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Abstract

We propose a new paradigm to continually
evolve pretrained models, denoted ColD Fu-
sion. It provides the benefits of multitask learn-
ing but leverages distributed computation with
limited communication and eliminates the need
for shared data. Consequentially, ColD Fusion
can give rise to a synergistic loop, where fine-
tuned models can be recycled to continually im-
prove the pretrained model they are based upon.
We show that ColD Fusion yields comparable
benefits to multitask training by producing a
model that (a) attains strong performance on
all of the datasets it was trained on; and (b) is
a better starting point for finetuning on unseen
datasets. We show that ColD Fusion outper-
forms RoBERTa and even previous multitask
models. Specifically, when training and test-
ing on 35 diverse datasets, ColD Fusion-based
model outperforms RoBERTa by 2.33 points
on average without any changes to the architec-
ture.1

1 Introduction

Over the last few years, pretrained language models
are changing the landscape of NLP, where finetun-
ing a pretrained model typically yields state-of-
the-art performance on a diverse set of NLP tasks
(Chen et al., 2022). Consequently, improving a
pretrained model has the potential to boost every
model finetuned on it. However, pretraining is of-
ten so computationally expensive that practitioners
rarely seek to pretrain new models from scratch.

In contrast, finetuning is usually dramatically
cheaper, allowing a given pretrained model to be
finetuned many times; e.g., there are thousands
of finetuned BERT variants on the Hugging Face
Hub2. Motivated by this, we study if and how fine-
tuned models can be “recycled” to create a better

1We release the final model as well as iterations and seeds
here: https://huggingface.co/ibm/ColD-Fusion

2https://huggingface.co/models?search=bert
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Figure 1: Schematic of ColD Fusion. Each iteration
starts from a base model. Then, each contributor down-
loads the model from a centralized “Repository” and
finetunes it on their dataset. Next, each contributor
uploads the finetuned model weights back to the Repos-
itory. After that, the Repository fuses all models into
a single model by averaging their weights. Finally,
the Repository replaces the base model with the fused
model and the process repeats.

pretrained model (c.f., Raffel, 2021). To avoid con-
fusion, henceforth we refer to any starting point for
finetuning a base model and only the vanilla model
as the pretrained model.

To recycle models, we take inspiration from mul-
titask learning (§2). In multitask learning the pre-
trained model is finetuned over multiple datasets
at once, which was shown to create a better base
model than the original pretrained model (Aribandi
et al., 2021; Aghajanyan et al., 2021a; Sanh et al.,
2021; Chung et al., 2022). Given the availability
of many finetuned models, our aim is to obtain the
benefits of multitask learning by mixing multiple
models rather than multiple datasets (c.f. §2.3).

To achieve that, we suggest the following itera-
tive approach (§3): In each iteration, contributors
finetune the most up-to-date base model (which is
presumably also the most performant) on their task,
and share the fine-tuned model with the rest of the
community. Then, those contributed models are
fused together, by simply averaging their param-
eters (Choshen et al., 2022b), to create the base
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model for the next iteration. We call this method
Collaborative Descent Fusion, or ColD Fusion.

ColD Fusion fits the common finetuning
paradigm, where each contributor finetunes for
their own benefit and does not share their data.
However, by merely requiring the finetuned model
to be shared, the finetuning step can be recast as a
training step for the collective’s benefit. In doing
so, our method allows reusing compute and data
consumed by practitioners and researchers to the
benefit of the entire community.

Our experimental results indicate that our ap-
proach of combining finetuned models not only
produces a better base model but also allows this
base model to keep evolving. Instead of pretraining
or multitasking on a predefined amount of data, we
suggest accumulating finetuned models to contin-
uously improve the model. Our method is hence
limited only by the amount of finetuned models that
are shared by the entire community. We discuss
limitations in (§9).

We show that ColD Fusion produces a model
that performs well on the finetuned tasks, despite
never manipulating more than one task at a time
neither by constituent models nor their fusing (§5).
Moreover, we show that ColD Fusion increases the
performance of the base model substantially, out-
performing the pretrained model by 2.33 points on
average on 35 datasets. Through additional anal-
ysis, we further show that similar improvements
are achieved regardless of whether the target tasks
were seen or unseen during training (§5.2) and that
accumulating models trained on additional data
provides continuous improvement (§6).

2 Background

We start by motivating the use of further training
on diverse data for enhancing the base model abil-
ities (§2.1). Then, we continue with defining our
framework’s goals (§2.2) and constraints (§2.3).

2.1 Performance Scaling Laws

Extensive evidence suggests that pretraining with
more compute (Raffel et al., 2020) and data (Liu
et al., 2019; Hoffmann et al., 2022; Ivgi et al., 2022)
improves the resulting pretrained model. Moreover,
additional supervised data is beneficial even when
introduced after the pretraining stage (Phang et al.,
2018; Choshen et al., 2022a). Extending this su-
pervised stage to multitask learning on diverse data
sources improves results even further (Aribandi

et al., 2021; Aghajanyan et al., 2021a; Sanh et al.,
2021; Chung et al., 2022).

