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Abstract

End-to-End  speech-to-speech translation
(S2ST) is generally evaluated with text-based
metrics. This means that generated speech has
to be automatically transcribed, making the
evaluation dependent on the availability and
quality of automatic speech recognition (ASR)
systems.

In this paper, we propose a text-free evaluation
metric for end-to-end S2ST, named BLASER,
to avoid the dependency on ASR systems.
BLASER leverages a multilingual multimodal
encoder to directly encode the speech segments
for source input, translation output and refer-
ence into a shared embedding space and com-
putes a score of the translation quality that can
be used as a proxy to human evaluation. To
evaluate our approach, we construct training
and evaluation sets from more than 40k human
annotations covering seven language directions.
The best results of BLASER are achieved by
training with supervision from human rating
scores. We show that when evaluated at the
sentence level, BLASER correlates significantly
better with human judgment compared to ASR-
dependent metrics including ASR-SENTBLEU
in all translation directions and ASR-COMET
in five of them. Our analysis shows combin-
ing speech and text as inputs to BLASER does
not increase the correlation with human scores,
but best correlations are achieved when using
speech, which motivates the goal of our re-
search. Moreover, we show that using ASR
for references is detrimental for text-based met-
rics. !

1 Introduction

Speech-to-Speech translation seeks to translate
speech segments from one language into another.

* Equal Research Leadership Contribution
'Code is available at ht tps://github.com/faceb
ookresearch/stopes

Historically, it has been implemented and evalu-
ated as a concatenation of three systems: auto-
matic speech recognition (ASR), machine transla-
tion (MT) and text-to-speech (TTS) (Lavie et al.,
1997; Lazzari, 2006). In recent years, there has
been increasing interest in end-to-end approaches
(Jia et al., 2019; Lee et al., 2022a). While end-to-
end S2ST is becoming popular, researchers still
rely on text-based metrics to evaluate model perfor-
mance by automatically transcribing the generated
speech segments (Jia et al., 2019). These cascaded
metrics rely on ASR systems, which for a given
language may not have enough quality or may not
even be available (Javed et al., 2022). They are
also inappropriate for languages lacking standard-
ized writing systems (Salesky et al., 2021a), like
Hokkien or Algerian Arabic.

In this work, we propose the text-free metric
BLASER for S2ST evaluation, sidestepping the
dependency on ASR systems. In particular, we use
LASER encoders that support multiple languages
and modalities including text (Heffernan et al.,
2022) and speech (Duquenne et al., 2021). We
use the LASER encoders to directly embed speech
segments into vectors and compute a score estimat-
ing the quality of generation. We then construct
training and evaluation datasets from more than
40k human annotations, covering seven language
directions (Spanish<>English, French<+English,
Russian—English, = Hokkien—English, and
English—German). We evaluate BLASER on these
datasets on the popular benchmark of MusT-C
(Di Gangi et al., 2019). We also benchmark several
strong ASR-based metrics, e.g., ASR-SENTBLEU
(i.e., sentence-level ASR-BLEU (Jia et al., 2019))
and ASR-COMET (i.e., applying COMET (Rei
et al., 2020) on ASR outputs). There is a recent
interest of supervised evaluation metrics that are
trained on human quality scores (Rei et al., 2020).
However, these human quality scores are precious
and somehow limited or nonexistent, specially for
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low-resource languages. Therefore, we propose
both an unsupervised and a supervised version of
BLASER. The results show that on average both
unsupervised and supervised BLASER outperform
their corresponding baseline metrics. In particular,
BLASER outperforms ASR-COMET significantly in
five language directions and obtains comparable
results in two other language directions. Our
analysis reveals that, while BLASER can use both
text and speech, encoding speech data give the
most significant benefits. In addition, we show
that replacing human-written source input and
human-written reference with ASR-generated ones
hurts performance of text-based metrics, which
motivates the use of modality-agnostic metrics as
BLASER.

2 Related Work

S2ST Evaluation. Early approaches for auto-
matic S2ST evaluation use metrics consisting of
three modules where each module is used to evalu-
ate individual component in the cascaded S2ST
pipeline: e.g., BLEU and Translation Edit Rate
(Snover et al., 2006) for NMT, Word Error Rate
for ASR, and Mel-Cepstral Distortion (Kominek
et al., 2008) for TTS. Recent approaches have been
primarily focused on adapting text-based metrics
for end-to-end S2ST (Jia et al., 2019; Lee et al.,
2022a). In contrast to these works, we propose a
text-free metric.

