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Abstract

Models trained on real-world data tend to imi-
tate and amplify social biases. Common meth-
ods to mitigate biases require prior informa-
tion on the types of biases that should be miti-
gated (e.g., gender or racial bias) and the social
groups associated with each data sample. In
this work, we introduce BLIND, a method for
bias removal with no prior knowledge of the
demographics in the dataset. While training a
model on a downstream task, BLIND detects
biased samples using an auxiliary model that
predicts the main model’s success, and down-
weights those samples during the training pro-
cess. Experiments with racial and gender biases
in sentiment classification and occupation clas-
sification tasks demonstrate that BLIND miti-
gates social biases without relying on a costly
demographic annotation process. Our method
is competitive with other methods that require
demographic information and sometimes even
surpasses them.1

1 Introduction

Neural natural language processing (NLP) mod-
els are known to suffer from social biases, such as
performance disparities between genders or races
(Blodgett et al., 2020). Numerous debiasing meth-
ods have been proposed in order to address this
issue, with varying degrees of success. A disadvan-
tage of these methods is that they require knowl-
edge of the biases one wishes to mitigate (e.g.,
gender bias) (Bolukbasi et al., 2016; Zhao et al.,
2018; De-Arteaga et al., 2019; Maudslay et al.,
2019). Moreover, some methods require additional
annotations for identifying the demographics for
each sample in the data, such as the race of the
writer (Han et al., 2021a; Liu et al., 2021; Ravfogel
et al., 2022; Shen et al., 2022). Some annotations
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1Our code is available at https://github.com/
technion-cs-nlp/BLIND.
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(a) With demographic annotations. Demographics detector
learns to predict the demographic data, e.g., gender.
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(b) BLIND: Without demographic annotations. Success detec-
tor learns to predict when the main model is correct. Supervi-
sion is based only on the downstream task labels.
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Figure 1: Our proposed debiasing methods. In both
cases, an auxiliary classifier is trained to detect sam-
ples where demographic features may be used as short-
cuts and their importance to the main model is down-
weighted.

can be automatically collected from the data, while
others require manual annotations or expert knowl-
edge, which can be very costly. Thus, existing
methods are typically limited to a small number of
datasets and tasks. In this paper, we propose a new
debiasing method, BLIND – Bias removaL wIth
No Demographics.

We see social bias as a special case of robustness
issues resulting from shortcut learning (Geirhos
et al., 2020). Our goal is to down-weight samples
that contain demographic features that may be used
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as shortcuts in downstream tasks. We first consider
a case where we have demographic annotations
for every sample in the training set, and train a
demographics detector – an auxiliary classifier that
takes the main model’s representations and predicts
the demographic attribute. Then, we down-weight
the importance of samples on which the classifier
is confident (Figure 1a). To our knowledge, this is
the first work to consider demographic information
for re-weighting samples during training.

When we do not have demographic annotations,
we make the following observation: The main
model has an easier job, or otherwise makes pre-
dictable mistakes, when demographic features are
used as shortcut features. Thus, we train a suc-
cess detector – another auxiliary classifier, which
takes the representations of the main model and
predicts its success on the task. A correct predic-
tion by the success detector means the main model
made a shallow decision, since it is possible pre-
dict its success or failure without access to the
main model’s task labels. In such cases we expect
that the main model relies on simple, shortcut fea-
tures, and we use the success detector’s confidence
to down-weight such samples in the training data
(Figure 1b). We call this method BLIND.

In both cases, we adapt the debiased focal loss
(DFL; Karimi Mahabadi et al., 2020), originally
proposed for mitigating annotation artifacts, to
down-weight samples that the detectors predicted
correctly. In contrast to the original DFL work,
which explicitly defined biases to mitigate, we de-
sign the bias detection mechanism in a general
manner such that the model’s biases are learned
and mitigated dynamically during training.

We perform experiments on two English NLP
tasks and two types of social demographics: oc-
cupation classification with gender, and sentiment
analysis with race. Our methods successfully re-
duce bias, with BLIND sometimes succeeding in
cases where other methods that use demographic
information fail. Our analysis shows that BLIND
reduces demographic information in the model’s in-
ternal representation, even though it does not have
access to it. Additionally, BLIND is particularly ef-
fective at mitigating bias due to its down-weighting
of easy training samples, rather than relying on de-
mographic information alone. This suggests that
BLIND may be more robust in mitigating bias than
other methods.

2 Methodology

2.1 Problem Formulation
We consider general multi-class classification prob-
lems. The dataset D = {xi, yi, zi}Ni=1 consists of
triples of input xi ∈ X , label yi ∈ Y , and a pro-
tected attribute zi ∈ Z , which corresponds to a
demographic group, such as gender. z might be
latent, meaning that it cannot be accessed during
training or validation stages. Our goal is to learn
a mapping fM : X → R|Y |, such that fM , which
we call the main model, is robust to differences in
demographics as induced by zi.

The robustness of a model is measured using
a variety of fairness metrics. A fairness metric
is a mapping from a model’s predictions and the
protected attributes associated with each sample to
a numerical measure of bias: M : (R|Y|,Z) → R.
The closer the absolute value is to 0, the fairer the
model. The practical fairness metrics measured in
this work are described in Section 3.2.

2.2 Debiased Focal Loss for Social Bias
Debiased focal loss was proposed by Karimi Ma-
habadi et al. (2022) to improve natural language
understanding models on out-of-distribution data.
The authors explicitly defined the biases they aim
to mitigate, and trained an auxiliary model on the
same task as the main model by feeding it with
biased features. We model biased samples differ-
ently: instead of learning the same downstream
task as the main model, our auxiliary model learns
a separate task that indicates bias.

The model fM can be written as a composition
of two functions: g, the text encoder, and hM , the
classifier, such that fM = hM ◦g. In our case, g is a
transformer language model such as BERT (Devlin
et al., 2018), and hM is a linear classification layer.

Loss term. We use the DFL formulation to re-
weight samples that contain bias. To determine the
re-weighting coefficients, we need a separate model
that acts as a bias detector, fB = hB ◦ g. The next
two sub-sections define two options for the bias
detector, with and without using demographics.

The main and auxiliary models have parameters
θM and θB respectively, and the parameters of the
encoder g are included in θM . The training loss is
defined as:

L(θM ; θB) = (1)
(
1− σ

(
fs
B(x; θB)

))γ
log(σ(fy

M (x; θm))

8802



for a single instance (x, y, s), where σ(u) =

eu
j
/
∑|Y|

k=1 e
uk

is the softmax function, and γ is a
hyper-parameter that controls the strength of the
re-weighting. Here s is either the demographic
attribute z when we have it, or a success indicator
of the main model on x, as explained below. When
the bias detector assigns a high probability to s, the
contribution of this sample to the loss is decreased,
and this effect is magnified by γ (γ = 0 restores
the vanilla cross-entropy loss). Both models are
trained simultaneously, but only the main model’s
loss is back-propagated to the encoder g, avoiding
bias propagation from fB .