We observe that the data used during finetuning
is typically not seen during pretraining. Therefore,
we hypothesize that using a large amount of the
data currently used for finetuning may significantly
improve the model quality as a base model for
future tasks. As training on all the finetuning data
directly is infeasible, here we propose an alternative
paradigm to test this hypothesis.

2.2 Goals of Multitask Learning
Multitask learning is typically used towards one of
two goals: Either to produce a single model that
performs well on many seen tasks, or to produce a
base model that will perform well on many unseen
tasks after adaptation, e.g., via finetuning.

Single model. To produce a single multitask
model, one initializes with a base model with p
parameters and optimizes the parameters θ ∈ Rp

to minimize the loss over a set of datasets D. This
reflects the traditional objective of multitask learn-
ing – to produce a set of weights that performs well
on multiple tasks (Caruana, 1997).

Base model. An alternative goal of multitask
learning (and the primary goal in our work) is to
produce a base model that will attain strong per-
formance after adaptation. Multitask learning does
not directly optimize towards this goal, but has
been found to do so indirectly (Aghajanyan et al.,
2021a; Liu et al., 2022). In this setting, the out-
of-the-box performance of the produced model on
seen tasks is less important than the performance
after finetuning over new tasks, i.e., initializing
with the found weights θ ∈ Rp and then finetuning
on a desired dataset d′. We do not explicitly state
whether d′ ∈ D or d′ /∈ D, i.e., whether d was
used during the multitask training or not. In §5.2,
we empirically show that our method works well
in both cases.

We note that our formulation sets no restrictions
on the datasets group D. Thus, a common scenario
might be that some datasets do not have the same
label space, number of examples, etc. On the other
hand, it is also possible that some datasets are com-
plementary samples from a distribution of the same
task. In this case, our approach is similar to train-
ing this task distributively as in federated learning
(Yang et al., 2019) but without communicating ev-
ery batch. We demonstrate that our approach also
works well in this setting in §6.
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2.3 Collaborative Constraints

In this work, we target the goals of multitask learn-
ing discussed above, but focus on a specific setting
with additional constraints, which we call ColD
multitask. The constraints are required to support
large-scale collaborative and distributed multitask
learning. In our setting, multiple contributors have
access to datasets that they do not share. A central
Repository can only perform minimal computation
(i.e., does not perform any training). Communica-
tion between the contributors and the Repository
only occurs when a given contributor completes
the finetuning on their data.

3 Methodology - ColD Fusion

Our proposed method (see Fig. 1), called ColD Fu-
sion, is an iterative process that aims to perform
multitask learning in the constrained setting out-
lined above. Specifically, ColD Fusion involves
an iterative process where each individual contrib-
utor downloads the current base model from the
Repository, finetunes this base model over their
dataset, communicates the resulting model back
to the Repository, and lastly, the Repository fuses
(Choshen et al., 2022b) all of the contributors’ mod-
els into one and sets the new fused model as the
new base model for further finetuning.

More formally, the Repository first initializes
the shared model parameters θ0 using a preex-
isting pretrained model. Then, at each iteration
i ∈ {0, 1, 2, . . .}, each contributor c ∈ C finetunes
the θi base model over a dataset d ∈ D to pro-
duce parameters θci . For the purposes of our study,
finetuning is any optimization process that aims to
minimize the loss over a dataset d. Typically, fine-
tuning involves minimizing the loss using a variant
of gradient descent. After finetuning, each con-
tributor sends their model’s parameters θci to the
Repository. Next, the Repository fuses the contrib-
utor’s models by averaging all of the contributor’s
model’s parameters to produce a new shared model
as θi+1 = 1

|C|
∑

c θ
c
i . Finally, the process repeats

for iteration i+ 1.

4 Experimental Setup

In this section, we detail the datasets, models, base-
lines, general experiment setup, and specific exper-
iments settings.

4.1 Datasets

In all of our experiments, we define the datasets
group D to be a group of 36 English-language
datasets, including most GLUE and Super-GLUE
datasets, in addition to other NLI, sentiment and
topic classification datasets as well as datasets
based on Twitter data. A full list of datasets we use
is provided in App. A.

At each iteration we test on all the 36 datasets.
There are two exceptions: 1) In the main experi-
ment (§5.1) we use the entire dataset group except
STSB. STSB, being a regression task incurred tech-
nical difficulties to provide a fair comparison to the
multitask baseline (see §4.2). 2). For efficiency rea-
sons, in the very compute demanding experiment
of the number of contributors (§5.4) we randomly
sampled 5 datasets to act as a consistent test set.

