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Abstract
We propose HERMES, the first approach for
spreadsheet formula prediction via HiEraRchi-
cal forMulet ExpanSion, where hierarchical ex-
pansion means generating formulas following
the underlying parse tree structure, and For-
mulet refers to commonly-used multi-level pat-
terns mined from real formula parse trees. HER-
MES improves the formula prediction accuracy
by (1) guaranteeing correct grammar by hierar-
chical generation rather than left-to-right gen-
eration and (2) significantly streamlining the
token-level decoding with high-level Formulet.
Notably, instead of generating formulas in a
pre-defined fixed order, we propose a novel
sampling strategy to systematically exploit a
variety of hierarchical and multi-level expan-
sion orders and provided solid mathematical
proof, with the aim of meeting diverse human
needs of the formula writing order in real ap-
plications. We further develop an interactive
formula completion interface based on HER-
MES, which shows a new user experience in
https://github.com/formulet/HERMES.

1 Introduction

Hundreds of millions of people use spreadsheets,
such as Excel and Google Sheets, for data storage
and management. The semi-structured context in-
fers potential relations among data in cells. Users
can add formulas in their spreadsheets to process
and analyze data based on such relations. Although
spreadsheet formula language targets general users
and is much simpler than programming languages
like C++, it is still difficult for most Excel users
without any programming experience to master. To
write a formula for a cell, users need to find appro-
priate formula functions, such as IF and SUBTOTAL,
compose them with correct grammar, and fill in
proper values and cell references. This process
could be time-consuming and error-prone.

∗∗Work done during Wanrong’s internship at Microsoft
Research Asia.

††Corresponding author.

For computers, spreadsheet formula prediction
is also a challenging task, which requires under-
standing both textual and numerical data, diverse
table structures, and relationships between cells.
Thanks to the advances in language model (LM)
pretraining, natural language (NL) understanding,
and spreadsheet table understanding and reasoning,
researchers have developed systems that could pre-
dict the formula of a selected cell in table (Chen
et al., 2021; Cheng et al., 2022). Those systems
transform users from “writers” into “decision mak-
ers”, greatly reducing the required efforts for writ-
ing formulas. We have to argue, though, directly
applying autoregressive sequence generation to for-
mula generation has fundamental weaknesses.

First, they fail to utilize the inner structures in
spreadsheet formulas. Spreadsheet formulas have
well-defined grammar and structure, including the
usage of operators, parenthesis, constant values,
cell references, and their combinations. Without
taking the structure into consideration, a minor er-
ror made where the model is uncertain during the
left-to-right decoding process might cause subse-
quent grammar mistakes (Guo et al., 2021; Yin
and Neubig, 2017). Previous works have achieved
promising results by changing the pure left-to-
right fashion by decomposing formula generation
into two stages, formula sketch prediction and cell
range prediction (Chen et al., 2021; Cheng et al.,
2022). But the underlying parse trees of formula
sketches have been long neglected.

Second, the goal of spreadsheet formula pre-
diction is to help spreadsheet users create desired
formulas. Existing works generate entire formula
sketches at once, but lack sufficient interaction with
users. As users are only able to accept or reject the
final predictions, and thus any mismatch in users’
intents might lead to unpleasant post-editing and
even from-scratch rewriting. How to interactively
assist users in the process of creating formulas are
well desirable to be explored.
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(a) Microsoft Word Equation (b) HERMES Interface

Figure 1: Interactive interface with variable input order.

In this work, we propose HERMES, the first ap-
proach to generate formulas through hierarchical
Formulet expansion. Unlike existing works, we ex-
ploit the inherent tree structure of formulas, which
guarantees that the generated formulas are gram-
matically correct. Furthermore, we find that many
commonly-used formula patterns well reflect high-
level reasoning, e.g., total and percentage change,
so we extract Formulet, a set of 1-to-3 level expan-
sions from real formula parse trees. To this end,
we train the model to hierarchically expand nodes
using Formulet, which avoids overly small granu-
larity and too many steps to expand the entire parse
tree, making the generation process concise and
robust (Section 3.2.1). The full pipeline contains
three stages. We first generate formula sketches
that do not contain constant textual/numerical val-
ues nor cell references through hierarchical For-
mulet expansion, then generate textual/numerical
values, and finally predict cell references.

Inspired by the user interface for creating equa-
tions in Word documents (Figure 1 (a)), we develop
an interactive experience (Figure 1 (b)) that allows
users to expand parse tree nodes in any order he/she
prefers (Section 5). Unlike existing formula predic-
tion systems that can only generate formulas in a
fixed order, e.g., left-to-right, users here can drive
the generation on their demands and potentially
learn how to compose grammar-correct unfamiliar
formulas. To support this experience, we propose a
novel and systematic sampling strategy with solid
mathematical proof to exploit various hierarchical
expansion orders for training the HERMES decoder.
For evaluation, we further introduce a metric: inter-
action upper bound (IUB) accuracy (Section 4.3),
and we find that the IUB accuracy of our model is
significantly higher than the accuracy of generating
entire formulas at once, showing that the interac-
tive framework can help users complete many more
formula tasks.

2 Preliminaries

2.1 Formula Language and Parse Tree
The spreadsheet formula language used in this work
comes from Microsoft Excel, consisting of oper-
ators, functions, cell references, and constant val-
ues. For a program P in a program language
with known context-free grammar (CFG) G, P
could be parsed into abstract syntax tree (AST)
according to G (Shin et al., 2019). Similar to
programming languages, the spreadsheet formula
also has its own context-free grammar and thus
could be represented as a parse tree, which shows
its hierarchical structure (Aivaloglou et al., 2015).
We use XLParser (Aivaloglou et al., 2015) to ob-
tain the raw parse tree of each formula. An ex-
ample raw parse tree is shown in Appendix Fig-
ure 6. But we find that the parse tree derived by
XLParser is too detailed and deep to be be the
prediction target with many non-terminal nodes
like [Formula], [Arguments], [Argument],
[Reference], [ReferenceFunctionCall], etc.

