Some early works (Wang
et al., 2015) use pre-trained word embeddings to
improve the robustness of TTS systems. Recently,
some works explore incorporating pre-trained large
masked language models (MLMs) (Devlin et al.,
2019; Chen et al., 2021; Jia et al., 2021) to enjoy
the rich semantic information learned from the web-
scale text corpus. However, the above-mentioned
works only focus on the text space, it is challeng-
ing for them to model expressive prosody consid-
ering the models are unaware of the high variable
prosody patterns in the speech space. There are sev-
eral inspiring speech representation learning meth-
ods in ASR. Baevski et al. (2020) and Hsu et al.
(2021) utilize masked continuous speech features
to predict predetermined cluster assignments. As
for TTS, ProsoSpeech (Ren et al., 2022) designs
a word-level vector quantization bottleneck to ex-
tract discrete prosody representation from speech.
Masked acoustic model (MAM) (Chen et al., 2020)
proposes to learn a speech encoder that gener-
ates continuous speech (prosody) representations.

Specifically, during training they replace a span of
speech spectrogram with mask tokens and learn to
recover the masked spectrogram without text con-
ditions. A3T (Bai et al., 2022) additionally learns a
text encoder as auxiliary information for MAM to
reconstruct the masked mel-spectrogram.

The difference between CLAPSpeech and previ-
ous representation works in TTS is obvious: While
previous works implicitly learn the prosody in-
formation with the masked token reconstruction
task, CLAPSpeech is the first work that utilizes the
cross-modal contrastive learning to explicitly learn
the context-correlated prosody, which leads to bet-
ter prosody prediction and more efficient usage of
model capacity.

3 CLAPSpeech

We propose CLAPSpeech, a cross-modal con-
trastive learning approach to provide better text
representation for prosody prediction in TTS. As
shown in Figure 1, CLAPSpeech comprises a text
encoder and a prosody encoder, whose training ob-
jective is to connect the text token and the speech
segment in the joint prosody space. In this section,
we first design the network structure and input fea-
tures of these two encoders. These elaborate de-
signs enable the text encoder to effectively process
the text context and ensure that the prosody en-
coder focuses on extracting the high-level prosody
pattern from the speech segment while eliminating
other variables, such as timbre. Then we introduce
the multi-scale contrastive pre-training framework,
which enables CLAPSpeech to capture prosody in
both phoneme and word levels. Finally, we show
how the pre-trained text encoder of CLAPSpeech
can be conveniently plugged into modern TTS sys-
tems to improve prosody prediction. We describe
these designs in detail in the following subsections
and provide more technical details in Appendix A.

3.1 Text Encoder and Prosody Encoder

The prosody of the same pronounceable token1

varies in different text contexts. CLAPSpeech aims
to model the correlation between the text context
and the high-level prosody pattern. To this end,
we design a text encoder and a prosody encoder to
construct a text-speech multi-modal prosody em-
bedding space.

As shown in Figure 2(a), the text encoder uses
phoneme and byte pair encoding (BPE) (Shibata

1such as the phoneme "AE0" or the word "higher".

9319



Phoneme
Embedder

Conv1D + LN + ReLU x 3

Conv1D + 
LN + ReLU x 3 x 4

Attentive Pooling 1D
[N, T, C]

[N, C]
speech encoding

phoneme BPE

BPE
Embedder

FFT FFT

FFT

WordPool
+ Word2Ph

text encoding

[N, T, C]

token encoding
[N, C]

token indexing

phoneme-level

WP if word-level

CLIP Text Encoder

higher

speech segment

(a) text encoder

Phoneme
Embedder

Conv1D + LN + ReLU x 3

Conv1D + 
LN + ReLU x 3 x 4

Attentive Pooling 1D
[N, T, C]

[N, C]
speech encoding

phoneme BPE

BPE
Embedder

FFT FFT

FFT

WordPool
+ Word2Ph

text encoding

[N, T, C]

token encoding
[N, C]

token indexing

phoneme-level

WP if word-level

CLIP Text Encoder

higher

speech segment

(b) prosody encoder

Figure 2: The text / prosody encoder of CLAPSpeech.
In subfigure (a), "WP" and "Word2Ph" denotes word
pooling and Word2Ph expanding operation, which are
illustrated in Figure 3.

