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Abstract
NLP models often degrade in performance
when real world data distributions differ
markedly from training data. However, exist-
ing dataset drift metrics in NLP have generally
not considered specific dimensions of linguistic
drift that affect model performance, and they
have not been validated in their ability to pre-
dict model performance at the individual ex-
ample level, where such metrics are often used
in practice. In this paper, we propose three di-
mensions of linguistic dataset drift: vocabulary,
structural, and semantic drift. These dimen-
sions correspond to content word frequency
divergences, syntactic divergences, and mean-
ing changes not captured by word frequencies
(e.g. lexical semantic change). We propose
interpretable metrics for all three drift dimen-
sions, and we modify past performance pre-
diction methods to predict model performance
at both the example and dataset level for En-
glish sentiment classification and natural lan-
guage inference. We find that our drift metrics
are more effective than previous metrics at pre-
dicting out-of-domain model accuracies (mean
16.8% root mean square error decrease), par-
ticularly when compared to popular fine-tuned
embedding distances (mean 47.7% error de-
crease). Fine-tuned embedding distances are
much more effective at ranking individual ex-
amples by expected performance, but decom-
posing into vocabulary, structural, and semantic
drift produces the best example rankings of all
considered model-agnostic drift metrics (mean
6.7% ROC AUC increase).

1 Introduction

Dataset drift, when test data distributions differ
from a model’s training data, can have detrimen-
tal effects on NLP model performance (Broscheit
et al., 2022; Do et al., 2021; Koh et al., 2021). In
real world scenarios, models are regularly mon-
itored for potential performance degradations by
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comparing incoming test data with the training data
(Elango et al., 2022; Nigenda et al., 2022). For
these scenarios, researchers have proposed a vari-
ety of linguistic dataset drift metrics that aim to
predict NLP model performance degradations be-
tween training and test domains (Elsahar and Gallé,
2019; Ramesh Kashyap et al., 2021).

However, previous drift metrics and performance
predictions suffer from several limitations. First,
previous metrics have generally been designed as
holistic measures of linguistic dataset drift, despite
the fact that different NLP tasks and models might
be sensitive to different dimensions of linguistic
drift. Second, previous research has focused on
drift metrics at the dataset level rather than the in-
dividual example level. Not only does this require
multiple labeled evaluation domain datasets to
make out-of-domain performance predictions (re-
gressions require multiple dataset-level drift values
to fit to; Elsahar and Gallé, 2019; Ramesh Kashyap
et al., 2021), but drift metrics are often used in
practice to predict model performance when indi-
vidual real world examples are streamed in real
time (Elango et al., 2022). We seek to overcome
both of these limitations by proposing and evaluat-
ing specific dimensions of linguistic drift, predict-
ing out-of-domain model performance at both the
individual example level and the dataset level.

Specifically, we propose three dimensions of lin-
guistic dataset drift along with corresponding drift
metrics: vocabulary, structural, and semantic drift.
Because these dimensions capture distinct features
that could have different effects on the performance
of an NLP model, we hypothesize that decompos-
ing into these three dimensions will allow NLP
performance prediction models to better predict
model performance on novel data. Indeed, when
compared to previous model-agnostic drift metrics
predicting performance on English sentiment clas-
sification and natural language inference (NLI),
our metrics produce both improved predictions
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of dataset-level accuracies and improved rankings
of individual examples by expected performance,
for both in-domain and out-of-domain data (mean
16.8% accuracy root mean square error decrease,
mean 6.7% ROC area under the curve increase).
Although we find that previously-proposed fine-
tuned embedding distances (Elango et al., 2022)
are far more effective at ranking individual exam-
ples by expected performance, those distances are
extremely ineffective at predicting actual model
accuracies. We conclude that decomposing linguis-
tic drift into vocabulary, structural, and semantic
drift is an effective approach for predicting out-of-
domain model accuracy, and for ranking individual
examples when model-agnostic metrics are desired.

2 Related Work

Past work has quantified the drift between NLP
datasets using distances between token frequency
distributions or TF-IDF vectors (Bäck, 2019;
Ramesh Kashyap et al., 2021; Sato et al., 2022), lan-
guage model embedding distances (Feldhans et al.,
2021; Yamshchikov et al., 2021), or the ability of
domain classifiers to discriminate between datasets
(Dredze et al., 2010; Elsahar and Gallé, 2019;
Ruder et al., 2017). Notably, Ramesh Kashyap
et al. (2021) find that these metrics can predict
performance degradations when an NLP model is
transferred from a training dataset Dtrain to an out-
of-domain evaluation dataset Deval.