2.2 Compressed Parse Tree
We compress the raw parse tree by keeping
[Formula] node as the only non-terminal and fold-
ing the other non-terminal nodes (Appendix B.1).
Finally, we rename [Formula] as [NonTerminal]
since it has became the only non-terminal
node, and substitute all numerical values with
[NumberToken]s, text values with [TextToken]s,
and cell references with [CellToken]s to obtain
the compressed parse tree. An example compressed
parse tree is shown in figure 3. In the following sec-
tions, if not otherwise specified, parse tree refers to
compressed parse tree.

Then we decompose the spreadsheet formula
into formula sketch, textual and numerical val-
ues, and cell references. The formula sketch is
formally defined as the formula with textual and
numerical values replaced by [TextToken]s and
[NumberToken]s, and cell references replaced by
[CellToken]s. Then we link all the leaf nodes and
bracket those nodes with the least common ances-
tors to form a sequence with a uniform bracketing
rule. For example, (SUM(A1:B2)/4)+1 has the for-
mula sketch ( ( ( SUM ( [CellToken] : [CellToken] )

) / [NumberToken] ) + [NumberToken] ), textual and
numerical values 4,1, and cell references A1,B2.
Since our model generates formula sketches by
expanding nodes in the parse tree, the generated
formula is guaranteed to be grammatically correct.
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Figure 2: The overall architecture, including the TUTA
Encoder and the three-stage decoder. The detail im-
plementation of the Sketch Decoder and the iterative
decoding process during inference: 1 From a semi-
finished formula sketch 2 Select a [NonTerminal]

token (represented as [NT]) 3 Predict an expansion
4 Replace selected [NonTerminal] with predicted

expansion and get a new sketch. [S] represents the
special token [FormulaStart], and [E] represents the
special token [FormulaEnd].

3 HERMES Model

We present details of HERMES for spreadsheet for-
mula prediction in this section. Figure 2 shows an
overall architecture.

3.1 TUTA as Encoder

We follow the input specification of FOR-
TAP (Cheng et al., 2022) (more details in Ap-
pendix B.3). The content of the target formula cell
τ(s,t) from table τ is replaced by a special token
[FORM], in order to indicate the model where to pre-
dict the formula. We use TUTA (Wang et al., 2021)
– the first LM(BERT)-based spreadsheet pretrain-
ing method – as the encoder of HERMES to com-
pute contextual toke and cell embeddings. TUTA
leverages the hierarchical structure in table headers
through tree embedding and tree attention and has a
number encoding layer that utilizes magnitude, pre-
cision, and the first and last digit of numerical data.
Understanding hierarchical contextual information
from both header and data cells and understanding

numerical data are important for formula predic-
tion in semi-structured data, so we use TUTA as
our encoder. Whereas HERMES is portable to be
integrated into other encoders.

3.2 Three-stage Decoder

In our model, the decoding process includes
three stages. First, we iteratively expand a for-
mula sketch from initial [NonTerminal] using
Sketch Decoder (SD). Second, we predict the tex-
tual and numerical values that correspond to the
[ValueToken]s in the formula sketch using Value
Decoder (VD). Third, we predict the cell refer-
ences corresponding to [CellToken]s in the for-
mula sketch using Cell Reference Decoder (CRD)
and obtain the prediction of the complete formula.
Note that the three decoders share the same Trans-
former decoder structure (Vaswani et al., 2017), but
have different linear projectors.

3.2.1 Sketch Decoder (SD)
The Sketch Decoder aims to predict a single-step
expansion given the encoding of the spreadsheet
table and the current semi-finished formula sketch,
which contains [NonTerminal] token(s). We ob-
tain contextual encoding of the table from TUTA
encoder, concatenate the encoding of [FORM] to-
ken that represents the target cell and the embed-
ding of the current semi-finished formula sketch,
then apply a shared Transformer Decoder (Vaswani
et al., 2017) to obtain the sequence of representa-
tions of the tokens in semi-finished formula sketch
(h1, · · · , hn). We use Non-terminal Selector and
Expansion Predictor - two linear projectors - to
predict where and how to expand, respectively.

To be more specific, the Non-terminal Selector
takes the representation of all [NonTerminal]s in
the semi-finished sketch H = (hNT1 , · · · , hNTk

)
as input, and predicts a probability distribution over
each [NonTerminal] using

P(NTi) = Softmax(uTH) (1)

where u ∈ Rd is the vector parameter of Non-
terminal Selector’s linear projector, projecting h’s
into scalar logits. d is the dimension of h’s. The
Non-terminal Selector enables our model to expand
nodes in the formula parse tree in arbitrary order
instead of only fixed orders such as Depth First
Search or Breadth First Search, and empowers our
model to explore the optimal expansion order in
formula generation.
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Given a selected [NonTerminal] NTi, the Ex-
pansion Predictor takes its representation hNTi as
input, and predicts a probability distribution over
expansions e in Formulet using

P(e) = Softmax(WhNTi) (2)

where W ∈ R|Formulet|×d is the matrix parameter
of Expansion Predictor’s linear projector. Formulet
is a set of common expansions collected in Sec-
tion 3.2.1.

For inference, the generation process starts from
a single [NonTerminal] token and applies beam
search to iteratively select a [NonTerminal] and
replace the [NonTerminal] with the predicted ex-
pansion until there is no [NonTerminal] left in the
current formula sketch. The Sketch Decoder archi-
tecture and decoding process is shown in Figure 2.

Details for training Sketch Decoder with multi-
level expansion are discussed in the following parts.