2.3 Debiasing With Demographic Annotations

When demographic attributes are available, we
define bias as how easily demographic informa-
tion can be extracted from a sample. This strat-
egy aligns with the observation by Orgad et al.
(2022) that this measure correlates with gender
bias metrics. The bias detector is thus formulated
as fB : g(X ) → R|Z|, taking as input the repre-
sentations from g and predicting the demographic
attribute; In other words, s := z in the formulation
in Equation (1). Figure 1a illustrates this approach.

By applying this method, samples in which the
demographics detector is successful in predict-
ing demographics (σ(fz

B(x)) is high) are down-
weighted, and difficult samples (σ(fz

B(x)) is low)
are up-weighted. Intuitively, the main model is
encouraged to focus on samples with less demo-
graphic information, which reduces the learning of
demographics–task correlations.

Connection to adversarial learning. While the
concept of a demographics model may resemble
that used in work on debiasing via adversarial train-
ing (Zhang et al., 2018; Elazar and Goldberg, 2018;
Han et al., 2021c), our DFL approach is fundamen-
tally different: rather than reversing gradients from
the demographics model to remove information
from the main model, we use the demographics
model to reweight the loss. Further discussion re-
garding adversarial learning can be found in Ap-
pendix A.

2.4 Debiasing Without Demographic
Annotations

One of the main weaknesses of other debiasing
methods in the field, including the method de-
scribed in Section 2.3, is the requirement to collect
demographic annotations z per data point. These

annotations may be expensive or impossible to ob-
tain. Additionally, these annotations often do not
address nuances, such as intersectional biases to
multiple groups (e.g., both gender and race), or non-
binary gender. We propose BLIND as a method for
reducing biases without demographic annotations.
In this setting, the auxiliary model fB is trained
as a success detector. The success detector pre-
dicts, for each training sample, whether the main
model would be successful at predicting the correct
label for the main task. The success detector has
no knowledge of the original task. It is formulated
as fB : g(X ) → R|S|, and s is defined as an in-
dicator function: s := IfM (x)==y. s is dynamic,
and changes across different epochs of the training
process. BLIND is illustrated in Figure 1b.

We expect that if the success detector can predict
whether the main model is correct or incorrect on a
sample (i.e., σ(fs

B(x))) is high), without knowing
the task at hand, then the sample contains some
simple but biased features, and thus should have re-
duced weight in the loss. This intuition aligns with
the claim that in the context of complex language
understanding tasks, all simple feature correlations
are spurious (Gardner et al., 2021). 2

3 Experiments

3.1 Tasks and Models

We experiment with two English classification
tasks and bias types:

Sentiment Analysis and Race. We follow the
setting of Elazar and Goldberg (2018), who used a
twitter dataset collected by Blodgett et al. (2016) to
study dialectal variation in social media. We use a
subset of 100k samples. As a proxy for the writer’s
racial identity, each tweet is associated with a label
about whether it is written in African American En-
glish (AAE) or Mainstream US English (MUSE; of-
ten called Standard American English, SAE) based
on the geo-location of the author. Elazar and Gold-
berg (2018) used emojis in the tweets to derive
sentiment labels for the classification task.

Occupation Classification and Gender. We use
the dataset by De-Arteaga et al. (2019), a collec-
tion of 400K biographies scraped from the internet
to study gender bias in occupation classification.

2We also investigated a slightly different variation, in
which we only penalize the samples where the success de-
tector was accurate and also the main model was accurate, but
we found it to be less effective.
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The task is predicting one’s occupation based on
a subset of their biography – without the first sen-
tence, which states the occupation. The protected
attribute is gender, and each instance is assigned
binary genders based on the pronouns in the text,
which indicate the individual self-identified gender.

3.2 Metrics

As recommended by Orgad and Belinkov (2022),
who showed that different fairness metrics react
differently to debiasing methods, we measure mul-
tiple metrics to quantify bias in downstream tasks.
They can be separated to two main groups:

3.2.1 Performance gap metrics
These indicate the difference in performance be-
tween two demographic groups, such as females
versus males.

Absolute gap. For example, for gender we mea-
sure the True Positive Rate (TPR) gap for label y as
GAPTPR,y = |TPRF

y − TPRM
y |. We also mea-

sure the False Positive Rate (FPR) and Precision
gaps. On a multi-class setting, we calculate the
absolute sum of gaps across the different labels of
the task (denoted TPRs). We also measure the root
mean square for TPR gap (denoted TPRRMS) of
the gaps,

√
1
|Y|

∑
y∈Y(GAPTPR,y)2, since it was

used in studies of other debiasing methods we com-
pare to (Ravfogel et al., 2020, 2022).

Gaps correlation with training statistics. When
feasible, we compute the Pearson correlation be-
tween the gap for each class and the training dataset
statistics for this class (denoted TPRp). For exam-
ple, the pearson correlation GAPTPR,y and the per-
centage of female instances in class y, as appears
in the training set.

3.2.2 Statistical metrics
Another family of fairness metrics are statistical
metrics, which are measured on probability dis-
tributions. To describe these metrics, we use the
notation from Section 2, and denote the model’s
predictions with r.

Independence. Measures the statistical depen-
dence between the model’s prediction and the
protected attributes, by measuring the Kull-
back–Leibler divergence between two distributions:
KL(P (r), P (r|z = z)),∀z ∈ Z . We sum the val-
ues over z to achieve a single number that describes
the independence of the model. This metric does

not consider the gold labels, and intutively just mea-
sures how much the model’s behavior is different
on different demographics.

Separation. Measures the statistical dependence
between the model’s prediction given the target
label and the protected attributes: KL(P (r|y =
y), P (r|y = y, z = z)), ∀y ∈ Y, z ∈ Z . We sum
the values over y and z to achieve a single num-
ber. This metric is closely related to TPR and FPR
gaps, and intuitively measures if the model behaves
differently on each class and demographics.

Sufficiency. Measures the statistical dependence
between the target label given the model’s predic-
tion and the protected attributes: KL(P (y|r =
r), P (y|r = r, z = z)),∀r ∈ Y, z ∈ Z . We sum
the values over r and z to achieve a single number.
This metric is related to calibration in classification
and to precision gap, and can intuitively measure
if a model over-promotes or penalizes a certain
demographic group.