MT Metrics. There is a huge amount of litera-
ture in automatic machine translation evaluation
in the area of natural language processing (Pap-
ineni et al., 2002; Denkowski and Lavie, 2014,
Popovié, 2015, inter alia). Recent methods have
approached this goal by using human ratings for
training model-based metrics, such as COMET,
BERTSCORE (Zhang* et al., 2020) and BLEURT
(Sellam et al., 2020). These metrics have achieved
remarkable performance on text (Freitag et al.,
2021; Kocmi et al., 2021).

Speech Metrics. Our work involves computing
semantic similarity of speech segments to evaluate
translation quality. It is thus related to reference-
based automatic evaluation metrics for TTS where
the metrics seek to measure the quality of generated
speech segments given reference speech segments
e.g., Mel-Cepstral Distortion, Gross Pitch Error
(Nakatani et al., 2008) and other model-based met-
rics (Binkowski et al., 2020). Unlike our work,

these metrics primarily focus on the naturalness of
synthesized speech.

Contemporaneous to this work, Besacier et al.
(2022) propose a text-free metric for comparing
two speech segments in the same language. Their
work limits to comparing English speech data and
they do not cover multilingual S2ST evaluation.
Their work is based on synthetic datasets where
ratings are generated by automatic text-based mea-
sures as opposed to human annotators. Differently,
we cover S2ST evaluation and we show how our
metric correlates with human annotations and how
it improves over text-based metrics.

Speech and/or Text Representations. There is a
large body of research on learning multilingual text
embeddings for various downstream tasks. LabSE
(Feng et al., 2022), SentenceBERT (Reimers and
Gurevych, 2019), mUSE (Yang et al., 2020) and
LASER (Artetxe and Schwenk, 2019; Heffernan
et al., 2022) are popular encoders that capture the
semantic information of a sentence into fixed size
vector representations. In the speech modality,
approaches such as wav2vec 2.0 (Baevski et al.,
2020a) or Hubert (Hsu et al., 2021) allow learning
embeddings at acoustic-frame level.

There has recently been increased interest
in aligned speech-text representations such as
mSLAM (Bapna et al., 2022), MAESTRO (Chen
etal., 2022b), SAMU-XLSR (Khurana et al., 2022),
and LASER (Duquenne et al., 2022). While our
approach could accommodate any speech represen-
tation architecture given the right pooling strategy,
we chose LASER in this work for three reasons. (1)
The encoders modules are freely-available; (2) the
LASER embedding space can easily be extended
to new languages at a minimal cost: contrary to
most multilingual encoders, the teacher-student ap-
proach does not require the whole embedding space
to be retrained after including data for the new lan-
guage. This makes BLASER virtually usable for
any language in the future (3) the embedding space
could potentially be extended to any new modality
meaningful to translation use cases.

3 Approach

The underlying idea of our approach is to lever-
age the similarity between speech segments with-
out requiring intermediate textual representations.
Compared to ASR-based metrics, the advantage
of BLASER is that it is text-free. In particular,
given the source input speech, the translated out-
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put speech of a S2ST model, and the reference
speech segment, respectively, we embed them into
vectors Agre, Ame, and hrer. These embeddings are
combined and BLASER predicts a score for each
translation output, where higher scores suggest bet-
ter translation quality.”

The effectiveness of BLASER depends on the
quality of vector representations encoded from
speech segments: it requires rich semantic in-
formation to be encoded in the speech embed-
dings. In this work, we use LASER speech encoders
(Duquenne et al., 2022), which we describe below.
We note that our approach is generic and can be
extended to other encoders.

We study BLASER under the unsupervised and
the supervised settings, which allows it to exploit
the information of human ratings, if available.

3.1 Background: LASER Encoders

The LASER encoder was initially trained in a
sequence-to-sequence model (Schwenk and Douze,
2017) and supported 93 languages in its follow-up
publications (Artetxe and Schwenk, 2019). In re-
cent work, a teacher-student approach was applied
to incorporate more languages (Heffernan et al.,
2022) and to extend the model to the speech modal-
ity (Duquenne et al., 2021). All these encoders
use the same teacher model and are mutually com-
patible. The embeddings are of dimension 1024.
The reader is referred to these papers for a detailed
description. These LASER encoders were success-
fully applied to automatically mine semantically
similar sentences, in the text (NLLB Team et al.,
2022) and speech domain (Duquenne et al., 2022).

3.2 Unsupervised BLASER

In the unsupervised setting, we directly compute
the cosine similarities between hg, and hp, and
hret and hp. Formally, this metric is defined as
follows:

COS(hSI‘C7 hmt) + Cos(hrefa hmt)

BLASER, = 5 (1)

where cos(-, -) is the cosine similarity function.

