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Abstract

Multimodal summarization usually suffers
from the problem that the contribution of the
visual modality is unclear. Existing multimodal
summarization approaches focus on design-
ing the fusion methods of different modalities,
while ignoring the adaptive conditions under
which visual modalities are useful. Therefore,
we propose a novel Coarse-to-Fine contribu-
tion network for multimodal Summarization
(CFSum) to consider different contributions of
images for summarization. First, to eliminate
the interference of useless images, we propose
a pre-filter module to abandon useless images.
Second, to make accurate use of useful images,
we propose two levels of visual complement
modules, word level and phrase level. Specif-
ically, image contributions are calculated and
are adopted to guide the attention of both tex-
tual and visual modalities. Experimental results
have shown that CFSum significantly outper-
forms multiple strong baselines on the standard
benchmark. Furthermore, the analysis verifies
that useful images can even help generate non-
visual words which are implicitly represented
in the image1.

1 Introduction

With the information explosion, the internet is
flooded with various multimodal information. Mul-
timodal summarization (MMS) can help generate
more abundant and comprehensive summary infor-
mation than unimodal based on extra visual infor-
mation. Existing studies on multimodal summariza-
tion include multimodal sentence summarization
(Li et al., 2018b), multimodal summarization with

∗Corresponding author.
1Code is available at https://github.com/

xiaomin418/CFSum
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Figure 1: Experiments on existing mainstream multi-
modal summarization models. The performance is not
affected by masking images. “Concat” is the concate-
nate fusion method, and “Attn” is the attention-based
fusion method.

multimodal output (Zhu et al., 2018), multimodal
meeting summarization (Li et al., 2019) and so on.
In this paper, we focus on the task that generat-
ing a text summary based on the input of a text
and an image. It has been proved that integrating
multimodal data can help improve the quality of
the summary (Li et al., 2018b; Jangra et al., 2020;
Palaskar et al., 2019; Yu et al., 2021).

However, it is unclear whether the visual modal-
ity can indeed benefit the process of summariza-
tion. Thus, we conduct an experiment to explore
the influence of masking images on the summary.
As shown in Figure 1, the solid lines mean the
performance of summary generated by masking
portions of images, and the dashed lines indicate
the origin performance. It can be observed that
the dashed and the solid lines roughly coincide,
which indicates that masking images do not affect
the performance of the multimodal model. Some
masking rates can even raise the ROUGE-1 value
of the summary. It indicates that existing models
do not make effective use of image information for
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the summary.

Existing approaches have two major problems.
First, existing studies focus on multimodal fusion,
such as concatenate, attention-based, and gate-
based fusion (referring to Related Work). However,
they ignore the adaptive conditions under which
visual modalities are helpful. Thus they are poor at
extracting useful visual information. Furthermore,
all fusion methods do not explicitly model the im-
age complementarity for the summary. Especially
for the attention-based method, the inter-attention
is not accurate enough, which leads to inefficient
use of the image. Second, in many samples, the
image may introduce noise, while existing fusion
methods assume that all images are helpful for the
summary without considering the interference of
useless images. As analyzed above, we believe that:
1) It is essential to eliminate the influence of the
useless image. 2) The contributions of the image
to the summary need to be clarified. In particular,
it is necessary to consider the complementarity of
visual information relative to textual information.

Although we notice the lack of image contribu-
tions, it is difficult to detach various roles of images
from a single fusion layer. Thus, in this work, we
propose a novel Coarse-to-Fine contribution net-
work for multimodal Summarization (CFSum) to
extract the role of the image at different stages.
First, we apply a pre-filter module to abandon use-
less images. It coarsely obtains helpful images
for the summary. Specifically, the consistency of
content between image and text is calculated. If
the consistency is low, the image will be masked
in subsequent encoding. Second, when the image
is coarsely useful, the complement module is em-
ployed to finely guide the fusion of text with the
image. To consider image contributions for text
with different granularities, the complement mod-
ule consists of two levels, word level and phrase
level. For the word level complement module, to
obtain the image complementarity over the text, the
difference between bi-modal and uni-modal inputs
is measured through a classification task. Then we
add a loss to guide the attention between words
and the image. For the phrase level complement
module, similar to the word level, the image com-
plementarity on phrases is acquired to guide the
attention between phrases and the image. Through
these modules, the model can acquire more explicit
image contributions and provide better multimodal
encoding for summary generation.

