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Abstract

Humans can effortlessly understand the coor-
dinate structure of sentences such as “Niels
Bohr and Kurt Cobain were born in Copen-
hagen and Seattle, respectively”. In the context
of natural language inference (NLI), we exam-
ine how language models (LMs) reason with
respective readings (Gawron and Kehler, 2004)
from two perspectives: syntactic-semantic and
commonsense-world knowledge. We propose
a controlled synthetic dataset WikiResNLI and
a naturally occurring dataset NatResNLI to en-
compass various explicit and implicit realiza-
tions of “respectively”. We show that fine-
tuned NLI models struggle with understand-
ing such readings without explicit supervision.
While few-shot learning is easy in the pres-
ence of explicit cues, longer training is required
when the reading is evoked implicitly, leaving
models to rely on common sense inferences.
Furthermore, our fine-grained analysis indi-
cates models fail to generalize across different
constructions. To conclude, we demonstrate
that LMs still lag behind humans in generaliz-
ing to the long tail of linguistic constructions.

1 Introduction

Transformer-based language models (LMs) (Devlin
et al., 2019; Raffel et al., 2019; Brown et al., 2020)
induce useful representations for a wide range of
natural language understanding (NLU) tasks, in-
cluding natural language inference (NLI; Wang
et al., 2018; Hu et al., 2020), especially in in zero-
shot or few-shot settings. To what extent this use-
fulness results from memorization, generalization
or the ability of LMs to draw common sense infer-
ences remains an open question.

To approach it, the linguistic phenomenon of
respective readings (Gawron and Kehler, 2004)
serves as an excellent probe. This phenomenon
has so far been underexplored in NLP, even though
it has been studied extensively in linguistic seman-
tics (McCawley, 1968; Pullum and Gazdar, 1982;

Bohr and 'Cobain werebornin Copenhagen and Seattle

respectively .

Bohr and /Cobain werebornin Copenhagen and Seattle .

Bohr wasbornin Copenhagen .

Cobain wasbornin Seattle .

Figure 1: An example of explicit (top, evoked by “re-
spectively”) and implicit (middle, with no overt marker)
respecitve readings. Humans can infer that both sen-
tences have the same “cross-serial” meaning (bottom)
by relying on commonsense knowledge (that a person
is only born in one location) and world knowledge (that
Copenhagen and Seattle are mutually exclusive).

Dalrymple and Kehler, 1995; Eggert, 2000). In
English, “respectively” is a rare word' used to es-
tablish a one-to-one mapping between two sets of
participants and to distribute predicates over sets
(Okada, 1999). For example, in Figure 1, the first
conjunct in the subject corresponds to the first con-
junct in the object and the second conjunct in the
subject corresponds to the second conjunct in the
object. The respective relation is bijective and re-
spects the relative order of the elements of two dif-
ferent coordinate expressions; it is, in other words,
cross-serial. “Respectively” can have different syn-
tactic or semantic properties depending on the con-
text, e.g., as a conjunction or adverb.

In this paper, we investigate how LMs reason
with respective readings. We propose two datasets,
WikiResNLI (a controlled synthetic dataset) and
NatResNLI (a naturally occurring dataset) to cover
various explicit and implicit realizations of “respec-
tively”. Our research questions are:

1. Can NLI models reason with “respectively”
constructions in zero-shot settings?

'Interms of frequency, in the British National Corpus,
“respectively”isranked 13,606thamong 18,089 words, and
233rdamong429 adverbs (Leechetal.,2014).
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2. Can LMs generalize from explicit to implicit
respective readings?

3. Can LMs generalize from synthetic to natural
respective readings?

4. What cues do LMs leverage for prediction?

We experiment with state-of-the-art LMs and ana-
lyze the results to gain insights into the limitations
of current models and potential directions for future
research. We show that LMs are able to generalize
effectively in a few-shot learning scenario when the
word “respectively” is present. However, when the
reading is evoked implicitly, a greater number of
training instances are necessary. LMs require sig-
nificantly more instances to generalize to naturally
occurring datasets than humans. In conclusion, our
study demonstrates that LMs continue to exhibit
a deficit in generalizability to infrequent linguistic
constructions with limited coverage in their train-
ing data.

2 Respective Readings

Respective readings are closely related to several
types of readings instantiated by plurals and mass
terms: distributive readings, collective readings and
cumulative readings (Champollion, 2015).

Distributive readings. These usually refer to the
application of a predicate to the subsets of a set
or group. As for sentence 1(a), it is equivalent to
“John smiled and Mary smiled”. The reading is
available because of the nature of the predicate is
atomic (Winter, 2002), similar instances including
“sing” and “sleep”. Distributive reading can be en-
forced with overt distributive markers, i.e., “every”
and “each” (Scha, 1984). In example 1(b), we en-
force the reading by adding “each” at the end of
the sentence so as to rule out the reading “John and
Mary earn 200 dollars together”.