However, existing metrics have generally been
designed as holistic measures of linguistic drift,
failing to capture specific dimensions that might
affect NLP model performance in different ways.
Furthermore, the traditional setup for evalu-
ating drift metrics (Elsahar and Gallé, 2019;
Ramesh Kashyap et al., 2021) only allows for
dataset-level drift metrics that predict overall model
accuracy on out-of-domain datasets. In practice,
when real world examples are streamed during
test time, it is desirable to predict model perfor-
mance for individual examples using example-level
drift metrics (i.e. drift between an example x and
a training dataset Dtrain; Elango et al., 2022; Ni-
genda et al., 2022). In our work, we modify the
setup from Ramesh Kashyap et al. (2021) to predict
performance for individual examples (Section 4),
using logistic regressions fitted to example-level
drift metrics. In contrast to Ramesh Kashyap et al.
(2021), we can fit our regressions to predict out-
of-domain performance even when only a single

in-domain evaluation dataset is available.

3 Dimensions of Linguistic Drift

As described above, previous measures of dataset
drift in NLP suffer from (1) lack of specificity and
(2) lack of validation at the example level, where
such metrics are often used in practice. First, we
address the lack of specificity by proposing three
dimensions of linguistic dataset drift: vocabulary,
structural, and semantic drift. As in previous work,
we primarily focus on domain drift, i.e. divergence
in the input probabilities P (x) rather than the joint
probabilities over inputs and labels P (x, y). For
each of our proposed drift dimensions, we pro-
pose a metric that quantifies the drift between an
evaluation example x and a training dataset Dtrain,
allowing us to use our metrics to predict example-
level model performance. We evaluate our metrics
empirically in Section 4.

3.1 Vocabulary Drift

We define vocabulary drift as the divergence be-
tween content word frequencies in two text samples.
Content words are defined as open class words that
generally contain substantial semantic content (e.g.
nouns, verbs, adjectives, and adverbs), contrasted
with function words that primarily convey gram-
matical relationships (e.g. prepositions, conjunc-
tions, and pronouns; Bell et al., 2009; Segalowitz
and Lane, 2000). By restricting our vocabulary
drift definition to content word distributions, we
capture vocabulary differences between two text
datasets without the confounds of structural fea-
tures. For example, “The student ate the sandwich”
and “A sandwich was eaten by a student” would
have low vocabulary drift after excluding function
words. Notably, our definition of vocabulary drift is
designed to include drift in word choice, regardless
of the semantic similarity between chosen words;
for example, “The dog was happy” and “The bea-
gle was ecstatic” would have high vocabulary drift
due to differing word choice, despite their high se-
mantic similarity. This property is useful because
NLP models are often sensitive to changes in word
choice even if datasets are semantically similar (Hu
et al., 2019; Misra et al., 2020).

Formally, to quantify the vocabulary drift be-
tween an evaluation example x and a training
dataset Dtrain, we compute the cross-entropy be-
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tween content word frequencies in x and Dtrain as:

1

|xcontent|
∑

w∈xcontent

log(Ptrain_content(w)). (1)

Here, xcontent is the set of content words in example
x, and Ptrain_content(w) is the frequency (restricted
to content words) of word w in the training dataset.
Our vocabulary drift metric is equal to the log-
perplexity (training loss) of a unigram language
model restricted to content words, trained on Dtrain
and evaluated on x. We annotate content words us-
ing the spaCy tokenizer and part-of-speech (POS)
tagger (Honnibal et al., 2017), defining content
words as those with an open class Universal POS
tag (nouns, verbs, adjectives, adverbs, and interjec-
tions; Nivre et al., 2020) and excluding stop words
in spaCy.

3.2 Structural Drift

In contrast to vocabulary drift, structural drift cap-
tures divergences between the syntactic structures
in two text samples. For example, “Yesterday, I
was surprised by a dog” and “Usually, she is rec-
ognized by the audience” would have low struc-
tural drift despite high vocabulary drift. Previous
work in discourse analysis has attempted to quan-
tify structural similarity separately from seman-
tic similarity in natural conversations, although
their metrics are not directly applicable to NLP
datasets due to computational limitations (Boghrati
et al., 2018).1 Structural drift has also been stud-
ied in machine translation, primarily considering
structural divergence between parallel text in dif-
ferent languages (Dave et al., 2004; Deng and Xue,
2017; Dorr, 1990; Saboor and Khan, 2010); in
our work, we focus on divergences between non-
parallel monolingual text.

