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Abstract
Visual spatial description (VSD) aims to gen-
erate texts that describe the spatial relations
of the given objects within images. Existing
VSD work merely models the 2D geometrical
vision features, thus inevitably falling prey to
the problem of skewed spatial understanding
of target objects. In this work, we investigate
the incorporation of 3D scene features for VSD.
With an external 3D scene extractor, we ob-
tain the 3D objects and scene features for input
images, based on which we construct a target
object-centered 3D spatial scene graph (GO3D-
S2G), such that we model the spatial semantics
of target objects within the holistic 3D scenes.
Besides, we propose a scene subgraph select-
ing mechanism, sampling topologically-diverse
subgraphs from GO3D-S2G, where the diverse
local structure features are navigated to yield
spatially-diversified text generation. Experi-
mental results on two VSD datasets demon-
strate that our framework outperforms the base-
lines significantly, especially improving on the
cases with complex visual spatial relations.
Meanwhile, our method can produce more
spatially-diversified generation. Code is avail-
able at https://github.com/zhaoyucs/VSD.

1 Introduction
Visual spatial description is a newly emerged
vision-language task, which aims to generate a tex-
tual descriptive sentence of the spatial relationship
between two target visual objects in a given image
(Zhao et al., 2022). VSD falls into the category of
image-to-text generation, while in particular focus-
ing on the visual spatial semantics understanding,
which has great values on the real-world human-
computer interaction (HCI) applications (Heuser
et al., 2020), e.g., automatic navigation (Pendão
and Moreira, 2021; Wang et al., 2023b), personal
assistance (Vanhooydonck et al., 2010), and un-
manned manipulation (Castaman et al., 2021; Wang
et al., 2023a, 2022a).
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➢ 2D Space Modeling

The gray car is parked on 
the left of the blue car.

➢ 3D Space Modeling
The gray car is parked in 
front of the blue car.

✘

✔

(a) Modeling 3D scene features results in correct spatial understanding

The gray car is parked in front 
of the blue car.

The gray car is parked in front of 
the blue car next to the building.

The gray car near the house is 
parked in front of the blue car.

The gray car near the house is parked 
in front of the blue car on the road.

(b) Holistic 3D scene features help generate diversified spatial descriptions

Figure 1: Examples of the visual spatial description.

Zhao et al. (2022) pioneer the VSD task by
manually annotating the spatial descriptions to the
images based on the visual spatial classification
datasets (Krishna et al., 2017). Also they solve
VSD as a general image-to-text (I2T) task via
vision-language pre-trained models (VL-PTMs),
i.e., inputting images and outputting texts. How-
ever, modeling VSD as a regular I2T job with
open-ended VL-PTMs can be problematic. Unlike
the existing I2T tasks, such as image captioning
(Vinyals et al., 2015), verb-specific semantic roles
(VSR) guided captioning (Chen et al., 2021) and vi-
sual question answering (VQA) (Antol et al., 2015)
that focus on the content semantics understanding,
VSD emphasizes more on the spatial semantics rea-
soning, according to its definition. Thus, directly
adapting VSD with general-purpose VL-PTMs will
lead to inferior task performances. We note that
there are at least two observations that should be
taken into account for VSD enhancement.

From the image encoding aspect, it is critical to
model the holistic 3D scene semantics of the input
image. In Zhao et al. (2022), their VL-PTM-based
methods model the visual geometrical features at
merely 2D flat space (e.g., superficial features). Yet
directly perceiving objects from the first-person per-
spective will inevitably result in skewed angle of
view and biased spatial understanding, and thus fail
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Figure 2: The overview of our proposed framework.

to handle complex cases (e.g. layout overlap, per-
spective illusion) or generate incorrect descriptions.
For example as in Figure 1(a), with the 2D-level
visual understanding, the spatial relation between
two cars is wrongly decided. As a reference, we
human always first project the visual contents into
the 3D space and reckon the scene layout and ob-
ject attributes (e.g., depth, shapes, camera poses),
and then narrate the spatial relations based on such
holistic 3D clues.

From the text decoding aspect, it is necessary
yet challenging to generate diverse sentences of the
object pair relation. In generic I2T task, prior meth-
ods strengthen the text diversification by equipping
with beam search (Vijayakumar et al., 2018) or in-
tegrating external knowledge (Yu et al., 2022). Dif-
ferent from the generic diversified generation, VSD
requires the diversification with respect to the spa-
tial descriptions, rather than the diverse linguistics.
We can again place the emphasis on the modeling
of holistic 3D scene features. For example, with a
precise understanding of the spatial relations, it is
both viable to generate ‘A is on the left of B’ or ‘B
is on the right of A’. Also, as illustrated in Figure
1(b), by comprehensively modeling the surround-
ing relations of the neighbor objects connecting
to the target objects in the holistic scene, more
spatially-diverse texts can be yielded via different
path traversing.

In this paper, we propose enhancing VSD by
modeling the holistic 3D scene semantics. We build
an encoder-decoder VSD framework (cf. Figure 2),
where the encoder learns the 3D spatial features,
and the decoder generates spatially-diversified de-

scriptions based on the spatial semantic features.
Specifically, at encoding side, we first employ
an off-the-shelf 3D scene extractor (Nie et al.,
2020) to produce 3D objects and the correspond-
ing scene features (i.e., layout, location, size and
visual features) for the input monocular RGB im-
age, via which we build a target object-centered 3D
spatial scene graph (namely, GO3D-S2G). We then
present an object-centered graph convolutional net-
work (OCGCN) to encode the GO3D-S2G. At de-
coding side, we devise a scene subgraph selecting
(S3) mechanism to sample topologically-diverse
object-neighboring subgraphs from GO3D-S2G,
which allows to generate descriptions focusing on
the near surroundings of target object. Based on
the sampled subgraphs, we then create prompt texts
to ground the focused objects and their prototype
directions. Finally, a backbone VL-PTM is used to
encode the prompt texts, input images as well as
3D scene features, then to produce VSD texts.