3.3 Training and Evaluating

We experiment with BERT (Devlin et al., 2018)
and DeBERTa-v1 (He et al., 2020) based architec-
tures, where the transformer model is used as a
text encoder and its output and is fed into a linear
classifier. We fine-tune the text encoder with the
linear layer on the downstream task.

During training, we often use a temperature t
in the softmax function of the auxiliary model fB ,
which we found to improve training stability. For
hyper-parameter search, since we are interested in
balancing the importance of task accuracy and fair-
ness, we adapt the ‘distance to optimum’ (DTO)
criterion introduced by Han et al. (2021a). The
DTO calculation is explained in Appendix B. We
perform model selection without requiring a vali-
dation set with demographic annotations, by only
choosing the most radical hyper-parameters (high-
est γ and lowest t), while limiting the reduction
in accuracy (see Appendix E). We chose 0.95 of
the maximum achieved accuracy on the task as a
threshold, per architecture. For more details on the
training and evaluation process, see Appendix C.

All of our models are tested on a balanced
dataset (via subsampling), i.e., each label contains
the same number of samples from each demo-
graphic group. This neutralizes bias in the test
dataset, allowing us to truly assess bias in the mod-
els, as suggested by Orgad and Belinkov (2022).
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3.4 Baselines and Competitive Systems
We compare the following training methods:

DFL-demog (ours) DFL trained with demo-
graphic annotations, as described in Sec-
tion 2.3.

BLIND (ours) DFL trained without demographic
annotations, as described in Section 2.4.

Control To rule out any potential form of unin-
tended regularization in BLIND, a control
model is trained using random labels for the
auxiliary model. We expect this method to
have no significant debiasing effect.

Finetuned The same model architecture, opti-
mized to solve the downstream task without
any debiasing mechanism.

INLP (Ravfogel et al., 2020) A post-hoc method
to remove linear information from the neural
representation, by repeatedly training a linear
classifier to predict a property (in our case,
gender or race) from the neural representation,
and then projecting the neural representations
to the null space of the linear classifier.

RLACE (Ravfogel et al., 2022) The goal of this
method is also to linearly remove information
from the neural representations of a trained
model by utilizing a different strategy based
on a linear minimax game.

Scrubbing (De-Arteaga et al., 2019) A common
approach used to remove gender bias in the
occupation classification dataset, is to auto-
matically remove any gender indicators from
it, such as “he”, “she”, “Mr.” or “Mrs.”, and
names. We apply this method on the occupa-
tion classification task and also experiments
with combining it with our methods (marked
as +Scrubbing).

FairBatch (Roh et al., 2021) This method adap-
tively selects minibatch sizes for improving
fairness, with three variations, targeting equal
opportunity, equalized odds, and demographic
parity.3 The method is designed on binary
tasks, thus we apply FairBatch to the senti-
ment classification task. For a fair compari-
son, we present the variation that achieved the
best fairness metrics we measured.

3See C.1 for more information on the metrics.

JTT (Liu et al., 2021) Just Train Twice (JTT) is
a two-stage train-retrain approach that first
trains a model and then trains a second model
that upweights misclassified training samples.
It works without demographic annotations but
requires them for model selection. For a fair
comparison, we select the model that has the
closest accuracy to our BLIND method.4

4 Results

In the main body of the paper, we report accu-
racy and a representative subset of fairness metrics.
The full set of fairness metrics is reported in Ap-
pendix D.

In Table 1a, we present the results of sentiment
classification with racial bias, and in Table 1b, re-
sults on occupation classification with gender bias.
As expected, the vanilla fine-tuning baseline yields
the best accuracy, but also the worst bias (highest
fairness metrics), on both BERT and DeBERTa and
on both tasks.

4.1 Debiasing with Demographic Annotations

We first focus on DFL trained with a demographic
detector.

Sentiment classification. The auxiliary model is
trained to predict race. DFL leads to a statistically
significant reduction of bias compared to the fine-
tuned baseline in all metrics, with a minor drop in
accuracy (2 − 3% absolute). Compared to other
methods that use demographic attributes (INLP,
RLACE, FairBatch and JTT), DFL maintains bet-
ter or similar accuracy. On BERT, it also reduces
bias more. On DeBERTa, INLP and RLACE enjoy
a greater bias reduction, but suffer a decrease in ac-
curacy (−14% in INLP, −2.7% in RLACE), while
FairBatch suffers from both a decrease in accuracy
and less bias reduction, and JTT does not suffer
from accuracy reduction but reduces less bias than
DFL. We conclude that DFL is an effective method
to reduce bias in this setting while maintaining high
performance on the downstream task.

Occupation classification. When using demo-
graphic attributes (here: gender), DFL leads to a
statistically significant reduction of bias according
to all metrics on both BERT and DeBERTa, with a
minor drop in accuracy (3%). In contrast, INLP and
RLACE are much less effective in reducing bias

4We break ties by doing model selection on the validation
set with demographic attributes.
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BERT DeBERTa

Acc ↑ TPRRMS ↓ Indep ↓ Suff ↓ Acc ↑ TPRRMS ↓ Indep ↓ Suff ↓
Finetuned 0.779 0.267 0.045 0.027 0.775 0.270 0.047 0.032
INLP † 0.756* 0.196* 0.022* 0.014* 0.633* 0.086* 0.010* 0.015*
RLACE † 0.735* 0.142* 0.010* 0.008* 0.748* 0.168* 0.016* 0.011*
FairBatch † 0.761* 0.210* 0.019* 0.016* 0.763* 0.203* 0.016* 0.017*
JTT+ 0.767* 0.194* 0.016* 0.016* 0.780 0.191* 0.013* 0.014*

DFL-demog † 0.762* 0.124* 0.000* 0.003* 0.766 0.177* 0.009* 0.008*
BLIND 0.761* 0.240* 0.030* 0.021* 0.782 0.243* 0.028* 0.022*

Control 0.776 0.480 0.046 0.026 0.780 0.253 0.038 0.025

(a) Sentiment classification.