Multi-level expansion. Each non-leaf node in
the compressed parse tree contains one or mul-
tiple [NonTerminal] tokens, each corresponds
to a child node, where the child node is the
node-representation of 1-level expansion of that
[NonTerminal] token in the parent node, and the
sequence of tokens that forms the child node is the
sequence-representation of 1-level expansion of
that [NonTerminal] token. Here we define n-level
expansion recursively: the node-representation of
n-level expansion of a root [NonTerminal] token
contains the node-representation of (n-1)-level ex-
pansion of the root [NonTerminal] token, and ad-
ditionally contains the 1-level expansion nodes for
each unexpanded [NonTerminal] token in the (n-
1)-level expansion. The sequence-representation of
n-level expansion of a root [NonTerminal] token
R can then be obtained by substituting each unex-
panded [NonTerminal] token N in the sequence-
representation of the (n-1)-level expansion by the
sequence-representation of 1-level expansion of N .

Formulet. To avoid overly small expansion gran-
ularity and too many steps to expand the entire
parse tree, we construct Formulet by extracting the
sequence-representation of all 1-level expansions
and top 90% frequent 2/3-level expansions from the
parse trees in diverse high-quality datasets of En-
ron (Hermans and Murphy-Hill, 2015), Fuse (Barik
et al., 2015), and Euses (Fisher and Rothermel,
2005), forming a set of 2,223 possible expansions
of multiple levels. Formulet contains common pat-

terns people used when writing spreadsheet formu-
las, like SUM ( [CellToken] : [CellToken]), (
[CellToken] - [CellToken]) / [CellToken],
and IF ( ([CellToken] < [CellToken]),
[NumberToken], [NumberToken]) . During gen-
eration, the Expansion Predictor is flexible to select
a high-level expansion from Formulet in a single
step, as well as take multiple steps of composing
low-level expansions. The former one enables ef-
ficient generation for commonly-used formulas,
while the latter has more flexibility to compose
unseen formulas. Dynamically selecting expan-
sions in multiple abstraction levels requires both
low-level and high-level reasoning ability.

Optimization of Sketch Decoder. We propose a
novel sampling strategy to systematically exploit
hierarchical and multi-level expansion orders. We
denote the set of nodes in the complete compressed
parse tree as TC . Each semi-finished formula
sketch corresponds to a subset of visited nodes
T ⊆ TC in the compressed parse tree, forming a
smaller tree. We use “state” to denote the node
set. We say a state T is reachable to state T̃ if we
can obtain state T̃ by expanding a [NonTerminal]
token in some nodes in T using Formulet. We use
lattice L to represent the states and the reachability
between them: each state T is a node in the lattice
L, and is the parent node of its reachable states. An
example lattice is shown in figure 4.

As shown in the figure, we order the states so
that all the states that correspond to n nodes in
the compressed parse tree TC are located on the
nth row of the lattice L. Since Formulet contains
expansions in multiple levels, a state T on the ith
row can directly reach to a state T̃ on (i + h)th
row, where h ≥ 1. The initial state – the only
state on the top row – corresponds to the set of a
single root node in the initial compressed parse
tree T I = {[NonTerminal]}. The last state – the
only state on the bottom row – corresponds to the
complete compressed parse tree TC .

In the view of lattice, the generation process is
finding a path σ from the top root of the lattice
T I to the bottom of the lattice TC . Let S(L) be
the set of all paths σ from T I to TC . Then our
optimization goal for a single formula f (from table
τ ) with corresponding lattice L is to maximize

g(f) =
∑

σ∈S(L)

n(σ)−1∏

i=0

P
(
Tσi+1 |Tσi , τ, θ

)
(3)
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where n(σ) is the length of path σ, Tσi is the state
at step t in the path. Tσ0 = T I and Tσn(σ)

= TC .
P
(
Tσi+1 |Tσi , τ, θ

)
is the probability of reaching

Tσi+1 from Tσi by selecting a [NonTerminal] to-
ken NT from a leaf node in Tσi and then doing an
expansion e: P (T |Tσi , τ, θ) ∗ P(e).

It is impractical to train the model based on the
exact probability by traversing through all S(L)
paths. Inspired by Shen et al., we utilize Jensen’s
inequality in Theorem 1 to estimate the lower
bound of the optimization goal g(f). We further
rearrange the summation order in Theorem 2 to
enable parallel optimization, which significantly
boosts training speed. compressed parse tree

 [NonTerminal]

 ( [NonTerminal] + [NonTerminal] )

 ( [NonTerminal] / [NonTerminal] )  [NumberToken]

 ( SUM [NonTerminal] )  [NumberToken]

 ( [CellToken] : [CellToken] )

Figure 3: Compressed parse tree of
(SUM(A1:B2)/4)+1.

Figure 4: Left: each node of the compressed parse tree
of (SUM(A1:B2)/4)+1 is named with a letter. Right:
corresponding lattice L. Solid lines are for 1-level ex-
pansions, dotted lines are for 2/3-level expansions. The
top root node A of the lattice corresponds to tree T I , and
the bottom node ABCDEFG corresponds to tree TC .

Theorem 1. For an arbitrary formula f and its
corresponding lattice L(f), let S(L) be the set of

all paths σ, and Tσt be the t-th step of the path σ.
n(σ) represents the number of total steps in path
σ. The logarithm of the optimization goal g(f) can
be lower-bounded by a summation of single step
log-probabilities:

log g(f) ≥ log |S(L)|+

1

|S(L)|
∑

σ∈S(L)

n(σ)−1∑

i=0

logP
(
Tσi+1 |Tσi , τ, θ

)

Theorem 2. Let C(T ) be the set of children of
a parse tree T in lattice L and R(T, TC) be the
number of different routes going from T to TC . If
we select a path σ in the following way:

1. Begin with Tσ0
:= T I ;

2. For i = 0, 1, 2, ... we choose the next lattice
node Tσi+1 among C(Tσi), based on the dis-

tribution
R(Tσi+1 ,T

C)

R(Tσi ,T
C)

;

3. End with Tσn(σ)
:= TC;

all paths are sampled with equal probability. Then
we optimize

∑

T̃∈C(T )

R(T̃ , TC)

R(T, TC)
logP(T̃ |T, τ, θ)

for each parse tree T in the selected path σ, where
P(T̃ |T, τ, θ) is the estimated probability of predict-
ing T̃ from T . In the expectation perspective, this
is equivalent to optimize

log |S(L)|+

1

|S(L)|
∑

σ∈S(L)

n(σ)−1∑

i=0

logP
(
Tσi+1 |Tσi , τ, θ

)

, which is the lower bound of g(f) in Theorem 1.