et al., 1999) of the input text as the input. The
phoneme and BPE sequence help the model extract
the prosody pattern related to phonological habits
(such as the linking phenomenon in English) and
semantic information (which may imply different
emotional overtones), respectively. The network
structure of the text encoder is composed of several
Feed Forward Transformers (FFT) (Vaswani et al.,
2017), which have proven the robustness in pro-
cessing long text sequences in TTS models. Specif-
ically, we learn two independent FFT blocks to
process the phoneme and BPE sequences, respec-
tively. This way, the phoneme FFT block could
model the phonological habits in phonetic space,
and the BPE FFT block could extract the semantic
information. One difficulty is fusing the phoneme
and BPE sequence of mismatched length. Instead
of concatenating these two sequences in the time
axis, we use word-level pooling (WP) from Ren
et al. (2021b) to process the BPE encoding to the
word level, then expand it to the phoneme level
(namely the word2ph operation). To be specific,
as shown in Figure 3(a), the WP operation aver-
ages the phoneme hidden states inside each word
according to the word boundary, and the word2ph
operation repeats the word hidden states for each
phoneme insides the word boundary as illustrated
in Figure 3(b).

Once the phoneme sequence and BPE seqneuce
is fused, we then use an additional FFT block to
fuse the aligned phoneme and BPE encoding to get
the final phoneme-level text encoding. During the
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Figure 3: The word pooling and word2ph expanding
operation.

pre-training phase, since only one selected token is
analyzed, we index from the phoneme-level text en-
coding to obtain the encoding of the selected token
(namely the token encoding in Figure 2(a)) and then
linearly project it into the multi-modal embedding
space. During the TTS phase, the phoneme-level
output of the text encoder can be conveniently uti-
lized as auxiliary features for TTS systems, which
we will discuss in Section 3.3.

The prosody encoder aims to extract prosody pat-
terns from the GT speech segment of the selected
token. Therefore, we clip the mel-spectrogram
with the word boundary2 as the input speech fea-
ture. Then the prosody encoder processes the in-
put mel-spectrogram into a global encoding to be
connected with the token encoding. Note that the
clipped speech segment only contains the local
prosody information for the selected token without
leaking any contextual information. Thanks to the
contrastive learning setting, the extracted global
prosody encoding is disentangled from phonetic
and speaker space: 1) since the positive sample and
negative samples belong to the same pronounce-
able token, the phonetic information is eliminated;
2) as the speaker information is not provided to
the text encoder3, the prosody encoder will filter
out speaker information to maximize the prosody
information in the output features during training.
This way, by connecting the context-aware text en-
coding with the context-unaware mel encoding, on
the one hand, the prosody encoder learns to ex-
tract the high-level prosody information from the

2We extract word boundary with a forced alignment tool.
3We assume that text and speaker are independent of each

other (no correlation between them) in our dataset.
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speech segment; on the other hand, the text encoder
is encouraged to utilize the text context to predict
the prosody extracted by the prosody encoder. As
shown in Figure 2(b), we use ResNet-50 (He et al.,
2016) as the backbone of the prosody encoder due
to its robustness. We make several modifications
to the original version: 1) to better process the mel-
spectrogram, we use 1D convolution with layer
normalization to build the fundamental residual
block; 2) to handle the speech segment of dynamic
lengths, we use an attentive pooling layer from Rad-
ford et al. (2021) to aggregate the output feature
map of the ResNet.

3.2 Multi-scale Contrastive Pre-training

The key idea of CLAPSpeech is to model the
prosody variance of the same text token under dif-
ferent contexts. Therefore, to construct a mini-
batch for contrastive pre-training, we randomly
select a text token, then sample a batch of N
text-speech pairs that contain the selected token
(one intuitive sample is shown in Figure 1, where
we sample the text-speech pairs that contain the
word "higher"). To better extract prosody variance
at the phoneme and word level, we introduce a
multi-scale contrastive training framework. To be
specific, we learn two CLAPSpeech models for
phoneme-level and word-level text tokens, respec-
tively.

