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Abstract

The recent advent of self-supervised pre-
training techniques has led to a surge in the
use of multimodal learning in form docu-
ment understanding. However, existing ap-
proaches that extend the mask language mod-
eling to other modalities require careful multi-
task tuning, complex reconstruction target de-
signs, or additional pre-training data. In Form-
NetV2, we introduce a centralized multimodal
graph contrastive learning strategy to unify
self-supervised pre-training for all modalities
in one loss. The graph contrastive objective
maximizes the agreement of multimodal repre-
sentations, providing a natural interplay for all
modalities without special customization. In
addition, we extract image features within the
bounding box that joins a pair of tokens con-
nected by a graph edge, capturing more tar-
geted visual cues without loading a sophisti-
cated and separately pre-trained image embed-
der. FormNetV2 establishes new state-of-the-
art performance on FUNSD, CORD, SROIE
and Payment benchmarks with a more com-
pact model size.

1 Introduction

Automated information extraction is essential for
many practical applications, with form-like doc-
uments posing unique challenges compared to
article-like documents, which have led to an abun-
dance of recent research in the area. In particular,
form-like documents often have complex layouts
that contain structured objects like tables, columns,
and fillable regions. Layout-aware language model-
ing has been critical for many successes (Xu et al.,
2020; Majumder et al., 2020; Lee et al., 2022).

To further boost the performance, many recent
approaches adopt multiple modalities (Xu et al.,
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2021; Huang et al., 2022; Appalaraju et al., 2021).
Specifically, the image modality adds more struc-
tural information and visual cues to the existing
layout and text modalities. They therefore extend
the masked language modeling (MLM) from text to
masked image modeling (MIM) for image and text-
image alignment (TIA) for cross-modal learning.
The alignment objective may also help to prime the
layout modality, though it does not directly involve
text layouts or document structures.

In this work, we propose FormNetV2, a mul-
timodal transformer model for form information
extraction. Unlike existing works – which may use
the whole image as one representation (Appalaraju
et al., 2021), or image patches (Xu et al., 2021), or
image features of token bounding boxes (Xu et al.,
2020) – we propose using image features extracted
from the region bounded by a pair of tokens con-
nected in the constructed graph. This allows us to
capture a richer and more targeted visual compo-
nent of the intra- and inter-entity information. Fur-
thermore, instead of using multiple self-supervised
objectives for each individual modality, we intro-
duce graph contrastive learning (Li et al., 2019;
You et al., 2020; Zhu et al., 2021) to learn multi-
modal embeddings jointly. These two additions to
FormNetV1 (Lee et al., 2022) enable the graph con-
volutions to produce better super-tokens, resulting
in both improved performance and a smaller model
size.

In experiments, FormNetV2 outperforms its pre-
decessor FormNetV1 as well as the existing mul-
timodal approaches on four standard benchmarks.
In particular, compared with FormNetV1, Form-
NetV2 outperforms it by a large margin on FUNSD
(86.35 v.s. 84.69) and Payment (94.90 v.s. 92.19);
compared with DocFormer (Appalaraju et al.,
2021), FormNetV2 outperforms it on FUNSD and
CORD with nearly 2.5x less number of parameters.
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2 Related Work

Early works on form document information extrac-
tion are based on rule-based models or learning-
based models with handcrafted features (Lebour-
geois et al., 1992; O’Gorman, 1993; Ha et al., 1995;
Simon et al., 1997; Marinai et al., 2005; Chiticariu
et al., 2013). Later on, various deep neural models
have been proposed, including methods based on
recurrent nets (Palm et al., 2017; Aggarwal et al.,
2020), convolutional nets (Katti et al., 2018; Zhao
et al., 2019; Denk and Reisswig, 2019), and trans-
formers (Majumder et al., 2020; Garncarek et al.,
2020; Wang et al., 2022c).

Recently, in addition to the text, researchers
have explored the layout attribute in form docu-
ment modeling, such as the OCR word reading
order (Lee et al., 2021; Gu et al., 2022b), text co-
ordinates (Majumder et al., 2020; Xu et al., 2020;
Garncarek et al., 2020; Li et al., 2021a; Lee et al.,
2022), layout grids (Lin et al., 2021), and layout
graphs (Lee et al., 2022). The image attribute also
provides essential visual cues such as fonts, colors,
and sizes. Other visual signals can be useful as well,
including logos and separating lines from form ta-
bles. Xu et al. (2020) uses Faster R-CNN (Ren
et al., 2015) to extract token image features; Ap-
palaraju et al. (2021) uses ResNet50 (He et al.,
2016) to extract full document image features; Li
et al. (2022) use ViT (Dosovitskiy et al., 2020) with
FPN (Lin et al., 2017) to extract non-overlapping
patch image features. These sophisticated image
embedders require a separate pre-training step us-
ing external image datasets (e.g. ImageNet (Rus-
sakovsky et al., 2015) or PubLayNet (Zhong et al.,
2019)), and sometimes depend upon a visual code-
book pre-trained by a discrete variational auto-
encoder (dVAE).