4.2 Models and Baselines

For experiments in the main text, we use RoBERTa-
base (Liu et al., 2019) as our initial model θ0. To
demonstrate the generality of our approach, we
additionally replicate some results on T5 (Raffel
et al., 2020, see App. §D).

For baseline pre-trained models, we consider
RoBERTa-base, RoBERTa-base fused, as well as a
RoBERTa-base multitask model. The fused model
is trained as in Choshen et al. (2022b). The multi-
task variant trains a dedicated classification head
for each dataset. In addition, we consider the
MUPPET (Aghajanyan et al., 2021a) model, a
highly optimized multitask model trained on more
datasets than we consider. MUPPET is the cur-
rent state-of-the-art base pretrained model that uses
the RoBERTa-base architecture (Choshen et al.,
2022a).

4.3 Finetuning Process

Finetuning is used in this paper for two reasons: (a)
As a way to infer and evaluate the performance of
a base model and (b) as a part of the ColD Fusion
scheme. We follow the exact same finetuning pro-
cedure in either case. Finetuning hyperparameters
and time and memory estimates are provided in
App. B

4.4 ColD Fusion Procedure

The general course of the experiments is as follows:
On each iteration, several datasets are sampled and
the latest base model is finetuned separately on
each dataset. Then the resulting finetuned models
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Figure 2: ColD Fusion is effective at multitask learning. ColD Fusion brings significant additional benefits as a
base model for finetuning (b) and improves over finetuning the pretrained model, the fuse baseline, our multitask
baseline, and MUPPET (Aghajanyan et al., 2021a). ColD Fusion also produces better performance on seen tasks as
evaluated with linear probing (a), almost reaching finetuned accuracy. Standard deviation across runs is shown via
shaded regions.

are fused to create the next base model. This new
model is evaluated on the test datasets at each it-
eration. When we mention ColD Fusion without
specifying the iteration explicitly, we refer to the
model that corresponds to the final iteration.

The evaluation reflects both multitask goals
(§2.2): (a) To evaluate the single model goal, we
train only the classification head (equivalent to Lin-
ear Probing; Alain and Bengio, 2016), freezing the
rest of the layers. We refer to it as ColD-Frozen.
(b) For evaluating the base model goal, we take the
ColD model and use it as initialization for finetun-
ing. We finetune separately on each dataset and
report the results on the corresponding test. We
refer to it as ColD.

5 ColD Multitask Results

In this section, we show ColD Fusion can produce
multitask models. We show in §5.1 that ColD Fu-
sion fulfills both multitask objectives defined in §2.
We verify that improvements replicate on datasets
that were not seen during training (§5.2). Then we
find that base model improvements are even more
apparent in few shot settings (§5.3). Finally, we
consider the importance of the number of contribu-
tors hyperparameter (§5.4).

5.1 Collaborative Multitask

We show that ColD Fusion achieves the two mul-
titask objectives (see Fig. 2). We train and test
ColD Fusion for 30 iterations. We simulate 8 con-

tributors by sampling 8 datasets at each iteration
and repeat the whole experiment using 5 different
random seeds. We consider the importance of the
sampling hyperparameter in §5.4.

We find that ColD Fusion creates a superior base
model (see Fig. 2b). The average result after fine-
tuning the ColD Fusion model is superior to the
RoBERTa pretrained model by up to 2.33 points
on average over the 35 datasets (see App. §C for
full results). The result can be deemed significant
with a difference of over 20 standard errors of the
mean between the original pretrained model and
the model produced by ColD Fusion.

In comparison, the standard multitask model and
the fused model outperform the original RoBERTa
pretrained model by only 1.62 and 0.92 points re-
spectively. We also consider the highly optimized
MUPPET model, trained on more datasets and
without the ColD multitask restrictions. MUPPET
indeed outperforms our standard multitask baseline
model, but is outperformed by our ColD Fusion
model.

Another important comparison is the consistency
of the improvement. We find (see App. C) that
the model produced by ColD Fusion is better than
the pretrained model on 75% of the datasets and
degrades by only 1.73 points on the worst-case
dataset. In contrast, MUPPET hurts as many mod-
els as it helps and is worse by 40 points on some
datasets.

ColD Fusion also achieves the single model goal:
When evaluated with linear probing, the ColD
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Figure 3: Fine-tuned and frozen results for ColD Fusion
on datasets that were used for training (“Seen”, in blue)
vs. datasets that were not (“Unseen”, in orange). The
model produced by ColD Fusion is a good base model
for both seen and unseen datasets. While using a frozen
model is better for seen datasets, unseen datasets still
benefit the ColD Fusion process.

model has high performance on the datasets seen
in training (see Fig. 2a), higher in fact than those
of the standard multitask baseline. Moreover, it is
not far from the pretrained model when finetuned
on each task separately. This implies that despite
learning in a distributed way and fusing by averag-
ing the non-linear weights of the model, the process
incorporates the data well.