1. (a) Distributive reading: Johnand Mary smiled.

(b) Distributive reading with an enforced marker:
Johnand Mary earn 200dollars each.

Collective readings. These are the opposite of

distributive readings in that the predicates apply

to the whole plural entity instead of individuals.

The quantifiers “all” and “most” instead of “every”

and “each” are usually compatible with collective

readings as in example 2(b) (Dowty et al., 1987).
2. (a) Collective reading: The men gathered.

(b) Collective reading with overt marker: All ofthe
men gathered.

Cumulative readings. These involves two enti-
ties but in a symmetric non-scopal relation as in the
canonical example 3 (Scha, 1984). The sentence
can be paraphrased into “There are three boys and
two girls, each of the three boy saw at least one of
the two girls, and each of the two girls was seen by
at least one of the three boys.”. It is discussed some-
times with weak reciprocity (Langendoen, 1978).

3. Cumulative reading: Three boys saw two girls.

Respective readings. These are thought to be a
special case of cumulative readings in which a bi-
jective relation holds between the two (or more)
sets of entities that enter into the cumulative rela-
tion (Chaves, 2012). For example 4(a), the pair
(Emiliano Zapata, Morelos) and the pair (Gerhart
Miinch, Michoacdn) are grouped under the died in
relation. Respective reading can also arise without
the adverb respectively, and the absence is even
sometimes preferred. As in example 4(b), the bi-
nomial expression “husband and wife” is so strong
that the adverb “respectively” is unwarranted.

4. (a) Respective reading with overt marker:
Emiliano Zapata and Gerhart Miinch. died in
Morelos and Michoacan, respectively.

(b) Respective reading without overt marker: John
and Mary are husband and wife.

3 An NLI Benchmark for “Respectively”

Understanding the coordinate structures in respec-
tive readings is effortless for humans, but it remains
a question whether LMs, after being pre-trained on
billions of tokens and fined-tuned on thousands of
NLI instances, can reliably process them.

To probe LMs’ behaviour in the presence of re-
spective readings, we construct two English NLI
datasets: WikiResNLI, a synthetic dataset based
on an analogy corpus, and NatResNLI, a dataset
sourced and created from natural occurrences. We
release both datasets on Github? and describe the
detailed creation steps below.

3.1 Synthetic Dataset: WikiResNLI

To generate a controlled synthetic challenge set
for reasoning with respective readings, we exploit
a useful relationship between coordination con-
structions and analogies. Analogy is concerned
with similarities between observable properties and
causal similarities.

2https://github.com/ruixiangcui/WikiResNLI_
NatResNLI
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Denotation

Natural Language Example

Premise: wi and w3 p wa Emiliano Zapata and Gerhart Miinch died in Morelos and
and wy ,respectively. Michoacdn , respectively

Hypotheses:

Entailment (1),1S10 wy p wa . Emiliano Zapata died in Morelos .

Entailment (2),1S10 w3 P Wa . Gerhart Miinch died in Michoacdn .

Contradiction (1), 1S10 w1 p wa . Emiliano Zapata died in Michoacdn .

Contradiction (2),1S10 w3z P w2 Gerhart Miinch died in Morelos .

Contradiction (3),1S20 wi p we and wy . Emiliano Zapata died in Morelos and Michoacdn .

Contradiction (4),1S20 w3 p wz and wa . Gerhart Miinch died in Morelos and Michoacdn .

Contradiction (5),2S10 wy and w3 p wa .
Contradiction (6),2S10 wy and ‘w3 p wy .

Emiliano Zapata and Gerhart Miinch died in Morelos .
Emiliano Zapata and Gerhart Miinch died in Michoacdn .

Table 1: Example analogy in the spirit of Garneau et al. (2021). Both entity pairs (wy), ws ; ws , wy ) share the
p relation. Object entities are unique in that given an entity pair and a subject, the fourth is uniquely determined. We
generate eight hypotheses for each premise: 1S10 refers to one subject and one object, 1S20 refers to one subject
and two objects and 2S10 refers to two subjects and one object.

Analogy dataset. Garneau et al. (2021) proposed
WiQueen, a multilingual analogy dataset consisting
of 78,000 analogies extracted from Wikidata. A
subset of 9,000 instances is annotated where all
four entities are unique. These are the analogies
in which all relations are informative (Newman-
Griffis et al., 2017). See Table 1 for an example.
Their experiment showed that pretrained LMs can
predict 29% of analogous entities in a zero-shot
setting and 41% after training. This indicates that
analogical knowledge already exists in pretrained
models and can be enhanced by training.