When multiple modalities come into play, dif-
ferent supervised or self-supervised multimodal
pre-training techniques have been proposed. They
include mask prediction, reconstruction, and match-
ing for one or more modalities (Xu et al., 2020,
2021; Appalaraju et al., 2021; Li et al., 2021b;
Gu et al., 2022a; Huang et al., 2022; Li et al.,
2022; Pramanik et al., 2020). Next-word predic-
tion (Kim et al., 2022) or length prediction (Li
et al., 2021c) have been studied to bridge text and
image modalities. Direct and relative position pre-
dictions (Cosma et al., 2020; Wei et al., 2020; Li
et al., 2021a; Wang et al., 2022a; Li et al., 2021c)
have been proposed to explore the underlying lay-

out semantics of documents. Nevertheless, these
pre-training objectives require strong domain ex-
pertise, specialized designs, and multi-task tuning
between involved modalities. In this work, our
proposed graph contrastive learning performs mul-
timodal pre-training in a centralized design, unify-
ing the interplay between all involved modalities
without the need for prior domain knowledge.

3 FormNetV2

We briefly review the backbone architecture Form-
NetV1 (Lee et al., 2022) in Sec 3.1, introduce the
multimodal input design in Sec 3.2, and detail the
multimodal graph contrastive learning in Sec 3.3.

3.1 Preliminaries
ETC. FormNetV1 (Lee et al., 2022) uses Ex-
tended Transformer Construction (ETC; Ainslie
et al., 2020) as the backbone to work around the
quadratic memory cost of attention for long form
documents. ETC permits only a few special tokens
to attend to every token in the sequence (global
attention); all other tokens may only attend to k
local neighbors within a small window, in addition
to these special tokens (local attention). This re-
duces the computational complexity from O(n2)
query-key pairs that need scoring toO(kn). Eq. (2)
formalizes the computation of the attention vector
a0 for a model with one global token at index 0,
and Eq. (2) formalizes computation of the attention
vector ai>0 for the rest of the tokens in the model.

a0 = attend(h0, [h0,h1, . . . ,hn]) (1)

ai>0 = attend(hi, [h0,hi−k, . . . ,hi+k]) (2)

Rich Attention. To address the distorted seman-
tic relatedness of tokens created by imperfect
OCR serialization, FormNetV1 adapts the atten-
tion mechanism to model spatial relationships be-
tween tokens by proposing Rich Attention, a math-
ematically sound way of conditioning attention on
low-level spatial features without resorting to quan-
tizing the document into regions associated with
distinct embeddings in a lookup table. In Rich
Attention, the model constructs the (pre-softmax)
attention score (Eq. 10) from multiple components:
the usual transformer attention score (Eq. 7); the
order of tokens along the x-axis and the y-axis (Eq.
8); and the log distance (in number of pixels) be-
tween tokens, again along both axes (Eq. 9). The
expression for a transformer head with Rich Atten-
tion on the x-axis is provided in Eqs. (3–10); we
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Figure 1: Graph of a sample region from a form. Token bounding boxes are identified, and from them the graph is
constructed. Nodes are labeled and the graph structure is shown abstracted away from its content.
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Figure 2: Multimodal graph representations are com-
posed from three modalities: text at node-level; con-
catenation of layout and image at edge-level.

refer the interested reader to Lee et al. (2022) for
further details.

oij = int(xi < xj) (3)

dij = ln(1 + |xi − xj |) (4)

pij = Sigmoid(affine(p)([qi;kj ])) (5)

µij = affine(µ)([qi;kj ]) (6)

s
(t)
ij = q>i kj (7)

s
(o)
ij = oij ln(pij) + (1− oij) ln(1− pij) (8)

s
(d)
ij = −θ

2(dij − µij)2
2

(9)

sij = s
(t)
ij + s

(o)
ij + s

(d)
ij (10)

GCN. Finally, FormNetV1 includes a graph con-
volutional network (GCN) contextualization step
before serializing the text to send to the ETC trans-
former component. The graph for the GCN locates
up to K neighbors for each token – defined broadly
by geographic “nearness” – before convolving their
token embeddings to build up supertoken represen-
tations as shown in Figure 1. This allows the net-
work to build a weaker but more complete picture
of the layout modality than Rich Attention, which
is constrained by local attention.

The final system was pretrained end-to-end with
a standard masked language modeling (MLM) ob-
jective. See Sec A.3 in Appendix for more details.

(a) Within entity (b) Cross entity

Figure 3: Image features are extracted from bounding
boxes (red) that join pairs of tokens connected by edges
to capture (a) similar patterns within an entity, or (b)
dissimilar patterns or separating lines between entities.

3.2 Multimodal Input

In FormNetV2, we propose adding the image
modality to the model in addition to the text and
layout modalities that are already used in Form-
NetV1 (Sec 3.3 in Lee et al. (2022)). We expect
that image features from documents contain infor-
mation absent from the text or the layout, such as
fonts, colors, and sizes of OCR words.

