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Abstract
Back Translation (BT) is widely used in
the field of machine translation, as it has
been proved effective for enhancing transla-
tion quality. However, BT mainly improves
the translation of inputs that share a similar
style (to be more specific, translation-like in-
puts), since the source side of BT data is
machine-translated. For natural inputs, BT
brings only slight improvements and some-
times even adverse effects. To address this
issue, we propose Text Style Transfer Back
Translation (TST BT), which uses a style trans-
fer model to modify the source side of BT data.
By making the style of source-side text more
natural, we aim to improve the translation of
natural inputs. Our experiments on various lan-
guage pairs, including both high-resource and
low-resource ones, demonstrate that TST BT
significantly improves translation performance
against popular BT benchmarks. In addition,
TST BT is proved to be effective in domain
adaptation so this strategy can be regarded as a
general data augmentation method. Our train-
ing code and text style transfer model are open-
sourced.1

1 Introduction

Works in neural machine translation (NMT)
(Sutskever et al., 2014; Bahdanau et al., 2016; Wu
and et.al, 2016; Vaswani et al., 2017) greatly im-
prove translation quality. However, current meth-
ods generally require large amount of bilingual
training data, which is a challenging and some-
times impossible task. As obtaining monolingual
data is much easier, researchers have long ex-
ploited methods to enhance model performances
using monolingual data, for example, language
model fusion for phrase-based (Brants et al., 2007;
Koehn, 2009) and neural machine translation (Gul-
cehre et al., 2015, 2017), back translation (Sen-
nrich et al., 2016), and dual learning (Cheng et al.,

*These authors contributed equally to this work.
1https://github.com/FrxxzHL/ssebt

Figure 1: Bilingual and BT data used for English →
German training. Nature indicates data generated by
native speakers; HT indicates data generated by hu-
man translators from another language, and MT indi-
cates machine translation results. MT and HT styles
are close, but far from Nature.

2016; He et al., 2016; Xia et al., 2017). The com-
bination of such monolingual methods can further
improve model performances.

Back Translation (BT), a data augmentation
method to generate synthetic parallel data by trans-
lating content from target language back to source
language, is widely used in the field of machine
translation. BT has many variants (Sennrich et al.,
2016; Edunov et al., 2018; Caswell et al., 2019)
and each has own merits.

In terms of text style, models that use BT are
usually trained on three types of data. Real par-
allel data constitutes the first two types: natural
source with human-translated target (Nature →
HT ) or human-translated source with natural tar-
get (HT → Nature). Back translation data con-
stitutes the third type: machine-translated source
with natural target (MT → Nature), as shown in
Figure 1.

Inspired by van der Werff et al. (2022), who
find that a classifier can distinguish MT data from
HT data, we train a similar classifier to classify
Nature and MT data and find that a high per-
centage of original text is marked as Nature by
the classifier. However, the percentage of Nature
content is low in human-translated data and even
lower in machine-translated data. In general, hu-
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Metrics Method Original Reverse All

BLEU
Bitext 46.3 34.9 42.2

BT 41.8 42.6 42.7

COMET
Bitext 58.7 64.9 61.8

BT 53.5 69.8 61.6

Table 1: English→German BLEU and COMET scores
for models trained on WMT 2018 bitext (Bitext) and
24M BT data, measured on WMT 2018 ENNature →
DEHT (Original) and ENHT → DENature (Reverse)
test sets.

man and machine translated data are similar, but
far different from original text.

We find that when the input style is close to
Nature, the output is biased towards HT ; and
when the input style is closed to HT , the output
is biased towards Nature (for details, see Sec-
tion 6.1). Since the input used to generate BT
data is Nature, the output is close to HT . So
BT mainly improves the translation of translation-
like inputs. For natural inputs, BT brings only
slight improvements and sometimes even adverse
effects. However, in practical use, most inputs sent
to NMT models are natural language written by na-
tive speakers, rather than translation-like content.

We use one original test set (Nature → HT )
and one reverse test set (HT → Nature) to mea-
sure BT performance respectively. As shown in
Table 1, BLEU (Post, 2018) and COMET (Rei
et al., 2020a) scores increase on the reserve test
set but decrease on the original test set after BT.

Based on the finding, this paper aims to explore
a method to enhance translation of Nature input
on basis of BT, while maintaining its effectiveness
in translating translation-like content. Since BT
connects translation-like input with Nature tar-
get, we assume that if we could connect Nature
input with Nature target, translation of Nature
input could be further enhanced.