Generating premises with “respectively”.
Given four analogical entities (wq,ws, w3, wy)
and the predicate p, we form a natural language
premise consisting of the analogical information in
a respective reading setting of 5(a) after adapting
p for phrasing and conjugation. Such a premise
is unambiguous and equivalent to 5(b), where the
predication is distributed over the two pairs of
entities. 5(a) is marked by an explicit respective
reading indicator. As an implicit respective reading
case, 5(c) has the same meaning as 5(b) but there
is no explicit respective operator. In such implicit
cases, the predicate p is usually mutually exclusive
in that each subject can have only one object. For
example, in Sentence 6(a) a person can only die
in one place but not two places. Non-mutually
exclusive predicates are disqualified for an implicit
respective reading since they causes ambiguity, as
in Sentence 6(b).

5. (a) wiandwspws2andws,respectively.

(b) w1 pwzandws pwy.
(¢) wiandwspwszandwy.

6. (a) EmilianoZapataand Gerhart Miinchdiedin
Morelos and Michoacan.

(b) JohnandMary ate afalafel andatortilla.

Generating hypotheses. We subsequently gen-
erate hypotheses and pair them with the generated
explicit and implicit premises. In Table 1, we show
the rules to write entailment or contradiction hy-
potheses given a premise created from the analogi-
cal entities and properties.

Statistics. The resulting dataset, which we call
WikiResNLIgxpy icrr, contains 2,317 premises with
different analogical entities, each of which has two
entailment hypotheses and six contradiction hy-
potheses, resulting in 18,536 premise-hypothesis
pairs in total. The dataset has 139 different pred-
icates derived from Wikidata properties. For the
development set, we randomly sample 13 pred-
icates from the 126 predicates left and trimmed
them if the number of premises for each predicate
exceeds 100. We have 1,312 premise-hypothesis
pairs for the development set. The rest is used as
the training set, with 1,577 premises and 12,616
premise-hypothesis pairs.

Generating premises with implicit ‘“respec-
tively”. We aim to test whether LMs can reason
with respective readings and generalize from ex-
plicit construction to instances without overt mark-
ers. For this purpose, we derive an implicit dataset
from WikiResNLIgxpy icir by simply removing the
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Human Entailment Neutral Contradiction
Reference

Entailment 93.4 2.1 4.5
Contradiction 5.9 4.1 90

Table 2: NatResNLI human annotated label distribu-
tion in percentages for each assigned reference label.
Humans mostly agree with the pre-assigned reference
labels (demonstrated in Table 1), but not always.

word “respectively” from the premises. We call
this dataset WikiResNLIypy1crr- In this process,
we need to pay special attention to the fact that am-
biguity usually occurs in the 1S20 setting when the
predicates allow conjunction of objects; given the
sentence 6(b), it is ambiguous whether the hypothe-
sis “John ate a falafel and a tortilla” is entailed. To
form a high-quality test set for WikiResNLIypy (cr7,
we first need to exclude the ambiguous contradic-
tion hypotheses. Therefore, two of the authors
manually annotate the 139 predicates for whether
they allow a single subject predicating conjunction
of two objects. In total, 13 predicates are annotated
by both authors as unambiguous. Subsequently, we
keep only the premises with these predicates from
the complete WikiResNLI, and for each predicate,
we cap it if the number of premises exceeds 100.
Eventually, we are left with 451 premises for the
13 predicates. The 3,608 premise-hypotheses pairs
are used as the test set.

3.2 Naturally-occurring Dataset: NatResNLI

While the synthetic dataset is well-controlled, it
does not necessarily cover the natural usage of
“respectively”. To address this, we also collect a
dataset of naturally-occuring usages.

Collecting premises. As data resources for “re-
spectively” in publicly available naturally-occuring
data, we leverage two online dictionaries® and a
writing advice blog,* which provide English exam-
ples containing specific words in real-world exam-
ples. We curate the sentences that included “re-
spectively” and further filter some of them to avoid
context ambiguity. In total, 76 sentences remain as
the premise set.

3https ://sentence.yourdictionary.com/
respectivelyandhttps://www.dictionary.com/
browse/respectively

*https://crosstalk.cell.com/blog/
how-to-use-respectively-respectfully

Generating hypotheses. Two of the authors man-
ually write hypotheses based on the fine-grained
categorization of Table 1 for each collected premise.
Given that the labels are pre-assumed, and to deter-
mine whether these inference relations align with
humans, we employ crowd workers to verify them.
See the annotation details in Appendix A.

Statistics. The resulting dataset, which we call
NatResNLI, consists of 76 premises and 608 hy-
potheses. The average sentence lengths of Na-
tResNLI’s premise and hypothesis are 20.1 and
10.1, respectively. Sentences have 2.32 conjnucts
in average, with 4 as the maximum.