BERT DeBERTa

Acc ↑ TPRRMS ↓ TPRp ↓ Suff ↓ Acc ↑ TPRRMS ↓ TPRp ↓ Suff ↓
Finetuned 0.864 0.136 0.809 1.559 0.864 0.134 0.819 1.597
INLP † 0.853* 0.131 0.782 1.216 0.852* 0.122 0.730* 1.050*
RLACE † 0.866 0.131 0.809 1.413 0.868* 0.126 0.808 1.361*
Scrubbing † 0.863 0.123* 0.704* 0.901* 0.858* 0.107* 0.729* 0.788*
JTT+ 0.846* 0.136 0.761* 1.417 0.841* 0.140 0.770* 1.398

DFL-demog † 0.834* 0.122* 0.602* 0.709* 0.829* 0.113* 0.619* 0.794*
+ Scrubbing 0.830** 0.111** 0.569** 0.584** 0.841** 0.114* 0.578** 0.592**
BLIND 0.826* 0.137 0.694* 1.097* 0.835* 0.123 0.638* 0.906*
+ Scrubbing 0.844** 0.132* 0.664* 1.070* 0.843** 0.116* 0.648* 0.712*

Control 0.864 0.140 0.796 1.602 0.865 0.129 0.795 1.403

(b) Occupation classificationm

Table 1: Results on both tasks, averaged over 5 seeds. Results that have statistically significant difference comparing
to the Finetuned results (by Pitman’s permutation test, p < 0.05) are marked with *. +Scrubbing methods that also
have statistically significant difference comparing to the Scrubbing results are marked with **. † marks debiasing
methods that require demographic information. + marks debiasing methods that require demographic information
only for hyper-parameter tuning. BLIND successfully reduces bias without using any demographic information.

in this setting, with no significant difference from
the baseline on BERT and only partial improve-
ments on DeBERTa.5 Scrubbing is quite effective
in reducing bias while maintaining accuracy, but
it achieves a lesser degree of bias reduction than
DFL. When we combine DFL with scrubbing, we
find that it achieves an even greater bias reduction,
surpassing all other methods, with only a minor
accuracy reduction compared to DFL. JTT reduces
bias in only one metric on both models.

Our conclusion is that DFL with demographics
is an effective tool for reducing bias, surpassing
other methods we compare to.

5The original INLP and RLACE papers reported better im-
provements, but they measured bias on an unbalanced test set,
while we follow the recommendations in Orgad and Belinkov
(2022) to use balanced test sets.

4.2 Debiasing without Demographic
Annotations.

Next, we examine our method when there is no
access to demographic attributes (BLIND), using a
success detector as a proxy for biased features.

Sentiment classification. Remarkably, we ob-
serve a statistically significant reduction of bias
compared to the fine-tuned model in BERT and
DeBERTa. Reduction in accuracy is minimal, as
before. Comparing DFL with and without demo-
graphics, the model trained with demographics pro-
duces lower fairness metrics, in both BERT and
DeBERTa. JTT, which also does not use demo-
graphics at training, is more effective than BLIND;
however, it requires demographics for model selec-
tion. Additionally, the control model does not differ
statistically significantly from the vanilla model, in
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both accuracy and fairness metrics.

Occupation classification. As in the sentiment
classification task, debiasing without demographic
attributes (BLIND) tends to be less effective than
our variant for debiasing using demographic at-
tributes. Nevertheless, it is still successful in mit-
igating bias on some of the fairness metrics, even
surpassing other methods that use demographic
attributes (−0.69% in sufficiency, compared to
−0.55% for INLP, −0.23% for RLACE and no
significant reduction for JTT), while maintaining
a small reduction in performance (−3%). Once
again, the control model results are statistically
indistinguishable from those of the baseline. Ad-
ditionally, we find that combining BLIND with
scrubbing seems to not improve fairness on top of
the scrubbing method. Combining BLIND with
a method that has access to the bias we wish to
remove seems not helpful, at least in this case.

To summarize this part, while the results of DFL
without demographic attributes are behind those
of DFL that uses attributes and sometimes behind
other methods that use attributes, it is encouraging
to see a significant reduction in bias in this setting,
that is sometimes even more effective than other
methods that use demographic attributes.

5 Analyses

5.1 Performance of the Success Detector

The success detector achieves an average accuracy
of 85% on occupation classification and 76% on
sentiment classification with BERT 6. Moreover,
we compute its Expected Calibration Error (ECE)
and find that it is 0.03 on average for both occu-
pation classification and sentiment classification.
These results suggest that the success detector is
well-calibrated for both classification tasks and
achieves non-trivial accuracy, explaining its effec-
tiveness as a detector for biased samples.

5.2 Effect of debiasing on internal model
representations

To further understand why BLIND works, we inves-
tigate the internal representations of the debiased
models. Recently, the extractability of gender in-
formation from a model’s internal representations
was found to be correlated with gender bias met-
rics (Orgad et al., 2022). We therefore pose the
following question: How does debiasing with DFL

6see Appendix F for results on DeBERTa

affect the neural representations of demographic
information? Here, we focus on BERT.

To answer the above question, we train a probe
model, fp, which predicts the protected attribute,
either gender or race, from the main model’s inter-
nal representations: fp : g(X ) → R|Z|. We then
report the ease at which the probe performs this
task using compression, measured by a minimum
description length (MDL) probing (Voita and Titov,
2020).7 Internal representations with a higher com-
pression indicate more accessible gender or racial
information. A detailed description on the imple-
mentation can be found in Appendix C.4.

Figure 2 presents the probing results for both
tasks and on the two variations of debiasing: with
and without demographic attributes. Even though
some γs are noisy, there is a clear trend that the
accessibility of demographic information decreases
as γ increases. Surprisingly, applying BLIND
caused the models to encode less demographics
information even without information about the
protected attributes. This may explain why BLIND
is successful in reducing bias metrics associated
with these demographics, as well as suggesting that
other hidden characteristics may also be affected
by this debiasing process. These results align with
Orgad et al. (2022), who found that the extractabil-
ity of gender in internal representations correlate
positively with various fairness metrics. However,
our results are different from those of Mendelson
and Belinkov (2021), who found a negative cor-
relation between robustness and biased features
extractability. Mendelson and Belinkov explicitly
modeled biased features for their debiasing pro-
cess, whereas we use demographics or success as
proxies for biased features, which might explain
the difference.

5.3 Bias detectors comparison: with and
without demographics

Recall that our method penalizes samples for which
the detector assigned a high probability to the cor-
rect label. The results indicated that using a demo-
graphic detector (race/gender) was more effective
than using a success detector. The two detector
models penalize samples differently, so we wish
to understand how the two differ and where they
agree. We compute the probability that each model

7MDL probes address the problem with looking at a
probe’s accuracy as measure of information, which has been
found to be misleading due to memorization and other factors
(Hewitt and Liang, 2019; Belinkov, 2021).
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(a) Sentiment classification and race. (b) Occupation classification and gender.

Figure 2: Effect of γ on compression rate of demographic information in internal representations, as extracted from
trained models.

Success
detector

Demographics
detector only Both

Sentiment 94%/22% 4%/55% 69%/15%

Occupation 95%/33% 5%/66% 87%/32%

Table 2: Percentage of success/failure samples penal-
ized by our detectors, out of all success/failure samples.
Left column: samples penalized by the success detector,
middle column: by the demographics detector and not
by the success detector, right column: by both models.

provided to the correct label (details on compu-
tation in Appendix C.5).8 Here we present our
analysis of BERT. Results for DeBERTa are similar
(Appendix G).