We quantify the structural drift between an exam-
ple x and Dtrain using the cross-entropy between
the true POS tag sequence for x and the predic-
tions of a POS 5-gram model trained on POS tag
sequences in Dtrain. This metric captures the diver-
gence between syntactic structures in x and Dtrain
using 5-gram sequences, abstracting away from
semantic content and vocabulary by considering
only the POS tag for each word (Axelrod et al.,
2015; Nerbonne and Wiersma, 2006). Formally,

1The CASSIM structural similarity metric in Boghrati et al.
(2018) is based on tree-edit distances between all sentence
pairs, which is slow to compute even for relatively small NLP
datasets.

we compute:

1

|x|

|x|∑

i=1

log(Ptrain(tagi|tagi−1, ..., tagi−4)). (2)

We pad the beginning of the POS tag sequence
with [SEP] tokens, and we only annotate examples
with structural drift if they contain at least two non-
[SEP] tokens. As with our vocabulary drift metric,
we annotate POS tags using the spaCy tokenizer
and POS tagger.

3.3 Semantic Drift

Finally, we consider semantic drift, defined as any
divergence in semantic meaning between two text
samples. Semantic drift is closely related to both
vocabulary and structural drift; the words and syn-
tactic structures used in a sentence are closely tied
to the meaning of that sentence, particularly un-
der compositional assumptions of language (Szabó,
2022). However, there are notable cases where se-
mantic drift is independent from vocabulary and
structural drift. For example, “I saw the doctor”
and “I took a trip to the hospital” have high vocab-
ulary and structural drift under our definitions, de-
spite similar semantic meaning. Conversely, some
sentences have different meanings or connotations
across time and contexts, despite remaining identi-
cal in both vocabulary and structure (e.g. the word

“sick” in “That salamander is sick!” can mean very
cool or physically ill depending on the context).

Many of these semantic similarities and differ-
ences can be quantified using contextualized em-
beddings from modern language models (Briakou
and Carpuat, 2020; Devlin et al., 2019; Liu et al.,
2020; Sun et al., 2022), which we include in our
drift metric experiments (Section 4). However,
when identifying individual dimensions of linguis-
tic drift, we seek to identify dimensions that are
both interpretable and relatively independent from
one another, to better isolate specific dimensions
that impact NLP model performance. Language
model embeddings reflect vocabulary and struc-
tural properties of sentences as well as semantic
properties (Hewitt and Manning, 2019; Tenney
et al., 2019), and thus they are less effective for
pinpointing interpretable effects that are specific to
semantic drift.

Lexical Semantic Change. Instead, we consider
lexical semantic change, in which a word’s mean-
ing changes between two datasets while its sur-
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face form remains the same (Gulordava and Ba-
roni, 2011; Kulkarni et al., 2015; Sagi et al., 2009;
Tahmasebi et al., 2021). Past work has quantified
a token’s lexical semantic change LSCD1↔D2(w)
using the mean pairwise cosine distance between
contextualized RoBERTa embeddings for that to-
ken in two different datasets D1 and D2 (Giu-
lianelli et al., 2020; Laicher et al., 2021). Moti-
vated by this metric, we quantify the lexical seman-
tic change between an evaluation example x and
a training dataset Dtrain using the mean lexical se-
mantic change between x and Dtrain for all content
tokens w shared between x and Dtrain:

1

|xcontent|
∑

w∈xcontent

LSCx↔Dtrain(w). (3)

Here, LSCx↔Dtrain(w) is the mean pairwise co-
sine distance between embeddings for w in exam-
ple x and dataset Dtrain, using a non-fine-tuned
RoBERTa model. Again, we define content tokens
as tokens that are annotated with an open class POS
tag anywhere in the Universal Dependencies En-
glish dataset, excluding stop words (Nivre et al.,
2020).2 While this lexical semantic change metric
is still based on contextualized embeddings, match-
ing embeddings based on token surface forms al-
lows us to minimize effects of vocabulary and struc-
tural drift, as compared to matching each example
representation with all other example representa-
tions regardless of surface form. Of course, lexical
semantic change is just one type of semantic drift;
future work might consider other types of seman-
tic drift that are independent from vocabulary and
structural drift.

4 Experiments

Previous work has evaluated drift metrics by as-
sessing their ability to predict out-of-domain model
performance at the dataset-level using dataset-level
metrics (e.g. Ramesh Kashyap et al., 2021; Section
2). We extend this work by predicting individual
example-level performance (probabilities of getting
individual examples correct) along with dataset-
level accuracies, using drift metrics between each

2We exclude non-content tokens for lexical semantic
change because non-content token embeddings (e.g. for func-
tion words and punctuation) are more likely to encode struc-
tural drift information rather than lexical semantic change.
Contextualized token embeddings are computed as the mean
of the token representations in the last two RoBERTa layers
before fine-tuning (Elango et al., 2022).

example x and the training dataset Dtrain. Us-
ing these example-level metrics instead of dataset-
level metrics allows us to fit regressions predict-
ing model performance using only a set of exam-
ples (e.g. using only the in-domain evaluation set),
rather than a set of multiple evaluation datasets cov-
ering different domains. Thus, our approach can be
used in common real world scenarios where labeled
data is available only in one domain. In our experi-
ments, we compare previous drift metrics with our
proposed metrics for vocabulary, structural, and se-
mantic drift, evaluating whether decomposing lin-
guistic drift into these three dimensions improves
NLP model performance predictions. 3

4.1 Datasets
We evaluate cross-domain transfer performance for
language models fine-tuned on sentiment classifica-
tion (split by product category or review year) and
natural language inference (NLI, split by source
domain). Because these tasks output one predic-
tion per sequence, they allow us to directly evaluate
sequence-level (i.e. example-level) drift metrics.