3.3 Supervised BLASER

Previous work has shown that evaluation metrics
(e.g. (Rei et al., 2021)) can take advantage of hu-
man ratings for training. We follow COMET (Rei

2A straightforward corpus-level score could be obtained

via averaging over sentence-level scores, which can be used to
compare different S2ST models, similar to metrics like BLEU.
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Figure 1: Diagram for supervised BLASER. The source
input (src), reference (ref), and translation (mt) speech
segments are embedded into vectors using pretrained
speech encoders. We create different combinations of
these embeddings through element-wise product (red
lines), absolute element-wise difference (blue lines),
and unchanged (black lines). Combinations are con-
catenated as input for a neural regressor.We keep the
encoders fixed and train the neural regressor using the
Mean Square Error.

et al., 2020) and RUSE (Shimanaka et al., 2018)
and use the following features:

* Element-wise source product: Age ® Ay
» Element-wise reference product: A © Ay

e Absolute element-wise source difference:
|hsrc - hmt|

¢ Absolute element-wise reference difference:
’href - hmt‘

We concatenate these features with the embed-
dings of references A and translation outputs A
and then use it as input for a neural regressor to
predict a scalar indicating the quality of the trans-
lated speech, as shown in Figure 1. This metric
corresponds to the following equation:

BLASERg = nnet([href; himg; hsre © hing; [hsre — D5
hret © hy; |href - hmt”)

where nnet(+) is a two-layer neural network and
[-; -] represents the concatenation of vectors. We
note that the dimension of concatenated input vec-
tors to the neural regressor is 6144. The entire
model except the LASER encoders (which are kept
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Figure 2: Diagram illustrating data sources of source
input (src), reference (ref), and translation output (mt)
used in this work. The source speech data and the ref-
erence text are generated/annotated by humans. We
use color boxes to highlight the differences between
BLASER and text-based metrics.

frozen) is trained by minimizing the Mean Squared
Error between the BLASER predicted scores and
human ratings. We choose to freeze LASER en-
coders because (1) we do not want to break the
aligned embedding space; and (2) it allows us to
extend to unseen languages more easily.

4 Experimental Framework

To show that BLASER is useful both in its unsuper-
vised and supervised form, we compare it to several
baseline metrics. In this section, we describe the
experimental framework for doing this comparison,
including the evaluation data, the training and im-
plementation of both baseline and proposed metrics
and their evaluation.

4.1 Data

We create training and evaluation data from
MusT-C (Di Gangi et al., 2019), Multilingual
TEDx (Salesky et al., 2021b), and TAT corpus
(Liao et al., 2020). Given a source input from
these datasets, we generate translated outputs us-
ing various S2ST models. We then conduct human
evaluations to collect human ratings for generated
speech segments. As the datasets do not have refer-
ence speech segments but provide human-written
transcripts, we use TTS to synthesize speech data
from these transcripts to facilitate fair comparison
between our metrics and other reference-based tex-
tual metrics. While the use of synthesized audios is
disadvantageous to BLASER,> current benchmarks
still use human-written transcripts because of the
current dependence on the text-based metrics. We
expect that, in the future, S2ST benchmarks will
rely on speech references and TTS will not be

3For example, examples 2 and 3 in table 6 do not correctly
synthesize SMS or PKW.

needed. In this case, BLASER will have additional
advantage over text-based metrics that will have
to apply ASR to references in addition to ASR to
system outputs.

Each data instance in our dataset consists of a
source input, a translation output, a reference, and
a human evaluation score, where the source, trans-
lation output, and reference have both speech and
text. Figure 2 summarizes the data sources of these
components. As follows we describe the details of
each data sources.

Human Annotations. We do not use crowd
workers as human annotators and instead we use
a vendor-managed pool of well-trained and quali-
fied bilingual annotators who pass a qualification
test for their language skills. Human annotators
are instructed to rate semantic similarities between
source input and generated speech segments* on a
5-point Likert scale, where higher values are better,
following annotation guidelines similar to Licht
et al. (2022). More details on human evaluations
are in Appendix D. Each model generation has
1~18 human ratings, leading to 4k~20k annotations
per language direction. We take medians of rating
scores when there are more than one score associ-
ated with a particular model generation following
NLLB Team et al. (2022) and Licht et al. (2022).