Table 2 summarizes which samples each detector
penalizes, defined as samples for which the detector
assigns a probability above 0.5. We divide the
samples into two classes, depending on whether
the main model classified them correctly or not.9

The table shows the percentage of samples that are
being penalized, out of all samples in this class.

We first note that the success detector (left col-
umn) is mostly penalizing samples where the main
model is correct (94% and 95% in sentiment and
occupation tasks, respectively), and much less sam-
ples where the main model is wrong (22% and
33%). Thus, the success detector reduces weights
on samples the model has already learned and clas-

8The correct labels for the success detector are the main
model’s success or failure for each sample. The correct labels
for the race/gender detector are the protected attributes zi.

9We also analyzed an alternative sample division: AAE/not
AAE and female/male, but we found that both detectors down-
weighted these groups equally.

sified correctly, which could correspond to easier
samples that contain more bias. This reduces the
overall bias by preventing the main model from
over-fitting to these samples.

Looking at samples that both detectors penalize
(right column), we observe that they are mostly
samples which the main model succeeds on (69%
for sentiment and 87% for occupation), suggesting
their importance for debiasing. However, when
observing what samples the demographics detector
penalized but the success detector did not (middle
column), we find many failure samples (55% for
sentiment and 66% for occupation). In our exper-
iments, our method with demographics mitigated
bias better than the one without. The gap between
the methods might be because failure samples are
less penalized by the success detector, since the
success detector fails to correctly classify these
samples. Better debiasing might be achieved by de-
tecting failures in the main model more effectively,
perhaps by using a stronger success detector.

6 Prior Work

Studies suggests a variety of ways for debiasing
NLP models from social biases on downstream
tasks, such as preprocessing the training data (De-
Arteaga et al., 2019; Zhao et al., 2018; Han et al.,
2021a), modifying the training process (Elazar and
Goldberg, 2018; Shen et al., 2022), or applying
post-hoc methods to neural representations of a
trained model (Ravfogel et al., 2020, 2022; Iskan-
der et al., 2023). All these methods, however, re-
quire that we define the bias we wish to operate
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upon, for example, gender bias. Additionally, many
of these methods require demographic annotations
per data instance, such as the gender of the writer
or the subject of the text. Webster et al. (2020) is an
exception, since it performs gender-debiasing by
modifying dropout parameters. Another exception
is JTT (Liu et al., 2021), which improved worst-
group errors by training a model twice: first a stan-
dard ERM model, then a second model that up-
weights training samples misclassified by the first
model. The authors of these studies chose hyper-
parameters based on fairness metrics they wanted
to optimize, while we choose our hyper-parameters
without explicitly measuring fairness metrics. To
our knowledge, this is the first study to mitigate
social biases in NLP without assuming any prior
knowledge.

Other studies have focused on improving NLP
models robustness without prior knowledge of
bias issues, but without considering social bias.
Utama et al. (2020) and (Sanh et al., 2020) tackled
dataset biases (a.k.a annotation artifacts) in nat-
ural language understanding tasks, by training a
weak learner to identify biased samples and down-
weighting their importance. Weak learners are ei-
ther trained on a random subset of the dataset or
have a smaller capacity.

Regarding social fairness without demograph-
ics, Lahoti et al. (2020) proposed adversarially
reweighted learning, where an adversarial model
is trained to increase the total loss by re-weighting
the training samples. They used tabular, non-
textual data in their experiments. We consider non-
adversarial methods since adversarial training is
known to be difficult to stabilize. Hashimoto et al.
(2018) proposed a method for minimizing the worst
case risk over all distributions close to the empiri-
cal distribution, without knowledge of the identity
of the group. Coston et al. (2019) considered fair-
ness in unsupervised domain adaptation, where the
source or target domain do not have demographic
attributes, by proposing weighting methods. Han
et al. (2021b) proposed debiasing via adversarial
training with only a small volume of protected la-
bels.

Focal loss (Lin et al., 2017) was proposed as
a method to address class imbalances by down-
weighting loss associated with well-classified sam-
ples. Rajič et al. (2022) proposed using the original
focal loss (Lin et al., 2017) to improve robustness
in natural language inference, leading to improved

out-of-distribution accuracy. Debiased Focal Loss
(DFL) (Karimi Mahabadi et al., 2020) is a variant
of focal loss proposed to improve natural language
understanding models on out-of-distribution data.

7 Discussion and Conclusion

Even though BLIND led to bias reduction, it was
less effective than our method that used demo-
graphic annotations. Analysis showed that the suc-
cess detector is less accurate at classifying samples
that fail the main model. Additionally, the success
detector might be less focused than demographic-
based methods, but it might mitigate biases we
have not identified and cannot measure without an-
notations. Thus, it would be interesting to see how
BLIND works on intersectional biases.

In sentiment analysis, BLIND reduced bias less
than JTT, which also does not use demographics
for training, but does for hyper-parameter search.
However, JTT was ineffective on the occupation
classification task, while BLIND was effective for
both tasks. The two tasks differ significantly, as
well as their data. For BERT and DeBERTa, pre-
training data is closer to biographies than tweets,
so perhaps training for longer is beneficial for the
tweets data used in the sentiment classification task,
and repeating samples in the training set (as in JTT)
is similar to training for more steps. In any case,
BLIND proved more reliable and generalizable in
reducing bias.

Our method has the potential for broader appli-
cations beyond demographic biases. While our pri-
mary focus was on mitigating demographic biases,
the approach can be adapted to address other types
of biases by identifying relevant proxy indicators
via the success detector.

To summarize, we demonstrated the reduction of
racial and gender biases of NLP classification mod-
els, without any prior knowledge of those biases in
the data. These results suggest that we can poten-
tially apply BLIND to any dataset, which makes
bias reduction a much more feasible endeavor and
applicable to real-world scenarios.

8 Limitations

One limitation of this study is its scope, which
covers two downstream tasks and two types of de-
mographics (race and gender). The binary gender
definition we used excludes other genders that do
not fall under male or female. In the case of race,
we explored only African American race (proxied
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by African American English), which excludes bi-
ases related to other races, and is a US-centric view
of racial bias. We did not investigate other types
of bias, such as religious bias. Furthermore, our
method was tested on datasets with short texts, and
it is unclear how it will perform on longer texts.
The experiments were conducted on datasets in En-
glish, and it is unclear how our method will work
on languages that are morphologically rich.