We experiment on two versions of VSD datasets
(Zhao et al., 2022), where one is with simple an-
notations and one has more complex and human-
friendly descriptions. The results indicate that
our system outperforms the best baseline with
significant margins, where our method especially
improves on the complex cases, such as layout-
overlapped and irregularly-posed objects. We fur-
ther reveal how the 3D scene graph modeling as
well as the S3 mechanism facilitate the task, and
also quantify the influence of the external 3D scene
extractor. All in all, this work contributes by verify-
ing that modeling the 3D scene of 2D image helps
the understanding of visual spatial semantics.
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visi The flatted ROI feature of object i.
sizei The length, width, height of object i.
loci The relative centroid coordinates of object i.

orii
The rotation value of three degrees of freedom
of object i.

Table 1: Summary of the 3D scene features.

2 Methodology

Problem Definition Given an image I with two
object proposals <O1, O2> in I , VSD generates a
sequence of words S = {w1, ..., wn} that describes
the spatial relationship between O1 and O2. The
input O1 and O2 contain the object tags and their
2D location coordinates. Different from image
captioning, the generated sentences of VSD must
directly or indirectly express the spatial relation
between the target objects.

Overall Framework As shown in Figure 2, our
framework (namely 3DVSD) is built upon an
encoder-decoder paradigm, where the encoder is
responsible for the 3D scene feature modeling, and
the decoder generates spatially-diversified descrip-
tions based on the spatial semantic features learned
from encoder.

2.1 Encoder: 3D Scene Feature Modeling

We first extract 3D scene features via an external
extractor. Then we build a target object-centered
3D spatial scene graph (GO3D-S2G), which is
encoded and propagated with an object-centered
GCN (OCGCN).

Extracting 3D Scene Features We adopt the 3D
scene extractor as in Nie et al. (2020), which is a
joint layout estimator and 3D object detector. It
first processes the 2D object detection for the in-
put RGB image, based on which the 3D relative
coordinates (location) and pose parameters of all
the objects will be estimated. Formally, we set
up the world system located at the camera cen-
ter with its vertical axis perpendicular to the floor,
and its forward axis toward the camera, such that
the camera pose R(β, γ) can be decided by the
pitch and roll angles (β, γ). In the world system,
an object Oi can be determined by a 3D center
loci ∈ R3, spatial size sizei ∈ R3, orientation an-
gle orii ∈ [−π, π)3. Finally, we obtain the loci,
sizei, orii and the region-of-interest (RoI) visi
(with its representation rvisi ) of each 3D object,
which is summarized in Table 1. We extend the 3D
scene generating details at Appendix A.1.

➢Target-surrounding edge

➢Near-neighbor edge

➢Target-pair edge

0 1 1 1 1

1 0 0 1 0

1 0 0 1 1

1 1 1 0 1

1 0 1 1 0

Figure 3: Three types of edges of GO3D-S2G.

Constructing Target Object-centered 3D Spa-
tial Scene Graph Based on the 3D objects and
the corresponding 3D scene features, we now con-
struct the GO3D-S2G. The graph is centered on the
two target objects, placing the focus on the spatial
relationships between the target objects and their
surrounding neighbor objects in the scene. Techni-
cally, we denote GO3D-S2G as G =(E, V ), where
V is the set of 3D nodes vi (i.e., 3D objects). Note
that as the input images are likely to contain some
noisy objects that are less-informative to the task,
we remove those objects by comparing their con-
fidence fi (i.e., the logit from the object detector)
with a threshold p. E is the set of edges ei,j , con-
sisting three types:

• Target-pair edge, which connects two given
target objects.

• Target-surrounding edge, which connects
each target object to all their surrounding non-
target objects.

• Near-neighbor edge, which connects those
non-target objects in near neighbor that may
have implicit correlations between each other.
We build the edges by calculating their coor-
dinates (loci), with those values larger than a
pre-defined threshold d as valid edges.

The edge ei,j=1 when there is an edge between vi
and vj . Figure 3 illustrates the edge constructions.

Encoding Graph with Object-centered GCN
While graph convolutional network (GCN)
(Marcheggiani and Titov, 2017) has been shown
effective for aggregating graph data, it may fail
to model the centralization of the target objects
of GO3D-S2G structure (as GCN treats all nodes
equally). Thus, we devise an object-centered GCN,
which advances in modeling both the edge features
and the target objects. OCGCN first creates initial
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Figure 4: Scene subgraph selecting mechanism.

representations of node svi and edge sei,j .
spose
i = Embed(orii ⊕ sizei) ,

sv
i = FFN(svis

i ⊕ spose
i ) ,

se
i,j = FFN(loci ⊕ locj) ,

(1)

where Embed() is the looking-up operation, FFN()
is the non-linear feedforward network.

Then, OCGCN updates the GO3D-S2G:
sv
i = σ(

∑

j=1

γi,j(Wa · [sv
i
′ ; se

i,j ; s
v
t ])) ,

γi,j =
ei,j · exp(Wb(s

v
j
′ ⊕ ei,j ⊕ sv

t ))∑
t=1 ei,t · exp(Wb(sv

t
′ ⊕ ei,t ⊕ sv

t ))
,

(2)

where sv
i′

is the node representation of last layer,
as OCGCN has total L layers. svt =svO1

⊕ svO2
is

the summary of the two target objects. [; ] is the
concatenation operation. Wa,Wb, b are learnable
parameters. The weight γli,j reflects the contribu-
tion of each object when propagating the spatial
attributes towards target objects.

2.2 Decoder: Spatially-diversified Text
Generation

In decoding stage, we use a VL-PLM to generate
VSD texts, as shown in Figure 2. We first per-
form scene subgraph selection over GO3D-S2G,
where the diverse local structures lead to spatially-
diversified text generation. Also we create prompt
texts to hint model to generate relevant contents.

Scene Subgraph Selecting As cast earlier, we
can make use of the neighbor non-target objects
of the two target objects in the scene as type of
‘bridges’ to diversify the generation. Thus, we pro-
pose a scene subgraph selecting (namely, S3) mech-
anism to sample sub-structures of GO3D-S2G.