Speech To Speech Translation. We evaluate the
translation outputs generated with the following
S2ST architectures:

1. Cascaded two-stage models with speech-to-
text translation and TTS. This system includes
Spanish-English, English-French and Russian-
to-English translation directions;

2. The model presented in Lee et al. (2022b),
which represents target speech as discrete
units and uses a speech-to-unit translation
model to convert source speech to target units
followed by a code HiFi-GAN vocoder (Park
and Mulc, 2019; Polyak et al., 2021) to con-
vert units to waveform. This system includes
English-Spanish and Russian-to-English trans-
lation directions;

3. The model presented in Inaguma et al. (2022),
which is similar to Lee et al. (2022b) except
that it is a two-pass direct S2ST architecture

*We note that the generated speech segments could be

reference speech segments coming from the TTS models or
translated speech segments coming from the S2ST models.
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es—en ru—en hk—en fr—en en—de en—es en—fr
No. of annotators 14 16 9 4 13 13 8
No. of S2ST systems 5 4 1 1 1 4 1
No. of unique source inputs 989 1002 988 1015 2047 1000 1000
No. of annotations 20636 17908 6978 4545 12282 14817 4426
No. of train instances 2470 2004 0 0 1023 2000 0
No. of test instances 2475 2004 988 1015 1024 2000 1000
No. of annotations per instance
maximum 6 18 6 6 6 6
minimum 1 1 4 1 6 1 2
average 4.2 4.5 7.1 4.5 6.0 3.7 4.4

Table 1: Dataset Statistics. We collect human annotations for speech segments generated by S2ST systems.

that first generates textual representations and
predicts discrete acoustic units subsequently.
This system includes the Spanish-to-English
translation direction;

4. The model presented in Wang et al. (2022),
which employs mBART (Liu et al., 2020) for
unsupervised machine translation in their un-
supervised cascaded speech-to-text translation
pipeline. This system includes the Spanish-to-
English translation direction.

5. The Hokkien-to-English S2ST system is three-
stage cascaded: a concatenation of Hokkien to
Chinese speech-to-text translation + Chinese
to English machine translation + English TTS
(English text-to-unit + unit vocoder from Lee
et al. (2022b)).

6. The English-to-German S2ST system is the
MLLP-VRAIN system (Iranzo-Sadnchez et al.,
2022) from IWSLT 2022 (Anastasopoulos
et al., 2022), which is a cascaded system of
separate ASR, MT, and TTS models.

Automatic Speech Recognition. For ASR, we
use the open-sourced implementation in FATIRSEQ
(Ott et al., 2019), that provides strong models
built on top of the unsupervised pretrained wav2vec
(Schneider et al., 2019) or XLLSR (Conneau et al.,
2020a) models. In particular, for English and Rus-
sian, we use wav2vec 2.0 large (Baevski et al.,
2020b) finetuned with CTC loss (Graves et al.,
2006). For Hokkien, Spanish, French, and Ger-
man, we use the ASR models released in Chen
et al. (2022a), Grosman (2021b), Grosman (2021a),
and Grosman (2022), respectively.

Shttps://github.com/facebookresearch/
fairseq/blob/ust/examples/speech_to_spee
ch/asr_bleu

Text to Speech. For TTS, we use the toolkit re-
leased by Wang et al. (2021a), which provides a set
of recent state-of-the-art speech synthesis models.

The language directions in the final dataset are
Spanish-English and French-English in both di-
rections (i.e., en—es, es—en, en—{r, and fr—en),
Russian to English (ru—en), Hokkien to English
(hk—en) and English to German (en—de). We
split the data into training and test sets when there
is enough data available (i.e., at least one thousand
data instances for a language direction). We also
make sure that there is no overlapping source inputs
between train and test sets. Table 1 summarizes the
dataset statistics.

4.2 Baseline Metrics

We consider a variety of baseline metrics, including
BLEU and CHRF+ (Popovi¢, 2017), which are stan-
dard metrics to evaluate textual similarities. While
BLEU is by nature corpus-level, here we use the sen-
tence-level version due to the insufficient amount of
human annotations. To differentiate these two ver-
sions, we denote the sentence-level BLEU as SENT-
BLEU. We also benchmark BERTSCORE (Zhang*
et al., 2020) and COMET, which are popular model-
based metrics that correlate well with human judg-
ments on textual data (Kocmi et al., 2021).5 We
extend these metrics to speech data by using ASR
systems to transcribe the machine-translated speech
segments. We prepend “ASR-" to the beginning of
the names of these metrics to indicate the use of
ASR systems. Table 2 summarizes the differences
among the metrics.

Specifically, we use BLEU’ and CHRF+® as im-

®Multilingual BLEURT (Pu et al., 2021) reports similar
performance as COMET on WMT metrics tasks and therefore
we decided to only include COMET in our experiments.