9 Ethics Statement

Through this study, we aim to reduce the barriers
of data collection in the effort of mitigating bias.
In situations where demographic information is
not available at all, or where its use could cause
privacy concerns, this method may be especially
useful. As with other bias mitigation methods, ap-
plying BLIND to the training process might create
a false sense of confidence in the model’s bias, but
as we target scenarios without demographics, the
risk is greater as it may be harder to discover cases
where bias remains. We encourage practitioners of
NLP who use BLIND to identify potential biases
and harms experienced by individuals using their
system, and to define their fairness metrics accord-
ingly. In order to verify if the system is working
as expected according to the predefined fairness
metrics, we encourage collecting a small validation
set with demographic annotations.
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A Connection of DFL to adversarial
training

As adversarial learning is a natural competing base-
line, we attempted to apply adversarial training to
our task setting at an initial step of the research,
but found it to be highly unstable and impractical,
which corroborates findings in the literature (Ganin
et al., 2016; Grand and Belinkov, 2019). We also
examined the work of Elazar and Goldberg (2018),
who utilized adversarial learning for removing de-
mographic attributes from text inputs. However,
they caution against relying on adversarial removal
for achieving fairness, as their results indicated that
demographic information could still be extracted by
classifiers of the same architecture. To address the
issue of attribute leakage more effectively, subse-
quent work (Ravfogel et al., 2020, 2022) proposed
other methods that address demographic attribute
leakage better than adversarial training, which we
compare our method with.

B DTO

DTO Han et al. (2021a) is measured as the L2-
distance from a utopia point, (maxaccuracy, 0),
where maxaccuracy is the maximum accu-
racy achieved on the task in our experiments.
(accuracy, fairness) are the candidate points.
We computed fairness by averaging the various
fairness metrics measured in this study. In a prac-
tical application, the definition of the candidate
points and the utopia points should reflect the ap-
plication’s current needs and priorities.

C Implementation Details

C.1 Fairness Metrics
For measuring the statistical fairness metrics (in-
dependence, separation, sufficiency), we used
the fairness library, implemented by AllenNLP
(https://github.com/allenai/allennlp).

FairBatch fairness metrics. FairBatch considers
three fairness metrics: equal opportunity, equalized
odds, and demographic parity. Equal opportunity is
closely related to the metric Independence, Equal-
ized odds is closely related to Separation and equal-
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ized opportunity is closely related to TPR gap. In
the main results table (Table 1a) we present the
variation that achieved the best metrics we display.
However, we found very little difference between
the results of the different variations of FairBatch.

C.2 Training and Evaluation

For the DFL loss, increasing the temperature t in-
creases the smoothness of the softmax result, re-
sulting in less radical regularization. In each ex-
periment, we grid-search γ ∈ {1, 2, 4, 8, 16} and
t ∈ {1, 2, 4, 8} using the validation set.

We trained BERT (Devlin et al., 2018) and
DeBERTa-v1 (He et al., 2020) models, with one
linear classification layer on top of them. For
BERT we used the bert-base-uncased model by
Huggingface, which has 110M parameters and for
DeBERTa we used the microsoft/debeta-base
from the Huggingface library, which has 1.5B pa-
rameters. We trained each model for 10 epochs—
which took around 5-6 hours for the occupation
classication task and 3-4 for the sentiment classifi-
cation task—and saved the best epoch based on the
validation accuracy.

We used the following GPUs for training BERT:
Geforce RTX 2080 Ti, TITAN Xp, GeForce GTX
1080 Ti, and the following GPUs for training De-
BERTa: A40, RTX A4000. Each experiment was
run using 5 different seeds: 0, 5, 26, 42, 63. These
seeds were used to anchor the model’s initializa-
tion, the data split, and any other randomness in the
code, and are considered as an input to our released
scripts. We used a 65-10-25 training-validation-test
split ratio for all tasks. Training was done with a
learning rate of 5e−5 and an AdamW (Loshchilov
and Hutter, 2018) optimizer. Both models were
trained by passing the biography / tweet through
the transformer model, obtaining the top [CLS]
token representation and feeding it into the classifi-
cation layer. The entire model was fine-tuned end-
to-end to optimize the cross entropy loss, while in
the DFL setting we added a weighting component.
The demographics/success detector’s architecture
is a single linear classification layer optimized to
solve the appropriate classification task. It was
trained with a learning rate of 1e− 3 and an Adam
(Kingma and Ba, 2015) optimizer.

Sentiment Classification. Our setup followed
the settings of Ravfogel et al. (2020), where we
controlled how biased the training data is. We used
a subset of the original dataset with 100K samples,

and our training data was imbalanced such that
the “happy” sentiment class was composed of 70%
AAE and 30% MUSE, while the “sad” sentiment
was composed of 70% MUSE and 70% AAE. The
dataset was overall balanced: 50% “sad”/“happy”
and 50% AAE/MUSE.

Occupation Classification. We trained our mod-
els on the entire dataset, without any distribution
modifications.

For both tasks, data for validation and testing
was balanced such that each class had the same
demographic distribution.

C.3 Baselines and Competitive Systems

We ran INLP and RLACE on model representa-
tions extracted from a finetuned model without
DFL training. For INLP and RLACE, we used
the implementation of the authors and the same
hyper-parameters. For JTT, since the datasets were
different, we provide our own implementation but
searched over the same hyper-parameters, which
are λup ∈ {4, 5, 6} (the rate of multiplication of
repeated instances) and T = {1, 2} (the epoch of
the model used to calculate failed instances). We
ran the scrubbing algorithm provided by the code
of De-Arteaga et al.. FairBatch was ran using the
code provided in the paper, for a training period
of 10 epochs where the best checkpoint is chosen
as the epoch with the best fairness metric being
optimized.

C.4 MDL probing: implementation details

Our MDL probe (Voita and Titov, 2020) is based
on the implementation by Mendelson and Belinkov
(2021). The linear probe is trained with a batch size
of 16 and a learning rate of 1e-3 in all experiments.
We used the following data accumulation fractions
to train the probe: 2.0%, 3.0%, 4.4%, 6.5%, 9.5%,
14.0%, 21.0%, 31.0%, 45.7%, 67.6%, 100%.

C.5 Bias detectors comparison:
implementation details

We wished to calculate for each model, the prob-
ability it assigned to the right label. To do that,
we load the checkpoint of a BLIND-trained model
we are interested in, and then compute the main
model’s predictions and the hidden representations
of each sample from a BLIND-trained model. Fol-
lowing that, we calculate the success detector’s
and the demographics detector’s predictions on the
extracted representations. For the demographics
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detector, we train another model for predicting de-
mographics from the extracted representations, to
simulate how a demographics detector would be-
have on the same representations.

D Full results

The full results can be found in Tables 5, 6, 7 and
8.