Concretely, S3 contains three steps, as illustrated
in Figure 4. First, we calculate the connecting-
strength score for each edges in GO3D-S2G via
a simple FFN transformation: ai,j=FFN(ŝei,j),
where ŝei,j is the edge representation of final-layer
OCGCN. In the second step, we take a first-order
traversal to search the best neighbor nodes of two
target objects, respectively, where the best neigh-

above, top, over

right

top left

bottom, below, lower, under 

front, 
ahead

right 
front

left

rear, 
behind, 

back

Universal direction mapping prototype

<      , left rear,       >

consulting

Figure 5: The prototype of direction-term mapping.

bor nodes have the highest connecting scores to
their target objects. Note that we only consider the
direct neighbor of target objects (i.e., first-order
connection), because including nodes in too distant
will rather lead to inaccurate descriptions. In the
third step, we assemble the two perspective struc-
tures into one, and then prune the conflicting edge
with lower connecting score if a cycle exists (i.e.
two target objects connects to a common neighbor),
resulting in a successful subgraph.

It is noteworthy that during training we sample
only one subgraph with highest-scored edge, where
reparameterization trick (Blum et al., 2015) is used
for gradient propagation. During inference, we
sample multiple scene subgraphs with top-k high-
est score edges, i.e., giving diverse descriptions.

With the subgraph at hand, we create its repre-
sentations via a mean-pooling operation over it:

λi =
δ(vi ∈ Gsub) + at1,i + at2,i∑

l∈G (at1,l + at2,l)
,

rG = MeanPool({λiŝ
v
i , λiŝ

e
i,j |G}) ,

(3)

where ai,j is the strength score, t1 and t2 are the
target nodes, δ(exp) funtion outputs 1 when exp
is true, otherwise 0 , ŝvi , ŝ

e
i,j are the node and edge

representations of last-layer OCGCN. The local
scene graph feature rG will be used during text
generation at following stage.

Building Directional Prompts Now we try to
guide the VL-PLM to generate contents closely
relating to the target objects and the nodes in the
sampled subgraph. We thus build two types of
prompt texts, 1) target object prompt, e.g.,

<TGT> table <TGT> sofa
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Pre-definitions
Subject centroid: xs, ys, zs, Object centroid: xo, yo, zo

coordinate system: x-toward, y-up, z-right
x, y, z ∈ [0, 1]

dx = |xs − xo| , dy = |ys − yo| , dz = |zs − zo|
Rule Direction Term

Front: (dx > dy and dz , dx > 0.2,xs > xo)
dy, dz ≤ 0.2 “front”

dy > 0.2, ys > yo, dz ≤ 0.2 “front up”
dy > 0.2, ys < yo, dz ≤ 0.2 “front down”
dz > 0.2, zs > zo, dy ≤ 0.2 “front right”
dz > 0.2, zs < zo, dy ≤ 0.2 “front left”

dy, dz > 0.2, ys > yo, zs > zo “front up right”
dy, dz > 0.2, ys > yo, zs < zo “front up left”
dy, dz > 0.2, ys < yo, zs > zo “front down right”
dy, dz > 0.2, ys < yo, zs < zo “front down left”
Back: (dx > dy and dz , dx > 0.2,xs < xo)

dx > 0.2, dy, dz ≤ 0.2 “back”
Others are similar to front

Up: (dy > dx and dz , dy > 0.2,ys > yo)
Others are similar to front

Down: (dy > dx and dz , dy > 0.2,ys < yo)
Others are similar to front

Right: (dz > dx and dy , dz > 0.2,zs > zo)
Others are similar to front

Left: (dz > dx and dy , dz > 0.2,zs < zo)
Others are similar to front

(dx, dy, dz ≤ 0.2) “next to”

Table 2: Direction term mapping rules.

and 2) spatial relation prompt, e.g.,
<OBJ> table <REL> near <OBJ> sofa
<OBJ> sofa <REL> left <OBJ> bed

Two types of prompts are concatenated as one via a
‘<SEP>’ token. The former enlightens model what
the target objects are, and the latter tells model
what possible relational triplets are, i.e., “<objecti,
relation, objectj>”, where “relation” is the prede-
fined relation term. For each pair of Oi, Oj in
GO3D-S2G, we map their edge eij to a specific
direction term based on their centroid coordinates.

We maintain a prototype of 3D universal
direction-term mapping, as shown in Figure 5,
where we define 26 directions in the whole sphere,
with each direction binding certain directional
terms. Even a strong VL-PLM may fail to map a
direction to a term accurately. We thus additionally
perform pre-training to strengthen the perception
of direction. The detailed mapping rules of univer-
sal 3D direction-term are shown in Table 2. With
the predefined 26 directions, we compare the cen-

troid coordinates of a pair of objects to decide the
direction terms. Note that according to the rules
in Table 2, there may be multiple terms for the
same direction, e.g., “left up front” and “up left
front” and we keep these redundant terms in our
implementation. We add an extra term “next to”
to describe the situation that two objects are close
to each other. For some types of object that not
exists during the 3D Scene Extractor pretraining,
we just use their 2D locations and treat the depth
coordinate to 0.

Moreover, we conduct a pre-training to
strengthen the perception of direction for VL-PTM.
Concretely, we utilize the 3D scene extractor and
relation triplets ground-truth in VSD dataset to gen-
erate a set of pseudo data. For example, if we have
two target objects O1, O2 with theirs names Tag1,
Tag2 ,ground-truth relation term Relg (in VSD an-
notations), and 2D boxes Box1, Box2, we could
get their 3D centroid coordinates loc1, loc2 through
off-the-shelf 3D scene extractor. Then we map the
3D centroid coordinates to 3D direction term Relp.
We use “<OBJ> Tag1 <REL> Relp <OBJ> Tag2” as
inputs and “Tag1, Relg, Tag2” as outputs to train
the VL-PTM. Moreover, we randomly replace the
Relg with some synonyms for data augmentation.