To do this, we run a ConvNet to extract dense
image features on the whole document image, and
then use Region-of-Interest (RoI) pooling (He et al.,
2017) to pool the features within the bounding box
that joins a pair of tokens connected by a GCN
edge. Finally, the RoI pooled features go through
another small ConvNet for refinement. After the
image features are extracted, they are injected into
the network through concatenation with the exist-
ing layout features at edges of the GCN. Figure 2
illustrates how all three modalities are utilized in
this work and Sec 4.2 details the architecture.

Most of the recent approaches (Table 1) that
incorporate image modality extract features from
either (a) the whole image as one vector, (b) non-
overlapping image patches as extra input tokens to
transformers, or (c) token bounding boxes that are
added to the text features for all tokens.

However, form document images often contain
OCR words that are relatively small individually
and are densely distributed in text blocks. They also
contain a large portion of the background region
without any texts. Therefore, the aforementioned
method (a) only generates global visual representa-
tions with large noisy background regions but not
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Figure 4: Multimodal graph contrastive learning. Two corrupted graphs are sampled from an input graph by
corruption of graph topology (edges) and attributes (multimodal features). The system is trained to identify which
pair of nodes across all pairs of corrupted nodes (including within the same graph) came from the same node.

targeted entity representations; method (b) tends
to be sensitive to the patch size and often chops
OCR words or long entities to different patches,
while also increasing computational cost due to the
increased token length; and method (c) only sees
regions within each token’s bounding box and lacks
context between or outside of tokens.

On the other hand, the proposed edge-level im-
age feature representation can precisely model the
relationship between two nearby, potentially re-
lated “neighbor” tokens and the surrounding region,
while ignoring all irrelevant or distracting regions.
Figure 3 demonstrates that the targeted RoI image
feature pooling through the union bounding box
can capture any similar patterns (e.g. font, color,
size) within an entity (left) or dissimilar patterns
or separating lines between entities (right). See
Sec 4.4 for detailed discussion.

3.3 Multimodal Graph Contrastive Learning

Previous work in multimodal document under-
standing requires manipulating multiple supervised
or self-supervised objectives to learn embeddings
from one or multiple modalities during pre-training.
By contrast, in FormNetV2, we propose utilizing
the graph representation of a document to learn
multimodal embeddings with a contrastive loss.

Specifically, we first perform stochastic graph
corruption to sample two corrupted graphs from the
original input graph of each training instance. This
step generates node embeddings based on partial
contexts. Then, we apply a contrastive objective
by maximizing agreement between tokens at node-
level. That is, the model is asked to identify which
pairs of nodes across all pairs of nodes – within
the same graph and across graphs – came from the

same original node. We adopt the standard normal-
ized temperature-scaled cross entropy (NT-Xent)
loss formulation (Chen et al., 2020; Wu et al., 2018;
Oord et al., 2018; Sohn, 2016) with temperature
0.1 in all experiments.

To build a centralized contrastive loss that unifies
the interactions between multiple input modalities,
we corrupt the original graph at both graph topol-
ogy level and graph feature level. Topology corrup-
tion includes edge dropping by randomly removing
edges in the original graph. Feature corruption in-
cludes applying dropping to all three modalities:
dropping layout and image features from edges and
dropping text features from nodes. Note that we
only corrupt the graph in the GCN encoder and
keep the ETC decoder intact to leverage the se-
mantically meaningful graph representation of the
document during graph contrastive learning.

To further diversify the contexts in two corrupted
graphs and reduce the risk of training the model
to over-rely on certain modalities, we further de-
sign an inductive graph feature dropping mecha-
nism by adopting imbalanced drop-rates of modali-
ties between the two corrupted graphs. Precisely,
for a given modality, we discard p percent of the
features in the first corrupted graph and discard
1−p percent of the features in the second corrupted
graph. Experiments in Sec 4.4 show that p = 0.8
works best empirically and the inductive feature
dropping mechanism provides further performance
boost over the vanilla version. We stipulate that this
boom-and-bust approach to regularization allows
the model to learn rich, complex representations
that take full advantage of the model’s capacity
without becoming overly dependent on specific fea-
ture interactions. Figure 4 illustrates the overall
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process.
The proposed graph contrastive objective is also

general enough in principle to adopt other corrup-
tion mechanisms (Zhu et al., 2020; Hassani and
Khasahmadi, 2020; You et al., 2020; Velickovic
et al., 2019). The multimodal feature dropping
provides a natural playground to consume and al-
low interactions between multiple input modalities
in one single loss design. It is straightforward to
extend the framework to include more modalities
without the need for hand crafting specialized loss
by domain experts. To the best of our knowledge,
we are the first to use graph contrastive learning
during pre-training for form document understand-
ing.