The efficient optimization process for Sketch
Decoder and other modules is illustrated in Algo-
rithm 1, which is based on the theoretical foun-
dation in Theorem 1 and Theorem 2. We refer
interested readers to Appendix A for detailed proof
of the effectiveness of this algorithm.
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Algorithm 1: HERMES Training
Initialize model parameters θ
∀T ∈ L, calculate R(T, TC) by enumertaion
repeat

Sample a training example (table τ , formula f ),
where f has corresponding lattice L

T ← T I

σ ← [T ] // We are going to uniformly
sample a path σ ∈ S(L) from T I to TC

while T ̸= TC do
T̃ ← a child node of T sampled with

probability R(T̃ ,TC)

R(T,TC)

Append T̃ to σ

T ← T̃
lossSD ← 0
foreach T ∈ σ do

lossSD ← lossSD −∑
T̃∈C(T )

[
R(T̃ ,TC)

R(T,TC)
log P(T̃ |T, τ, θ)

]

// log P(T̃ |T, τ, θ) can be calculated
by summing the output log
probabilities of both the
Non-terminal Selector and the
Expansion Predictor

loss← lossSD + lossVD + lossCFD
Update θ by gradient descent

until Convergence;

3.2.2 Value Decoder (VD)

Different from SpreadsheetCoder (Chen et al.,
2021) and FORTAP (Cheng et al., 2022) which
regard textual and numerical values as a part
of the sketch, we separate the value from the
sketch decoded by expansion-based Sketch De-
coder. Given table encoding from TUTA en-
coder, the Value Decoder considers fully expanded
formula sketch as already decoded tokens, and
uses the shared Transformer decoder in a Seq2seq
fashion (Sutskever et al., 2014) to further de-
code the textual and numerical values correspond-
ing to each [TextToken] and [ValueToken] in
formula sketch. Specifically, let v1, v2, ..., vn
be the values corresponding to [TextToken]s
and [ValueToken]s in the same order, where
n is the total number of [TextToken]s and
[ValueToken]s, then the target for the Value De-
coder is [ValueStart] v1 [SEP] v2 ... [SEP]
vn [ValueEnd]. lossV D is aggregated on each
token’s cross entropy. We use sketch-with-value
to denote the concatenation of generated formula
sketch and the decoded textual and numerical val-
ues, which could be equivalently transformed into a
formula without cell reference by replacing special
tokens with corresponding values.

3.2.3 Cell Reference Decoder (CFD)
Cells in HERMES are represented by the encod-
ing of corresponding [SEP]s in the input sequence.
Different from SpreadsheetCoder (Chen et al.,
2021) that directly decodes cell addresses, we ap-
ply full attention to the sketch-with-value using
the shared Transformer decoder, then for each
CellToken, we measure the cosine similarity of its
embedding with embeddings of all input cells and
pick the most similar cell as the cell reference pre-
diction. lossCFG represents the aggregated loss.

4 Experiments

4.1 Dataset

We construct our dataset from the Enron Cor-
pus (Hermans and Murphy-Hill, 2015), a database
containing over 17K spreadsheets with diverse ta-
ble structures and rich formula types. We fol-
low the data processing pipeline of Cheng et al.
(2022) but additionally extracted formula parse
trees. More implementation details are discussed
in Appendix B.2. We collect 106K table-formula
samples to form Enron dataset. We split them into
train and test sets in the ratio of 7:3. We have
also constructed a dataset from the FUSE Cor-
pus (Barik et al., 2015) using the same pipeline
(only reserve English spreadsheets) to further eval-
uate the model’s generalizability, which contains
30K table-formula samples.

4.2 Baselines

We adopt SpreadsheetCoder and FORTAP (Chen
et al., 2021; Cheng et al., 2022) as our base-
lines. SpreadsheetCoder is based on BERT (Devlin
et al., 2019) and uses the first row of the table
as header. FORTAP is state-of-the-art method for
spreadsheet formula prediction. FORTAP is based
on TUTA (Wang et al., 2021) and leverages spread-
sheet formulas for table pretraining. Both of the
models apply two-stage decoder for formula gener-
ation, first decoding sketch-with-value defined in
Section 3.2.2 using an LSTM and then predicting
cell references. Since SpreadsheetCoder has not
publicly released its model and code with training
details, we use the alternative implementation by
Cheng et al..

4.3 Metrics

We evaluate the following metrics: (1) Sketch accu-
racy, (2) Sketch-with-value accuracy, (3) Cell ref-
erence accuracy, and (4) Formula accuracy, which
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measures the percentage of correctly predicted
formula sketch, sketch-with-value, all cell refer-
ences in the formula, and the entire formula. Note
that the sketch accuracy defined in (Chen et al.,
2021; Cheng et al., 2022) corresponds to sketch-
with-value accuracy defined in our work. Formula
is only correct when sketch, sketch-with-value,
and cell-reference are correct. Sketch accuracy
≥ sketch-with-value accuracy ≥ formula accuracy
in the three-stage decoding process.

We propose a new metric: (5) interaction up-
per bound (IUB) accuracy, which provides a new
aspect for evaluating how well an algorithm per-
forms with potential human interaction. We con-
sider that the evaluation of AI models should be
human-centered. In other words, how well can a
model help humans complete their tasks, e.g., writ-
ing a formula. Existing works all generate entire
formulas at once, directly showing users the top-1
or top-n results without intermediate interactions,
but it may cause more failed cases without users’
inputs.