For clarity, we first illustrate the training process
of phoneme-level CLAPSpeech. Let the text con-
text that contains the selected phoneme token (e.g.,
"AE0") be represented by Xtext. Let the processed
speech segment of the phoneme token be Xspeech

s.t. Xspeech ∈ RF×T , where F is the number of
Mel bins and T is the number of time bins. For
simplicity, we use Xtext and Xspeech to represent
a batch of N text-speech pairs.

The text and speech are passed through the text
encoder ftext(·) and prosody encoder fspeech(·),
respectively. As can be seen in Figure 2(a), the out-
put of the text encoder ftext(Xtext) is the phoneme-
level encoding of the input text, hence we index
from it to obtain the encoding of the phoneme to-
ken ftext(Xtext)iph

, where iph denotes the index
of the phoneme token in the phoneme-level text
sequence. As can be seen in Figure 2(b), the output
speech encoding fspeech(Xspeech) is a global repre-
sentation of the input speech segment. The output
representations are normalized and then linearly

projected into the multi-modal embedding space:

Tph = Ltext(LN(ftext(Xtext)iph
))

S = Lspeech(LN(fspeech(Xspeech))),
(1)

where Tph ∈ RN×C is the phoneme token represen-
tation and S ∈ RN×C is the speech representation
of channel size C. LN means layer normalization,
Ltext and Lspeech are linear projections.

Now that the text and speech embeddings are
comparable, CLAPSpeech is trained to predict
which of the N × N possible text-speech pairings
across a batch actually occurred. Specifically, the
text encoder and prosody encoder are encouraged
to maximize the cosine similarity of the text and
speech encoding of the N real pairs in the batch
while minimizing the cosine similarity of the em-
beddings of the N2 −N incorrect pairings. Follow-
ing Radford et al. (2021), we optimize a symmetric
cross-entropy loss over these similarity scores:

Lph = 0.5×(ltext(τ ·Cph)+ lspeech(τ ·Cph)) (2)

where Cph ∈ RN×N is the cosine similarity ma-
trix between the phoneme token encoding Tph

and the speech encoding S, measured by Cph =
Tph · ST ; τ is a learnable temperature param-
eter to scale the range of logits; and lk =
1
N ΣN

i=0 log diag(softmax(C)) is the cross entropy
function along the text and speech axis in C.

The word-level CLAPSpeech can be trained sim-
ilarly. As shown in Figure 2(a), for the word-level
CLAPSpeech, we use word pooling to process the
phoneme-level text encoding into word level, then
index from it to obtain the word token encoding
Tword. Similar to Equation 2, the training loss for
word-level CLAPSpeech is formulated as:

Lword = 0.5×(ltext(τ ·Cword)+lspeech(τ ·Cword))
(3)

where Cword is the cosine similarity matrix be-
tween the word token encoding Tword and the
speech encoding S.

3.3 CLAPSpeech Plugged in TTS Systems
The text encoder of CLAPSpeech could provide
text representation with rich prosody information
for the TTS task. Since the generated text represen-
tation is at the phoneme level, which is in line with
the majority of current TTS models that also utilize
phoneme sequence as the text input, CLAPSpeech
can be a convenient plugin unit for TTS systems
to improve prosody prediction. Specifically, we
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Figure 4: PortaSpeech with CLAPSpeech plugged in.

take a state-of-the-art variation-based TTS system,
PortaSpeech, as an example. As shown in Figure
4, the pre-trained text encoders of CLAPSpeech
(marked with a red dashed rectangle) perform as
an auxiliary encoder to the original phonetic en-
coder of PortaSpeech. The phoneme-level outputs
of the phonetic encoder and CLAPSpeech text en-
coder are fused and processed by the following
encoder. Note that we fix the parameters of CLAP-
Speech text encoders during the training of the TTS
system to avoid overfitting. CLAPSpeech can be
easily plugged into other TTS systems in a similar
way. To demonstrate the universality, we illustrate
how to combine CLAPSpeech with a widely-used
prediction-based TTS system, FastSpeech 2, in Ap-
pendix A.1. We additionally adopt multi-length
adversarial training in TTS models to improve au-
dio quality. More details about the the adversarial
training can be found in Appendix A.2.