Amazon Reviews (product categories). For sen-
timent classification, we consider the Amazon re-
views dataset, containing customer-written product
reviews for 43 different product categories (Ama-
zon, 2017). As in Blitzer et al. (2007), we label
1- and 2-star reviews as negative, and 4- and 5-
star reviews as positive. We sample up to 100K
polarity-balanced reviews from each product cate-
gory, considering each category as a domain. For
each product category, we use a 70/20/10% split
for training, evaluation and test datasets.

Amazon Reviews (temporal split). Next, we
consider the same Amazon reviews dataset for sen-
timent classification, but we define domains by
review date rather than by product category. We
generate a category-balanced and polarity-balanced
sample for each year between 2001 and 2015 (in-
clusive) by sampling up to 5K polarity-balanced
reviews from each product category for each year,
sampling the same number of reviews each year for
any given category. The resulting dataset has 33K
training examples, 5K evaluation examples, and 5K
test examples for each year, similar to Agarwal and
Nenkova (2022), but balanced for product category
and polarity.

3Code is available at
https://github.com/amazon-science/
characterizing-measuring-linguistic-drift.
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MultiNLI. Finally, we consider the MNLI
dataset for natural language inference (NLI), cov-
ering five training domains and ten evaluation do-
mains, including government documents, pop cul-
ture articles, and transcribed telephone conversa-
tions (Williams et al., 2018). Each training domain
has approximately 77K training examples, and each
evaluation domain has approximately 2K evalua-
tion examples.

4.2 Models

We fine-tune a RoBERTa base-size model M for
each training domain for each task, using batch size
32, learning rate 2e-5, and four epochs through the
training data (Liu et al., 2019). Because there are
only five training domains for MNLI, we run five
fine-tuning runs per MNLI training domain. Full
fine-tuning details and hyperparameters are listed
in Appendix A.1. We evaluate each model on each
evaluation domain; to simulate realistic scenarios
for temporal data, we evaluate only on future years
for models trained on temporal splits.

4.3 Drift metrics

We consider drift metrics between individual evalu-
ation examples x and training datasets Dtrain. First,
we consider our vocabulary, structural, and seman-
tic drift metrics from Section 3. Initial motivations
and theoretical examples of how these three di-
mensions differ are described in Section 3, but the
dimensions are not perfectly independent. Empiri-
cally, Pearson correlations between our vocabulary,
structural, and semantic drift metrics range from
0.10 to 0.50 across the different tasks. For com-
parison, we also consider drift metrics from past
work: token frequency divergences and embedding
cosine distances. With the exception of the fine-
tuned embedding distances, all of our metrics are
model-agnostic, meaning they are not dependent
on the internals of the fine-tuned model.

Token frequency divergences. We compute the
Jensen-Shannon (JS) divergence between the token
frequency distribution for each example x and each
training dataset Dtrain. This divergence has been
shown to correlate with out-of-domain model per-
formance when computed at the dataset-level (i.e.
between an entire evaluation set Deval and the train-
ing set Dtrain; Ramesh Kashyap et al., 2021), and
it has been recommended as a metric for training
dataset selection (Ruder et al., 2017).
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Figure 1: ROC curves predicting whether a model will
get individual examples correct based on vocabulary,
structural, and semantic drift (left) vs. fine-tuned em-
bedding distances (right), for an MNLI model trans-
ferred from the telephone to fiction domain. The true
model accuracy degradation is 87.9% → 84.1%. Here,
our decomposed drift metrics produce worse example
rankings than the fine-tuned embedding distances (ROC
AUC 0.532 vs. 0.702), but a much better dataset-level
accuracy prediction (absolute error 0.9% vs. 7.2%). We
observe this pattern to hold across domains and datasets
(Table 1). Still, our decomposed metrics outperform pre-
vious model-agnostic metrics by all evaluation criteria.

However, because example-level token fre-
quency distributions are quite sparse (Ruder et al.,
2017), we also consider the cross-entropy between
each example frequency distribution and each train-
ing frequency distribution (i.e. the loss of a un-
igram language model). The resulting token fre-
quency cross-entropy is equivalent to our vocabu-
lary drift metric, but using the RoBERTa tokenizer
and without the restriction to content words.