Our contributions are as follows:
(1) We propose a Coarse-to-Fine contribution

network for multimodal Summarization (CFSum)
to model different contributions of images for sum-
marization.

(2) We innovatively design a pre-filter module
to coarsely reduce the interference of the useless
images and develop two visual complement mod-
ules to finely obtain image complementarity over
the summary.

(3) Experimental results show that our model out-
performs strong baselines. Besides, extensive anal-
ysis proves that useful image even contributes to
non-visual words which are implicitly represented
in the image.

2 Related Work

Multimodal Summarization Tasks. In the field
of multimodal summarization, there are usually
three steps. First, different feature extractor mod-
ules are adopted to extract the features of the text
and the image, respectively. Second, the different
features are fused at the fusion layer. Finally, the
fused context features are fed into the text decoder
to generate a summary. Existing studies focus on
multimodal fusion. Specifically, the fusion meth-
ods consist of concatenate, attention-based, and
gate-based. The concatenate fusion directly con-
catenates multimodal features into a fusion context
(Li et al., 2018b, 2020a). It can fully extract high-
level features of different modalities, but there is a
large gap between high-dimensional spaces. The
attention-based methods fuse all multimodal fea-
tures with attention mechanism (Atri et al., 2021;
Palaskar et al., 2019; Kitada et al., 2022), which
can get the correlations between each unit of text
and image. Gate-based methods take text as the
central modality (Jangra et al., 2021) and exploit
images to help focus on the core information (Liu
et al., 2020; Li et al., 2020b). In summary, (1) all
fusion methods do not explicitly model the image
complementarity for the summary, which leads to
inefficient use of the image. (2) concatenate and
attention-based cannot eliminate the influence of
useless images in the fusion layer.

Cross-modal tasks. Some studies have noted the
contributions of modalities and explored the cross-
modal influence in other multimodal tasks. Zeng
et al. (2021) propose loss modulation to explore the
contribution of individual modalities and devise a
modality filter to reduce modality noise, which con-
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Figure 2: CFSum framework. Lf , Lw, Lp denote the starting layer of the pre-filter, the word-level complement, and
the phrase-level complement modules, respectively.

siders consistency and complementarity between
different modalities. Zhu et al. (2018) propose
multi-task summarization: the method also selects
the image that best matches the summary when gen-
erating a text summary. It guarantees the positive
effect of images on the summary. Li et al. (2022)
exploit ReLu-based cross-attention to align visual
features to textual representation, which abandons
low-value attention scores for those unaligned vi-
sual features. Inspired by the above studies, we
propose CFSum, which considers various image
contributions for better encoding input text and
generating the final summary.

3 Proposed Methods

3.1 Overview

In this section, we introduce the details of CF-
Sum. Given a dataset consisting of n triplets
(ti, vi, si)i∈[1,n] with a text ti, an image vi, and
a summary si, the multimodal summarization task
aims at generating si based on ti and vi.

As depicted in Figure 2, the CFSum takes bi-
modal and uni-modal streams as input parallelly.
It builds coarse and fine image contributions with
three modules (Coarse-to-Fine Structure). First, the
pre-filter module coarsely filters the images incon-
sistent with texts (Pre-filter Module). Second, two
levels of visual complement modules consisting of
word level (Word-level Complement) and phrase
level (Phrase-level Complement) make accurate
use of useful images.

3.2 Coarse-to-Fine Structure

We build our model based on the multimodal trans-
former UNITER (Chen et al., 2020) and GRU
(Chung et al., 2014) encoder-decoder architectures.
We refer the model to UniG. As shown in Figure
2(a), in order to evaluate the complementarity of
different modalities, the bi-modal and uni-modal
inputs are operated parallelly with the same en-
coder. The two parallel streams can catch the gain
of the image. Additionally, we generate a summary
relying on bi-modal encoding. Uni-modal encod-
ing assists in measuring various contributions and
guiding the bi-modal encoding.