Generating Text Finally, we feed the prompt
text and the raw image as input into our backbone
VL-PLM encoder, where the resulting represen-
tations rT and rI and the local scene graph fea-
ture rG are fused together via cross-attention, i.e.,
r=CrossAtt(rG, rT , rI ). The VL-PLM decoder
then performs text generation based on r.

3 Experiments
3.1 Settings
Dataset We evaluate our model on two datasets:
VSD-v1 and VSD-v2 (Zhao et al., 2022). VSD-v1
is the initial version of VSD datasets, which has
a large scale but simple annotations. VSD-v2 has
the same image source while more complex and
human-friendly descriptions, which is more chal-
lenging. We use the original split of train/dev/test
set of each dataset.

Implementation Our model takes the pre-trained
3D extractor from Nie et al. (2020), containing
the layout estimation network and the 3D object
detection network. The hidden size of OCGCN
is 768 which is the same with text decoder. The
dimension of edge feature sei,j is also 768. We
adopt the OFAbase as our backbone VL-PLM.
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VSD-v1 VSD-v2

BLEU-4 METEOR ROUGE CIDEr SPICE BLEU-4 METEOR ROUGE CIDEr SPICE
• VL-PTMs

Oscar 37.17 35.06 66.47 427.21 67.41 20.90 23.83 50.96 221.61 44.12
VL-Bart 52.71 41.96 77.57 471.21 67.83 23.78 24.83 48.49 253.26 45.04
VL-T5 52.58 41.94 77.63 472.24 67.90 23.83 24.26 53.51 255.51 46.86
OFA 53.59 41.74 77.68 469.23 67.03 24.53 24.93 54.27 257.29 45.63

• VL-PTMs + VSRC (Zhao et al., 2022)
VLBart-ppl 53.49 42.14 77.79 474.34 67.97 24.44 24.08 53.80 256.52 45.16
VLT5-ppl 53.71 42.56 78.33 480.32 68.72 23.79 24.49 54.49 256.70 46.04
VLBart-e2e 53.60 42.45 78.15 476.47 68.18 24.71 24.41 54.22 258.18 45.79
VLT5-e2e 54.31 42.63 78.38 481.13 68.74 24.47 24.50 54.52 261.70 46.07

• VL-PTMs + 3D scene features
3DVSD (Ours) 54.85 43.25 79.38 483.05 68.76 26.40 26.87 55.76 272.93 46.97

(+0.54) (+0.62) (+1.00) (+1.92) (+0.02) (+1.87) (+1.94) (+1.24) (+11.23) (+0.11)

Table 3: Main results on two datasets. Bold numbers are the best, and underlined ones are the second best.

B4 M R C S
VL-T5 29.41 28.67 59.23 294.81 50.04
OFA 33.14 30.02 60.87 290.93 49.23
VLT5-e2e 29.64 28.88 60.13 291.32 51.01
3DVSD 39.29 34.27 67.88 328.56 55.42

Table 4: Results on hard cases in VSD-v2, where the
images come with layout-overlapped and irregularly-
posed target objects.

Evaluation We make comparisons with 1) the
existing popular image-to-text VL-PLMs, includ-
ing OSCAR (Li et al., 2020), VLT5/VLBart (Cho
et al., 2021), OFA (Wang et al., 2022b); 2) the mod-
els introduced in Zhao et al. (2022), including the
pipeline (ppl) and the end-to-end (e2e) paradigms.
Zhao et al. (2022) use the visual spatial relations
classification (VSRC) results as intermediate fea-
tures for VSD. Following Zhao et al. (2022), we
adopt five automatic metrics to evaluate perfor-
mances, including BLEU-4, MENTEOR, ROUGE,
CIDEr and SPICE. We measure the diversity with
three metrics, i.e., mBLEU-4, BLEU-4@K and
SPICE@K. All the used VL-PLMs are the base
version. Our results are the average scores over
five runs. Appendix §B.3 details all the experimen-
tal settings.

3.2 Main Observations
Main Results As shown in Table 3, overall, the
VSD-v2 can be more challenging than VSD-v1,
where model scores on all the metrics are lower.
Also we see that four different VL-PTMs show the
similar level of performances, due to their general
purpose of pre-training for multimodal learning.
By taking advantages of the VSRC features, Zhao
et al. (2022)’s methods outperform the baseline

BLEU-4 SPICE
3DVSD (Full) 26.40 46.97

w/o GO3D-S2G 23.31(-3.09) 43.89(-3.08)
w/o OCGCN 24.51(-1.89) 46.85(-0.12)
w/o S3 mechanism 25.19(-1.21) 46.38(-0.59)
w/o Dir-term Prompts 26.18(-0.22) 46.17(-0.80)

Table 5: Ablation results (VSD-v2). ‘w/o GO3D-S2G’
means ablating the graph modeling of 3D scene feature,
while instead using the embedded vectors svi for text
generation. ‘w/o OCGCN’ means replacing OCGCN
encoder with the vanilla GCN. ‘ w/o S3’ means re-
placing with beam search decoding. ‘Dir-term Prompts’
represents the directional term prompts.

vanilla VL-PTMs on the task. However, the im-
provements from Zhao et al. (2022)’s models can
be incremental, due to the reason that Zhao et al.
(2022) model the input images with only 2D in-
formation. On the contrast, our proposed 3DVSD

model achieves significant improvement over the
baselines cross two datasets on all the metrics, evi-
dently demonstrating its efficacy.

In addition, our model shows larger improve-
ments on the harder VSD-v2 data than that on
VSD-v1. To directly measure the capability of our
method, we further collect a subset from VSD-v2,
where the target objects in images are irregularly-
posed with complex spatial relation, and also there
are overlapped layouts. We perform experiments
on the set, where the results are shown in Table 4.
We can find that our 3DVSD model improves the
best-performing baseline with marked boosts, i.e.,
1.87 BLEU-4, 1.94 METROR, 1.24 ROUGE and
5.11 CIDEr. This significantly indicates that our
method is capable of well understanding the visual
spatial semantics and thus generating more diverse
and flexible VSD sentences.
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K=5 Samlpling

mBLEU-4↓ BLEU-4@K↑ SPICE@K↑
Beam Search

VL-T5 8.62 33.02 60.55
OFA 7.77 32.72 60.37
3DVSD 7.6 33.12 60.67

Scene Subgraph Sampling
3DVSD 5.01 34.44 61.99

Table 6: Auto-evaluation on spatial diversification.