Variety. NatResNLI’s sentences have more com-
plicated linguistic constuctions than WikiResNLI,
such as relative clauses, e.g., sentence 7(a), im-
plicit coreferences in sentence 7(b), and inverted
sentences in sentence 7(c).

7. (a) Theannualvalue ofthe Hulse endowmentis
between £800and £900, of which eight-tenths go
tothe professor of divinity and one-tenth to the
prize and lectureship, respectively.

(b) In1910theexportofpalmkernels was 6,141 tons,
of palmoil 2,160tons; in 1916 the figures were
22,391 tons and 3,852 tonsrespectively.

(c) Abovethis, approachedby astair, are the Lesche
and the theatre, occupying respectively the
north-eastand northwest corner of the precinct.

Inter-annotator ~ Agreement. The  inter-
annotator agreement (Fleiss’ kappa; Fleiss, 1971)
of the workers for NatResNLI is 0.65, lower than
ANLI’s (0.67-0.74) and SNLI’s (0.70). This can
be attributed to that we have five annotators rather
than the commonly chosen three annotators, as a
larger number of annotators can sometimes lead
to more diverse interpretations and disagreements,
potentially lowering the inter-annotator agreement.

Verification of pre-assigned labels. In Table 2,
we calculate the average agreement percentage of
human annotation with reference labels, showing
that humans do not always agree with them. Inves-
tigating the examples where the majority votes are
distinct from the pre-assigned labels, we find nine
instances distributed over four premises. For the
sentence in 8(a), humans actually correct the label
as the respective reading here does not cause a mu-
tually exclusive effect. For sentence 8(b), humans
show more caution towards sentence ambiguity
caused by unknown world knowledge of Kilia and
Dniester’s locations, and hence the neutral label.

8789


https://sentence.yourdictionary.com/respectively
https://sentence.yourdictionary.com/respectively
https://www.dictionary.com/browse/respectively
https://www.dictionary.com/browse/respectively
https://crosstalk.cell.com/blog/how-to-use-respectively-respectfully
https://crosstalk.cell.com/blog/how-to-use-respectively-respectfully

Model contradiction overall

1S1I0 1820 2S10

Training data entailment

Model contradiction overall

1S10 1820 2S10

Training data entailment

MNLI 99.7 479 0.3 4.5 38.1 MNLI 97.1 26.4 0.4 8.6 33.1
ROBERTa g MEANLI 100 551 01 1 390 RoBERTa g MEANLI 999 235 03 34 318
ALBERT S.M,F,ANLI 99.8 31.6 3.1 3.9 34.6 ALBERT S.M,F,ANLI 100 14 0.1 0.8 28.7
MNLI 994 36.1 0.6 39 35 MNLI 99.3 25.5 14 52 329
DeBERTa-v3 M,FANLI 98.8 40.2 3.9 10.8 38.4 DeBERTa-v3 M,F,ANLI 96.9 26.6 5.7 16.9 36.5
M,ELing, WANLI 100 778 367 594 68.5 M,F,Ling, WANLI 100 59.3 24 13.2 43.7

Table 3: Zero-shot performance on the  Table 4: Zero-shot performance on the

WikiResNLIgxpicir test set.

8. (a) Premise: Theannual value of imports and ex-
ports exceeds seven and nine million sterling
respectively. Hypothesis: The annual value of
imports and exports exceeds seven million sterling.
Pre-assigned Label: contradiction. Majority
Vote: entailment

(b) Premise: InthatyearaTurkish fleetcaptured the
strongholds of Kilia and Akkerman, command-
ingrespectively the mouths of the Danube and
Dniester. Hypothesis: Inthatyeara Turkish fleet
captured the stronghold of Kilia, commanding the
mouths of the Danube and Dniester. Pre-asigned
Label: contradiction. Majority Vote: neutral

Considering human annotations as ground truth,
we discard the pre-assigned labels and adopt the
majority votes as the final labels for NatResNLI.

4 Experiments

We begin our experiments with the datasets by ad-
dressing our first research question:

Question 1 Can NLI models reason with the coor-
dinate structure in “respectively” construction in
zero-shot settings?

Given the popularity of NLI as a classification
task to test LMs’ ability of language understanding,
many works have proposed new models achieving
state-of-the-art results on datasets such as SNLI
(Bowman et al., 2015), MultiNLI (MNLI; Williams
et al., 2018) and ANLI (Nie et al., 2020). On the
GLUE leaderboard,’ the state-of-the-art models
have surpassed 90% and 95% accuracy on MNLI
and QNLI which are deemed as solved challenges.
ANLLI has been one of the most challenging tasks
in recent years, and the latest models such as
DeBERTa-v3-large (He et al., 2021; Moritz et al.,
2022) and PalLM 540B (Huang et al., 2022) can
achieve 64% and 67.9%, respectively. While many
works use ANLI as a medium to exhibit the models’
growing reasoning ability, few of them analyze in
depth in which case it fails and at which stage it
gets to learn certain linguistic abilities.