5.2 Unseen Datasets

We have found ColD Fusion to create a strong base
model (§5). Next, to meet the requirement of im-
proving results for new datasets, we test the ColD
fused model on unseen datasets not included in the
training (see Fig. 3). We achieve this by performing
3-fold cross-validation. The folds are set arbitrarily
such that each fold contains 24 seen datasets (24
contributors) and 12 unseen ones that we keep for
evaluation only. This ensures that each dataset has
the same weight in the average score of the seen
datasets and unseen datasets.

We find that the model performs on unseen
datasets just as well as it does on seen ones. The
strikingly similar performance between seen and
unseen tasks (which is similar to in-domain vs. out-
of-domain) should raise a red flag in most scenarios.
However, in the unique scenario of ColD multi-
tasking, it meets our expectations. Both seen and
unseen datasets are exposed at some point - either
during ColD Fusion iterations (seen datasets only)
or during evaluation as a base model (both seen and
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Figure 4: ColD Fusion yields improvements in few-shot
learning on unseen datasets. Results are from training
on 24 full datasets and testing on 12 unseen datasets with
100 labels each, averaged over 3 such folds. The pre-
trained model performance is highlighted by a dashed
line. ColD Fusion outperforms by as much as 7%.

unseen). Hence, in the seen case, the model trains
twice on the same data, first during base model cre-
ation and again when evaluating the base model. It
is less of a surprise that training twice on the same
data doesn’t improve results. The improvement
over the original pretrained is likely due to positive
transfer across datasets.

Where finetuning is restricted to only the classi-
fication head (ColD-Frozen in Fig. 3), the model
achieves much better performance on the seen
datasets than on the unseen datasets. These results
are also in line with the fact that the model (apart
from the classification head) was never exposed
to the unseen datasets, while the entire model’s
weights were trained on the seen datasets. We fur-
ther test ColD Fusion’s capacity to scale with more
data in §6. We note that the unseen curve consis-
tently increases, which may suggest that the model
has acquired general skills. The curve reaches a
plateau around the 10th iteration, and then starts to
drop a bit. Possibly, due to an overffiting caused by
the limited number of seen datasets.

Note that the scores in Fig. 3 are a bit lower
than in the main experiment in Fig. 2b. This is
most likely due to scaling, as here we keep unseen
datasets aside and use fewer datasets for training.
We show in a controlled experiment in §6 that using
more datasets improves results.

5.3 Few-shot

In order to assess the benefit of ColD Fusion on
few-shot scenarios, we repeat the setting in §5.2,
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Figure 5: Effect of the number of contributors in each
iteration. The graph shows the performance (y-axis) per
iteration (x-axis) during ColD Fusion. Performance of
the model produced by ColD Fusion without additional
finetuning is shown in dotted lines, and after finetuning
in solid lines. Each color depicts a different number
of contributed models in each iteration. The pretrained
model performance is highlighted by another dashed
line.

but finetune only on 100 examples from each un-
seen dataset during evaluation. Fig. 4 shows a great
increase in performance over the RoBERTa pre-
trained model, reaching an improvement of 6.73
points after 20 iterations. This provides an even
stronger case for ColD Fusion in the few-shot set-
ting.

5.4 Number of Contributors per Iteration

An important factor in ColD Fusion is the number
of contributors in each iteration. Having fewer con-
tributors per iteration implies effectively training
on fewer datasets in each iteration; on the other
hand, fusing fewer models may give more impor-
tance to each.

We observe in Fig. 5 that starting from two con-
tributors, the performance as a base model is hardly
affected by the number of contributors in each it-
eration. However, adding contributors makes the
process more stable. A possible reason is that some
of the improvement comes from the iterations them-
selves and the ability to correct overfitting done in
previous steps by some contributors.

We note that the number of contributors is only
insignificant when the data is fixed. In practice,
more contributors would improve performance, by
adding more data or iterations. We further test
the effect of the number of contributors under con-
trolled settings in §6.

6 Single Dataset Analysis

We now analyze the interacting effects of the core
characteristics of ColD Fusion: additional data
across iterations, the amount of training data per
iteration, and the number of contributors in each
iteration.

Doing so with multiple datasets would introduce
noise. For example, we can not expect additional
data coming from different sources (e.g., MNLI
or Twitter) to equally affect the performance. To
overcome this, we explore the case where a single
dataset is distributed across contributors. Using a
single dataset allows us to reduce variability due to
differences in the datasets (e.g., distribution, task,
etc.), and isolate the parameter we wish to control.
ColD Fusion may converge faster with models from
a single dataset, but we still expect the general
tendencies found to replicate in multiple datasets
settings.

We chose MNLI (Williams et al., 2018) for its
large size (392K examples).