IUB accuracy is formally defined as the formula
prediction accuracy when a user is able to select
from the model recommendations in each round of
interactions, e.g., the top-5 predicted expansions in
each step, with a limited total number of rounds no
bigger than 5. To calculate IUB accuracy, we simu-
late a user who actively interacts with the model by
always choosing the best recommendation, which
is the recommendation that potentially leads to a
correct formula generation.

4.4 Experimental Details
Encoders of our models are initialized from the pre-
trained TUTA (Wang et al., 2021). All our models
have first trained 1M steps for Sketch Decoder on
Enron dataset, keeping Value Decoder and Cell Ref-
erence Decoder frozen, then trained 1M steps for
the whole model on Enron dataset. The beam size
is 10 for both Sketch Decoder and Value Decoder.
Hyperparameters are presented in Appendix B.4.
Experiment results are from single runs.

4.5 Results
Table 1 summarizes the performance of different
models when predicting sketch and sketch-with-
value on the Enron test set, and Table 2 summarizes
the performance of predicting cell references and
entire formula. As shown, although without pre-
training, HERMES outperforms FORTAP – current
state-of-the-art – by 2.3% on top-1 sketch-with-

Model
Sketch Sketch-w-value

Top-1 Top-5 Top-1 Top-5
SpreadsheetCoder - - 59.6% 73.6%

FORTAP - - 70.8% 79.4%

HERMES 78.8% 87.6% 73.1% 80.1%

Table 1: Sketch accuracy and sketch-with-value accu-
racy on Enron.

Model Cell Formula IUB Formula

SpreadsheetCoder 67.7% 40.4% -

FORTAP 78.8% 55.8% -

HERMES 82.4% 60.3% 69.0%

Table 2: Cell reference accuracy, top-1 formula accuracy
and IUB formula accuracy on Enron.

value accuracy, and 4.5% on top-1 formula accu-
racy, showing the effectiveness of the three-stage
decoding process and generating formula sketch
by hierarchical expansion. Importantly, our model
achieves 96.9% in IUB sketch accuracy, signifi-
cantly outperforms the top-5 sketch accuracy of
87.6%, showing that our interactive framework
can help users to complete much more formula
sketches than just selecting from a final generation
list. However, the IUB formula accuracy drops to
69.0%, showing that there still exists a challenge
in cell reference and constant value prediction.

We also test our model on FUSE dataset without
further finetuning (Table 3). Top-1 sketch accu-
racy only drops by 8.2%, indicating generalizabil-
ity since Formulet is the formula structure shared
in different spreadsheet tables. More evaluation
results on FUSE are discussed in Appendix C.

Ablation study results in Table 4 demonstrate the
importance of different modules in Sketch Decoder.
When restricting the model to only use 1-level ex-
pansion in the Formulet, the model performance
significantly decreases. As shown in Table 5, multi-
level expansion reduces the steps of expansions
required to generate a formula sketch, increases
the probability of expanding the formula sketch

Testset Top-1 Top-5
Enron 78.8% 87.6%

FUSE 70.6% 74.3%

Table 3: Sketch accuracy on Enron and FUSE.
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in a single step and reduces the uncertainty in the
sketch generation process. In addition, we observe
that adding Non-terminal Selector brings perfor-
mance gain regarding top-5 accuracy, but slightly
decreases top-1 accuracy. We could consider Non-
terminal Selector as a route planner in a distribu-
tion: it tends to select an “easier” order to predict
expansions of nodes in the compressed parse tree,
which corresponds to a route in the lattice, but at
the same time, all feasible orders are possibly cho-
sen because it has been assigned multiple ways in
the training phase through our sampling strategy.
We conjecture that adding Non-terminal Selector
improves the flexibility when selecting expansion
orders, thus improving the possibility of generating
a correct formula sketch when given more chances.
But in the top-1 setting, the model might have ex-
plored too many variants while lacking sufficient
training in a specific order.

Approach Top-1 Top-5
Full Model 78.8% 87.6%
- Non-terminal Selector 81.3% 84.9%
- Multi-level expansion 40.5% 68.7%

Table 4: Sketch accuracy of model variants.

5 Interactive Formula Generation

We propose interactive formula generation, allow-
ing users to participate in the formula generation
process, which potentially helps users to complete
more tasks as indicated in Section 4.5. As shown
in Figure 5 (a), users could start the interaction pro-
cess by simply typing “=” in the target cell, then
ten recommended (semi-finished) formula sketches
will popup in a tooltip for users to select. They are
generated by running the Expansion Predictor and
may include different levels of expansions. Users
need to select one of the sketches from the tooltip,
and it will appear in the top bar of the tooltip as the
updated (semi-finished formula) sketch.

Sequence 1-level exp Multi-level exp
4.40±1.83 2.54±0.82 2.31±0.81

Table 5: Average required steps for sketch completion
by different methods. Compared to sequence generation
(“Sequence”), where required steps are the number of
tokens, expansion-based (“exp”) methods greatly reduce
the required steps for generating sketches. Formulet-
based multi-level expansion achieves minimal steps.

If the updated semi-finished formula sketch con-
tains one or more blank boxes ([NonTerminal]s)
(Figure 5 (b)), users can select one blank box for
the next round of Expansion Prediction, then again
select an expanded sketch from the updated tooltip,
and repeat this process until the formula sketch
does not contain any blank boxes (Figure 5 (c)).
Note that the [NonTerminal] blank box with the
highest probability predicted by Non-terminal Se-
lector is selected by default, and corresponding Ex-
pansion Predictions are automatically shown, so it’s
not necessary for users to make blank box selection
if they do not want to change the expansion order.
Finally, the interactive system will complete the
formula with constant values and cell references.