We report the zero-shot performances of three
LMs fine-tuned with different combinations of

5https ://gluebenchmark.com/leaderboard

WikiResSNLI ypp o7 test set.

NLI corpora. The models include ROBERTa (Liu
et al.,, 2019), ALBERT (Lan et al., 2019) and
DeBERTa with fine-tuning data of MNLI, SNLI,
ANLI, FEVER-NLI (Nie et al., 2019), LingNLI
(Parrish et al., 2021) and WANLI (Liu et al., 2022).

The experiment results on WikiResNLIgxpy jcrr
and WikiResNLIyp; ;1 are presented in Table 3
and Table 4, respectively.

As can be seen in Table 3, models cannot fully
correctly reason with respective readings. The best
model, DeBERTa, only achieves 35% accuracy if
fine-tuned with MNLI, and will reach 68.5% if
fine-tuned with almost all NLI training datasets
mentioned above. It gains a large increase in the
1S10 setting by 41.7%. However, the accuracy
on 1S20 is still at a chance level, and the 2510
setting performance is only approaching around
60%, leaving room for improvement.

The performance on WikiResNLI ypy 1cir 1 €ven
worse, as indicated in Table 4. Similarly, DeBERTa
is again the best performance model on the dataset,
with an accuracy of 43.7% if fine-tuned with all
NLI corpora. The accuracy is just 10% above the
chance level, and it completely fails in the 1520
and 2S10 settings.

Results on both datasets show that when training
with more data, models improve on respective read-
ings. However, the question of what leads to im-
provement remains. We examine how many times
explicit respective readings appear in the training
and testing datasets of MNLI, SNLI Fever-NLI and
ANLI. We find that the adverb “respectively” oc-
curs 177 and 12 times in the MNLI training and dev
sets, 15 and O times in the SNLI training and test
sets, 1,064 and 64 times in the Fever-NLI training
and test sets, and 216 and 5 times in the combined
ANLI training and dev sets. We randomly sam-
pled a subset of each dataset and manually check
whether they tackle reasoning over coordination
structure. We find that in most cases, “respectively”
works simply as a context word and has little to
do with the actual inference relations. Thus it is
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Wiki_ex-Wiki_im

50 Wiki_im-Wiki_im
Wiki_ex-Nat
Wiki_im-Nat

0 1 2 4 8 16 32 64 full
Num of shot

Figure 2: Overall performance of DeBERTa on
WikiResNLIgxpiicrr,  WikiReSNLIypicrr and  Na-
tResNLI from zero-shot to fully supervised. Wiki_ex-
Wiki_ex refers to training with WikiResNLIgxpy (cir
instances and evaluating on WikiResNLIgxpcir test
set. Similarly, Wiki_im-Nat refers to training with
WikiResNLI yppicir and testing on NatResNLI.

#Shots 1 2 4 8 16 32 64 Ful
Type

All 8
Basic 4 8

16 32 64 128 256 512
16 32 64 128 256

12,616
6,308

Table 5: Number of training instances for each number
of shots. A “shot” contains multiple training instances
since we always take a premise along with all of its
generated hypotheses—8 in the general case and 4 in
the basic case.

still not clear whether it is simply the exposure
to the explicit cues (the word “respectively”) or
some instances with implicit coordinate structures
that result in the performance improvement. We
thus ask the following three research questions and
experiment with few-shot learning.

Question 2 Can LMs Generalize from Explicit to
Implicit Respective Readings?

Instances of WikiResNLI have the coordinate
structures of an equal number of conjuncts, and lin-
guists have argued that such semantic relations are
reflected in the syntactic relations (Goodall, 1987;
Moltmann, 1992). It is essentially semantic but
also relies on pragmatically available information
of the truth conditions. Respective readings in fact
also commonly omit explicit lexical indicators but
remain available and preferred as 2(a) (Gawron
and Kehler, 2004). We are therefore interested
in whether LMs can learn the semantic-pragmatic
meaning of respective reading sentences rather than

100

80

@
S

ex_all-ex_1S10
ex_all-im_1S10
im_all-im_1S10
ex_all-ex_1S20
ex_all-im_1S820

Accuracy

40

20 im_all-im_1S820
ex_all-ex_2S10
ex_all-im_2S10
im_all-im_2S10

0 1 2 4 8 16 32 64 full
Num of shot

Figure 3: DeBERTa’s  Performances on

WikiResNLI ypricrr after fine-tuning on
WikiResNLIgxpicir or WikiResNLIyppicir-  The
result is broken down by contradiction fine-grained set.

only making use of lexical and syntactic cues.