Specifically, the multimodal encoder consists of
L = 12 multimodal transformer layers. We serve
the L layers as a hierarchical structure and divide
L layers into three parts as shown in Figure 2(a).
Lf , Lw, Lp mark as the starting layer of the pre-
filter, the word-level complement, and the phrase-
level complement modules, respectively. Existing
studies assume all images benefit summary gener-
ation or input text encoding, resulting in damage
from unnecessary images. The pre-filter module is
utilized to eliminate the interference of misleading
images in advance. Next, the word-level comple-
ment module is developed to model the gain of
the image on input words for the summary. Then
the image gain guides the subsequent attention be-
tween words and the image. Finally, similar to
the word level, the phrase-level complement mod-
ule concentrates on phrases at higher layers. Each
component will be elaborated in the following sub-
sections.
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3.3 Pre-filter Module

The bi-modal and uni-modal features from the ith

layer are encoded as mi ∈ RC×H , ui ∈ RT×H ,
where i ∈ [1, L], and C, T denote the lengths of bi-
modal and uni-modal tokens. H denotes the hidden
dimension. The bi-modal self-attention matrix in
the ith layer is Ai = (air,s) ∈ RC×C .

The pre-filter module aims at filtering images
that are unnecessary to the summary. As shown
in Figure 2(a), given two encoded features mLf

and uLf from the Lth
f layer, the goal of the filter-

ing module is to select those useless images and
guide the self-attention of all subsequent layers.
We believe that if the bi-modal feature has low con-
sistency with the uni-modal feature, the image may
introduce interferential information. Specifically,
we first calculate the consistency ∆C between uni-
modal feature uLf and bi-modal feature mLf as
follows:

pu = MeanPool(uLf ), (1)

pm = MeanPool(mLf ), (2)

∆C = Sign(cosine(pu, pm)− α) (3)

We define the indicator function as:

Ir,s =

{
1, r ≥ T, s ≥ T

0, otherwise
(4)

which represents the text attending to the image, the
image attending to the text, and the image attending
to itself shown in Figure 2(a). Then we calculate
the new subsequent self-attention nair,s with:

nai
r,s =ai

r,s × (1− Ir,s) + ai
r,s × Ir,s ×∆C , (5)

i ∈ [Lf + 1, L]

By correcting the attention matrix, the image with
a large deviation in content is cropped out. In other
words, the multimodal inconsistency features de-
generate into text-only features through this pro-
cess. The simple method has been shown to be
effective in our experiments.

3.4 Word-level Complement

This section introduces a word-level complement
module, considered as an auxiliary task during the
training process. First, we measure the image gain
on input words for the summary. Then the image
gain is applied to guide the attention between words
and the image (as shown in Figure 2(b)).

Image gain measurement. Intuitively, the text
tokens should concern the image which is help-
ful for the summary. In previous attention-based
studies, inter-modality correlation can be modeled
as softmax(QK√

D
)V . Q,K, V are the projected fea-

tures from the bi-modal input. However, it does
not explicitly model the image complementarity
for the summary, which leads to inefficient use of
the image.

Following the motivation above, we hope to cal-
culate the image gain on the summary with mutual
information. In other words, we want to measure
whether generating summaries based on bi-modal
feature mL is more deterministic than generating
summaries based on uni-modal feature uL. Thus,
we expect to calculate the image gain on the k-th
word of the reference summary:

GIk = Gain(sk/u
L, sk/m

L) (6)

However, we intend to obtain GIk before gener-
ating summary S and encoding mL. Thus GI can
be beneficial for generating S and encoding mL.
To this end, we define Copy Classification task Y
to approximate the summary task S: for each in-
put text token tj , the target is to binary categorize
whether it appears in the reference summary. If
the token appears in the reference summary, it is
classified as ŷj = 1; otherwise, ŷj = 0. Next, the
GIj is given by:

GIj = Gain(yj/u
Lw , yj/m

Lw ) (7)

where uLw ,mLw denote the uni-modal and the bi-
modal feature acquired by Lth

w layer. Finally, we
measure the gain that the image brings to predict
whether a word appears correctly in the summary
as follows:

GIj = Gain(yj/m
Lw , yj/u

Lw )

= logP (yj = ŷj/m
Lw )− logP (yj = ŷj/u

Lw ) (8)

Derivation details can refer to the Appendix B. In
addition, to ensure the correct gain direction, we
add a binary cross-entropy loss to train the Copy
Classification Task Y :

Lcopyc = BCE(yj , ŷj/mLw ) + BCE(yj , ŷj/uLw ) (9)

Image gain application. We introduce diver-
gence loss to restrain that the image with greater
gain should receive more textual attention. In suc-
cessive ith i∈[Lw+1,Lw+3] layer, the average inter-
attention between each text token tj and the image
is:
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T2V i
j =

1

2(C − T )
(

s=C∑

s=T+1

ai
j,s +

s=C∑

s=T+1

ai
s,j) (10)

where aij,s, a
i
s,j represent the attention of image-to-

text and text-to-image, respectively.
Finally, an attention divergence loss is added to

restrain the inter-attention scores T2V i
j with GIj :

Lword = KL(Softmax(GIj)||Avg(T2V i
j )) (11)

By minimizing the divergence loss, the text token
attends to the image according to the gain it brings.
Interaction between word gain and inter-attention
learns to pay attention to the useful image. Ap-
pendix C provides examples to figure out the word-
level complement.

3.5 Phrase-level Complement
Considering the image contribution to text of dif-
ferent granularities, we put forward a phrase-level
complement module similar to the word level (as
shown in Figure 2(c)).

Image gain measurement. Different from copy
classification task at the word level, we define
Copy Scorer task to measure the image gain on
phrases: We obtain phrases {p1, ..., pk...} from the
text with StandfordNLP2. {l1, ..., lk...} is the num-
ber of words in the phrases. The task targets scor-
ing the proportion of words that appear in both the
phrase and the reference summary:

Ru
pk = Scorer(uLp) (12)

Rm
pk = Scorer(mLp) (13)

where Scorer is a MLP. The ground truth proportion
is obtained with the following:

R̂pk =
Count tj′∈pk (tj′)

lk
(14)

where Count tj′∈pk denotes the number of words
that appear in both the phrase pk and the reference
summary. Therefore, the image gain on phrase can
be acquired as:

GSpk = |Ru
pk − R̂pk | − |Rm

pk − R̂pk | (15)

Similarly, to guarantee the correctness of phrase
gain, we add a squared loss for the Copy Scorer
task:

Lcopys = MSE(Rm
pk , R̂pk ) + MSE(Ru

pk , R̂pk ) (16)

2https://github.com/stanfordnlp

Especially, for the convenience of applying phrase
gain GSpk , we project it to token gain GSj as:

GSj = max{GSpk , tj ∈ pk} (17)

Image gain application. Second, we introduce a
phrase attention divergence loss to restrain that the
image with greater phrase gain should receive more
textual attention. We obtain the inter-attention
score T2V i

j from i ∈ [Lp+1, Lp+3] layers as for-
mula 10. Finally, we restrain it with the following:

Lphrase = KL(Softmax(GSj)||Avg(T2V i
j )) (18)

The phrase-level restraint guarantees the image con-
tributing to the text of phrase granularity.

3.6 Training and Inference

In the training phase, to ensure the accuracy of
the information difference between bi-modal and
uni-modal, we initialize the model only with the
summary generation loss. We apply negative log-
likelihood for the target word sequence as the over-
all loss:

Lgen =
1

T

T∑

t=1

(− logP (st)) (19)

Then the model is finetuned with the hierarchical
modules’ objectives:

L = Lgen + Lword + Lphrase + Lcopyc + Lcopys (20)

In the inference phase, we only maintain the pre-
filter module. Lword and Lphrase are added to let
the model learn how to fuse multimodal informa-
tion. Hence, differences in training and inference
phases would not hurt the generation.