Embedding cosine distances. We compute em-
beddings for training and evaluation examples x by
taking the mean over all tokens in x and the last
two RoBERTa layers, either before or after task
fine-tuning (i.e. pre-trained or fine-tuned; Elango
et al., 2022). We note that the pre-trained RoBERTa
model is still the same model that is fine-tuned for
each task, potentially leading to overly optimistic
results for the pre-trained embedding cosine dis-
tances; this caveat also holds for our semantic drift
metric, which relies on pre-trained embeddings.
For the embedding cosine distance drift metrics,
we compute the mean cosine distance between the
embedding for evaluation example x and each ex-
ample in the training dataset Dtrain (Nigenda et al.,
2022).4

4For efficiency, we compute mean pairwise cosine dis-
tances using the method described in Appendix A.2.
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4.4 Predicting Model Performance

For each drift metric (or set of drift metrics) and
each model M trained on dataset Dtrain, we fit a lo-
gistic regression predicting whether M will get ex-
ample x correct (i.e. a “positive” example), based
on the drift metric(s) between x and Dtrain. The
regression input is the considered drift metric(s)
from x to Dtrain, and the label is 1 if M predicts
x correctly, and 0 otherwise.5 We fit the logistic
regression for all x in the in-domain evaluation
dataset, mimicking a scenario where labeled evalu-
ation data is only available in the same domain as
training. This allows us to test whether regressions
fitted only to in-domain examples can extrapolate
to out-of-domain examples.

We evaluate the logistic regressions on both in-
domain and out-of-domain evaluation examples.
Each regression produces a predicted probability of
“positive” (getting an example correct) for each ex-
ample.6 For dataset-level accuracy predictions, we
compute the mean predicted “positive” probability
over all examples in each evaluation dataset Deval,
equal to the expected value of model accuracy on
Deval based on the example-level probabilities.

4.5 Evaluating Performance Predictions

We use ROC curves to evaluate example-level per-
formance predictions, both in-domain and out-of-
domain, and we use root mean square errors (RM-
SEs) to evaluate out-of-domain dataset-level accu-
racy predictions.

ROC AUC. For each logistic regression, predict-
ing positive examples (correct model predictions)
from a given drift metric and for a given model,
we compute the area under the ROC curve for in-
domain and out-of-domain examples. An ROC
curve plots recall (proportion of true positives iden-
tified) over the false positive rate for different prob-
ability thresholds. In our case, a higher ROC AUC
indicates that the input drift metric can generally
predict more true positives (examples the model
gets correct) for a given false positive rate. How-
ever, ROC curves are dependent only on the rank-
ings of examples by predicted positive probabilities
(Tang et al., 2010); the raw probabilities of correct

5In cases where we input multiple drift metrics into the
logistic regression, we exclude interaction terms; interaction
terms generally resulted in worse out-of-domain performance
predictions, based on both ROC AUCs and RMSEs.

6For in-domain evaluation example predictions, we use
5-fold cross-validation, fitting regressions to only 80% of the
in-domain evaluation dataset per fold.

model predictions do not affect the ROC AUC as
long as the example ranking is preserved. From
this perspective, a higher ROC AUC indicates that
evaluation examples are ranked roughly in order of
expected performance; examples with higher pre-
dicted probabilities are more likely to be predicted
correctly by the model. For each drift metric, we
compute the mean ROC AUC over all trained mod-
els M, for in-domain and out-of-domain examples.

RMSE. Because ROC AUCs depend only on the
ranking of evaluation examples, they do not capture
whether the predicted positive probabilities (prob-
abilities of correct predictions) are actually reflec-
tive of model accuracies. For example, a given drift
metric can achieve a high ROC AUC by ranking
evaluation examples accurately, even if the mean
probability (expected model accuracy) is far from
the true model accuracy for Deval (e.g. Figure 1).

Thus, for each drift metric, we also compute the
RMSE comparing expected model accuracy (mean
positive probability over all examples in Deval) to
actual model accuracy on Deval. We compute RM-
SEs over all models M and their corresponding
out-of-domain datasets Deval. We report RMSEs
as percentages of a baseline RMSE that predicts
out-of-domain accuracy on Deval to be the same as
the in-domain evaluation accuracy (i.e. predicting
no out-of-domain performance drop). Our reported
RMSE percentages indicate the percentage of ac-
curacy prediction error that remains when using a
given drift metric, relative to the baseline.

To summarize, we compute the predicted accu-
racy RMSE and the mean ROC AUC for each drift
metric and for each task. ROC AUC measures
how well a drift metric ranks the evaluation exam-
ples (examples with higher “positive” probabilities
should be more likely to be predicted correctly by
the model), while RMSE measures how well the
drift metric predicts actual model accuracy (mean
probabilities should be close to the true model ac-
curacy). An ideal drift metric should have high
ROC AUC and low RMSE.