Effect of additional data across iterations
(Federated Learning). To simulate a never-
ending data flow, the experiment runs as follows: at
each iteration, 5 contributors sample 5k examples
each from MNLI dataset, and another such sample
is used for evaluation.

This setting resembles the Federated Learning
scenario (Yang et al., 2019), where multiple contrib-
utors collaborate to train a model without having
to exchange the actual data.

As presented in Fig. 6a, performance increases
throughout the iterations. Thus, we conclude that
the ColD Fusion scheme aggregates and utilizes the
newly added examples and not only coarse-grained
dataset characteristics.

We show similar trends in the multitask scenario
(see App. E). Training on more datasets results in a
better best model at the cost of more iterations to
get to that best model.

Note the superiority of ColD-Frozen over ColD
in this experiment. A possible explanation is over-
fitting. In evaluation, finetuning all the parameters
on only part of the data is worse than keeping the
fused weights that are trained on several splits.

Effect of dataset size per contributor. In this
and the following experiments, we train on all the
data in each iteration. The contributors train over
disjoint and consistent sub-datasets, i.e., we do not
sample examples. We aim to analyze the ability of

793



0 1 2 3 4 5 6 7 8 9
Iterations

80

81

82

83

84

85

86
Ac

cu
ra

cy

ColD Finetune
ColD Frozen

(a) Effect of Additional Data

0 2 4 6 8 10
Iterations

76

78

80

82

84

86

Ac
cu

ra
cy

Finetune
10 * 1.25k samples
10 * 2.5k samples
10 * 5k samples
10 * 10k samples

ColD Frozen
1.25k samples
2.5k samples
5k samples
10k samples

Finetune
10 * 1.25k samples
10 * 2.5k samples
10 * 5k samples
10 * 10k samples

ColD Frozen
1.25k samples
2.5k samples
5k samples
10k samples

(b) Effect of Dataset Size per Contributor

0 2 4 6 8 10 12 14
Iterations

79

80

81

82

83

84

85

86

Ac
cu

ra
cy

Finetune
2 * 5K samples
5 * 5K samples
10 * 5K samples
20 * 5K samples

ColD Frozen
2 contributors
5 contributors
10 contributors
20 contributors

Finetune
2 * 5K samples
5 * 5K samples
10 * 5K samples
20 * 5K samples

ColD Frozen
2 contributors
5 contributors
10 contributors
20 contributors

(c) Effect of #Contributors

0 2 4 6 8 10 12 14
Iterations

79

80

81

82

83

84

85

86

Ac
cu

ra
cy

Finetune
Full data
ColD Frozen
2 contributors
5 contributors
10 contributors
20 contributors

Finetune
Full data
ColD Frozen
2 contributors
5 contributors
10 contributors
20 contributors

(d) Effect of Distributing

Figure 6: ColD Fusion with a single dataset. To test the effect of additional data across iterations (a), we sample 5k
new examples from the MNLI dataset for each of the 5 contributors at each iteration. We test the effect of the dataset
size (b), the number of contributors (c), and the distributing of a fixed amount of data (d). The ColD Frozen (dotted
lines) outperforms ColD Finetuned (solid lines), possibly due to overfitting, and both improve with the iterations.
Results keep increasing with data size. More contributors or less data per contributor slow the convergence to
centralized finetuning (dashed lines).

the model to aggregate knowledge from the con-
stituent models during fusion.

ColD-Finetuned is evaluated through a stage of
finetuning which further learns on the task. To
avoid entangling the capabilities learnt during ColD
Fusion with those learnt during evaluation, we an-
alyze the ColD-Frozen instead. We also note that
during evaluation, the classification head is trained
on the training data of the first contributor only
(which is the only one in the baseline).

We fix the number of contributors to 10 and test
how the number of examples each contributor is
training on affects results. We experiment with
1.25K, 2.5K, 5K and 10K examples. We compare
these to full finetuning on the union of all the con-
tributors’ training data. A priori we would have
expected large amounts of data in each contribu-

tor’s model to obstruct the fusing process, as each
model changes more. In Fig. 6b, we see the op-
posite – the more data each contributor trains on,
the closer the fused model is to the full training
baseline.

Effect of the number of contributors. In this ex-
periment, each contributor trains over "their own"
data, i.e., the same 5K examples in each iteration.
We test how the results change with 2, 5, 10 and
20 contributors. We see in Fig. 6c that increasing
the number of contributors improves performance.
Moreover, the results are not only better at every
step, but also keep on improving for longer. This is
a positive result in terms of the expected end result,
but also means that convergence is slower.
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Effect of data distribution between contributors.
To isolate the effect of the number of contributors
and the dataset size of each contributor from that
of the overall data size, we fix the overall amount
of data to 50K and split it among the contributors
evenly. Fig 6d shows distributing mostly affects
convergence – it takes approximately 2 more iter-
ations to converge for double the contributors and
half the data seen by each.