Spatial Acc.↑ Spatial Div.↑ Fluency↑
Beam Search

VL-T5 3.05 2.91 4.33
OFA 3.14 2.94 4.39
3DVSD 3.13 3.10 4.49

Scene Subgraph Sampling
3DVSD 3.19 3.98 4.53

Table 7: Human evaluation (with Likert 5-scale) on gen-
eration diversification. We randomly select 100 samples
from VSD-v2.

Model Ablation Now we quantify the contribu-
tion of each design in our systems via model abla-
tion, as shown in Table 5. First, we can see that the
3D scene feature from GO3D-S2G graph model-
ing gives the biggest influences, i.e., contributing
3.09 BLEU-4 and 3.08 SPICE scores. Besides, the
OCGCN encoder, the S3 mechanism as well as the
direction-term prompting also plays an essential
role to the overall system, respectively.

Evaluation on Spatial-diversity Generation As
we equip our system with the S3 mechanism, we
can generate spatially-diversified texts. Next, we
directly assess the ability on the generation spatial-
diversification. We first make comparisons with
the beam search method using automatic metrics
(Deshpande et al., 2019), including mBLEU-4,
BLEU-4@K and SPICE@K. mBLEU-4 compares
the 4-gram matching between one of the generated
sentence and the remaining generated sentences for
an image, and thus lower mBLEU-4 score means
more diversity. BLEU-4@K and SPICE@K rep-
resent the highest BLEU-4 and SPICE score for
the top-k generated sentences for an image, where
higher BLEU-4@K and SPICE@K prove that the
a model can keep better semantics accuracy while
generating diverse results. As shown in Table 6,
our S3 mechanism achieves lower mBLEU-4 and
higher BLEU-4@K and SPICE@K, demonstrating
that our method could generate diversified descrip-
tions with enough semantics accuracy.
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Figure 6: Comparison of 2D and 3D method on VSDv2.
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Figure 7: Ablation results of 3D features on VSDv2.

We also provide a human evaluation to describe
spatial diversity with respect to the Spatial Accu-
racy, Spatial Diversity and Fluency. We ask 10 En-
glish speakers to answer the 5-point Likert scale on
100 samples, where the average results are shown
in Table 7. Overall, all the models can achieve
competitive score on language fluency, thanks to
the superiority of VL pretraining. Also the tenden-
cies of spatial accuracy and diversity is consistent
with the automatic evaluation. Remarkably, our
S3 mechanism shows the best capability on spatial
diversity, demonstrating its effectiveness.

3.3 Analyses and Discussions

To gain an in-depth understanding of our method’s
strengths, we try to answer following research ques-
tions via further analyses:

• RQ1: How 3D scene features help understanding
the spatial semantics of input images?

A: The key of our method is the leverage of 3D
scene features. Now, we first consider downgrad-
ing the 3D features into the 2D ones, such that we
can gain the perception of its necessity. To ensure
the fair comparison, we remove the 3D scene ex-
tractor and replace the 3D pose feature posei (Eq.
1) with the 2D size. Also we replace the 3D coor-
dinates by 2D coordinates. And the other settings
are kept the same. As shown the results in Figure
6, the 2D scene modeling results in the markedly
performance decrease.

We can further quantify the contributions of each
type of 3D features via feature ablation, including
the orientation feature orii and the size feature
sizei. As seen in Figure 7, both 3D orientation and
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• VLT5-e2e: • 3DVSD:
The books are on the chair. The books on the shelf are behind the chair.
There are some books above the chair. Some books are on the shelf behind the chair.
Some books are on the black chair. The books are behind the chair next to the table.
• 3DVSD: The books on the shelf are behind the chair near the door.
The book is behind the chair. The books on the shelf are behind the chair next to the table.
Some books are behind the chair.
There are some books behind the black chair.
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• VLT5-e2e: • 3DVSD:
The blanket is near the floor. The gray blanket is on the floor.
The gray blanket is under the floor. The blanket on the floor is in front of the chair.
There is a white blanket on the floor. The blanket on the floor is on the right of the bed.
• 3DVSD: The blanket on the floor is in front of the shelf.
The blanket is on the floor. The blanket is on the floor next to the desk.
The white blanket is on the floor.
The grey blanket is on the floor.

Figure 8: Qualitative results of generated descriptions with beam search decoding and S3 mechanism, respectively.
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Figure 9: Performances on the indoor (NYU) and out-
door (Visual Genome and Flickr) input images. The pie
chart shows the data proportion.

3D size features contribute to the overall system.
Also the influence on SPICE is larger, which indi-
cates that the orientation and size of the objects es-
pecially help recognize the spatial relation. Finally,
in Figure 8 we empirically show the OCGCN’s ker-
nel weight γi,j (Eq. 2) on two pieces of instances,
where the attention values reflect the contribution
of each object. It is clear that our model has suc-
cessfully captured the spatial semantics of the tar-
get object pairs.

• RQ2: How does S3 mechanism aid the diversified
spatial description generation?

A: Next, we consider investigating how exactly
the S3 mechanism contribute to the spatial descrip-
tion generation. Through our S3 mechanism, we
could generate 4 types of subgraphs: 1) with only
target nodes (2-hop); 2) with one non-target neigh-
bor node linked with subject node (3-hop-s); 3)
with one non-target neighbor node linked with ob-
ject node (3-hop-o); 4) with two non-target neigh-
bor nodes. In our implementation, we use a thresh-
old pcut to filter out edges with very low scores.
Figure 10 show the distribution of four subgraphs
with pcut=0.1 or 0.2. We see that different pcut val-

2-hop

3-hop-s

3-hop-o

4-hop

76%

1%
10%

13%

(a) pcut = 0.2

2-hop
3-hop-s

3-hop-o

4-hop

45%

9%

31%

15%

(b) pcut = 0.1

Figure 10: Distribution of subgraph types.

ues help generates spatial descriptions with vary-
ing numbers of objects attended into the subgraphs.
That is, S3 mechanism aids the diversified spatial
description generation by producing multiple het-
erogeneous subgraphs structures.