Dataset Size
Src. Length

(Min/Avg/Max)
Ref. Length

(Min/Avg/Max)
train 62,000 11/21.68/63 2/7.72/25
dev 2,000 11/24.35/47 3/7.68/17
test 2,000 11/22.97/51 3/7.67/24

Table 1: Statistical information about the dataset. “Src.
Length” and “Ref. Length” denote the number of words
in the source sentence and reference summary.

4 Experiment

4.1 Settings

We experiment with the multimodal sentence sum-
marization dataset3 (Li et al., 2018a). It contains
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ROUGE-1 ROUGE-2 ROUGE-L BLEU BERTScore MoverScore
Lead△ 33.64 13.40 31.84 - - -
Compress△ 31.56 11.02 28.87 - - -
ABS△ 35.95 18.21 31.89 - - -
SEASS△ 44.86 23.03 41.92 - - -
Multi-Source△ 39.67 19.11 38.03 - - -
Doubly-Attention△ 41.11 21.75 39.92 - - -
MAtt△ 47.28 24.85 44.48 - - -
MSE△ 45.63 23.68 42.97 - - -
UniG (T) 45.90 24.08 42.98 47.09 86.54 31.06
UniG 46.22 24.28 43.47 46.85 86.57 30.95

K1
CFSum-F3 47.39* 25.42* 44.35* 48.51* 86.90* 31.89*
CFSum-W6 47.33* 25.38* 44.26* 48.43* 86.91* 31.84*
CFSum-P9 47.28* 25.13* 44.18* 48.19* 86.91* 31.67

K2
CFSum-W6F9 47.53* 25.37* 44.41* 48.48* 86.94* 32.24*
CFSum-F3W6 47.66* 25.33* 44.54* 48.45* 86.95* 31.88*
CFSum-F3P9 47.72* 25.51* 44.58* 48.66* 86.96* 32.03*

K3
CFSum-F3W6P9 47.86* 25.64* 44.64* 48.83* 86.98* 32.36*
CFSum-F9W3P6 47.58* 25.42* 44.49* 48.35* 86.95* 32.10*

Table 2: Automatic evaluation results of CFSum. “△” marks the results from Li et al. (2018b) and Li et al. (2020b)4.
“K1/2/3” denotes one/two/three kind(s) of contribution(s). “*” indicates the model performs significantly better than
the UniG by the 95% confidence interval (p<0.05).

66,000 samples in total. And each sample is a
triplet of <sentence, image, summary>. Some sta-
tistical information is shown in Table 1. Appendix
D gives the categories of test images.

We set both the text embedding dimension and
hidden dimension as 768. We apply “bert-base-
uncased” (Devlin et al., 2019) vocabulary with
28,996 tokens. The dropout (Srivastava et al., 2014)
rate is set to 0.1. Besides, the batch size is set to
8. For texts, we use the max text encoding length
of 60, and the minimum text decoding length is 8.
For images, the object detection tool BUTD (An-
derson et al., 2018) is applied to extract the image
feature, with the maximum boxes as 36. We use the
Adam (Kingma and Ba, 2014) optimizer and set the
learning rate as 5e− 05, momentum parameters as
β1 = 0.9, β2 = 0.98. The model is initially trained
with the summary generation loss for 35 epochs.
To obtain our final model, we train for a further 15
epochs with the hierarchical framework. In the test
phase, we employ beam search and set the beam
size as 4 to generate the summary. The parameter
α in the pre-filter module is set as α = 0.65.

4.2 Comparative Methods

Lead: Exploiting the first eight words as the sum-
mary.
Compress (Clarke and Lapata, 2008): It uses in-

3http://www.nlpr.ia.ac.cn/cip/dataset.htm
4Because there is no output from these systems, we only

report ROUGEs in papers. In addition, BLEU, BERTScore,
and MoverScore cannot be recalculated.

teger linear programming to infer global optimal
compressions.
ABS (Rush et al., 2015): It utilizes an attention-
based model to generate words of summary condi-
tioned on the input text.
SEASS (Zhou et al., 2017): It constructs a second-
level sentence representation with a sentence en-
coder and a selective gate for summarization.
Multi-Source (Libovický and Helcl, 2017): It com-
bines multiple source modalities based on the hier-
archical attention mechanisms over each modality
for solving the multimodal machine translation.
Doubley-attentive (Calixto et al., 2017): It uses
two separate attention mechanisms to incorporate
the visual feature, which minified the gap between
the image and the translation.
MAtt (Li et al., 2018b): It proposes modality atten-
tion and image filtering for multimodal summariza-
tion.
MSE (Li et al., 2020b): It proposes to apply the vi-
sual selective gates to multimodal summarization.
UniG: It is our base model with multimodal trans-
former UNITER and GRU decoder.
UniG (T): UniG fed only with textual modality.