"SacreBLEU signature:

nrefs: 1lcase:mixedleft:yesltok:13alsmooth:explversion:2.2.0
8SacreBLEU signature:
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req. train  req. ASR

Baseline Metrics

ASR-SENTBLEU
ASR-CHRF+
ASR-BERTSCORE
ASR-COMET

ENENE RN
ASNENENEN

Proposed Metrics

BLASER,
BLASER;

N X
*x X

Table 2: Comparisons between baseline and proposed
metrics regarding the dependency of training data and
ASR systems. We use “ASR-" to indicate that the metric
depends on ASR systems to transcribe speech segments.

plemented in SacreBLEU (Post, 2018).” We nor-
malize the reference text before computing ASR-
SENTBLEU and ASR-CHRF+ to match the lower-
cased and punctuationless ASR output. We use
the official implementations for BERTSCORE'? and
CcOMET.!'! To form competitive baselines, we also
train COMET from scratch on our training data
(COMET etrain) and the concatenation of our train-
ing data and the direct assessments from WMT
15-19 metrics tasks (Stanojevi¢ et al., 2015; Bo-
jar et al., 2016, 2017; Ma et al., 2018, 2019)

(COMETretrain with WMT)-

4.3 Training and Evaluation

LASER Encoders. We use the speech LASER en-
coders released in Duquenne et al. (2022) except
for English and Hokkien.!?. For Hokkien speech
LASER encoder, we followed the training procedure
presented in (Chen et al., 2022a) using the same
pretrained model and training data. For the En-
glish speech LASER encoder, we fine-tuned XLSR
2B (Babu et al., 2021) on several ASR datasets in-
cluding CoVoST2 (Wang et al., 2021¢c), Common
Voice (Ardila et al., 2020), EuroparlST (Iranzo-
Sénchez et al., 2020), MusT-C (Di Gangi et al.,
2019), Voxpopuli (Wang et al., 2021b) and Lib-
rispeech (Panayotov et al., 2015).

Training Setup and Hyperparameters. For
BLASERg, the regressor has two hidden layers of
sizes 3072 and 1536, similar to COMET. We keep

nrefs: llcase:mixedleff:yesInc:6lnw:2lspace:nolversion:2.2.0
*https://github.com/mjpost/sacrebleu
1We use language-specific configurations recommended in
https://github.com/Tiiiger/bert_score
"'We use the “wmt20-comet-da” model from https://
github.com/Unbabel/COMET
“nttps://github.com/facebookresearch/
fairseqg/tree/ust/examples/speech_matrix

the LASER encoders fixed during training. We use a
learning rate of 5 x 10~° and employ learning rate
annealing with a linear schedule. When training
COMET, we follow the official implementation and
fine-tune the entire model from the XLM-R-LARGE
model checkpoint (Conneau et al., 2020b). For
both BLASER; and COMET, we train them for 20
epochs. We standardize the human ratings in our
training set by subtracting them with a mean and a
variance computed based on the entire training set.

Computational Cost. We trained BLASERg us-
ing 1 Quadro GV100 and the training takes less
than one hour. We used 4 Tesla V100 to train
COMET and the training takes more than two days.

Evaluation. We compute Pearson’s correlation
at the sentence level between the automatic and hu-
man rating scores. Given that our test sets are rela-
tively small, we perform statistical significance test
using the bootstrap method from Koehn (2004).!3

S Experimental Results and Analysis

In this section we report the main results of our
proposed metric BLASER, on two different settings
(unsupervised and supervised) and we compare it
to widely used baseline text-based metrics. Ad-
ditionally, we report an analysis at various levels,
including the impact of evaluating using different
modalities and a qualitative inspection of several
examples to observe scores of various metrics for
particular examples.

5.1 Main Results

We report unsupervised and supervised results in
Table 3. We note that results that fail to pass the
significance test are neither better nor worse signif-
icantly than the corresponding baseline.

Generally, model-based metrics perform sig-
nificantly better than string-based ones. Among
the unsupervised metrics, BLASER, performance
improves significantly over ASR-SENTBLEU and
ASR-CHRF+ for all language directions except for
en—-es, showing the capabilities of BLASER in cap-
turing semantic information even when human an-
notations are absent.

Among the supervised metrics, we see that
BLASER; almost always performs better than
the official ASR-BERTSCORE and ASR-COMET.