4 Experiments

4.1 Experimental Setup

Datasets and Baselines We pre-train CLAP-
Speech on two ASR datasets: 1) LibriSpeech
(Panayotov et al., 2015), an English database that
contains 982 hours of speech from 2484 speak-
ers; 2) WenetSpeech (Zhang et al., 2022), a Chi-
nese speech corpus consisting of 10,000 hours of

speech4. Then we evaluate the pre-trained CLAP-
Speech on three TTS datasets: 1) LJSpeech (Ito
and Johnson, 2017), a single-speaker database that
contains 13,100 English audio clips with a to-
tal of nearly 24 hours of speech; 2) Biaobei5, a
Chinese speech corpus consisting of 10,000 sen-
tences (about 12 hours) from a Chinese speaker;
3) LibriTTS (Zen et al., 2019), an English dataset
with 149,736 audio clips (about 245 hours) from
1,151 speakers (We only use train clean360 and
train clean100). The raw text is transformed into
phoneme and BPE sequences using open-sourced
tools. The GT mel-spectrograms are generated
from the raw waveform with a frame size of 1024
and the hop size of 256. We compare CLAP-
Speech against two pre-training baselines (BERT
(Devlin et al., 2019) and A3T (Bai et al., 2022)) in
a prediction-based (PB) TTS model, FastSpeech
2, and a variation-based (VB) TTS model, Por-
taSpeech.

Model Configuration CLAPSpeech consists of
a text encoder and a prosody encoder, whose struc-
tures are shown in Figure 2 and discussed in Sec-
tion 3.2. As for the PB and VB TTS models, we
use the same structure in the original papers with
an additional multi-length discriminator to improve
audio quality. The multi-length discriminator con-
sists of multiple stacked convolutional layers with
batch normalization and treats the input spectro-
gram as images. We put more detailed model con-
figurations in Appendix B.1.

Training and Evaluation Our approach is imple-
mented with Pytorch. We pre-train CLAPSpeech
on 4 Nvidia 3090Ti GPUs with a batch size of
1,024 text-speech pairs (256 pairs per GPU). We
use the Adam optimizer with an initial learning rate
of 0.0005. We train the CLAPSpeech model for
640,000 iterations (which takes about 1 week) and
follow the cosine learning rate schedule in CLIP.
Then we train the TTS models on 1 Nvidia 2080Ti
GPU with a batch size of 64 sentences, follow-
ing the learning rate schedule in Vaswani et al.
(2017). We use HiFi-GAN (Kong et al., 2020)
as the vocoder. We conduct the mean opinion
score (MOS) and comparative mean opinion score
(CMOS) evaluation to measure the prosody and au-
dio quality. Details about the subjective evaluation

4We filter samples with a correctness confidence level
above 0.95, finally get a subset of 1000 hours.

5https://www.data-baker.com/opensource.html
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can be found in Appendix B.2. As for the objec-
tive evaluation, following Ren et al. (2021b), we
evaluate the prosody from the aspects of pitch and
duration: 1) we compute the average dynamic time
warping (DTW) (Muller, 2007) distances between
the pitch contours of GT speech and synthesized
speech to measure the pitch accuracy; 2) we cal-
culate the average absolute duration error (DE) in
micro-seconds6 to measure the duration accuracy.

4.2 Performance

We compare the performance of our CLAPSpeech
against BERT and A3T in PB/VB TTS models. GT
(the ground-truth audio) and GT (voc.) (the audio
waveform generated by the vocoder using the GT
mel-spectrogram) are also included in the experi-
ment. We perform the TTS experiments on three
datasets as mentioned in Section 4.1. The results
are shown in Table 1. We can see that CLAPSpeech
outperforms other representation learning meth-
ods in both PB and VB TTS baselines in terms of
MOS, pitch accuracy, and duration accuracy, which
proves that CLAPSpeech could effectively improve
the prosody prediction in current expressive TTS
models (no matter prediction-based or variation-
based). Besides, we observe that CLAPSpeech
achieves better performance than BERT and A3T
with much fewer model parameters. We suspect
it is due to the fact that the MLM-based method
(i.e., BERT) require a large model capacity to store
the semantic information and MAM-based method
(i.e., A3T) have to jointly learn the phonetic infor-
mation to reconstruct the masked mel-spectrogram.
By contrast, our CLAPSpeech eliminates the pho-
netic space and only focus on the prosody space
during pre-training, which is parameter-efficient.