We fine-tune the DeBERTa model previously
fine-tuned with M, F, Ling and WANLI with
different numbers of WikiResSNLIzxpi1cir €Xxam-
ples without a dev set, since we do not want to
bias the model towards our datasets hence hurt-
ing performance on the other NLI tasks. We
fine-tune the model with WikiResNLIgxpp icir and
WikiResNLIypy crr separately and report the over-
all accuracy on both dataset in Figure 2. Training
with WikiResNLIgxp;icir contributes to a steady
performance increase on both WikiResNLIgypy icir
and WikiResNLIyp; icir. Especially, 1-shot learn-
ing enhances the performance clearly, with a
10% increase for in-domain evaluation, and a re-
markable 30% increase for explicit to implicit
generalization. The improvements are small
from 1-shot to 8-shot. Only at 16-shot, both
WikiResNLIgxpy cir in-domain learning and trans-
ferring to WikiResNLIypyc;r reach 100% accu-
racy. This shows the possibility to learn respective
readings, despite the need to see relevant instances
128 times (see Table 5).

Interestingly, in-domain few-shot learning of
WikiResNIL ypricir Witnesses a relatively cold
start. The accuracy does not increase above 60%
until 16 shots. Generalization from implicit respec-
tive reading to explicit reading is surprisingly not
reaching 100% accuracy even after full supervision.
We are keen to investigate what types of instances
are difficult to learn for explicit to implicit respec-
tive reading generalization. In Figure 3, we break
down WikiResNLI;ypr1crr With contradiction labels
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Figure 4: Performance of DeBERTa on NatResNLI
after being fine-tuned on WikiResNLIgxpiicr.  To
facilitate comparison, we mark performances on
WikiResNLIgxpicrr in darker colours.

by categories (1510, 1520 and 2S10) and plot the
accuracy against number of shot.

As can be seen, the performance on explicit
readings is always better than on implicit readings
across all three contradiction types. Among them,
1S20 and 2S10 instances are the most difficult.
Their accuracies are below 40% and 20%, respec-
tively before 16 shots. And only until 32 shots do
both types reach above 95% accuracy. Unlike in-
domain learning, 1S20 never gets perfectly solved.

Question 3 Can LMs Generalize from Synthetic to
Natural Respective Readings?

WikiResNLI is a synthetic dataset, and it re-
mains unclear whether models can reason with
respective readings in realistic settings if we gen-
erate enough synthetic data and feed it to models.
With NatResNLI, we are able to investigate LM’s
respective reading reasoning generalizability from
synthetic to natural data and its alignment with
humans.

We evaluate the models fine-tuned with
WikiResNLIgypr icir on NatResNLI and plot the
performance in Figure 4. We can observe that
scores on NatResNLI are almost always lower than
on WikiResNLI due to domain drift. Particularly,
1S20 and 2510 are 10% and 20% lower in zero-
shot settings. 1S20 manage to reach on-par per-
formance with WikiResNLI after 16 shots, while
2S10 after 32 shots.

Interestingly, the models are able to surpass 95%
after 32 shots, while pre-assigned labels only have
90% match (see Table 2). Although we are com-
paring a rule-based method with 32-shot (256 ex-

80

60

Accuracy

40

20

0 1 2 4 8 16 32 64 full
Num of shot

ex_all-ex_1S10
ex_basic-ex_1810
ex_basic-im_1S10

ex_all-ex_1S20
ex_basic-ex_1S20
ex_basic-im_1S20

ex_all-ex_2S10
ex_basic-ex_2S10
ex_basic-im_2S10

Figure 5: Performance of DeBERTa on
WikiResNLIgxpy c;r and WikiResNLIyp; cir after being
fine-tuned only with the basic types (entailment and
1S10 contradiction) of WikiResNLIzyp; icit-

amples) training, we can conclude that models are
able to align with humans for respective reading
reasoning. In addition, we notice that for 1S20
and 2S10 generalization, the complex linguistic
structures discussed in Section 3.2 do have a high
impact in the low-number few-shot learning, but
the difficulty diminished as more training data are
used.

Question 4 What Cues do LMs Rely on?

So far we have discussed LMs’ ability to general-
ize on the syntactic-semantic level, from explicit to
implicit and from synthetic to natural in respective
readings. But it is yet to be determined whether
the model is simply adopting the lexical-syntactic
heuristics for prediction and whether it leverages
common sense and world knowledge. If models
can reason over basic hypothesis structures (1S10
entailment and 1S10 contradiction), it would be
expected they are aware that the one-to-one rela-
tion correspondences should exclude 1S20 and
2S10 propositions due to common sense and world
knowledge. Although there are cases such as 8(a)
where one object entity includes the other in Na-
tResNLI, all cases of the WikiResNLI test set dis-
allow the situation due to the mutually exclusive
properties.