4.3 Automatic Evaluation Results

Our methods are reported with six automatic met-
rics, including ROUGE-1, ROUGE-2, ROUGE-
L (Lin and Hovy, 2002), BLEU (Papineni et al.,
2002), BERTScore (Zhang* et al., 2020), and
MoverScore (Zhao et al., 2019). More details of
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Figure 3: Visualization of word-complement gain and phrase-complement gain produced by our model. ▲/•
indicates that the value is greater than 0.

Model Informativeness Fluency Non-Redundancy
UniG (T) 3.63 3.48 2.91
UniG 3.69 3.66 3.05
CFSum 3.91 3.90 3.31

Table 3: Human evaluations. 1 stands for the worst, and
5 stands for the best for three metrics.

evaluation scripts are given in Appendix A.

Comparisons with Baselines. We compare our
work with our baselines and other work on the
multimodal sentence summarization dataset. Ta-
ble 2 shows the results of different models. The
results show that UniG performs comparably with
UniG (T). CFSums build on UniG, and introduces
coarse-to-fine contribution network. “F”, “W”, and
“P” represent the pre-filter, the word-level comple-
ment, and the phrase-level complement modules
contained in the CFSum. The footnote is the lo-
cation of the corresponding module. For exam-
ple, CFSum-F3 contains a pre-filter module with
Lf = 3. Generally, our methods CFSums outper-
form the baselines UniG (T) and UniG. The best
methods is CFSum-F3W6P9. And it achieves 1.64
higher points on ROUGE-1 than UniG. We also
conduct ablation experiments by applying one or
two kinds of contributions. The results demonstrate
that each image contribution benefits the model. In
addition, combining all image contributions brings
greater gains than a single contribution. Therefore,
it can be concluded that different contributions are
complementary to the summary. Besides, we con-
duct ablation studies by placing the pre-filter mod-
ule at the beginning (Lf = 3) or the end of the
hierarchical layers (Lf = 9). In comparison, plac-
ing the pre-filter module at the beginning (CFSum-
F3W6P9) yields better performance.

4.4 Human Evaluation Results
We randomly select 50 samples from the test
dataset and invite three postgraduates to score 1-
5 for the summary quality. The evaluation met-
rics include informativeness, fluency, and non-

redundancy. (1) Informativeness: Does the system
summary contain comprehensive reference con-
tent? (2) Fluency: Is the system summary grammat-
ically correct and readable? (3) Non-Redundancy:
Does the system summary not have redundant or
incorrect information relative to the reference sum-
mary? Table 3 shows the human evaluation re-
sults. We run the inter-annotator agreement study
on three volunteers’ scores and achieve reasonable
scores, 0.47, 0.39, and 0.43 on informativeness, flu-
ency, and non-redundancy, respectively. The results
show that our method CFSum-F3W6S9 achieves
the best performance on all three aspects over UniG
(T) and UniG baselines. Thus we conclude that our
method is also effective through human evaluation.

4.5 Further Analysis

4.5.1 Complement Modules Analysis
In other multimodal tasks such as image caption-
ing and multimodal translation, their models learn
to attend to the image more for visual words like
“red”, “rose” and “woman” (Lu et al., 2017; Calixto
et al., 2017). Since our proposed complement mod-
ules aim at extracting complementary information
relative to textual modality, we want to know which
word or phrase the image provides gains on. As
shown in Figure 3, we visualize the complement
gain value for the input words. We manually align
the reference summary and the input text. The
word highlighted with a red box indicates that it
appears in the reference summary generatively5 or
extractively.