This interface is developed upon (Srinivasa Ra-
gavan et al., 2022) using JavaScript. We implement
table detection, header detection, and feature ex-
traction following (Wang et al., 2021) in the fron-
tend as inputs, and the HERMES model is wrapped
to be a backend service using FastAPI.

(b) Step 2

…

(c) Step 3(a) Step 1

Figure 5: Demonstration of the interactive formula gen-
eration interface. For simplicity and easy understanding,
a [NonTerminal] is represented as a blank dotted box
(in semi-finished formula in the top bar) or a “[]” (in
sketch recommendations).

6 Related Works

We introduced SpreadsheetCoder and FORTAP
in Section 4.2. We believe that table pertaining
methods in FORTAP can be combined with our
advanced model structure to achieve even greater
gains. While TabT5 (Andrejczuk et al.) is a con-
current work that has been evaluated on spread-
sheet formula prediction using a pre-trained lan-
guage model for left-to-right sequential decoding,
we have not included it as a baseline due to the
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lack of publicly available source code, pre-trained
model, and the dataset processing details.

Recent works in code generation have explored
leveraging grammar trees for structured code gener-
ation, showing advantages over left-to-right sequen-
tial decoding (Yin and Neubig, 2017; Brockschmidt
et al., 2018). For example, (Shin et al., 2019) gen-
erates code based on high-level patterns (idioms),
but in a fixed depth-first order. (Guo et al., 2021)
recently proposes to generate code completions in
flexible orders while using only low-level granu-
larity. HERMES explores controllable hierarchical
expansion orders based on both high-level and low-
level expansions in Formulet.

More broadly speaking, structured generation
leverages inherent structural information of tasks
such as grammar and semantics. (Dong and Lap-
ata, 2016) proposed to generate the logical forms
of input utterances with a hierarchical tree decoder.
(Li et al., 2020) additionally considers input ob-
jects as graphs and generates tree outputs without
specific assumption on downstream tasks.

Existing works on flexible generation mainly
investigates methods for generating sequences in
arbitrary order. (Stern et al., 2019) generate se-
quences based on token insertions during decoding.
(Shen et al., 2020) proposes to generate sequences
by iteratively inserting and filling in blanks, further
allowing users to specify where to insert. In spread-
sheet formula generation, HERMES continues the
idea of (Shen et al., 2020) where users can instruct
the model on where and what to expand given the
formula sketch.

We are the first to leverage the tree structure in
spreadsheet formula generation. We are also the
first work in code generation to combine idiom-
based generation (Shin et al., 2019) with variable
hierarchical generation orders. We have derived
an optimization algorithm that applies systematic
sampling to deal with the idiom-based hierarchical
generation which may contain skip-level expan-
sions, and provided solid mathematical proof. We
believe our approach is a novel exploration of code
generation and can inspire future work in this field.

7 Discussion

Is the grammar generated by HERMES 100%
correct?

If we ignore the variable type, we can prove that
the formula sketch generated by HERMES (Sketch
Decoder) is correct by simple mathematical induc-

tion: we have that the expansions (including for-
mula sketches and terminals) in Formulet are gram-
matically correct, and the initial (semi-finished) for-
mula sketch “[NonTerminal]” is also correct. Given
a correct semi-finished formula sketch, its gram-
mar is still correct by expanding a non-terminal in
it into either a formula sketch or a terminal. Thus
the formula sketch is grammatically correct.

Even if we take variable type into consideration,
we can still easily avoid grammar mistakes: each
non-terminal in the formula sketch corresponds to
a specific variable type And the calculation result
of each expansion in Formulet also has a fixed
variable type (except for very few functions such
as VLOOKUP).

8 Conclusion

HERMES is the first framework for hierarchical
spreadsheet formula expansion. It streamlines
token-level decoding with multi-level Formulets
and devises a systematic sampling strategy to ex-
ploit various hierarchical multi-level expansion or-
ders. Experiment results show significant improve-
ments in prediction accuracy. Importantly, it en-
ables a new interactive formula completion expe-
rience in our developed interface. We hope for
HERMES to stimulate more advances in leverag-
ing underlying structures for spreadsheet formula
prediction.
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Ethics Statement

In this work, we propose an interactive framework
for spreadsheet formula prediction via hierarchical
Formulet expansion. The datasets we use are all
collected from public spreadsheet datasets, Enron,
FUSE, and Euses, and we follow SpreadsheetCoder
and FORTAP to use Enron for formula prediction
training and testing. We additionally use FUSE for
training and testing to check the model’s general-
izability. The data we used are all in English and
has no privacy issue. It does not contain any infor-
mation that names or uniquely identifies individual
people or offensive content. We do not collect ad-
ditional spreadsheet data in this work. The TUTA
model we used in this research is open source un-
der the MIT License. Our code will be released to
the public under the MIT License. We think that
the interactive formula generation can reduce the
affection on user experience when faced with chal-
lenging cases and incorrect prediction occurs. Our
framework has been deployed at GridBook (Srini-
vasa Ragavan et al., 2022) for internal testing, and
we hope it can stimulate new experiences in real
products such as Excel and Google Sheets to ben-
efit a large number of real spreadsheet users. Al-
though our model predicts expansions with high
accuracy in each step, it is still possible that our
model cannot meet the users’ specific needs, requir-
ing the users to write the expansions or formulas
by themselves.
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A Proof of The Optimization Process for
Sketch Decoder

In this section, we first prove Theorem 1 to get a
lower bound of the optimization goal g(f), then in-
troduce the following lemmas to prove Theorem 2.