5 Results

The mean accuracy change (±standard deviation;
in raw accuracy percentage difference) from in-
domain to out-of-domain evaluation is −1.04 ±
1.02% for sentiment classification across product
categories, −0.20± 0.57% for sentiment classifi-
cation across years, and −1.83± 2.91% for MNLI
across source domains. Notably, in many cases, ac-
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Sentiment (categories) Sentiment (temporal) MNLI (source domains)
In-domain Out-of-domain In-domain Out-of-domain In-domain Out-of-domain

Drift metric(s) ROC
AUC ↑

ROC
AUC ↑

RMSE
% ↓

ROC
AUC ↑

ROC
AUC ↑

RMSE
% ↓

ROC
AUC ↑

ROC
AUC ↑

RMSE
% ↓

Baseline (no-performance drop) 0.500 0.500 100.0% 0.500 0.500 100.0% 0.500 0.500 100.0%
Token frequency JS-div 0.512 0.517 98.4% 0.519 0.528 106.2% 0.496 0.503 118.8%

(Ramesh Kashyap et al., 2021;
Ruder et al., 2017)

Token frequency cross-entropy 0.540 0.551 71.4% 0.543 0.557 97.3% 0.500 0.512 96.8%
Cosine distance (pre-trained) 0.535 0.558 93.6% 0.534 0.559 91.8% 0.484 0.508 107.5%

(Ramesh Kashyap et al., 2021)
Combined prev. model-agnostic 0.551 0.557 70.3% 0.554 0.562 142.1% 0.520 0.514 99.8%
Vocabulary drift 0.561 0.570 51.8% 0.552 0.571 105.8% 0.474 0.500 81.5%
Structural drift 0.572 0.575 91.4% 0.568 0.581 146.1% 0.516 0.531 80.6%
Semantic drift 0.586 0.591 58.4% 0.565 0.586 110.4% 0.516 0.521 79.1%
Vocabulary, structural,

semantic drift
0.597 0.601 52.4% 0.578 0.596 84.8% 0.525 0.531 81.0%

Model-dependent:
Cosine distance (fine-tuned) 0.845 0.822 81.9% 0.852 0.834 236.7% 0.699 0.683 141.9%

(Nigenda et al., 2022)

Table 1: Mean ROC AUCs and RMSEs using different drift metrics to predict model performance, comparing
our metrics (vocabulary, structural, and semantic drift) with previous metrics. ROC AUCs indicate the quality of
example rankings by expected performance, and RMSEs (as percentages of the baseline error) indicate the quality
of the actual accuracy predictions. Given in-domain accuracy p, the baseline predicts out-of-domain accuracy p
and an equal probability p of getting any individual example correct. All metrics are model-agnostic except the
fine-tuned embedding cosine distances.

curacy improves for out-of-domain evaluation (e.g.
MNLI fiction → government). Results predicting
out-of-domain evaluation accuracies (RMSEs) and
example-level performance (ROC AUCs) from dif-
ferent drift metrics are reported in Table 1.

5.1 Ranking Examples (ROC AUC)

Mean ROC AUCs for different drift metrics are
reported in Table 1, for both in-domain and out-of-
domain evaluation examples. Recall that a higher
ROC AUC indicates that higher scoring examples
(as ranked by the logistic regression) are more
likely to be predicted correctly by the model.

Decomposing drift improves rankings. Using
vocabulary, structural, and semantic drift as in-
put features into the logistic regressions results
in higher ROC AUCs than any of the previous
model-agnostic drift metrics, for all three multi-
domain datasets and for both in-domain and out-of-
domain examples (top section of Table 1). Across
the three datasets, this decomposed drift improves
ROC AUCs by an average of 0.039 for in-domain
examples and 0.033 for out-of-domain examples
when compared to the best model-agnostic drift

metric from previous work.
To ensure that this is not simply a result of in-

cluding three different metrics in the regression,
we also consider the combination of all three
model-agnostic metrics from previous work (“com-
bined previous model-agnostic” in Table 1: token
frequency JS-divergence, token frequency cross-
entropy, and pre-trained embedding cosine dis-
tance). For all three datasets, the combination of
previous metrics still results in worse ROC AUCs
than the combination of vocabulary, structural,
and semantic drift, for both in-domain and out-
of-domain examples. This indicates that decom-
posing into vocabulary, structural, and semantic
drift results in better rankings of individual exam-
ples by expected performance than previous model-
agnostic drift metrics.