E Effect of γ

Recall that the DFL loss (Equation (1)) uses γ to
control how much importance to give to a biased
sample; the higher γ, the less weight a biased sam-
ple receives in the loss, which should result in a
more biased model. Indeed, Figures 3, 4, 5 and
6 show that as γ increases (moving from top to
bottom on the heatmaps), the bias metrics and ac-
curacy both tend to decrease.

Choosing the hyper-parameters blindly. As the
figures show, increasing γ causes the debiasing ef-
fect to be more aggresive, until a point that it is
collapsing and unable to train (very low accuracy).
Increasing the temperature helps balancing this pro-
cess, where on the higher gammas a lower tempera-
ture mean more aggressive debiasing and thus less
bias. Based on this analysis, we conclude that it is
possible to make the model selection based on γ
and t alone, using the following logic: choose the
highest γ and the lowest t for which the accuracy
is above a tolerance threshold.

Model Task Accuracy ECE

Mean Std Mean Std

BERT Occupation 0.85 0.00 0.03 0.02
Sentiment 0.76 0.01 0.03 0.01

DeBERTA Occupation 0.86 0.01 0.03 0.01
Sentiment 0.81 0.01 0.03 0.01

Table 3: Performance and calibration of BLIND’s suc-
cess detector on both tasks.

F Performance of Success Detector

Table 3 presents the full performance and calibra-
tion information of the success detector in both
tasks.

Success
detector

Demographics
detector only Both

Sentiment 95%/13% 4%/71% 82%/11%

Occupation 94%/36% 6%/59% 84%/34%

Table 4: Percentage of success/failure samples penalized
by our detectors, out of all success/failure samples.

G Bias detectors comparison: with and
without demographics

Table 4 presents the results of bias detectors com-
parison for DeBERTa.
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BERT

Acc ↑ TPR (s) TPRRMS ↓ FPRs ↓ Precs ↓ Indep ↓ Sep ↓ Suff ↓
Finetuned
Mean 0.779 0.472 0.267 0.472 0.189 0.045 0.028 0.027
Std 0.006 0.034 0.019 0.034 0.016 0.007 0.003 0.003
INLP †
Mean 0.756 0.334 0.196 0.334 0.144 0.022 0.014 0.014
Std 0.023 0.077 0.045 0.077 0.035 0.009 0.008 0.008
RLACE †
Mean 0.735 0.247 0.142 0.247 0.230 0.010 0.003 0.008
Std 0.003 0.020 0.013 0.020 0.016 0.003 0.001 0.002
FairBatch-DP †
Mean 0.761 0.334 0.210 0.334 0.199 0.019 0.015 0.016
Std 0.009 0.020 0.013 0.020 0.009 0.003 0.003 0.002
FairBatch-Eqodds †
Mean 0.765 0.340 0.210 0.340 0.193 0.020 0.016 0.017
Std 0.009 0.024 0.014 0.024 0.012 0.003 0.002 0.002
FairBatch-Eqopp †
Mean 0.755 0.351 0.212 0.351 0.191 0.022 0.018 0.019
Std 0.009 0.015 0.008 0.015 0.008 0.002 0.003 0.003
JTT+

Mean 0.767 0.306 0.194 0.306 0.191 0.016 0.015 0.016
Std 0.007 0.038 0.017 0.038 0.007 0.005 0.001 0.001

DFL-demog †
Mean 0.762 0.241 0.124 0.241 0.233 0.000 0.003 0.003
Std 0.006 0.006 0.004 0.006 0.009 0.000 0.000 0.000
BLIND
Mean 0.761 0.403 0.240 0.403 0.190 0.030 0.020 0.021
Std 0.008 0.034 0.020 0.034 0.005 0.006 0.005 0.004

Control
Mean 0.780 0.443 0.253 0.443 0.175 0.038 0.026 0.025
Std 0.007 0.012 0.010 0.012 0.005 0.002 0.003 0.004

Table 5: Full results on the sentiment classification task for BERT. For each fairness metric, the best result is bolded,
and the best result achieved without demographics in the training data is underlined.
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DeBERTa

Acc ↑ TPR (s) TPRRMS ↓ FPRs ↓ Precs ↓ Indep ↓ Sep ↓ Suff ↓
Finetuned
Mean 0.775 0.482 0.270 0.482 0.198 0.047 0.033 0.032
Std 0.005 0.061 0.031 0.061 0.031 0.013 0.006 0.006
INLP †
Mean 0.633 0.149 0.086 0.149 0.100 0.010 0.010 0.015
Std 0.161 0.205 0.118 0.205 0.084 0.015 0.013 0.012
RLACE †
Mean 0.748 0.297 0.168 0.297 0.225 0.016 0.008 0.011
Std 0.017 0.098 0.059 0.098 0.031 0.015 0.011 0.008
FairBatch-DP †
Mean 0.763 0.317 0.203 0.317 0.207 0.016 0.016 0.017
Std 0.012 0.011 0.007 0.011 0.005 0.001 0.004 0.004
FairBatch-Eqodds †
Mean 0.768 0.324 0.210 0.324 0.205 0.018 0.014 0.015
Std 0.010 0.043 0.024 0.043 0.009 0.005 0.002 0.002
FairBatch-Eqopp †
Mean 0.758 0.323 0.203 0.323 0.204 0.017 0.018 0.019
Std 0.011 0.031 0.017 0.031 0.002 0.004 0.003 0.003
JTT+

Mean 0.770 0.276 0.185 0.276 0.202 0.012 0.013 0.014
Std 0.011 0.042 0.018 0.042 0.009 0.005 0.003 0.003

DFL-demog †
Mean 0.766 0.265 0.177 0.265 0.211 0.009 0.006 0.008
Std 0.017 0.008 0.010 0.008 0.015 0.004 0.004 0.003
BLIND
Mean 0.782 0.396 0.243 0.396 0.200 0.028 0.022 0.022
Std 0.006 0.017 0.010 0.017 0.012 0.003 0.001 0.001

Control
Mean 0.783 0.415 0.243 0.415 0.179 0.033 0.026 0.025
Std 0.009 0.048 0.021 0.048 0.012 0.009 0.006 0.006

Table 6: Full results on the sentiment classification task for DeBERTa. For each fairness metric, the best result is
bolded, and the best result achieved without demographics in the training data is underlined.
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BERT

Acc ↑ TPR (s) TPRRMS ↓ TPRp ↓ FPRs ↓ FPRp ↓ Precs ↓ Precp ↓ Indep ↓ Sep ↓ Suff ↓
Finetuned
Mean 0.86 2.46 0.14 0.81 0.07 0.57 3.80 -0.90 0.01 0.34 1.56
Std 0.00 0.27 0.01 0.03 0.01 0.04 0.17 0.03 0.00 0.09 0.15
INLP †
Mean 0.85 2.48 0.13 0.78 0.07 0.58 3.26 -0.86 0.01 0.33 1.22
Std 0.01 0.43 0.02 0.07 0.02 0.04 0.37 0.02 0.00 0.07 0.07
RLACE †
Mean 0.87 2.44 0.13 0.81 0.07 0.63 3.65 -0.90 0.01 0.35 1.41
Std 0.00 0.33 0.01 0.05 0.00 0.02 0.29 0.02 0.00 0.04 0.16
JTT+