First, we find that words with positive image
gain can basically cover the reference summary in-
formation. It proves that our calculated gain helps
in generating the target summary words. Second,
it can be observed that different complement mod-
ules bring positive gains in different areas, which
means different levels of complement modules are
complementary. It further explains that multiple

5“Generatively” means that the summary word is obtained
by paraphrasing or synonymous substitution of the input word.
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earthquake

Figure 4: Visualization of gainable images.

contributions are better than a single contribution in
the experimental results. At last, it is worth noting
that some words are gained from the image but are
not visible in the image, i.e., “relatives” and “vic-
tims”. Therefore, we believe the image brings gain
in both visible and invisible words. We explain
further in Gainable Images.

4.5.2 Pre-filter Module Analysis
Since we believe that images should provide mean-
ingful contributions instead of robustness enhance-
ments in multimodal summarization, we wonder
whether unpaired multimodal data may affect the
performance of our model. Therefore, we try gen-
erating the summary based on the unpaired image
and text.

In the test set, most of the images are highly sim-
ilar in theme and content. Generating unpaired data
with automatic shuffling is not significant for analy-
sis. Therefore, we manually exchange vi and vj in
pairs <ti, vi>, <tj , vj>, where vi, vj have different
themes or contents.

We exchange 20 pairs from 100 pairs of test
samples. And we conduct experiments with differ-
ent sampling for three times. The mean and stan-
dard deviation reports as Table 4. “Paired” repre-
sents ROUGE-1 on test set, “Unpaired” represents
ROUGE-1 on the unpaired set. “CFSum (filter-off)”
represents turning down the pre-filter mechanism.

Model Paired Unpaired
UniG 46.22 46.20(±0.012)
CFSum 47.86 47.46(±0.007)
CFSum (filter-off) 47.77 47.12(±0.011)

Table 4: Performance of unpaired multimodal data for
the baseline and our methods.

The results show different trends in the two mod-
els. For UniG, unpaired multi-modalities do not
affect the performance. We guess UniG does not ex-
ploit meaningful image information while relying

45.00

47.00

49.00

2 3 4 5

R
O
U
G
E-
1

Lf

w=1 w=2 w=3

Figure 5: Ablation studies of layer setting.

only on text to generate the summary. In contrast,
CFSum hurt more severely from unpairing. The
difference exists because CFSum depends on the
image and text. Thus, the unpaired image would
reduce the correct information that CFSum gets.
However, CFSum still performs better than UniG,
proving that it is fault-tolerant. Furthermore, CF-
Sum (filter-off) significantly suffers from unpaired
data, showing that pre-filter can eliminate useless
images.

4.5.3 Ablation Study

One of the most important hyperparameters in CF-
Sum is the location of different contribution mod-
ules. Because the three modules’ order in the net-
work is fixed, we change their absolute position
in the encoder layers and report the corresponding
performance in Figure 5. w denotes the number
of layers between two modules, and the X axis
denotes the starting layer of the pre-filter module.
The results show that the different layer settings
achieve comparable performance. It is noticeable
that w = 2 weakens the model. This is due to the
fact that the network with small w loses the advan-
tage of a hierarchical structure in the encoder.

4.5.4 Gainable Images

We select three gained words and corresponding
gainable images to show in Figure 4. Consistent
with our perception, images bring gains on visual
words, such as “earthquake”. More importantly,
they bring gains on non-visual words such as “cel-
ebrate” and “victims”. For example, “celebrate”
may be used in competitions, events, and diplo-
macy as shown in Figure 4. Multimodal tasks such
as image captioning or multimodal question an-
swering focus on establishing associations between
visual words and images. However, multimodal
summarization also needs to pay attention to the
associations between non-visual words and images.
In other words, image contributes to both visual
and non-visual words.
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5 Conclusion

Based on the observation that existing multimodal
summary models do not take full advantage of use-
ful image information, this paper focuses on mod-
eling different contributions of images for summa-
rization. Therefore, we propose a novel framework
CFSum consisting of pre-filter, word-level comple-
ment, and phrase-level complement modules. The
pre-filter coarsely eliminates the impact of useless
images. The two-level visual complement modules
measure different aspects of image gains and guide
the fusion of different modalities. Experimental
results have shown that CFSum can significantly
improve the summary. More importantly, the com-
plement modules make images contribute to visual
words and non-visual words.