Fine-tuned embeddings lead to the best rank-
ings. However, fine-tuned (model-dependent)
embedding cosine distances result in by far the best
rankings of examples by expected performance
(higher ROC AUCs). Indeed, this is the recom-
mended drift metric when examples need to be
ranked relative to one another or relative to some
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threshold (e.g. when there is some threshold drift
value to flag examples; Elango et al., 2022; Ni-
genda et al., 2022); our results validate this ap-
proach. Notably, the fine-tuned embedding dis-
tances produce quality rankings even for out-of-
domain examples, despite work suggesting that
fine-tuning affects the in-domain representation
space differently from the out-of-domain represen-
tation space in language models (Merchant et al.,
2020). Our results indicate that despite these dif-
ferences between the in-domain and out-of-domain
fine-tuned spaces, the fine-tuned embedding dis-
tances can still be used to rank both in-domain and
out-of-domain examples by expected performance.

That said, fine-tuned embedding distances re-
quire access to the internal representations of a
given model; model-agnostic metrics are still use-
ful in cases where only model outputs can be ob-
served, or when the same drift metric needs to
apply to multiple models. For these use cases, our
decomposed vocabulary, structural, and semantic
drift metrics outperform previous model-agnostic
metrics. Furthermore, as we observe in the next
section, our decomposed drift metrics result in dras-
tically better out-of-domain accuracy predictions
than fine-tuned embedding distances, despite worse
rankings of individual examples.

5.2 Predicting Model Accuracy (RMSE)

As described in Section 4.5 and shown in Figure 1,
a given drift metric can produce quality rankings
of examples even if the raw predicted accuracies
are far from the true model accuracies. Thus, as
reported in Table 1, we evaluate RMSEs using dif-
ferent drift metrics to predict model accuracies for
out-of-domain evaluation datasets.7

Decomposed drift has the best accuracy predic-
tions. Decomposing into vocabulary, structural,
and semantic drift results in better dataset-level
accuracy predictions (lower RMSEs) than any pre-
vious drift metric(s), for all three multi-domain
datasets. Accuracy predictions based on individual
dimensions vary (e.g. individual dimensions are
sometimes better than including all three dimen-
sions), but predicting out-of-domain accuracy from
all three dimensions results in reliably low errors
compared to previous metrics. Across the three
datasets, our decomposed drift results in an aver-

7We only consider accuracy prediction RMSEs for out-of-
domain datasets because sufficiently sized in-domain datasets
have very low variation in model accuracy.

age decrease of 16.8% in accuracy prediction error
(RMSE) when compared to the best metric from
previous work.

Fine-tuned embedding distances have poor ac-
curacy predictions. The fine-tuned embedding
distances result in worse out-of-domain accuracy
predictions (higher RMSEs) than our decomposed
vocabulary, structural, and semantic drift for all
three multi-domain datasets. Notably, they have by
far the worst out-of-domain accuracy predictions of
any drift metric for MNLI and sentiment classifica-
tion split temporally. Across all three datasets, fine-
tuned embedding distances result in an average of
2.03x more error than our decomposed vocabulary,
structural, and semantic drift. This contrasts with
fine-tuned embedding distances’ ability to rank in-
dividual examples by expected performance better
than any other metric(s). This suggests that despite
maintaining relative distances that are predictive
of relative model performance for individual exam-
ples (high ROC AUCs), fine-tuning adjusts the ex-
ample embeddings such that raw distances are not
predictive of raw out-of-domain accuracies (high
RMSEs). Concretely, the logistic regressions fit
to fine-tuned embedding distances yield example-
level probabilities that are highly predictive of rel-
ative model performance between out-of-domain
examples, but quite far from the actual expected
probabilities of getting each example correct. In
practice, this suggests that fine-tuned embedding
distances should be used in scenarios where the
relative performance of evaluation examples is im-
portant (e.g. establishing drift threshold values),
but they should not be used to predict actual out-of-
domain model accuracies.

6 Discussion

We find that decomposing linguistic dataset drift
into our proposed vocabulary, structural, and se-
mantic drift metrics leads to improved out-of-
domain dataset-level accuracy predictions for sen-
timent classification and NLI. Furthermore, our de-
composed drift metrics produce better rankings of
individual examples by expected performance than
previous model-agnostic drift metrics (e.g. token
frequency divergences and pre-trained embedding
distances), both in-domain and out-of-domain. Al-
though fine-tuned embedding distances produce by
far the best example rankings, they also produce
egregiously incorrect out-of-domain model accu-
racy predictions. Our results suggest that fine-tuned
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embedding distances should still be used in cases
where examples need to be ranked by expected
performance (e.g. relative to a cutoff value, as in
Elango et al., 2022). Vocabulary, structural, and
semantic drift should be used in cases where either
(1) the internal states of a model are unavailable,
which is increasingly common as models are ac-
cessed through external APIs, (2) the same metric
values need to be applied across multiple models
(i.e. model-agnostic metrics), or (3) raw model
accuracy predictions are desired.