Theorem 1. For an arbitrary formula f and its
corresponding lattice L(f), let S(L) be the set of
all paths σ, and Tσt be the t-th step of the path σ.
n(σ) represents the number of total steps in path
σ. The logarithm of the optimization goal g(f) can
be lower-bounded by a summation of single step
log-probabilities:

log g(f) ≥ log |S(L)|+

1

|S(L)|
∑

σ∈S(L)

n(σ)−1∑

i=0

logP
(
Tσi+1 |Tσi , τ, θ

)

Proof.

log


 ∑

σ∈S(L)

n(σ)−1∏

i=0

P
(
Tσi+1 |Tσi , τ, θ

)



= logS(L)+

log
1

|S(L)|
∑

σ∈S(L)

n(σ)−1∏

i=0

P
(
Tσi+1 |Tσi , τ, θ

)

≥ logS(L)+

1

|S(L)|
∑

σ∈S(L)
log

n(σ)−1∏

i=0

P
(
Tσi+1 |Tσi , τ, θ

)

= logS(L)+

1

|S(L)|
∑

σ∈S(L)

n(σ)−1∑

i=0

logP
(
Tσi+1 |Tσi , τ, θ

)

Since log is a concave function, the lower bound in
the second step is provided by Jensen’s inequality.

Lemma 1. If we follow the path selection strategy
in Theorem 2, the sample probability for each path
is uniformly distributed, i.e. ∀σ ∈ S(L),P(σ) =

1
|S(L)| .

Proof. Note that all steps of σ = {Tσi}i≥0 forms
a Markov chain, i.e.

p(Tσi |Tσi−1 · · ·Tσ0) = p(Tσi |Tσi−1)

where

p(Tσi |Tσi−1) =
R(Tσi+1 , T

C)

R(Tσi , T
C)

can be calculated before the training process, and is
different from the target distribution P. According
to the definition, we have N(T I) = |S(L)| and
N(TC) = 1. Then

p(σ) = p(Tσn(σ)
· · ·Tσ0)

= p(Tσ0)

n(σ)∏

i=1

p(Tσi |Tσi−1 · · ·Tσ0)

=

n(σ)∏

i=1

p(Tσi |Tσi−1)

=

n(σ)∏

i=1

R(Tσi , T
C)

R(Tσi−1 , T
C)

=
R(Tσn(σ)

, TC)

R(Tσ0 , T
C)

=
R(TC , TC)

R(T I , TC)

=
1

|S(L)|

Lemma 2. Let ζ(T ) be an arbitrary function of a
parse tree T and use Eσ to denote an expectation
based on uniformly distributed σ ∈ S(L), then we
have

Eσ



n(σ)−1∑

i=0

ζ(Tσi)


 =

1

|S(L)|
∑

T∈L
N(T )ζ(T )

Proof.

Eσ



n(σ)−1∑

i=0

ζ(Tσi)




=
∑

σ∈S(L)
p(σ)

n(σ)−1∑

i=0

ζ(Tσi)

=
1

|S(L)|
∑

σ∈S(L)

∑

T∈L
1{T∈σ}ζ(T )

=
1

|S(L)|
∑

T∈L


 ∑

σ∈S(L)
1{T∈σ}


 ζ(T )

=
1

|S(L)|
∑

T∈L
N(T )ζ(T )
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Lemma 3. Let C(T ) be the set of child nodes
of a parse tree T , R(T1, T2) be the number of
routes that begin with T1 and end with T2, and
N(T ), N(T → T̃ ) denote the number of all paths
σ ∈ S(L) passing though T and the single expan-
sion step T → T̃ , respectively. Then we have

∑

T∈L
N(T )

∑

T̃∈C(T )

[
R(T̃ , TC)

R(T, TC)
logP(T̃ |T, τ, θ)

]

=
∑

σ∈S(L)

n(σ)−1∑

i=0

logP
(
Tσi+1 |Tσi , τ, θ

)

Proof. According to the definition of N(T ) and
N(T → T̃ ), we have the following identity:

N(T ) = R(T I , T )R(T, TC)

N(T → T̃ ) = R(T I , T )R(T̃ , TC)

Then we have

∑

T∈L
N(T )

∑

T̃∈C(T )

[
R(T̃ , TC)

R(T, TC)
logP(T̃ |T, τ, θ)

]

=
∑

T∈L
R(T I , T )R(T, TC)

·
∑

T̃∈C(T )

[
R(T̃ , TC)

R(T, TC)
logP(T̃ |T, τ, θ)

]

=
∑

T∈L
R(T I , T )

∑

T̃∈C(T )

[
R(T̃ , TC) logP(T̃ |T, τ, θ)

]

=
∑

T∈L

∑

T̃∈C(T )

[
R(T I , T )R(T̃ , TC) logP(T̃ |T, τ, θ)

]

=
∑

T∈L

∑

T̃∈C(T )

[
N(T → T̃ ) logP(T̃ |T, τ, θ)

]

=
∑

T,T̃∈L

[
1{T̃∈C(T )}N(T → T̃ ) logP(T̃ |T, τ, θ)

]

=
∑

T,T̃∈L

∑

σ∈S(L)
1{T̃∈C(T )}1{T,T̃∈σ} logP(T̃ |T, τ, θ)

=
∑

σ∈S(L)

n(σ)−1∑

i=0

logP
(
Tσi+1 |Tσi , τ, θ

)

where 1 denotes the characteristic function.

With the above lemmas proved, we are fully
equipped to prove Theorem 2.

Theorem 2. Let C(T ) be the set of children of
a parse tree T in lattice L and R(T, TC) be the
number of different routes going from T to TC . If
we select a path σ in the following way:

1. Begin with Tσ0
:= T I ;

2. For i = 0, 1, 2, ... we choose the next lattice
node Tσi+1 among C(Tσi), based on the dis-

tribution
R(Tσi+1 ,T

C)

R(Tσi ,T
C)

;

3. End with Tσn(σ)
:= TC;

all paths are sampled with equal probability. Then
we optimize

∑

T̃∈C(T )

R(T̃ , TC)

R(T, TC)
logP(T̃ |T, τ, θ)

for each parse tree T in the selected path σ, where
P(T̃ |T, τ, θ) is the estimated probability of predict-
ing T̃ from T . In the expectation perspective, this
is equivalent to optimize

log |S(L)|+

1

|S(L)|
∑

σ∈S(L)

n(σ)−1∑

i=0

logP
(
Tσi+1 |Tσi , τ, θ

)

, which is the lower bound of g(f) in Theorem 1.