We then visualize the mel-spectrograms gener-
ated by different methods in Figure 5. We can see
that CLAPSpeech can generate results with more
realistic pitch contours, which result in expressive
prosody. In conclusion, our experiments demon-
strate that CLAPSpeech could help TTS systems
synthesize more expressive and prosodic audio.

4.3 Deeper Analysis

4.3.1 Token Representation Self-similarity
To better understand the performance superiority of
CLAPSPeech over existing representation learning
methods for TTS, we analyze the token represen-

6In our PB/VB TTS baseline, the duration is predicted in
phoneme/word level, respectively.

tation learned by CLAPSpeech and other methods.
Following Su et al. (2021), we define the averaged
similarity on the selected token under different con-
texts T = [T1, ..., TN ] as,

s(T ) =
1

N(N − 1)

N∑

i=1

N∑

j=1,j ̸=i

cosine(Ti, Tj)

(4)
where Ti and Tj are the selected token’s encoding
extracted by the model from different text contexts.
Intuitively, a lower s(T ) indicates that the selected
token itself plays a smaller role in generating its rep-
resentation, which means that the model captures
more context-related information from the input
text sequence, and thus predicts better prosody.

Quantitative Evaluation We sample 10,000
batches (each batch consists of 256 sentences that
contain the same selected token) from the ASR
validation datasets and compute the averaged self-
similarity. The result is shown in Table 2. We
observe that our CLAPSpeech learned with the
contrastive objective (in Equation 2) achieves the
lowest similarity in the off-diagonal entries of the
similarity matrix, which denotes that the model has
made use of the text context to capture the prosody
variance of the same token, thus achieve the best
prosody performance in Table 1. Besides, we can
see that BERT also achieves a relatively low off-
diagonal similarity, which is due to its MLM task
during pre-training, in which the model needs to
extract semantic information from context to pre-
dict the masked token. By contrast, the vanilla
TTS text encoder and A3T fail to achieve a low off-
diagonal similarity, which means that both models
cannot extract discriminative information from dif-
ferent contexts. We suspect the failure of A3T is
due to the fact that its MAM objective encourages
the model to predict the masked mel-spectrogram
patch based on the input unmasked text sequence,
which increases the model’s demand for phonetic
information of the selected token.

Qualitative Evaluation We sample 8 sentences7

that contain the word "higher" from LibriSpeech
and visualize the self-similarity matrix M (where
Mi,j = cosine(Ti, Tj)) produced by CLAPSpeech
and vanilla TTS text encoder. The results are shown
in Figure 6, where a darker color denotes a higher
self-similarity score. We also provide the self-
similarity matrix of BERT and A3T in Figure 9

7We list these sentences in Table 5 of Appendix C.
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Table 1: Performance comparison of different methods. PB and VB denote prediction-based and variaition-
based TTS baselines, respectively. DTW denotes the dynamic time warping distance of pitch contours in the
Mel-spectrogram. DE means the averaged absolute duration error in micro-seconds.