We also empirically show the qualitative results
in Figure 8. We notice that the beam search method
can generate multiple alternative texts in both cases,
where unfortunately the diversification on describ-
ing the spatial relation is much inferior and limited.
In contrast, with our S3 method, the system gen-
erates spatial-diversified descriptions for both two
images. Some surrounding objects, e.g., ‘shelf’,
‘table’, ‘door’ in the first case and ‘chair’, ‘bed’,
‘shelf’ and ‘desk’ in the second case, are leveraged
to aid describe the target objects.

• RQ3: To what extent the external 3D scene ex-
tractor quality influence the VSD performances?

A: As we obtain the initial 3D scene features
from the external extractor, the quality of the ex-
tractor is key to our final VSD performance. Note
that the off-the-shelf 3D extractor is trained on a
datasets of indoor scenes, while in VSD dataset the
images contain both types of indoor (NYU) and out-
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door (Visual Genome (VG) and Flickr). As shown
in Figure 9, the indoor images actually are the mi-
nority in our VSD data. Here we perform analysis
to valid the influence on 3D scene extractor. We
split the VSD-v2 test set into indoor and outdoor
subsets according to the domain types. Then we
run our model on the two sets separately. As shown
in the figure, the results on the indoor NYU set
exceed those on the outdoor VG&Flickr set clearly,
demonstrating the domain shift issue in our system.
Given that our system has already secured consid-
erable performance increase than existing models,
we presume that when obtaining a 3D extractor ca-
pable of detecting higher-quality 3D scene features
for any domain and scenario, our method has the
greater potential to gain more task improvements.

4 Related Work

Image-to-text (I2T) is a fundamental task category
of the vision-language multimodal topic. Exist-
ing I2T tasks, e.g., image captioning (Vinyals et al.,
2015; Cornia et al., 2019; Mathews et al., 2018) and
VQA (Antol et al., 2015; Lubna et al., 2019; Man-
madhan and Kovoor, 2020), attempt to generate
textual pieces to understand the image content se-
mantics through different perspectives. VSD is also
a subtask of I2T, which however places the focus on
the spatial semantics understanding. Within recent
years, VL-PTMs are extensively employed for the
I2T tasks, which have helped achieve state-of-the-
art performances on many benchmarks (Lu et al.,
2019; Chen et al., 2019; Zhou et al., 2020; Li et al.,
2020; Wang et al., 2022b). Prior VSD study (Zhao
et al., 2022) has benchmarked the VSD task with
these general-purpose VL-PTMs. Unfortunately,
different from the content-semantic I2T tasks, the
goal of VSD is to grasp the spatial semantics.

This work also relates to the theme of visual
spatial understanding, which has been intensively
investigated in the past years. Yang et al. (2019);
Jänner et al. (2018) propose the visual spatial rela-
tion classification (VSRC) task, aiming to predict
whether a spatial description is reasonable for the
input image. Differently, VSD aims to directly gen-
erate the descriptions of the spatial relations. The
bottleneck of visual spatial understanding tasks is
the capturing of spatial semantics. Thus, in this
paper, we propose improving the visual spatial
understanding for VSD via modeling the holistic
3D scene features. Our work takes the advance-
ments from the topic of 3D scene parsing (Huang

et al., 2018a,b; Nie et al., 2020; Zhang et al., 2021),
which reconstructs the 3D scene from a single RGB
image. By using the 3D scene features, e.g., 3D
layout and 3D object, we achieve the goal of more
in-depth understanding of the spatial semantics.

5 Conclusion

In this work we incorporate the 3D scene features
for improving the visual spatial description (VSD)
task. We first employ an off-the-shelf 3D scene
extractor to produce 3D objects and scene fea-
tures for the input images. We then build a target
object-centered 3D spatial scene graph (GO3D-
S2G) structure, which is encoded with an object-
centered graph convolutional network. Next, we de-
vise a scene subgraph selecting mechanism to sam-
ple topologically-diverse subgraphs from GO3D-
S2G, where the local features are used to guide to
generate spatially-diversified descriptions. On the
VSD datasets our framework shows superiority on
the task, especially for solving the complex cases,
such as layout-overlapped and irregularly-posed
object. Meanwhile our method can produce more
spatially-diversified generation. Finally, we demon-
strate the influence of quality of the external 3D
scene extractor.
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Limitations

This work has one major risk. As the main idea
proposed in this work heavily relies on the exter-
nal 3D scene extractor, the quality of extractor on
our used VSD images largely influences the task
performance. However, we reveal in analysis that
although suffering from the domain shift issue by
the out-of-domain 3D scene extractor, our method
still improves the VSD task. We show that when
handling the in-domain VSD images as used for
training the 3D scene extractor, the VSD perfor-
mance has been boosted remarkedly. Thus, with
better a 3D scene extractor, it can be expected that
our system will exhibit much stronger capability
and advance the VSD task more significantly.
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A Model Specification

Here we provide the detailed calculations of our
system. For the MeanPool operation in Equation 3,
we calculate rG as:

rG =
1

M2

∑

i∈G

∑

j∈G
λi

(
ŝvi ⊕ ŝei,j

)
(4)

where M is the node number of the GO3D-S2G,
λi is a weight expansion (shown in Equation 3),
which could capture the subgraph features with a
very high weight, ŝvi and ŝei,j are the node and edge
representations of last-layer OCGCN.