Therefore, we fine-tuned the DeBERTa mod-
els with only WikiResNLIgxp; icr instances of ba-
sic structures and evaluated their performances on
both WikiResNLIgxp icrr and WikiResSNLIvipricir
1520 and 2S10. The results can be seen in Figure 5.
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Figure 6: LLaMA, FLAN-TS, GPT-JT and DeBERTa’s
performances on WikiResNLIypicir after in-context
learning of WikiResNLIgxp icrr- The last suffix ent of a
legend means the performance on entailment pairs and
con on contradiction pairs.

We can observe that the generalization from basic
structures to unseen structures is indeed difficult:
while training with all structures and evaluating
will all structures achieve perfect scores on 1520
and 2S10 of WikiResNLIgxp icir at 16 shots, train-
ing with basic structures are only 58% and 75%
accuracies. It is worth noting that all fine-tuning
instances have either entailment or contradiction
labels, and therefore a random-guessing baseline
would be 50% instead of 33.3%.

The generalization performances from explicit
respective readings with basic structures to implicit
1520 and 2S10 are more disappointing. At 16
shots, the accuracies are only 18% and 30%, re-
spectively, well below the chance level. Even full
supervision can only achieve around 60% accuracy
for both structures. The results indicate that the
models do not effectively learn the abstract respec-
tive reading relations due to not understanding the
commonsense and world knowledge.

We look into the intersection errors of 32-shot,
64-shot and fully-supervised models which are fine-
tuned on WikiResSNLIgxpricir and are evaluated
on WikiResNILypy icrir. There are 358 1S20 and
248 2510 instances that are consistently mistaken
by the models. The top-5 frequent properties are:
twinned administrative bodies, took place, are cap-
itals of, buried in, and family names. Knowledge
about relative location 9(a) and knowledge about
humans 9(b) thus seem to play an important role in
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Figure 7: LLaMA, FLAN-TS, GPT-JT and DeBERTa’s
performances on NatResNLI after in-context learning
Of WikiReSNLIEXPLICIT .

reasoning with implicit respective readings.

9. (a) Premise: Battle of Tours and Battle of Verdun
took placein Poitiers and Verdun. Hypothesis:
Battle of Tours took place in Poitiers and Verdun.
WikiResNLI Label: contradiction. Prediction:
entailment

(b) Premise: Theresa of Le6n and Maria Solé Cuiiat
diedin Galiciaand Catalonia. Hypothesis:
Theresaof Leén and Maria Solé Cuiiatdied in
Galicia. WikiResNLI Label: contradiction.
Prediction: entailment

Impact on other NLI tasks. We evaluate all
models fine-tuned with WikiResNLI above on other
NLI tasks, i.e, MNLI-m and ANLI-R3, to check
whether fine-tuning on such a label-imbalanced
dataset hurts performance. Interestingly, full su-
pervision with WikiResNIL yp; icir Of basic struc-
tures results in new state-of-the-art performance
for DeBERTa. On MNLI-m, the score improves
from 90.8% to 91.4%; and on ANLI-R3, the per-
formance raises from 63.6% to 64.1%.

Experiments on LLaMA, FLAN-TS and GPT-
JT Significant advancements in large generative
LMs have been achieved in the realm of general nat-
ural language understanding. These improvements
can be attributed to enhanced training strategies,
such as incorporating code and human instructions
into pretraining/fine-tuning data and RLHF (Chris-
tiano et al., 2017; OpenAl, 2023). We assess the
zero-shot and in-context learning abilities of three
open-source generative models, that is, LLaMA-
7B (Touvron et al., 2023), FLAN-T5-XL (Chung
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et al., 2022) and GPT-JT-6B (Wang and Komat-
suzaki, 2021; Together, 2022). In this study, our
focus is on two representative scenarios, namely
generalizing from explicit to implicit readings and
generalizing from synthetic to natural readings. We
adopt the template {premise} Question: Does this
imply that {hypothesis}? as it attains top-tier results
for NLI tasks (Webson and Pavlick, 2022).

Figure 6 illustrates the explicit to implicit gen-
eralization results. Notably, FLAN-T5 achieved
a near-perfect score on zero-shot entailment pairs,
comparable to the fine-tuned DeBERTa. However,
GPT-JT, despite being instruction-tuned on NLI
datasets, performed at a mere chance level on en-
tailment pairs, while LLaMA scored below 10%
accuracy. In terms of contradiction instances, all
three models scored below 60% accuracy, with in-
context learning offering limited improvement at
the 4-shot level. Specifically, FLAN-T5’s perfor-
mance decreased after in-context learning.