4 Evaluation

4.1 Datasets
FUNSD. FUNSD (Jaume et al., 2019) contains a
collection of research, marketing, and advertising
forms that vary extensively in their structure and
appearance. The dataset consists of 199 annotated
forms with 9,707 entities and 31,485 word-level
annotations for 4 entity types: header, question,
answer, and other. We use the official 75-25 split
for the training and test sets.
CORD. CORD (Park et al., 2019) contains over
11,000 Indonesian receipts from shops and restau-
rants. The annotations are provided in 30 fine-
grained semantic entities such as store name, quan-
tity of menu, tax amount, discounted price, etc.
We use the official 800-100-100 split for training,
validation, and test sets.
SROIE. The ICDAR 2019 Challenge on
Scanned Receipts OCR and key Information Ex-
traction (SROIE) (Huang et al., 2019) offers 1,000
whole scanned receipt images and annotations.
626 samples are for training and 347 samples are
for testing. The task is to extract four predefined
entities: company, date, address, or total.
Payment. We use the large-scale payment data
(Majumder et al., 2020) that consists of roughly
10,000 documents and 7 semantic entity labels
from human annotators. We follow the same evalu-
ation protocol and dataset splits used in Majumder
et al. (2020).

4.2 Experimental Setup
We follow the FormNetV1 (Lee et al., 2022) ar-
chitecture with a slight modification to incorporate
multiple modalities used in the proposed method.

Our backbone model consists of a 6-layer GCN
encoder to generate structure-aware super-tokens,
followed by a 12-layer ETC transformer decoder
equipped with Rich Attention for document entity
extraction. The number of hidden units is set to
768 for both GCN and ETC. The number of atten-
tion heads is set to 1 in GCN and 12 in ETC. The
maximum sequence length is set to 1024. We fol-
low Ainslie et al. (2020); Lee et al. (2022) for other
hyper-parameter settings. For the image embedder
architecture, see Sec A.1 in Appendix.

Pre-training. We pre-train FormNetV2 using
two unsupervised objectives: Masked Language
Modeling (MLM) (Taylor, 1953; Devlin et al.,
2019) and the proposed multimodal Graph Con-
trastive Learning (GCL).

Different from BERT (Devlin et al., 2019), here
MLM has access to layout and image modalities
during pre-training similar to Appalaraju et al.
(2021); Xu et al. (2021, 2020). Nevertheless, the
layout and image features are constructed at edge
level instead of at node level, supplementing the
text features for better underlying representation
learning without directly leaking the trivial infor-
mation.

GCL provides a natural playground for effective
interactions between all three modalities from a
document in a contrastive fashion. For each graph
representation of a document, we generate two
corrupted views by edge dropping, edge feature
dropping, and node feature dropping with dropping
rates {0.3, 0.8, 0.8}, respectively. The weight ma-
trices in both GCN and ETC are shared across the
two views.

We follow Appalaraju et al. (2021); Xu et al.
(2021, 2020) and use the large-scale IIT-CDIP
document collection (Lewis et al., 2006) for pre-
training, which contains 11 million document im-
ages. We train the models from scratch using Adam
optimizer with batch size of 512. The learning rate
is set to 0.0002 with a warm-up proportion of 0.01.
We find that GCL generally converges faster than
MLM, therefore we set the loss weightings to 1 and
0.5 for MLM and GCL, respectively.

Note that we do not separately pre-train or load
a pre-trained checkpoint for the image embedder as
done in other recent approaches shown in Table 1.
In fact, in our implementation, we find that using
sophisticated image embedders or pre-training with
natural images, such as ImageNet (Russakovsky
et al., 2015), do not improve the final downstream
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Dataset Method P R F1 F1† Modality Image Embedder #Params
FUNSD SPADE (Hwang et al., 2021) - - 70.5 - T+L - 110M

UniLMv2 (Bao et al., 2020) 67.80 73.91 70.72 - T - 355M
LayoutLMv1 (Xu et al., 2020) 75.36 80.61 77.89 - T+L - 343M
DocFormer (Appalaraju et al., 2021) 81.33 85.44 83.33 - T+L+I ResNet50 502M
FormNetV1 (Lee et al., 2022) 85.21 84.18 84.69 - T+L - 217M

LayoutLMv1 (Xu et al., 2020) 76.77 81.95 79.27 - T+L+I ResNet101 160M
LayoutLMv2 (Xu et al., 2021) 83.24 85.19 84.20 - T+L+I ResNeXt101-FPN 426M
DocFormer (Appalaraju et al., 2021) 82.29 86.94 84.55 - T+L+I ResNet50 536M
StructuralLM (Li et al., 2021a) - - - 85.14 T+L - 355M
LayoutLMv3 (Huang et al., 2022) 81.35 83.75 82.53 92.08 T+L+I Tokenization 368M