For VL-PTM encoding, we adopt the approach
in OFA model (Wang et al., 2022b). The input
image I is first embedded by a inbuilt ResNet and
flatted to a tokenized visual feature. Then the vi-
sual features are projected to the encoder model
dimension, obtaining the global visual feature rI .
The process could be formalized as:

r̂I = ResNet(I),

rI = Wvr̂
I + bv,

(5)

where Wc and bc are model parameters. Then the
tokenized visual features are concatenated with em-
bedded text sequence as the inputs of VL-PTM
encoder:

hI,T = Encoder(rI ⊕ rT ). (6)

After that, the encoder outputs and graph feature
rG are fused through cross-attention in VL-PTM
decoder. The cross-attention operation in a trans-
former unit could be formalized as:

X =
{
rG;hI,T

}
,

K = WkX,V = WvX,Q = WqDh,

Attention(Q,K,V ) = softmax
(
QK√

d

)
V ,

(7)

where rG is the graph feature, hI,T is the encoder
outputs, Wk,Wv,Wq are model parameters, d is
the out dimension of Wv, Dh is the outputs of
self-attention unit in Transformer decoder.

A.1 3D Scene Extracting

We employ an external 3D scene extractor from
(Nie et al., 2020), which is pretrained on the SUN
RGB-D dataset (Song et al., 2015). The model con-
tains three modules: 1. Layout Estimation Network
(LEN); 2. 3D Object Detection Network (ODN); 3.
Mesh Generation Network (MGN). In our frame-
work, we only use LEN and ODN, which outputs
the layout coordinates system and the 3D location

Step 1
2D Object Detection

Faster-RCNN

2D Proposals

Step 2
Layout Estimation

Layout Estimation 
Network

Layout System

ResNet

Step 3
3D Object Detection

Relation
Features

MLP

𝑙𝑜𝑐!"

𝑣𝑖𝑠!"

𝑠𝑖𝑧𝑒!" 𝑜𝑟𝑖!"

MLP MLP

Attention
Sum

Figure 11: The framework of 3D scene extractor.

and pose of each object. We also need a 2D Ob-
ject Detector to generate appearance feature and
2D box as the inputs for ODN. We directly borrow
the Faster-RCNN (Ren et al., 2015) to process the
images to obtain the necessary RoI features, boxes,
and object tags. For the LEN, we need the camera
intrinsic parameters to adjust the coordinates sys-
tem. However, the VSD dataset does not provide
this information of the images. We just generate a
pseudo camera intrinsic matrix for all the images
in our implementation. The method works in VSD
because we do not need the accurate location of
each object, we just need to capture the relative re-
lations among the object pairs. Thus, the distortion
of absolute coordinates will hardly impact the final
results of VSD. As shown in Figure 12, though
the 3D boxes are distorted, their relative spatial
relations remain unchanged.

A.2 Spatial Scene Graph Creating

The detailed algorithm of S3 is shown in Algorithm
1. Suppose that the max object number is N (N=36
in our implementation). We first initialize an N ×
N adjacency matrix A = 0. When adding the
Target-pair and Target-surrounding edges, we set
the columns and rows of the target object index
to 1. When adding the Near-neighbor edge, we
traverse the edges and set the one with dist > d in
A to 1. At last, we should remove the edges of
noisy objects, setting the related items of A to 0.

A.3 Overall Training Procedure

We have several pretrained external modules in our
system. First, we prepare the pretrained ResNet for
image embedding, which will be used in 3D layout
estimation, 3D object detection and the OFA image
embedding. Before training, we use the pretrained
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Figure 12: Comparsion of 3D boxes between different camera intrinsics.

Algorithm 1: GO3D-S2G Creating
Input: max object number N ,

two target objects index o1, o2,
confidency of each object f ,
centroid of each object C,
distance threshold d,
noise confidency threshold p

Output: adjacency matrix AN×N

initialization: A = 0.
// target object edges
A[o1,:] = 1, A[:, o1] = 1,
A[o2,:] = 1, A[:, o2] = 1,
// add special edges
for i in N do

for j in N do
dist = ||Ci − Cj ||
if dist > d then

Aij = 1
end

end
end
// remove noise objects
for i in N do

if fi < p and oi is not target object then
A[i,:] = 0, A[:,i] = 0

end
end

Faster-RCNN to preprocess all the images for 2D
object detection, obtaining the 2D boxes and RoI
features. We also prepare the 3D scene extractor
pretrained on SUNRGB-D with the method in (Nie
et al., 2020).

Then we collect the three modules and train our
whole system, where the 3D extractor and the de-
coder (VL-PTM) are initialized by pretrained pa-
rameters. The OCGCN and other parameters (e.g.
edge embedding, connecting-strength scorer) are
initialized randomly. Before global training, we

Object Types
wall, floor, cabinet, bed, chair,
sofa, table, door, window, bookshelf,
picture, counter, blinds, desk, shelves,
curtain, dresser, pillow, mirror, floor,
clothes, ceiling, books, refridgerator, television,
paper, towel, shower curtain, box, whiteboard,
person, night stand, toilet, sink, lamp,
bathtub, bag, other

Table 8: Objects in SUNRGB-D dataset.

pretrain the VL-PTM with direction terms as Table
2. During global training, the 3D scene extractor
are frozen while others will be updated.

We have two main training targets, e.g., the cross-
entropy between Vl-PTM decoder outputs and the
ground-truth description of VSD Lt, and the cross-
entropy between connecting-strength score distri-
bution and target object index Lc:

Lt = −
Nw∑

l=1

log pθ (yl|x,y<l) ,

Lc = −
N∑

i=1

δ(i ∈ Og)(log at1,i + logat2,i),

(8)

where Nw is the text length, x is the VL-PTM
encoder outputs and yl is decoder outputs in the
l-th step , N is the node number of GO3D-S2G,
ai,j is connecting-strength score during S3, t1, t2
are the two target objects, Og is a set that contains
the objects appear in the ground-truth description,
and δ (·) is the two value function that outputs 1
when · is true, otherwise 0. We obtain Og by string
searching in the descriptions. Then the final loss is
L = Lt + Lc.

B Experiment Specification

B.1 Data Analyses
The VSD dataset contains images from Visual
Genome, Flickr, and NYU-Depth (Zhao et al.,
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Figure 13: Top 20 objects distribution in VSD dataset.

#Img VSD-v1 VSD-v2

#SENT AvgLEN #SENT AvgLEN
Train 20,490 116,791 7.35 22101 8.88
Dev 2,927 16,823 7.33 3140 8.85
Test 5,855 10,038 8.04 5.34 9.00

Table 9: The statistics of the two versions of VSD
dataset.