Bhttps://github.com/neubig/util-scrip
ts/blob/master/paired-bootstrap.py
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es—en ru—en  hk—en fr—en en—de en—es en—fr  average

Unsupervised Metrics

ASR-SENTBLEU 0.3226 0.1588 0.2863 0.3277 0.1179 0.4937 0.4462 0.3076
ASR-CHRF+1 0.3910 0.2324 0.3356 0.3927 0.1469 0.5967 0.5267 0.3746
BLASER, 0.4970*  0.4326°  0.4940* 0.4744" 03148 0.5843 0.6356  0.4904
Supervised Metrics

ASR-BERTSCORE 0.4332 0.3511 0.4885 0.4184 0.2031 0.6127 0.6216 0.4469
ASR-COMET 0.5238 0.3988 0.5138 0.5693 0.2428 0.7126 0.6559 0.5167
ASR-COMET etrained 0.5618 0.4265 0.4485 0.5210 0.2921 0.7489 0.6123 0.5159
ASR—COMETjetrained wihwmr  0.5340 0.4348 0.5314 0.5659 0.2635 0.7308 0.6436 0.5291
BLASER; 0.5774  0.5347*  0.6059" 0.5730  0.3297" 0.7512  0.7146"  0.5838

Table 3: Pearson’s correlation on the test set. Best results in bold. Results marked with * pass the significance test
with with p-value < 0.05 when compared against the baseline metric marked by { in the same category.

es—en ru—en hk—en fr—en en—de en—es en—fr average

ASR-SENTBLEU 0.3226 0.1588 0.2863 0.3277 0.1259 0.4929 0.4393 0.3076
A -0.0222 -0.0244 -0.0033 -0.0161 -0.1161 -0.0467 -0.0341 -0.0376
ASR-CHRF+ 0.3910 0.2324 0.3356 0.3927 0.1673 0.6032 0.5177 0.3771
A -0.0195 -0.0204 0.0017 -0.0125 -0.1201 -0.0757 -0.0206 —0.0382
ASR-COMET 0.5238 0.3988 0.5138 0.5693 0.2428 0.7126 0.6559 0.5167
A -0.0164 -0.0443 -0.0602 -0.0185 -0.0929 -0.0281 -0.0057 -0.0380

Table 4: Pearson’s correlation on the test set. “A” rows show the performance differences when using transcripts
produced by ASR systems instead of humans for the source input and reference. Negative differences indicate
performance drops. We highlight the results for en—de as they are severely affected by the change.

When compared to the stronger baseline ASR-
COME Tyetrained with WMT»> BLASERg 18 better than the
baseline significantly in four language directions
and they are comparable in the other three direc-
tions.

We also find that BLASER can generalize training
signal to languages where there is no training data
available. Specifically, if we compare BLASER; to
BLASERy, we see that BLASER always improves
over the unsupervised version. Also, for the lan-
guage directions where there is no training data
(i.e., hk—en, fr—en, en—1r), BLASER; still beats
BLASER,. Additionally, we observe that hk—en
and ru—en are two of the language directions for
which BLASER shows significant improvements
over ASR-COMET, confirming the zero-shot capa-
bilities of our proposed methods in comparison to
existing metrics.

5.2 Analysis

Impact of Human-Written vs ASR-
transcriptions. To investigate the impact
of using transcripts generated by ASR systems
rather than human-written inputs and references,
we replace the human-written source input and
reference with the ones generated by ASR systems.

We note that in this case, all the transcripts are
obtained via ASR systems, simulating an evalu-
ation setting where only audio data is available.
We show the results in Table 4 where we find
that the human-written transcripts are less helpful
on those to-English language directions than the
from-English ones. We hypothesize that this is in
part due to the quality of ASR systems as these
ASR-based metrics depend more on references
than source inputs and English ASR systems tend
to be of better quality than the non-English ones
(Khare et al., 2021).

Impact of Using Source and Reference. We
investigate the impact of using source and reference
speech segments when computing BLASER scores.
We evaluate this impact on BLASERy by reporting
the performance of individual terms in Equation 1.
See the results in Table 5. In general, we find
the source input generates better correlations with
human ratings than reference. Combining the two
leads to the best performance.