Method LJSpeech Biaobei LibriTTS #ParamsMOS↑ DTW↓ DE↓ MOS↑ DTW↓ DE↓ MOS↑ DTW↓ DE↓
GT 4.81 0 0 4.59 0 0 4.40 0 0 /
GT(voc.) 4.63 0 0 4.43 0 0 4.26 0 0 /

PB 3.77 29.09 25.77 3.37 18.01 28.79 3.43 14.26 27.42 11.99M
PB + BERT 4.04 27.43 24.97 3.43 16.79 28.06 3.60 13.82 26.70 109.48M
PB + A3T 3.92 28.18 25.63 3.51 17.18 28.44 3.54 13.67 27.03 48.25M
PB + CLAPSpeech 4.11 27.16 24.19 3.62 16.04 27.60 3.71 13.37 26.46 30.51M

VB 3.96 27.58 53.23 3.75 14.22 40.31 3.81 11.96 52.51 23.02M
VB + BERT 4.13 26.97 52.01 3.91 13.63 38.41 3.95 11.51 51.27 132.69M
VB + A3T 4.05 26.37 52.17 4.04 13.97 39.15 3.82 11.71 51.98 59.73M
VB + CLAPSpeech 4.28 25.94 51.34 4.22 13.48 37.07 4.06 10.93 50.89 41.54M

(a) GT (b) PB (c) PB+BERT (d) PB+A3T (e) PB + CLAPSpeech

Figure 5: Visualizations of the mel-spectrograms generated by different TTS systems.

Table 2: Self-similarity score of different methods. TTS
denotes the text encoder of the vanilla TTS baseline.

Text Encoder of TTS BERT A3T CLAPSPeech

Self-Similarity 0.9854 0.5517 0.9390 0.4160

of Appendix C. We can see that the self-similarities
of CLAPSpeech are much lower in the off-diagonal
entries.

4.3.2 Fine-grained Prosody Transfer
We perform an intuitive case study about prosody
transfer to further validate that our CLAPSpeech’s
text-speech joint multi-modal space represents
high-level prosody patterns (i.e., the pitch contours
and duration information). We take s7/8 in Table 5
as the reference/source audio and expect to trans-
fer the word "higher"’s prosody pattern from s7 to
s8. Specifically, we use the text encoder of CLAP-
Speech to extract the text prosody encoding of s7
and s8, then replace the text token encoding of
"higher" in s8 with that in s7. As shown in Figure
7, the prosody pattern of "higher" in s88 in Figure
7(a) has been successfully transferred into s7 in

8the pitch contours in reference remain flat in the early
stage and then rise in the late stage
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1.00 1.00 1.00 1.00 1.00 0.99 0.96 1.00

1.00 1.00 1.00 1.00 1.00 1.00 0.96 1.00

1.00 1.00 1.00 0.98 1.00 1.00 0.96 1.00

1.00 1.00 0.98 1.00 0.99 1.00 0.96 1.00

1.00 1.00 1.00 0.99 1.00 1.00 0.98 0.99

0.99 1.00 1.00 1.00 1.00 1.00 0.96 1.00

0.96 0.96 0.96 0.96 0.98 0.96 1.00 0.96

1.00 1.00 1.00 1.00 0.99 1.00 0.96 1.00
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(b) TTS

Figure 6: Example: self-similarity matrix visualization
of CLAPSpeech and the text encoder of the vanilla TTS
model. si denotes the ith sentence.

Figure 7(c). We also provide audio samples of this
case study on our demo page. The manipulation of
the local prosody proves that our CLAPSpeech ex-
tract prosody representation effectively influences
the prosody prediction of the TTS system.

4.4 Ablation Studies

Use BPE as Auxiliary Features We first ana-
lyze the effectiveness of the BPE as an auxiliary
feature to help extract prosody information from
the text context. During the pre-training phase of
CLAPSpeech, we found removing BPE from the
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(a) reference (s7) (b) source (s8) (c) transferred (s8)

Figure 7: Visualizations of the mel-spectrograms gener-
ated in prosody transfer.

text encoder significantly degrades the validation
CLIP loss from 0.3692 to 0.6764. Then in the TTS
phase, as can be seen in line 3 in Table 3, the ab-
lated model using the pre-trained text encoder with-
out BPE leads to a performance drop in terms of
CMOS, DTW, and DE. This is possibly due to the
fact that BPE could better represent the semantic
information than the low-level phoneme sequence.

Multi-scale Pre-training To demonstrate the ef-
fectiveness of multi-scale pre-training, as can be
seen in line 4/5 in Table 3, we tried to remove
phoneme-level or word-level CLAPSpeech from
the model, which leads to a worse prosody perfor-
mance. We also tried to use the untrained CLAP-
Speech to prove the necessity of the pre-training
process, and we found this ablated model (line 6)
achieves a slightly worse performance than the TTS
baseline (line 3).