FormNetV2 (ours) 85.78 86.94 86.35 92.51 T+L+I 3-layer ConvNet 204M

CORD SPADE (Hwang et al., 2021) - - 91.5 - T+L - 110M
UniLMv2 (Bao et al., 2020) 91.23 92.89 92.05 - T - 355M
LayoutLMv1 (Xu et al., 2021) 94.32 95.54 94.93 - T+L - 343M
DocFormer (Appalaraju et al., 2021) 96.46 96.14 96.30 - T+L+I ResNet50 502M
FormNetV1 (Lee et al., 2022) 98.02 96.55 97.28 - T+L - 345M

LayoutLMv2 (Xu et al., 2021) 95.65 96.37 96.01 - T+L+I ResNeXt101-FPN 426M
TILT (Powalski et al., 2021) - - 96.33 - T+L+I U-Net 780M
DocFormer (Appalaraju et al., 2021) 97.25 96.74 96.99 - T+L+I ResNet50 536M
LayoutLMv3 (Huang et al., 2022) 95.82 96.03 95.92 97.46 T+L+I Tokenization 368M

FormNetV2 (ours) 97.74 97.00 97.37 97.70 T+L+I 3-layer ConvNet 204M

SROIE UniLMv2 (Bao et al., 2020) - - 94.88 - T - 355M
LayoutLMv1 (Xu et al., 2021) 95.24 95.24 95.24 - T+L - 343M
LayoutLMv2 (Xu et al., 2021) 99.04 96.61 97.81 - T+L+I ResNeXt101-FPN 426M

FormNetV2 (ours) 98.56 98.05 98.31 - T+L+I 3-layer ConvNet 204M

Payment NeuralScoring (Majumder et al., 2020) - - 87.80 - T+L - -
FormNetV1 (Lee et al., 2022) 92.70 91.69 92.19 - T+L - 217M

FormNetV2 (ours) 94.11 95.71 94.90 - T+L+I 3-layer ConvNet 204M

Table 1: Entity-level precision, recall, and F1 score comparisons on four standard benchmarks. “T/L/I” de-
notes “text/layout/image” modality. The proposed FormNetV2 establishes new state-of-the-art results on all
four datasets. FormNetV2 significantly outperforms the most recent DocFormer (Appalaraju et al., 2021) and
LayoutLMv3 (Huang et al., 2022) while using a 38% and 55% sized model, respectively. Note that Lay-
outLMv3 (Huang et al., 2022) and StructuralLM (Li et al., 2021a) use segment-level layout positions that in-
corporate ground truth entity bounding boxes, which is less practical for real-world applications. We nevertheless
report our results under the same protocol in column F1†. See Sec 4.3 and Sec A.2 in Appendix for details.

entity extraction F1 scores, and they sometimes
even degrade the performance. This might be be-
cause the visual patterns presented in form docu-
ments are drastically different from natural images
that have multiple real objects. The best practice
for conventional vision tasks (classification, detec-
tion, segmentation) might not be optimal for form
document understanding.
Fine-tuning. We fine-tune all models for the
downstream entity extraction tasks in the exper-
iments using Adam optimizer with batch size of 8.
The learning rate is set to 0.0001 without warm-up.
The fine-tuning is conducted on Tesla V100 GPUs
for approximately 10 hours on the largest corpus.
Other hyper-parameters follow the settings in Lee
et al. (2022).

4.3 Benchmark Results
Table 1 lists the results that are based on the same
evaluation protocal1.

1Micro-F1 for FUNSD, CORD, and SROIE by following
the implementation in Xu et al. (2021); macro-F1 for Pay-
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Figure 5: Model Size vs. Entity Extraction F1 Score
on FUNSD benchmark. The FormNetV2 family sig-
nificantly outperforms other recent approaches – Form-
NetV2 achieves highest F1 score (86.35%) while using
a 2.6x smaller model than DocFormer (84.55%; Ap-
palaraju et al., 2021). FormNetV2 also outperforms
FormNetV1 (Lee et al., 2022) by a large margin (1.66
F1) while using fewer parameters.

As the field is actively growing, researchers
have started to explore incorporating additional

ment (Majumder et al., 2020).
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information into the system. For example,
LayoutLMv3 (Huang et al., 2022) and Struc-
turalLM (Li et al., 2021a) use segment-level layout
positions derived from ground truth entity bound-
ing boxes – the {Begin, Inside, Outside, End,
Single} schema information (Ratinov and Roth,
2009) that determine the spans of entities are given
to the model, which is less practical for real-world
applications. We nevertheless report our results un-
der the same protocol in column F1† in Table 1. We
also report LayoutLMv3 results without ground-
truth entity segments for comparisons.

Furthermore, UDoc (Gu et al., 2022a) uses ad-
ditional paragraph-level supervision returned by
a third-party OCR engine EasyOCR2. Additional
PubLayNet (Zhong et al., 2019) dataset is used
to pre-train the vision backbone. UDoc also uses
different training/test splits (626/247) on CORD in-
stead of the official one (800/100) adopted by other
works. ERNIE-mmLayout (Wang et al., 2022b)
utilizes a third-party library spaCy3 to provide ex-
ternal knowledge for the Common Sense Enhance-
ment module in the system. The F1 scores on
FUNSD and CORD are 85.74% and 96.31% with-
out the external knowledge. We hope the above
discussion can help clarify the standard evaluation
protocol and decouple the performance improve-
ment from modeling design vs. additional informa-
tion.