Limitations

Since our method constructs on the multimodal
transformer, it cannot be migrated to the dual-
stream model. Experiment results show that CF-
Sum can achieve comparable performance with
strong baselines. But it still cannot surpass the
SOTA of some dual-stream large models.
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A Experiment details

Here, we will introduce some detailed settings for
our experiments. All methods are run on NVIDIA
GeForce RTX 3090. UniG has 139M parameters.
When the batch size is 8, it takes 20 hours to train
for 50 epochs with a single GPU.

We also provide evaluation scripts for reproduc-
tion. For ROUGE score, we use file2rouge6 with
default settings. For BERTScore7, we use the of-
ficial API. It exploits the pre-trained contextual
embeddings from BERT to calculate the similarity
between the hypothesis sentences and the refer-
ence sentences. For MoverScore, we use mover-
score_v28, which leverages BERT and Earth Mover
Distance to measure the similarity.

B Derivation details
Derivation detail of formula 8 is:

GIj = Gain(yj/m
Lw , yj/u

Lw )

= KL(ŷj ||yj/mLw )− KL(ŷj ||yj/uLw )

= P (ŷj = 1) · logP (yj = 1/mLw )

+ P (ŷj = 0) · logP (yj = 0/mLw )

− P (ŷj = 1) · logP (yj = 1/uLw )

− P (ŷj = 0) · logP (yj = 0/uLw )

= P (yj = ŷj) · logP (yj = ŷj/m
Lw )

− P (yj = ŷj) · logP (yj = ŷj/u
Lw )

= logP (yj = ŷj/m
Lw )− logP (yj = ŷj/u

Lw ) (21)

Thus the gain is simplified to entropy difference.

C Examples of Complement Modules

We will provide some examples to explain further
Word-level Complement. For one of the input
words tj , we assume that it appears in the refer-
ence summary. Then the ground truth of the copy
classification is ŷj = 1. We list hypothetical classi-
fication results of bi-modal and uni-modal in Table
5.

P(yj = 1) P(yj = 0)
uLw 0.4 0.6
mLw 0.6 0.4

Table 5: Copy classification task results.

Then, the GIj is calculated as:

6https://github.com/pltrdy/files2rouge
7https://pypi.org/project/bert-score/0.2.1
8https://github.com/AIPHES/emnlp19-moverscore

GIj = Gain(yj/m
Lw , yj/u

Lw )

= logP (yj = 1/mLw )− logP (yj = 1/uLw )

= log0.6− log0.4

= 0.405 (22)

which means the image may give the input word tj
a gain of 0.405. Furthermore, the image brings a
positive gain. Thus in the attention layer, the text
word tj should give the image a higher attention
score.

D Impact of image category

To further analyze the impact of our approach on
different categories of images. We categorize the
test images with VGG19 and show the performance
of each type of image. As shown in Figure 6, there
are 380 categories in the test images, and we list
the top 10 categories with the highest proportion.
It can be seen that the image is evenly distributed.
The line charts also show that CFSum is superior
to UniG in all categories. Therefore there is no
category bias in our method.

E Guided Attention

We visualize (1) the attention matrix from the 8th

encoder layer of CFSum-F3W6S9, whose layer is
under the word-level guidance. (2) the attention
matrix from the 11th encoder layer of CFSum-
F3W6S9, whose layer is under the phrase-level
guidance. The attention matrix is renormalized
after removing [CLS] and [SEP]. They are shown
in Figure 7 and Figure 8.

From the attention under the word-level guid-
ance, we can observe that some input words which
generatively or extractively occur in the reference
summary will attend to the image, such as “crash”
and “relatives”. From the attention under the
phrase-level guidance, we can observe that some
input phrases which generatively or extractively
occur in the reference summary attend to the im-
age more. Above all, it also proves that two visual
complement modules succeed in providing better
encoding to generate summaries.
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Figure 6: Top10 categories of test images and their corresponding performance.
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