We conclude that increasing the overall amount
of data improves performance, as may be expected.
The distribution of the data between additional con-
tributors has minimal impact on final performance,
but may delay convergence.

7 Related Work

Our work strongly relies on model fusion. Model
fusion was first introduced as a way to improve
pretrained models by (Choshen et al., 2022b). In
parallel, several works such as (Matena and Raf-
fel, 2021; Wortsman et al., 2022b) and lately (Jin
et al., 2022; Ramé et al., 2022) suggested different
ways of fusing for other purposes such as improved
finetuning.

Another fusion usage is the stochastic weight
averaging, aiming to stabilize the SGD process by
averaging multiple points along the SGD trajectory
(Izmailov et al., 2018). Unlike the previous, this
method utilizes only one model and dataset.

Low-communication distributed training was
proposed in similar settings to ours. Wortsman
et al. (2022a) proposed distributed finetuning and
model fusing in order to produce better finetuned
models. This suggestion is equivalent to one iter-
ation of ColD Fusion where all models share the
same dataset. Li et al. (2022); Together (2022)
also share the similarity of distributed training, but
during pretraining on unlabeled data.

Understanding why averaging different models
improve quality may be related to theoretical works
discussing weight and loss spaces. These works
state there is a path of minimum loss between mod-
els (Garipov et al., 2018) on which the loss along
the path is not increasing. Lubana et al. (2022);
Benton et al. (2021); Frankle et al. (2020) claimed
that under some constraints, this path is linear,
which suggests that fusing the weights could pro-
duce a model that retains the capabilities of the
fused models. Although different models on the
same task may converge to different locations in
the loss space without linear connectivity (Juneja

et al., 2022), and although the case of multitask
is more complex (Mirzadeh et al., 2020), we still
believe that these works can partially explain why
fusing preserves the capabilities gained by the con-
stituent and when it does not that the next iteration
fixes it. Gueta et al. (2023) further suggests the
linear connectivity path is merely a line in a whole
connected region, future work may tell whether
ColD Fusion searches in this region or crosses it to
find new ones.

The literature also includes methods for bet-
ter aligning models during training (Javaloy and
Valera, 2021; Yu et al., 2020; Chen et al., 2018)
or after it (Ainsworth et al., 2022; Jordan et al.,
2022) to aid in fusing. We did not use those as we
wanted to reduce the load on the repository and
avoid restricting the contributors’ finetuning. How-
ever, these methods may improve results in ColD
Multitask.

We mention that multitask learning does not op-
timize the base model objective directly (§2.3).
Some works aim to do so (Bansal et al., 2019)
through meta-learning, finding models that can
learn a new task well or efficiently (Hospedales
et al., 2021). REPTILE (Nichol et al., 2018) meta
learns in a way that resembles ours by iteratively
using models trained for several batches.

8 Conclusion and Discussion

We proposed a scheme for utilizing abundant
finetuned models to enhance a pretrained model.
Our approach does not necessitate the sharing of
datasets, but rather assumes each contributor solely
finetunes on their own dataset. Hence, we believe
that applying this scheme as a collaborative pre-
training platform is a viable option and that doing
so would result in ongoing improvement of base
models.

To scale this approach, it would be beneficial
if the repository was updated asynchronously, per-
haps relying on recent fusing techniques (Ilharco
et al., 2022). In the usual finetuning setting, ro-
bustness can be improved by tuning batch size and
learning rate. In analogy, in ColD Fusion, one can
either increase the number of contributors (batch)
and/or restrict the effect of each iteration (learning
rate) (Smith and Le, 2018) to improve the process.
Following this line, future work may consider reg-
ularizing the distance from the pretrained model
(learning rate) when a small number of contribu-
tors exist (batch) or consider assigning individual
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weights to each contributor.
There are many hyper parameters to optimize

which might improve the method substantially.
E.g., fusing the contributions with a weighted av-
erage, improving fusing itself (Matena and Raf-
fel, 2021; Ainsworth et al., 2022), controlling the
datasets seen in each iterations (related to; Choshen
et al., 2021; Hacohen and Weinshall, 2019) and
backtracking when a harmful update was done to
the model. We hope that future work will shed
more light on these issues, to further improve the
approach proposed in this work.

9 Limitations

Perhaps the most important limitation regarding
ColD Fusion is its deployment. This paper presents
a method for multitasking, not a platform. In that
sense it solves both multitask learning goals under
the constraints resulting from collaboration. How-
ever, using ColD Fusion in practice might require
much more effort – It would require a place to host
the models, a way to make sure no malicious or
erroneous model was sent, and other aspects of a
platform to support this training.

This is the first method to tackle collaborative
multitasking and we scaled it to 35 datasets. How-
ever, future methods may be found more efficient
or scale better with the amount of data and compu-
tation.