2022; Yang et al., 2019), where NYU-Depth is
the indoor dataset (Silberman et al., 2012).

Figure 13 shows the distribution of object tags
in the VSD dataset. Table 8 lists the object types in
SUNRGB-D dataset which are used to pretrain 3D
scene extractor. There are several common types,
such as “person”, “table”, “chair”, “wall” and “win-
dow”. Thus the 3D scene extractor could achieve a
comparable performance in VSD. For other object
types, the built-in 2D object detector (pretrained
on VG or COCO) could provide a passable 2D
location information.

There are two versions of VSD dataset released,
where the VSD-v1 contains large-scale while rela-
tive simple descriptions and the VSD-v2 contains
small-scale while diversified descriptions. The two
versions share the same image set. The statistics of
the two datasets are shown in Table 9. Figure 14
shows the difference between the annotations of the
two datasets. The annotated sentence in VSD-v1
is relative short and simple while those in VSD-v2
contains more semantics and be more challenging.

B.2 Extended Experimental Implementations

Data Preprocess For memory space and time
saving, we preprocess the data through Faster-
RCNN to obtain the RoI featues, object tags and
2D boexs and save them to files. For 3D scene
extractor, we also preprocess the images, saving
their ResNet features to files.

VSD-v1:
There are two hands in the pockets.

VSD-v2:
The man in the striped shirt had his 
hands in his pockets.

VSD-v1:
An SUV is parked behind a man.

VSD-v2:
There is a man riding a bicycle on 
the right of the black SUV.

Figure 14: Comparison between annotations of VSD-v1
and VSD-v2.

VL-PTM Configuration For fairly comparison,
we employ the OFA-base as our VL-PTM, which
has the similar scale of parameters to the baselines.
The layers number is 6 for both encoder and de-
coder, and the head number of the multi-head atten-
tion is 6 as well. Besides OFA, we can use any type
of VL-PTMs such as VLT5/VLBart, or combina-
tion of single VL encoder and text decoder, such as
“CLIP-GPT”, “ViT-GPT”. For more comparison,
we leave them in future works.

B.3 Hyperparameters
Table 11 lists the hyperparameters of our imple-
mentation.

B.4 Baselines
We use some strong image-to-text models as our
baselines.

• Oscar (Li et al., 2020) is a BERT-like visual-
language pretrained model, only containing
the Transformer encoder. Oscar takes tok-
enized RoI features of the image as visual
inputs. This model has shown strong perfor-
mance on Image Captioning and VQA.
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K=5 Samlpling K=10 Samlpling
mBLEU-4↓ BLEU-4@K↑ SPICE@K↑ mBLEU-4↓ BLEU-4@K↑ SPICE@K↑

Beam Search
VL-T5 8.62 33.02 60.55 8.02 33.27 61.11
OFA 7.77 32.72 60.37 7.41 33.09 61.06
Ours 7.6 33.12 60.67 7.38 33.46 61.31

Scene Subgraph Sampling
Ours 5.01 34.44 61.99 4.83 34.75 62.61

Table 10: Diversity evaluation results in VSD-v2.

Hyper-param. Value
dimension of ROI feature 2048
dimension of OFA hiddens 768
dimention of edge feature 64
layer number of GCN 3
max object number 36
distance threshold d 0.2
confidency threshold p 0.7
S3 cutting threshold pcut 0.1
max text length 40
optimizer AdamW
warm up ratio 0.05
weight decay 0.01
Adam ϵ 1e-6
Adam β1 0.9
Adam β2 0.999
dropout 0.1
learning rate 5e-5
bach size 16
epoch 30
beam search number 5

Table 11: Model hyperparameters.

• VLT5/VLBart (Cho et al., 2021) are continue
pretrained on image-to-text tasks from gener-
ative encoder-decoder language model Bart
and T5. Previous work (Zhao et al., 2022) has
proven their capability on solving VSD task.

• OFA (Wang et al., 2022b) is a new vision-
language model, which are pretrained by a
mount of vision-language multi-modal tasks.
It has achieved several SoTA results on exist-
ing image-to-text tasks.

C Extended Experiments

C.1 Diversity Evaluation

We compare more results of sampling scale for
diversity evaluations. Figure 10 reports the results
of K=5 and K=10 on VSD-v2. The tendency of
K=10 is consistent with that of K=5, where the S3

achieves lower mBLEU-4 and higher BLEU-4@K
and SPICE@K.

For human evaluation, our 5-point Likert scale
is designed as follows:

• Spatial Accuracy: The sentences correctly
describe the spatial relationship of the target
objects.

• Spatial Diversity: These sentences describe
diversified spatial semantics.

• Fluency: The sentences are readable and not
different from human sentence-making.

Each question will be answered by a number
from 1 to 5, denoting “Strongly Disagree”, “Dis-
agree”, “Neither disagree nor agraa”, “Agree” and
“Strongly agree”. We select 100 samples and gen-
erated 5 sentences for each, and sent them to the
evaluators for scoring.

C.2 More Case Study
Figure 15 provides some more qualitative compar-
isons among models and human. Compared with
baselines, our model could generate description
more like human-made.
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<chair, table>
Baseline:
The chair is behind the table.
3DVSD:
The nearest chair is in front of the table.
Human:
The nearest chair is in front of the table.

<light, wall>
Baseline:
The light is on the wall.
3DVSD:
The light is on the left wall is in the 
middle.
Human:
The light is on the midlle of the left wall.

<railway tracks, train>
Baseline:
The railway tracks are next ot the train.
3DVSD:
There is a railway track next to the train
with some graffiti.
Human:
There is a railway track next to the train
with some graffiti.

<mountains, plane>
Baseline:
The mountains are to the right of the 
plane rear.
3DVSD:
There are many mountains can be seen 
on the right of the plane rear.
Human:
Mountains are seen from the right of a 
plane rear in the distance..

Figure 15: Cases comparison among models and human.
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