Qualitative Analysis. To get a sense of the qual-
itative differences between BLASER and text-based
scores, and better understand what kind of nuances
are captured, we manually inspect sample sen-
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es—»en ru—en hk—en fr—en en—de en—es en—fr average
coS(Pret, hmt) + cOS(Rsre, hmt)  0.4970  0.4326  0.4940 0.4744  0.3148 0.5843  0.6356  0.4904
o8 (Puef, hmt) 0.4392 0.2855 04051 04144 0.1388 0.4516 0.5588  0.3848
cos(Psrcy Pint) 0.4392 04182 04723 04450 0.2654 0.6411 0.6215 04718

Table 5: Pearson’s correlation on the test set. Best results are in bold. We evaluate the contributions of two individual

terms in BLASER, (Equation 1) to the final performance.

source input

translation output

reference HR BR CT BU

The pollution in Santi-
ago, which is one of the
most polluted capitals
historically in Latin
America, has dropped

die verschmutzung in santiago
einem der am stirksten ver-
schmutzten hauptstidte latein-
amerikas ist erheblich gesungen
(the pollution in santiago one

substantially. the at strongest polluted capital
cities latin america is significantly
sung)

And for those of us that ~ diejenigen von uns die das ken-

are in the know, we
know that’s text-speak,
or SMS language.

nen wissen das ist zum spracher
(those from us the the know to
know the is for the speaker)

So, when I say, "Oh,
Aaron is.." It’s be-
cause Aaron still is.

wenn ich aron sehe liegt das
daran dass aron es immer noch
ist (if I aron see located the to it
that aron it always still is)

Die Umweltverschmutzung in 4.5 02 09 4.0
Santiago, das historisch gesehen
eine der Stiadte mit der hoch-
sten Umweltverschmutzung in
ganz Lateinamerika ist, ist viel

geringer geworden.

Diejenigen von uns, die das 25 0.0 09 78.6

kennen, wissen: Das ist SMS-
Sprache.

Wenn ich also sage: ,,Oh, Aaron 3.5 09 129

ist ..., dann sage ich das, weil
Aaron immer noch ist.

Table 6: The examples from the en—de test set and the corresponding scores given by different metrics. HR=Human
Ratings. BR=BLASER;. CT=ASR-COMET. BU=ASR-SENTBLEU. Sentences in parenthesis are gloss for translation

outputs.

tences. A selection is presented in Table 6. In each
of these examples, the text and generated audio per-
fectly match, discarding any influence potentially
introduced by the ASR model. In cases where
the output vocabulary does not perfectly match the
reference but is still valid, BLASER seems able to
capture the semantics and produce a meaningful
score. In the first example, ASR-SENTBLEU is very
much impacted by the vocabulary mismatch, while
BLASER and ASR-COMET yield high scores, in
line with human evaluation. BLASER also seem
to detect clear mistranslations better than either of
ASR-COMET or ASR-SENTBLEU. In the second ex-
ample, the end of the output sentence makes little
sense. Only BLASER accounts for this properly and
produces a score aligned with human judgment.
In the third example, ASR-COMET returns a high
score despite the mistranslated verb which heavily
changes the meaning of the sentence.

6 Conclusion and Future Work

We have introduced BLASER, a text-free metric
to evaluate speech-to-speech translation, which
avoids the dependency on ASR models required by
popular text-based metrics currently used in S2ST.

We explored BLASER in both unsupervised and su-
pervised settings. Experimental results in seven lan-
guage directions show that BLASER outperforms or
is comparable to strong text-based metrics in terms
of correlation with human scores at the sentence-
level. Moreover, our metric is effective in zero-shot
scenarios.

As for future work, we want to explore the use
of speech references generated by humans and the
impact of synthesized references. We also want to
evaluate BLASER at the system-level with a much
larger number of S2ST systems, and explore dif-
ferent approaches to aggregate the sentence-level
scores from BLASER and we want to explore differ-
ent speech and text representations as alternative to
LASER.

Limitations

We are evaluating S2ST in an artificial setting given
that we have to synthesize the text references. In
fact, since there was no metric capable of evaluat-
ing the quality in speech, there was no motivation to
build such benchmarks either (the chicken-and-egg
problem). However, we expect that next bench-
marks for the task will have speech references be-
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cause of the rise of end-to-end S2ST systems and
their quality increase. BLASER paves the way so
that we can take advantage of such benchmarks
when they appear.

Our metric works at the sentence-level, by em-
bedding the entire sentence into an intermediate
space. We ignore how sensitive BLASER is to the
length of the sentence, which is a key aspect when
we want to extend to the corpus-level metric in the
future. Moreover, we are aware that sometimes
sentence embedding do not discriminate different
numbers or words that belong to the same word
family, which may disregard impactful errors such
as the change of a number in the translation output.