ColD Fusion with many iterations and models
might require more computational effort for a given
amount of data (§6) than regular multitask learning.
As a result, while our bottom line performance is
encouraging, ColD Fusion might not be the pre-
ferred way under every possible scenario. Still,
some of the costs may be alleviated by future work
– for example the additional iterations when fus-
ing many models, might be reduced by aligning
models’ weights before fusing (Ainsworth et al.,
2022).

While this paper studied the impact of various
ColD Fusion parameters, it is unclear how fine-
tuning or even pretraining parameters affect re-
sults. However, we do have a reason to believe
the method is relatively robust to these refactors
through our initial results and the replication on
another architecture (App. §D).

Another limitation is the assumption that the
weights of the model change. Some adaptation
methods assume the model is frozen and only its
inputs change. In those cases, the model would

not be improved by use. Still, even in such cases,
multitask learning (Wang et al., 2023) might be
applied on the inputs, or the same model might be
used in different ways, where some also adapt parts
of it (Hu et al.; Jang et al., 2023; Qin et al., 2022;
Yadav et al., 2023). In those cases, the method
might still prove useful, even if it benefits only
from some of the contributions.

As mentioned before, another concern is a pos-
sible harmful update done by a contributor. Han-
dling it would require monitoring the updates by
regularly evaluating the model, or measuring the
updates diff to identify noisy models (too large diff
/ random weights).
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A Datasets used

Most datasets could be downloaded from hugging-
face datasets. We explicitly state the download link
when relevant. As we used groups of datasets we
report here the full list of datasets they contain.

GLUE: CoLA (Warstadt et al., 2019), SST2
(Socher et al., 2013), MRPC (Dolan and Brockett,
2005), QQP (data.quora.com/First-Quora-
Dataset-Release-Question-Pairs), MNLI
(Williams et al., 2018), QNLI Rajpurkar et al.
2016, RTE (Dagan et al., 2005; Bar-Haim et al.,
2006; Giampiccolo et al., 2007; Bentivogli et al.,
2009), WNLI (Levesque et al., 2011)

SuperGLUE: BoolQ (Clark et al., 2019), CB (de
Marneffe et al., 2019), CoPA (Roemmele et al.,
2011), MULTIRC (Khashabi et al., 2018), WIC
(Pilehvar and Camacho-Collados, 2019), WSC
(Levesque et al., 2012)

MNLI (Williams et al., 2018), QNLI Rajpurkar
et al. 2016, RTE (Dagan et al., 2005; Bar-Haim
et al., 2006; Giampiccolo et al., 2007; Bentivogli
et al., 2009), WNLI (Levesque et al., 2011), ESNLI
(Camburu et al., 2018), adversarial NLI (Nie et al.,
2020).

EmoInt (Mohammad and Bravo-Marquez, 2017),
Emoji (Barbieri et al., 2018), Irony (Van Hee et al.,
2018), OffenseEval (Zampieri et al., 2019), Hat-
Eval (Basile et al., 2019), Sentiment Analysis
(Rosenthal et al., 2017)

Poem Sentiment (Sheng and Uthus, 2020),
IMDB (Maas et al., 2011), Rotten Tomatoes (Pang
and Lee, 2005), SST 5bins (Socher et al., 2013),
SST2 (Socher et al., 2013), Amazon reviews (He
and McAuley, 2016) ,Financial Phrasebank (Malo
et al., 2014)

AG news(Zhang et al., 2015), ISEAR(Scherer
and Wallbott, 1994), Yahoo answers(Zhang et al.,
2015), DBpedia(Zhang et al., 2015), 20 news-
group(Zhang et al., 2015), TREC in both fine-
grained and coarse-grained labels (Li and Roth,
2002)

B Finetuning details

Hyperparameters. During finetuning, we use
the following hyperparameters: learning rate of
5e-5 with linear decay 0.0006 and batch size 256.
Early stopping is performed on the development
sets if the accuracy improvement after 256K train-
ing examples is less than 0.001. All other fine-
tuning hyperparameters are constant across all ex-
periments and follow the original hyperparameters

published by Liu et al. (2019).

Time and Memory. Most finetuning steps take
an hour or less on an A100 GPU. Fusing times are
inconsequential. At each iteration all finetuning
runs in parallel on all datasets (8 in most cases)
and also test finetuning runs in parallel, (36 in most
cases). To put it all together, in the main experi-
ment, 30 iterations with 8 contributors, 36 test sets,
and 5 seeds, required approximately 4,800 A100
GPU hours and 3.2 TB of memory if all models are
to be saved once.

C Datasets Accuracy

The full results of the main experiment (§5) can
be found in Table 1. It contains accuracy score for
each dataset separately.

For ease of comparison we also supply two fig-
ures (Fig.7), comparing MUPPET and COLD mul-
titask models to the pretrained. They show that
ColD is much more consistent. It has fewer datasets
that lose from changing from pretrained to ColD
and smaller negative effects when there are such
datasets. MUPPET however also has larger max-
imal gain when it does show gains, which shines
favourably on the average. This makes ColD a
better choice for an off-the-shelf model, but gives
MUPPET an advantage when one tests a target
dataset on several pretrained domains.