Mean 0.85 2.45 0.14 0.76 0.07 0.60 3.43 -0.88 0.01 0.35 1.42
Std 0.00 0.31 0.02 0.02 0.01 0.02 0.31 0.02 0.00 0.07 0.15
Scrubbing †
Mean 0.86 2.15 0.12 0.70 0.06 0.49 2.77 -0.84 0.01 0.27 0.90
Std 0.00 0.34 0.01 0.07 0.00 0.07 0.31 0.04 0.00 0.03 0.14

DFL-demog †
Mean 0.83 2.09 0.12 0.60 0.06 0.41 2.38 -0.78 0.00 0.25 0.71
Std 0.01 0.22 0.01 0.13 0.01 0.11 0.28 0.02 0.00 0.07 0.13
DFL-demog + Scrubbing †
Mean 0.83 1.88 0.11 0.57 0.06 0.38 2.18 -0.72 0.00 0.20 0.58
Std 0.00 0.19 0.01 0.12 0.01 0.06 0.43 0.06 0.00 0.04 0.18
BLIND
Mean 0.83 2.47 0.14 0.69 0.08 0.47 3.09 -0.77 0.01 0.32 1.10
Std 0.00 0.20 0.01 0.07 0.02 0.11 0.85 0.09 0.00 0.08 0.47
BLIND + Scrubbing
Mean 0.84 2.39 0.13 0.66 0.07 0.51 2.89 -0.79 0.01 0.33 1.07
Std 0.00 0.20 0.01 0.09 0.01 0.05 0.48 0.04 0.00 0.05 0.28

Control
Mean 0.86 2.64 0.14 0.80 0.08 0.60 3.90 -0.88 0.01 0.37 1.60
Std 0.00 0.19 0.01 0.01 0.01 0.03 0.64 0.04 0.00 0.05 0.34

Table 7: Full results on the occupation classification task for BERT. For each fairness metric, the best result is
bolded, and the best result achieved without demographics in the training data is underlined.

(a) t = 1 (b) t = 2 (c) t = 4 (d) t = 8

(e) γ = 1 (f) γ = 2 (g) γ = 4 (h) γ = 8 (i) γ = 16

Figure 3: Sentiment classification, BERT. effect of γ across different softmax temperatures (t), and effect of different
softmax temperature across different γ.
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DeBERTa

Acc ↑ TPR (s) TPRRMS ↓ TPRp ↓ FPRs ↓ FPRp ↓ Precs ↓ Precp ↓ Indep ↓ Sep ↓ Suff ↓
Finetuned
Mean 0.86 2.49 0.13 0.82 0.08 0.55 3.73 -0.87 0.01 0.35 1.60
Std 0.00 0.46 0.03 0.02 0.01 0.06 0.22 0.03 0.00 0.07 0.13
INLP †
Mean 0.85 2.11 0.12 0.73 0.07 0.56 3.14 -0.84 0.01 0.31 1.05
Std 0.01 0.18 0.01 0.04 0.01 0.02 0.27 0.04 0.00 0.03 0.11
RLACE †
Mean 0.87 2.34 0.13 0.81 0.07 0.63 3.65 -0.89 0.01 0.33 1.36
Std 0.00 0.28 0.01 0.01 0.00 0.02 0.28 0.03 0.00 0.04 0.11
Scrubbing †
Mean 0.86 1.95 0.11 0.73 0.06 0.56 2.73 -0.86 0.01 0.27 0.79
Std 0.01 0.18 0.01 0.05 0.01 0.02 0.21 0.03 0.00 0.04 0.09
JTT+

Mean 0.84 2.51 0.14 0.77 0.08 0.58 3.53 -0.86 0.01 0.35 1.40
Std 0.00 0.27 0.01 0.03 0.00 0.05 0.31 0.03 0.00 0.05 0.27

DFL-demog †
Mean 0.83 1.93 0.11 0.62 0.06 0.43 2.69 -0.78 0.00 0.26 0.79
Std 0.00 0.15 0.01 0.06 0.00 0.07 0.42 0.04 0.00 0.03 0.25
DFL-demog + Scrubbing †
Mean 0.84 1.90 0.11 0.58 0.05 0.36 2.13 -0.70 0.00 0.24 0.59
Std 0.01 0.18 0.01 0.08 0.01 0.09 0.30 0.07 0.00 0.04 0.15
BLIND
Mean 0.84 2.16 0.12 0.64 0.08 0.51 2.98 -0.81 0.01 0.31 0.91
Std 0.00 0.20 0.01 0.08 0.01 0.05 0.30 0.04 0.00 0.03 0.21
BLIND + Scrubbing
Mean 0.84 2.03 0.12 0.65 0.06 0.39 2.48 -0.81 0.00 0.27 0.71
Std 0.00 0.22 0.01 0.12 0.00 0.05 0.32 0.07 0.00 0.05 0.14

Control
Mean 0.87 2.49 0.13 0.81 0.07 0.49 3.51 -0.89 0.01 0.34 1.38
Std 0.00 0.59 0.02 0.10 0.01 0.06 0.38 0.03 0.00 0.07 0.38

Table 8: Full results on the occupation classification task for DeBERTa. For each fairness metric, the best result is
bolded, and the best result achieved without demographics in the training data is underlined.

(a) t = 1 (b) t = 2 (c) t = 4 (d) t = 8

(e) γ = 1 (f) γ = 2 (g) γ = 4 (h) γ = 8 (i) γ = 16

Figure 4: Sentiment classification, DeBERTa. effect of γ across different softmax temperatures (t), and effect of
different softmax temperature across different γ.
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(a) t = 1 (b) t = 2 (c) t = 4 (d) t = 8

(e) γ = 1 (f) γ = 2 (g) γ = 4 (h) γ = 8 (i) γ = 16

Figure 5: Occupation classification, BERT. effect of γ across different softmax temperatures (t), and effect of
different softmax temperature across different γ.

(a) t = 1 (b) t = 2 (c) t = 4 (d) t = 8

(e) γ = 1 (f) γ = 2 (g) γ = 4 (h) γ = 8 (i) γ = 16

Figure 6: Occupation classification, DeBERTa. effect of γ across different softmax temperatures (t), and effect of
different softmax temperature across different γ.
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