Table 3: Performance comparison for ablation studies.

Setting CMOS DTW DE

TTS + CLAPSpeech 0 27.16 24.19
TTS baseline -1.53 29.09 25.77

w/o BPE -1.08 28.21 24.93
w/o ph-level -1.11 27.68 25.01
w/o word-level -0.46 27.55 24.52
untrained -1.67 29.45 25.96

5 Conclusion

In this paper, we propose CLAPSpeech, a cross-
modal contrastive pre-training framework that pro-
vides better text representation with rich prosody
information for TTS. With the design of a text en-
coder and a prosody encoder, CLAPSpeech learns
to connect the text context with its corresponding
prosody pattern in the speech. We also introduced
multi-scale pre-training to extract prosody patterns
at multiple levels. We have demonstrated the perfor-
mance and generalization ability of CLAPSpeech

on three TTS datasets (English, Chinese, and multi-
speaker, respectively). We have also deeply an-
alyzed the principle behind the improvement of
CLAPSpeech and performed ablation studies to
prove the necessity of each component.

6 Limitations

There are majorly two limitations: Firstly, in this
work, we only consider the current-sentence text
context-related prosody. In future work, we will
focus on improving the inter-sentence prosody to
achieve coherent, expressive TTS for long-form
text. Secondly, other variables are not considered
during the contrastive pre-training. One can ex-
plore similar approaches that connect prosody to
other conditions such as speaker, emotion, etc.

7 Ethics Statement

CLAPSpeech improves the prosody of the synthe-
sized speech, which may cause unemployment for
people with related occupations. Besides, the pro-
duction of fake speeches may cause voice security
issues. Further efforts in automatic speaker verifi-
cation should be made to improve voice security.
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Figure 8: FastSpeech 2 with CLAPSpeech plugged in.

A Details of Models

A.1 CLAPSpeech plugged in FastSpeech 2

We show how to integrate CLAPSpeech into a pop-
ular prediction-based TTS system, FastSpeech 2.
As shown in Figure 8, the pre-trained text encoders
of CLAPSpeech (marked with a red dashed rectan-
gle) perform as an auxiliary encoder to the original
phonetic encoder of FastSpeech 2. The phoneme-
level outputs of the phonetic encoder and CLAP-
Speech text encoder are fused and processed by the
following encoder. Note that we fix the parameters
of CLAPSpeech text encoders during the training
of the TTS system to avoid overfitting.

A.2 Multi-length Adversarial Training

For the tested TTS baselines, we adopt an addi-
tional multi-length discriminator to provide a least
squared GAN loss to improve the audio quality.
The multi-length discriminator is an ensemble of
multiple CNN-based discriminators which evalu-
ates the mel-spectrogram based on random win-
dows of different lengths. One could refer to Ye
et al. (2022) for more details.

B Detailed Experimental Settings

B.1 Model Configurations

We list the hyper-parameters of CLAPSpeech and
the tested TTS baselines in Table 4.

B.2 Subjective Evaluation

For each tested dataset, we randomly select 10
texts from the test set and use the TTS systems to
generate the audio samples. Each audio has been
listened to by at least 20 native listeners, who are
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Table 4: The detailed model configurations.

Hyper-parameter CLAPSpeech Number of parameters

Text Encoder

Phoneme/BPE embedding hidden size 192

18.517M
Phoneme/BPE encoder FFT blocks 4
Hidden size 192
Conv1D kernel 5
Conv1D filter size 768

Prosody Encoder

Residual blocks 4

21.801M

Number of conv layers per block 12
Hidden size 192
Input mel-spectrogram length 128
Hidden size in pooling layer 768
#Attention heads in pooling layer 4

Prediction-based TTS baseline

Encoder Layers 4

11.993M
Decoder Layers 4
Encoder/Decoder Conv1D Kernel 9
Encoder/Decoder Conv1D channel size 256