Proof. According to Lemma 1, probability of
choosing any one of the valid paths from T I to
TC is

p(σ) =
1

|S(L)|
We let

ζ(T ) :=
∑

T̃∈C(T )

R(T̃ , TC)

R(T, TC)
logP(T̃ |T, τ, θ)

Since all paths are uniformly sampled, by applying
Lemma 2 the parallel optimization of ζ(T ) for all
T ∈ σ is equivalent to optimizing

∑

T∈L
N(T )

∑

T̃∈C(T )

[
R(T̃ , TC)

R(T, TC)
logP(T̃ |T, τ, θ)

]

in expectation, which is exactly

∑

σ∈S(L)

n(σ)−1∑

i=0

logP
(
Tσi+1 |Tσi , τ, θ

)

according to Lemma 3.
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Figure 6: Raw parse tree of (SUM(A1:B2)/4)+1 ob-
tained from XLParser. Terminals are wrapped in “”.

B Implementation Details

B.1 Compressed Parse Tree

Considering that the parse tree is too detailed and
deep, we then compress the raw parse tree by keep-
ing Formula node as the only non-terminal. The
subtree of a Formula node up to terminals and
other Formula nodes are compressed into a sin-
gle node containing multiple tokens - the linking
of leaf nodes in this subtree. Finally, we rename
Formula as [NonTerminal] since it has became
the only non-terminal token, and substitute all
numerical values with [NumberToken]s, text val-
ues with [TextToken]s, and cell references with
[CellToken]s to obtain the compressed parse tree.

B.2 Data Preprocessing

During data preprocessing, we have filtered
out formulas containing special tokens such as
NameToken, UserDefinedFuntion, and formulas
containing cross-sheet and cross-file cell references.
We also filter out spreadsheets where resulting in-
put sequence contains more than 600 tokens. A
spreadsheet may contain multiple duplicated for-

mulas. For each spreadsheet, we only keep at most
10 formulas from a set of duplicated formulas by
random sampling. We ensure no data leakage dur-
ing the dataset splitting: the formulas from the
same spreadsheet are either all in training or all in
test set.

B.3 Input Specification
Following Wang et al. (2021), the input tokens of
the model is the cell contents in the table τ flat-
tened from left to right and from top to bottom,
forming a linear sequence [CLS] [SEP] τ(0,0) [SEP]

τ(0,1) ... [SEP] τ(m−1,n−1), where τ(i,j) represent
the tokenized string content of cell in the (i+ 1)th

row and (j + 1)th column, m and n refers to the
number of rows and number of columns in table
τ , respectively. The data of the target formula cell
τ(s,t) is replaced by a special token [FORM], in order
to specify the position of the target cell and tell the
model where to predict the formula. For other for-
mulas cells, they are represented as formula sketch
filled with textual and numerical values. Note that
we blank out the cells that are same as the target for-
mula cell with the form of relative cell references,
e.g., SUM(R[-2]C[-3], R[-1]C[0]). Follow-
ing Wang et al. (2021), numerical, positional and
formatting features are further extracted from each
input cells.

More than 89% formulas only reference cells
that are on the same row or column as the formula
cell (Cheng et al., 2022). For simplicity and as
a compromise to the limitation of model memory
capacity, given the target cell, instead of taking
all the cells in the table as input, we only take
the cells in the table header and cells on the same
row/column as inputs. We assume that these cells
provide enough information for formula prediction.

B.4 Model Hyperparameters
All our models are first trained 1M steps for Sketch
Decoder on Enron dataset, keeping Value Decoder
and Cell Reference Decoder freezed, then trained
1M steps for the whole model for together generat-
ing sketches, values and cell references on Enron
dataset. Our models are trained with batch size 1
and max sequence length 600 without parallelism
on Nvidia V100 GPUs with 16GB memory. We
skip the samples with more than 600 tokens. Each
phase is estimated to be trained for 9 epochs, i.e.,
each sample in our trainset are used for about 9
times in each phase. The optimizer is Adam with
learning rate 2e − 6. The hyperparameters are
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manually tuned by the authors. For reference, our
model has a parameter size of 265,453,990, where
a parameter size of 133,914,766 is inherited from
the TUTA model.

C Supplementary Results

As the first work in spreadsheet formula generation
to evaluate on the FUSE dataset, we mainly use
FUSE as an auxiliary dataset to test whether our
model is overfitting on Enron and whether it can
generalize to other datasets. We have also done an
experiment to test the full potential of our model on
FUSE. We start from the model trained 1,000,000
steps on the Enron dataset for sketch prediction,
and further train it for 1,000,000 steps on the FUSE
dataset to generate the entire formula, using the
same hyperparameters specified in Section B.4.
The model achieves sketch accuracy of 0.710 (top
1) and 0.825 (top 5), sketch-with-value accuracy
of 0.677 (top 1) and 0.782 (top 5), and formula
accuracy of 0.514 (top 1) and 0.575 (top 5), which
is higher than the generalization performance in
Table 3 as well as the baseline performance: FOR-
TAP only achieves top-1 formula accuracy of 0.37
and SpreadsheetCoder only achieves top-1 formula
accuracy of 0.26.

D Limitations

Until now HERMES has only been evaluated on
the formula prediction task, but we believe that
the three-stage decoding pipeline and the sampling
strategy for multi-level expansion in HERMES can
further be extended to other forms of code such
as SQL and Linux commands. Another limitation
is how to unify the experiences of hierarchical ex-
panding and other formula writing orders, because
we think that the human reasoning order in writing
formulas may be a mixture of top-down, bottom-
up, left-to-right, etc. HERMES proposed new ideas
on variable high-level expansion, but it is desirable
to be further integrated with our experiences.
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