Ethical considerations

Translation quality scores were provided by bilin-
gual raters as mentioned in Section 4. They were
all paid a fair rate. We can not open-source the
data form our experiments given that our sources
are shared under no-derivative license. Small hu-
man evaluation detailed in appendix D was done
by volunteers.
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A Cross-Modal Data Analysis

Considering that LASER can conveniently encode
text and speech data into a shared embedding space,
we conduct experiments involving both text and

speech data with the text encoders from Heffernan
et al. (2022) for BLASERs. In particular, we embed
the source input, translation output, and reference
using either the speech or text LASER encoders.
That is, a data instance formed by embeddings from
speech data will result in four instances in this new
setting due to different modality combinations. We
then evaluate the models on the speech data in our
test set. The results in Table 7 show that combining
supervision from different modalities does not help
improve model performance. It is likely because
the embedding space is shared between text and
speech and therefore adding textual embeddings do
not provide extra information.

B Cross-Modal Supervision Analysis

We also look into the benefits of leveraging speech
embeddings by comparing several supervised con-
figurations for BLASERg. We report these results in
Table 8 where we experiment with different modal-
ity combinations during training and testing. The
results show that the best results on average are
the ones using speech modality for the source in-
put, translation output, and reference. Interestingly,
every time that we replace speech with text in the
modality combinations, we see performance drops.
We find that replacing reference speech segment
with text leads to the slightest performance drop,
which is likely due to the fact that they are syn-
thesized and thus do not provide extra information
than text. We also find that replacing speech data
with text for the source input and translation output
makes BLASER, similar or even worse than ASR-
COMET etrained with WMT» confirming the benefits of
using speech data for evaluation S2ST systems.

C Cross-Modal Evaluation Analysis

We additionally evaluate BLASERg on different
modality combinations when training on speech
data only. See the results in Table 9. We find that
training on speech data only still allows BLASER
to obtain similar performance when replacing the
reference speech segments with text.

D Human Evaluation

We provide instructions for human evaluations in
Table 10.
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es—en ru—en hk—en fr—en en—de en—es en—fr average

Speech-only  0.5774  0.5347  0.6059  0.5730 0.3297 0.7512 0.7146  0.5838
Combined 0.5791 0.5295 0.5988 0.5459 03348 0.7456 0.7037  0.5767

Table 7: Pearson’s correlation on the test set. Best results are in bold. We compare BLASER when training with
speech data only and training with both speech and text data. For testing, we always evaluate models on speech data.

Modalities es—en ru—en hk—en fr—en en—de en—es en—fr average

(Speech, Speech, Speech) 0.5774 0.5347  0.6059 0.5730 0.3297 0.7512 0.7146  0.5838
(Speech,  Speech, Text) 0.5541 05164  0.5754 0.5425 03675 0.7485 0.6688  0.5676
(Speech, Text, Text) 0.5460 0.4866 0.5616 04741 03393 0.7372 0.6285  0.5390

(Text, Text, Text) 0.4555 04094 0.5350 0.4505 0.2710 0.6544 0.5882  0.4806

Table 8: Pearson’s correlation on the test set. Best results are in bold. (z,y, z) indicates the modality used for
source input (x), translation output (y), and reference (z). We train and evaluate BLASER, on the same modality
combinations.

Modalities es—»en ru—en hk—en fr—en en—de en—es en—ru average

(Speech, Speech, Speech) 0.5774  0.5347  0.6059  0.5730 0.3297 0.7512 0.7146  0.5838
(Speech,  Speech, Text) 0.5588  0.5403  0.6093 0.5587 0.3426 0.7500 0.6978  0.5796

Table 9: Pearson’s correlation on the test set. Best results are in bold. (z,y, z) indicates the modality used for
source input (), translation output (y), and reference (z). We train BLASER; on speech data only and evaluate the
model with references either in speech or text modalities.

Task Descriptions

You will be provided with a pair of audio snippets.
* The pair will be in two different languages.

¢ Your task is to assess: (1) if audiol is coherent; (2) if audio2 is coherent; and (3) how well the
pair of audios correspond to each other on a scale from 1-5.

* When rating semantic similarity, please ignore minor typos, grammatical errors, and pronuncia-
tion errors if they do not affect your understanding of the audio segments.

Rating Instructions . ) o
1. The two sentences are not equivalent, do not share any details, but may be related as pertaining

to similar or even different topics.

2. The two sentences are not equivalent, but share some details. However, some important informa-
tion differs/is missing, which alters the intent/meaning.

3. The two sentences are mostly equivalent, but some unimportant details differ.

4. The two sentences are equivalent paraphrases of each other. They mean the same with no major
or minor differences in meaning, despite potential differences in expression.

5. The two sentences are exactly and completely equivalent in meaning and usage expression (e.g.,
formality level, style, multiword expression)

Table 10: Instructions for human evaluations.
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