For the generalization from WikiResNLI to Na-
tResNLI, in Figure 7, we observed similar trends
as in the previous experiments. FLAN-TS outper-
formed the other models on entailment instances,
and LLaMA demonstrated significant improvement
within a few shots. However, for contradiction
pairs, all models experienced only a modest in-
crease in accuracy from 1 to 4 shots, with the high-
est accuracy remaining below 60%.

To conclude, while large generative models have
made significant strides in natural language under-
standing, they still face substantial challenges in
reasoning with respective readings, highlighting
the need for further research and development in
the long tail of linguistic constructions.

5 Related Work

Logical relations between two sentences are a core
aspect of language understanding (Frege, 1879;
Heijenoort, 1967; Blackburn et al., 2006). To facili-
tate large-scale model evaluation, NLP researchers
have developed manually labelled NLI corpora,
typically for 2/3-way classification (Dagan et al.,
2013; Bowman et al., 2015; Williams et al., 2018).
In recent years, researchers start to analyze the
characteristics of these datasets, such as annotation
artefacts (Gururangan et al., 2018), syntactic heuris-
tics (McCoy et al., 2019) and adversarial collection
process (Williams et al., 2022).

In computational linguistics, distributive pred-
ication has been analyzed through means of dis-

tributivity operators (Massey, 1976; Link et al.,
1983; Roberts, 1987; Lasersohn, 1998). And lin-
guists have been working on extending first-order
logical forms to include distributive and collective
readings (Martin, 1981; Alshawi and van Eijck,
1989). Scha and Stallard (1988) present a recursive
translation rule scheme to account for multi-level
plurals. Aone (1991) proposed a reasoner consist-
ing of domain-dependent constraints and domain-
independent axioms for collective and distributive
ambiguity. Shaw and McKeown (2000) described
a simplified quantifier system to minimize distribu-
tive and collective ambiguities.

Respective readings have not yet been studied in
modern NLP. Relevant works include plural under-
standing, which has been studied as a coreference
resolution task (Jain et al., 2004; Zhou and Choi,
2018; Yu et al., 2020b). Manshadi et al. (2011) pro-
posed quantifier scope annotation in which plurals
are annotated with distributive and collective read-
ings at the constraint level. Yu et al. (2020a) show
that LMs are better at reflexive anaphora tasks with
distributive than collective constructions.

6 Conclusions

The “respectively” construction is simple yet en-
tails multiple levels of reasoning skills, includ-
ing syntactic-semantic and commonsense-world
knowledge. It is crucial that when an out-of-the-
box model cannot reason over it, it should be able
to learn with as few examples as possible. We
proposed two datasets, WikiResNLI (a controlled
synthetic dataset) and NatResNLI (a naturally oc-
curring dataset) to probe their ability to do so in
zero-shot and few-shot settings. We find that ex-
plicit reasoning is easier to learn than implicit rea-
soning, and LMs fail to generalize when common
sense inference is needed. We confirm that diverse
and complex training data are necessary to achieve
human-level performance.

7 Limitation

Linguistic studies have shown that respective read-
ings are not necessary to have two coordinate struc-
tures in the same sentence (Dalrymple and Kehler,
1995). Both WikiResNLI and NatResNLI have
only one sentence in the premise and do not ex-
haust all possible and complicated realizations of
respective readings. However, we are able to dis-
cuss and investigate LMs’ generalizability with
“respectively” with three constructions, i.e., 1S10,
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1S20 and 2S10.

Our experiments are English-specific and are
limited to LMs that can be run with an academic
budget. However, our conclusions about the gen-
eralizability towards respective readings should be
viewed as language-agnostic given there are lin-
guistic constructions under-discussed in many other
languages and it is worth researchers’ attention to
study them.
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Appendices
A Annotation Details

We employ Amazon Mechanical Turk workers. A
qualified worker is one who has completed more
than 10,000 HITs and has an approval rate greater
than 99%. We set the location to the United States
as there was no option to choose language profi-
ciency. They are shown only three examples with
entailment, neutral and contradiction labels before
annotation. For each premise-hypothesis pair, five
workers were asked to annotate the entailment rela-
tion (entailment, neutral or contradiction) follow-
ing the guidelines of Nie et al. (2020). The worker
gains a reward of 12 cents. Based on the work-
ers’ feedback, our hourly rate ranges between 16
to 27 US dollars, which is above the federal or
Californian hourly wage. In total, 170 annotators
participated in the step of label annotation of the
hypotheses written by the authors. The number
of HITs (annotation) per worker ranges from 5 to
200 based on their wishes. We assure to have 5
annotations per each premise-hypothesis pair.
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