Figure 5 shows model size vs. F1 score for
the recent approaches that are directly compara-
ble. The proposed method significantly outper-
forms other approaches in both F1 score and pa-
rameter efficiency: FormNetV2 achieves highest
F1 score (86.35%) while using a 38% sized model
than DocFormer (84.55%; Appalaraju et al., 2021).
FormNetV2 also outperforms FormNetV1 (Lee
et al., 2022) by a large margin (1.66 F1) while
using fewer parameters. Table 1 shows that Form-
NetV2 outperforms LayoutLMv3 (Huang et al.,
2022) and StructuralLM (Li et al., 2021a) with a
considerable performance leap while using a 55%
and 57% sized model, respectively. From Table 1
we also observe that using all three modalities
(text+layout+image) generally outperforms using
two modalities (text+layout), and using two modal-
ities (text+layout) outperforms using one modality
(text) only across different approaches.

2https://github.com/JaidedAI/EasyOCR
3spacy.io

4.4 Ablation Studies

We perform studies over the effect of image modal-
ity, graph contrastive learning, and decoupled graph
corruption. The backbone for these studies is a 4-
layer 1-attention-head GCN encoder followed by a
4-layer 8-attention-head ETC transformers decoder
with 512 hidden units. The model is pre-trained on
the 1M IIT-CDIP subset. All other hyperparame-
ters follow Sec 4.2.

Effect of Image Modality and Image Embedder.
Table 2 lists results of FormNetV1 (a) backbone
only, (b) with additional tokens constructed from
image patches4, and (c) with the proposed image
feature extracted from edges of a graph. The net-
works are pre-trained with MLM only to showcase
the impact of input with image modality.

We observe that while (b) provides slight F1
score improvement, it requires 32% additional pa-
rameters over baseline (a). The proposed (c) ap-
proach achieves a significant F1 boost with less
than 1% additional parameters over baseline (a).
Secondly, we find the performance of more ad-
vanced image embedders (He et al., 2016) is in-
ferior to the 3-layer ConvNet used here, which
suggests that these methods may be ineffective in
utilizing image modality. Nevertheless, the results
demonstrate the importance of image modality as
part of the multimodal input. Next we will val-
idate the importance of an effective multimodal
pre-training mechanism through graph contrastive
learning.

Method FUNSD CORD #Params
FormNetV1 82.53 95.16 81.7M
FormNetV1+Image Patch 82.65 95.43 107.0M
FormNetV1+Edge Image (ours) 83.13 95.85 82.3M

Table 2: F1 with different image modality setups.

Effect of Graph Contrastive Learning. The
graph corruption step (Figure 4) in the proposed
multimodal graph contrastive learning requires cor-
ruption of the original graph at both topology and
feature levels. Considering the corruption happens
in multiple places: edges, edge features, and node
features, a naive graph corruption implementation
would be to use the same drop-rate value every-
where. In Figure 6(a)(b), we show the downstream
entity extraction F1 scores on FUNSD and CORD
datasets by varying the dropping rate value during
the graph contrastive pre-training. The selected

4We experiment with 32x32 image patch size, resulting in
additional 256 image tokens to the model.
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Figure 6: Entity Extraction F1 Score vs. Graph Corruption Mechanism on FUNSD and CORD benchmarks.
(a)(b) show results using the same drop-rate across modalities. The proposed multimodal graph contrastive learning
improves MLM pretraining at almost all drop-rates; (c)(d) show results using different drop-rates across modalities.
The decoupled dropping mechanism permits further boosts to the F1 scores over non-decoupled counterparts. See
Sec 4.4 for discussion.

dropping rate is shared across all aforementioned
places.

Results show that the proposed multimodal
graph contrastive learning works out of the box
across a wide range of dropping rates. It demon-
strates the necessity of multimodal corruption at
both topology level and feature level – it brings
up to 0.66% and 0.64% F1 boost on FUNSD and
CORD respectively, when the model is pre-trained
on MLM plus the proposed graph contrastive learn-
ing over MLM only. Our method is also stable to
perturbation of different drop-rates.

We observe less or no performance improvement
when extreme drop-rates are used; for example,
dropping 10% edges and features or dropping 90%
edges and features. Intuitively, dropping too few or
too much information provides either no node con-
text changes or too few remaining node contexts in
different corrupted graphs for effective contrastive
learning.