Our work also opens up future directions of re-
search studying specific effects of linguistic dataset
drift on NLP model performance. First, future
work might assess whether there are systematic ef-
fects of particular drift dimensions on specific tasks
or model architectures. Second, it might consider
new types of linguistic drift, potentially extending
beyond domain drift (drift in P (x)) to consider
concept drift P (y|x) in NLP (Webb et al., 2016).
Finally, future work might investigate methods of
quantifying drift in natural language generation,
where the outputs y are linguistic data. Our work
lays the groundwork for these future investigations.

7 Conclusion

We propose three dimensions of linguistic dataset
drift—vocabulary, structural, and semantic drift—
and we modify previous performance prediction
methods to predict NLP model performance at the
individual example level along with the dataset
level. We validate existing drift metrics for particu-
lar use cases (e.g. fine-tuned embedding distances
for example ranking), and we highlight complemen-
tary use cases where our decomposed drift metrics
outperform previous metrics (e.g. when predicting
model accuracies or when using model-agnostic
metrics). Our work lays the foundation for future
research into specific and interpretable dimensions
of linguistic dataset drift, improving our ability to
predict NLP model performance on real world data.

Limitations

Our work has several limitations. First, our exper-
iments are limited by the multi-domain datasets
available for sequence classification tasks, limit-
ing both our task coverage (sentiment classification
and NLI) and domain type coverage (product cat-
egories, temporal splits, and text source domains).
Future work can evaluate our drift metrics on token
classification tasks or even sequence-to-sequence

tasks by predicting sequence-level performance
(e.g. proportions of correct tokens, or example-
level BLEU scores; Papineni et al., 2002) from
our example-level drift metrics. Past work has al-
ready considered dataset-level drift metrics and
performance predictions for token classification
tasks such as named entity recognition (NER) and
part-of-speech (POS) tagging (Ramesh Kashyap
et al., 2021; Rijhwani and Preotiuc-Pietro, 2020),
and example-level drift metrics have been used in
machine translation for training data example selec-
tion (Axelrod et al., 2011; Wang et al., 2017). We
hope that future work will evaluate example-level
drift metrics in their ability to predict NLP model
performance on this wider variety of tasks.

Second, we only consider simple logistic re-
gressions to predict whether individual examples
will be predicted correctly by different models.
More complex classifiers (e.g. XGBoost; Chen
and Guestrin, 2016) might improve performance
predictions, particularly if more drift metrics are
included as inputs, or if raw example features are
included (e.g. sequence length; Ye et al., 2021).
Our three dimensions of linguistic drift (vocabu-
lary, structural, and semantic drift) represent just
one way of decomposing linguistic dataset drift
into distinct dimensions. We hope that future work
will explore novel dimensions of linguistic drift,
identifying new ways of integrating different drift
metrics into NLP model performance predictions
across tasks and domains.
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A Appendix

Hyperparameter Value
Learning rate decay Linear
Warmup steps 10% of total
Learning rate 2e-5
Adam ϵ 1e-6
Adam β1 0.9
Adam β2 0.999
Attention dropout 0.1
Dropout 0.1
Weight decay 0.0
Batch size 32
Train steps 4 epochs

Table 2: Sentiment classification and NLI fine-tuning
hyperparameters for the RoBERTa-base models in Sec-
tion 4.2.

A.1 Model fine-tuning details

For each sentiment classification and NLI training
domain in Section 4, we fine-tune a RoBERTa base-
size model using the hyperparameters in Table 2
and the pre-trained RoBERTa model from Hugging
Face, containing approximately 123M parameters
(Liu et al., 2019; Wolf et al., 2020). Because there
are only five training domains for MNLI, we run
five fine-tuning runs per MNLI training domain;
otherwise, we run one fine-tuning run per domain
(43 domains for sentiment classification split by
product category, 15 domains for sentiment classi-
fication split by review year). All models are fine-
tuned using one Tesla V100 GPU, taking about two
hours per model.
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A.2 Efficient cosine distance computations
In Section 4.3, we compute the mean cosine dis-
tance between each evaluation example embedding
x and all training example embeddings from Dtrain.
Each example embedding is computed by taking
the mean over all tokens in the example and the last
two RoBERTa layers (before or after fine-tuning,
as specified; Elango et al., 2022). Mean embedding
cosine distances are also computed for individual
tokens when quantifying lexical semantic change
in Section 3.3. To avoid saving the embedding for
each example in Dtrain and computing each cosine
distance individually, we note that the mean pair-
wise cosine similarity between a set of vectors U
and V is:
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In other words, we only need to compute the dot
product between the mean normed vector for U and
V . For our uses, when computing the mean cosine
distance between an example embedding x and all
training example embeddings from Dtrain, we need
only compute one minus the dot product between
the normed x and the mean normed embedding
over all examples in Dtrain. This way, we only need
to store one vector (the mean normed embedding)
for the entire training set, rather than one vector
per training example.
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