D T5

We present initial results to confirm our method is
not unique to RoBERTa. Specifically, we train T5
(Raffel et al., 2020) with default hyperparameters,
but 256 batch size and 0.0004 learning rate. We
replicate the main experiment (§5) in a smaller
scale, running on seed only and 5 iterations only.
For ColD-Frozen, we train only the language model
head.

Fig. 8 shows the main effect reminds. Both ColD
and ColD-Frozen keep increasing with the itera-
tions.

E Multitask Scale

We test the effect of the amount of datasets we
use for multitasking on the performance of the re-
sulted model as a base model. We take a random
permutation of all the 36 datasets. We ColD fuse
on the first 4 datasets, then the first 8, 16, and fi-
nally all the datasets. In fig. 9 we see that the 8
datasets performs worse than the 4 datasets, and
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Figure 7: Gains of MUPPET/ColD over finetuning on the pretrained model. ColD is much more consistent, with
less datasets that lose from changing from pretrained to ColD and smaller negative effects on them. MUPPET
however has larger maximal gain when it does show gains.

Figure 8: ColD Fusion on T5. We replicate the main
experiment (§5) on a smaller scale. Like in RoBERTa,
both ColD and ColD-Frozen lines keep increasing with
the iterations.

that the high regime (16 and 36 datasets) performs
much better than the low regime (4 and 8 datasets).
These results align with (Aghajanyan et al., 2021b)
observation that under 15 datasets more datasets
decrease the performance, but past some critical
point more datasets increase performance.

F Fix Number of Examples

We depict the ColD Fusion process with multiple
tasks (Fig. 10), but only 4K examples per each con-
tributor. This simulates a case where contributors
keep streaming new information of different kinds.
While this can not fully predict the effect of stream-
ing new tasks, it shows initial positive results in
this regard.

Figure 9: Number of datasets effect. The graph follows
the performance (y-axis) per iteration (x-axis) during
ColD Fusion. Each color depicts a different number
of datasets pool from where the datsets were randonly
picked at each iteration. The pretrained model perfor-
mance is highlighted by another dashed line.
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Figure 10: Running the main experiment with a fixed
number of examples. For each finetune over the 36
datasets, we use 5000 examples - regardless the size of
of the dataset. We can see that although the absolute
results are degraded related to the regular configuration,
the performance is increasing monotonically both for
the CoLD and CoLD Freeze. meaning more data yields
better performance.
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Dataset Finetune Multitask MUPPET ColD-Fusion
20 Newsgroup 85.31 85.25 90.00 85.97
AG News 89.85 89.55 89.77 89.58
Amazon Reviews Multi 66.51 66.22 86.50 66.65
ANLI 51.51 51.48 52.59 52.00
BoolQ 77.14 80.27 82.17 81.39
CB 64.29 82.86 80.36 85.00
CoLA 83.43 82.42 81.21 82.74
COPA 47.00 60.00 65.00 64.40
DBPEDIA 77.49 77.69 85.17 78.15
ESNLI 91.00 91.27 52.59 91.31
Financial Phrasebank 85.40 85.26 46.10 86.72
IMDB 93.86 93.82 91.74 94.01
ISEAR 72.78 71.94 73.01 72.40
MNLI 87.11 87.26 93.04 87.14
MRPC 87.45 86.96 88.97 89.26
MultiRC 60.56 62.34 64.15 63.01
Poem Sentiment 83.85 88.27 94.14 86.54
QNLI 92.42 92.39 84.48 92.66
QQP 90.72 90.89 91.25 91.22
Rotten Tomatoes 88.03 90.73 58.10 91.48
RTE 70.11 82.17 39.44 84.48
SST2 93.85 94.27 67.06 95.16
SST 5 bins 56.24 57.56 94.84 59.52
Trec Coarse 97.32 97.40 85.58 97.20
Trec Fine 87.08 88.28 96.80 91.04
Twitter Emoji 46.35 46.02 82.76 46.35
Twitter Emotion 81.52 81.25 51.11 82.76
Twitter Hate 53.76 53.70 76.02 53.95
Twitter Irony 71.05 74.54 84.77 76.25
Twitter Offensive 84.58 85.16 71.57 85.79
Twitter Sentiment 70.94 70.47 87.07 70.72
WIC 65.71 68.06 66.61 68.12
WNLI 55.21 51.55 91.10 54.93
WSC 63.46 63.27 63.46 62.31
Yahoo Answers 72.49 71.71 71.90 72.69

Table 1: Detailed results of the main experiment. Accuracy score of each dataset, for ColD Fusion and for the 3
baselines: Finetune, our Multitask, and MUPPET.
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