Effect of Decoupled Graph Corruption. In
this study, we investigate whether decoupling the
drop-rate in different places of graph corruption
can learn better representations during pre-training
and bring further improvement to the downstream
entity extraction tasks. Specifically, we select dif-
ferent dropping rates for all four different places:
edge, layout and image features at edge level, and
text features at node level. At feature level (layout,
image, text), when one of the corrupted graphs se-
lects dropping rate p for a certain feature, the other
corrupted graph will use the complement of the se-
lected dropping rate 1−p for the same feature as in-
troduced in Sec 3.3. This inductive multimodal con-
trastive design creates stochastically imbalanced
information access to the features between two cor-

rupted views. It provides more diverse contexts at
node level in different views and makes the opti-
mization of the contrastive objective harder, ideally
generating more semantically meaningful represen-
tations between the three modalities.

Figure 6(c)(d) show the downstream entity ex-
traction F1 scores on FUNSD and CORD datasets
by pre-training with three different edge dropping
rates and three different feature dropping rates. We
observe that decoupling the dropping rate at vari-
ous levels further boosts the performance on both
datasets – it brings another 0.34% and 0.07% F1
boost on FUNSD and CORD respectively, when
decoupled dropping rates are used over the non-
decoupled ones.

We also observe nonlinear interactions between
different dropping rates at edge level and feature
level. The best performing feature dropping rate
might be sub-optimal when a different edge drop-
ping rate is applied. This is noteworthy but not
surprising behavior, since different edge dropping
rates would drastically change the graph topology
(and therefore the node embeddings). We expect
the amount of information needed for maximiz-
ing the agreement of node contexts between two
corrupted graphs to be different when the graph
topology is altered. Nevertheless, we find that low
edge dropping rates (e.g. 0.3) generally perform
better than high edge dropping rates, and therefore
select a low edge dropping rate in our final design.

Visualization. We visualize (Vig, 2019) the
local-to-local attention scores of a CORD exam-
ple for model pre-trained with MLM only and
MLM+GCL but before fine-tuning in Figure 7(a).
We observe that with GCL, the model can iden-
tify more meaningful token clusterings, leveraging
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Input ImageMLM MLM + GCL (ours)

(a) Attention scores w/ and w/o GCL

HEADER QUESTION ANSWER

FormNetV2 Output Ground Truth

(b) Model outputs for difficult cases.

Figure 7: (a) The attention scores for MLM and MLM+GCL(Graph Contrastive Learning) models on CORD
before fine-tuning. When pre-trained with the proposed GCL, the model can identify more meaningful token
clusterings, leveraging multimodal input effectively; (b) Difficult cases where the model predictions do not match
the human-annotated ground truth. In this visualization we highlight disagreements only.

multimodal input more effectively.
We also show sample model outputs that do not

match the human-annotated ground truth in Fig-
ure 7(b). The model confuses between ‘header‘ and
‘other‘ on the top of the form and between ‘ques-
tion‘ and ‘answer‘ for the multiple choice questions
on the bottom half of the form. More visualization
can be found in Figure 9 in Appendix.

5 Conclusion

FormNetV2 augments an existing strong Form-
NetV1 backbone with image features bounded by
pairs of neighboring tokens and the graph con-
trastive objective that learns to differentiate be-
tween the multimodal token representations of two
corrupted versions of an input graph. The central-
ized design sheds new light to the understanding of
multimodal form understanding.

6 Limitations

Our work follows the general assumption that the
training and test set contain the same list of pre-
defined entities. Without additional or necessary
modifications, the few-shot or zero-shot capability
of the model is expected to be limited. Future work
includes exploring prompt-based architectures to
unify pre-training and fine-tuning into the same
query-based procedure.

7 Ethics Consideration

We have read and compiled with the ACL Code
of Ethics. The proposed FormNetV2 follows the
prevailing large-scale pre-training then fine-tuning
framework. Although we use the standard IIT-

CDIP dataset for pre-training in all experiments,
the proposed method is not limited to using specific
datasets for pre-training. Therefore, it shares the
same potential concerns of existing large language
models, such as biases from the pre-training data
and privacy considerations. We suggest following
a rigorous and careful protocol when preparing the
pre-training data for public-facing applications.
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A Appendix

A.1 Image Embedder Architecture

Our image embedder is a 3-layer ConvNet with
filter sizes {32, 64, 128} and kernel size 3 through-
out. Stride 2 is used in the middle layer and stride
1 is used everywhere else. We resize the input doc-
ument image to 512×512 with aspect ratio fixed
and zero padding for the background region. After
extracting the dense features of the whole input
image, we perform feature RoI pooling (He et al.,
2017) within the bounding box that joins a pair
of tokens connected by a GCN edge. The height
and width of the pooled region are set to 3 and
16, respectively. Finally, the pooled features go
through another 3-layer ConvNet with filter size
{64, 32, 16} and kernel size 3 throughout. Stride 2
is used in the first 2 layers horizontally and stride 1
is used everywhere else. To consume image modal-
ity in our backbone model, we simply concatenate
the pooled image features with the existing layout
features at edge level of GCN as shown in Figure 2.