Variation-based TTS baseline

Encoder Layers 8

23.020M

Decoder Layers 4
Encoder/Decoder Conv1D Kernel 5
Encoder/Decoder Conv1D channel size 192
Latent Size 16
Prior Flow Layers 4
Prior Flow Conv1D Kernel 3
Prior Flow Conv1D Channel Size 64

Multi-Length Discriminator

Number of CNN-based Discriminators 3

0.927M
Window size 32,64,128
Conv2D layers 3
Hidden size 192

recruited on a crowdsourcing platform, Zhengshu
Technology. We tell listeners to "focus on examing
the naturalness of prosody (e.g., pitch, energy, and
duration) and audio quality (noise, timbre, sound
clarity, and high-frequency details)". For MOS,
each tester is asked to evaluate the subjective nat-
uralness of a sentence on a 1-5 Likert scale. For
CMOS, listeners are asked to compare pairs of au-
dio generated by systems A and B and indicate
which of the two audio they prefer and choose one
of the following scores: 0 indicating no difference,
1 indicating small difference, 2 indicating a large
difference, and 3 indicating a very large difference.

C More Details in Analysis

C.1 Example Sentences
We list the 8 example sentences in Table 5. These
sentences are used as examples in Section 4.3.

C.2 Self-similarity of Other Baselines
The self-similarity visualization of A3T and BERT
can be found in Figure 9. We discuss the results in
Section 4.3.1.

1.00 0.99 0.99 0.98 0.98 0.96 0.94 0.98

0.99 1.00 0.99 0.99 0.99 0.98 0.91 0.98

0.99 0.99 1.00 0.97 0.97 0.98 0.94 0.98

0.98 0.99 0.97 1.00 0.97 0.96 0.92 0.99

0.98 0.99 0.97 0.97 1.00 1.00 0.90 1.00

0.98 0.98 0.98 0.96 1.00 1.00 0.90 1.00

0.94 0.91 0.94 0.92 0.90 0.90 1.00 0.90

0.98 0.98 0.98 0.99 1.00 1.00 0.90 1.00

s1 s2 s3 s4 s5 s6 s7 s8

s1

s2

s3

s4

s5

s6

s7

s8

0.3

1.0

(a) A3T

1.00 0.61 0.57 0.60 0.73 0.66 0.42 0.61

0.61 1.00 0.72 0.64 0.58 0.62 0.52 0.72

0.57 0.72 1.00 0.59 0.60 0.53 0.53 0.62

0.60 0.64 0.59 1.00 0.66 0.67 0.51 0.71

0.73 0.58 0.60 0.66 1.00 0.70 0.53 0.71

0.66 0.62 0.53 0.67 0.70 1.00 0.50 0.76

0.42 0.52 0.53 0.51 0.53 0.50 1.00 0.53

0.61 0.72 0.62 0.71 0.71 0.76 0.53 1.00

s1 s2 s3 s4 s5 s6 s7 s8

s1

s2

s3

s4

s5

s6

s7

s8

0.3

1.0

(b) BERT

Figure 9: Self-similarity matrix visualization of A3T
and BERT.
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s1 ... for the reputation of the stern judge stands not higher than that of the compassionate ...
s2 As I went on , the precipices rose higher and seemed to overhang. The channel grew narrower ...
s3 Better, and better, and better! Her voice went higher with each better, till it got quite to a squeak at last.
s4 ... and the native graduates of our higher institutions have begun to show their strength ...
s5 Innocence is higher than virtue.
s6 Nothing seems more unfit to give a deeper meaning to life and a higher value.
s7 Higher up could be seen some chinamen, but whether they were fishing or washing we could not tell .
s8 May they become convalescents and overcomers, and create higher bodies for themselves !

Table 5: The text sentences used in the intuitive example, the selected word token "higher" is bold.
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�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
4.1 Experimental Setup

�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
4.2 & 4.3 & 4.4

�3 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
4.1 Experimental Setup

D �3 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Section 4.2

�3 D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
Appendix B.2

�3 D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
Appendix B.2

�3 D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
Appendix B.2

�3 D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
Appendix B.2

�3 D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
Appendix B.2
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