A.2 More Implementation Details

We conduct additional experiments5 on FUNSD
and CORD using base and large versions of Lay-
outLMv3 (Huang et al., 2022). Instead of using
entity segment indexes inferred from ground truth,
we use word boxes provided by OCR. We observe
considerable performance degradation when the
model has access to word-level box information
instead of segment-level. The results are shown in
Table 3.

Method Setting FUNSD CORD
LayoutLMv3-base Reported 90.29 96.56

Reproduced 90.59 95.85
Word box 78.35 95.81

LayoutLMv3-large Reported 92.08 97.46
Reproduced 92.14 96.78
Word box 82.53 95.92

Table 3: LayoutLMv3 results with entity segment
indexes (reproduced) or word level indexes (word
box). We observe considerable performance degrada-
tion when the model has access to word-level box in-
formation instead of segment-level.

A.3 Preliminaries

FormNetV1 (Lee et al., 2022) simplifies the task of
document entity extraction by framing it as funda-
mentally text-centric, and then seeks to solve the

5github.com/Jyouhou/unilm-test

problems that immediately arise from this. Serial-
ized forms can be very long, so FormNetV1 uses
a transformer architecture with a local attention
window (ETC) as the backbone to work around
the quadratic memory cost of attention. This com-
ponent of the system effectively captures the text
modality.

OCR serialization also distorts strong cues of
semantic relatedness – a word that is just above
another word may be related to it, but if there are
many tokens to the right of the upper word or to
the left of the lower word, they will intervene be-
tween the two after serialization, and the model
will be unable to take advantage of the heuristic
that nearby tokens tend to be related. To address
this, FormNetV1 adapts the attention mechanism
to model spatial relationships between tokens us-
ing Rich Attention, a mathematically sound way of
conditioning attention on low-level spatial features
without resorting to quantizing the document into
regions associated with distinct embeddings in a
lookup table. This allows the system to build pow-
erful representations from the layout modality for
tokens that fall within the local attention window.

Finally, while Rich Attention maximizes the po-
tential of local attention, there remains the problem
of what to do when there are so many interveners
between two related tokens that they do not fall
within the local attention window and cannot at-
tend to each other at all. To this end FormNetV1
includes a graph convolutional network (GCN) con-
textualization step before serializing the text to send
to the transformer component. The graph for the
GCN locates up to K potentially related neigh-
bors for each token before convolving to build up
the token representations that will be fed to the
transformer after OCR serialization. Unlike with
Rich Attention, which directly learns concepts like
“above”, “below”, and infinitely many degrees of
“nearness”, the graph at this stage does not consider
spatial relationships beyond “is a neighbor” and “is
not a neighbor” – see Figure 1. This allows the net-
work to build a weaker but more complete picture
of the layout modality than Rich Attention, which
is constrained by local attention. A similar archi-
tecture is also found to be useful in graph learning
tasks by Wu et al. (2021).

Thus the three main components of FormNetV1
cover each other’s weaknesses, strategically trad-
ing off representational power and computational
efficiency in order to allow the system to construct
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Figure 8: (a) During multimodal graph contrastive pre-training, two corrupted graphs are sampled from an input
graph by corruption of graph topology (edges) and attributes (multimodal features). (b) During task-specific fine-
tuning, only the original input graph is used.
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Figure 9: The ambiguous cases where the model predictions do not match the human-annotated ground truth. In
this visualization we only showcase mismatched entities.

useful representations while simplifying the prob-
lem to be fundamentally textual rather than visual.
The final system was pretrained end-to-end on large
scale unlabeled form documents with a standard
masked language modeling (MLM) objective.

A.4 Output Visualization
Figure 9 shows additional FormNetV2 model out-
puts on FUNSD.

A.5 License or Terms
Please see the license or terms for IIT-CDIP6,
FUNSD7, CORD8, and SROIE9 in the correspond-

6ir.nist.gov/cdip/README.txt
7guillaumejaume.github.io/FUNSD/work/
8github.com/clovaai/cord/blob/master/LICENSE-CC-BY
9rrc.cvc.uab.es/?ch=13

ing footnotes.

9024



ACL 2023 Responsible NLP Checklist

A For every submission:
�3 A1. Did you describe the limitations of your work?

Sec 6

�3 A2. Did you discuss any potential risks of your work?
Sec 7

�3 A3. Do the abstract and introduction summarize the paper’s main claims?
Main claims are in Sec 3 with experimental validation in Sec 4.

�7 A4. Have you used AI writing assistants when working on this paper?
Left blank.

B �3 Did you use or create scientific artifacts?
Sec 4

�3 B1. Did you cite the creators of artifacts you used?
Sec 4.2

�3 B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
Sec A5

�3 B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
Sec 7

� B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
Not applicable. Left blank.

�3 B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
Sec A5

�3 B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
Sec 4.1

C �3 Did you run computational experiments?
Sec 4

�3 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
Sec 4

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

9025

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/


�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
Sec 4

�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
Sec 4

�3 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
Sec 4

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
No response.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
No response.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
No response.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No response.

9026