Therefore, we propose Text Style Transfer Back
Translation (TST BT), aiming to turn MT →
Nature data into Nature → Nature data to
enhance the translation of Nature input. How-
ever, transferring translation-like text to a natural
style is a zero-shot issue, because we can hardly
obtain parallel data with the same meaning but dif-
ferent styles (MT and Nature). We propose two
unsupervised methods. Our experiments on high-
resource and low-resource language pairs demon-
strate that TST BT can significantly enhance trans-
lation of Nature input on basis of BT variants

while brings no adverse effect on HT inputs. We
also find that TST BT is effective in domain
adaptation, demonstrating generalizability of our
method.

Our contributions are as follows:

• We analyze the style of BT text and rational-
ize its ineffectiveness on Nature input. We
herein propose TST BT to solve this issue.

• TST BT combines Text Style Transfer with
BT data to further improve translation of
Nature inputs in high and low resource, as
well as in-domain and out-of-domain scenar-
ios against various BT baselines.

• Our experiment results show that TST BT is
effective in domain adaptation as well, which
further improves model performance on basis
of BT augmentation.

2 Related Work

2.1 Back Translation

Back Translation is first proposed by Bertoldi and
Federico (2009); Bojar and Tamchyna (2011) for
phrase-based systems, and then applied to neural
systems by Sennrich et al. (2016).

In general, the standard BT adopts beam search
for output generation, so in this paper, we denote it
as Beam BT. The following are some BT variants:

• Sampling BT (Edunov et al., 2018): ran-
domly samples translation results based on
the probability of each word during decoding,
thus largely increases BT data diversity.

• Noised BT (Edunov et al., 2018): adds three
types of noise to the one-best hypothesis pro-
duced by beam search.

• Tagged BT(Caswell et al., 2019): adds an ex-
tra token to synthetic data to distinguish it
from genuine bitext.

In our experiment, we use the above four vari-
ants as baselines. Other BT variants include Meta
BT (Pham et al., 2021), a cascaded method to
supervise synthetic data generation by using bi-
text information, aiming at generating more usable
training data.
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Figure 2: Direct and Cascaded methods for TST BT.
Source and Target with white color means bilingual
data, others mean BT data.

2.2 Unsupervised Text Style Transfer

Text Style Transfer (TST) (Fu et al., 2018; Jin
et al., 2022), aiming to control attributes (e.g. po-
liteness) of text, is an important task in the area
of natural language generation. Three criteria are
used to measure TST: transferred style strength, se-
mantic preservation, and fluency.

As TST training data is difficult to obtain, unsu-
pervised approaches (Dai and Liang, 2019; Yang
et al., 2018; Krishna et al., 2020; Luo et al., 2019)
are widely used. Among those, two particular
approaches are closely related to machine trans-
lation and style transfer. Riley et al. (2020) pro-
pose using a classifier + tagging approach to make
natural input be translated more naturally. This
method is similar to the task of our paper, but
it has high requirements on bilingual data size
and cannot ensure a stable improvement. Freitag
et al. (2019) propose training an Automatic Post-
Editing (APE) model with large-scale target-side
monolingual data. The APE model can also be
considered as a natural style transfer.

We design our TST model by referring to the
APE approach. The biggest difference between
TST and APE is that APE lacks the ability to
improve translation overall quality in some cases,
while TST, which combines the advantages of
style transfer and back translation, can achieve sta-
ble improvements on basis of standard BT.

3 Method

We propose cascaded and direct approaches (see
Figure 2) to transfer the style of source-side BT
data.

3.1 A Cascaded Approach

The cascaded approach generates standard BT
data first and then modifies the style of the source-

side BT data. However, modifying translation-like
text to natural text is a zero-shot issue. To ad-
dress this, we first train a Source to Target (S2T )
model and a Target to Source (T2S) model. We
use the reverse model (T2S) to generate BT data
{Source′MT , TargetNature}. To generate TST
training data, we employ Round Trip Translation
(RTT) as shown in formula 1 and Figure 3(a).

Source′ = T2S(S2T (SourceNature)) (1)

We use {Source′, SourceNature} to train the TST
model, which uses an encoder-decoder architec-
ture, and apply the model to the source-side BT
data Source′MT to get Nature→Nature data, as
shown in formula 2.

Source′Nature = TST (Source′) (2)

The final training data is denoted as:

{(Source, Target),

(Source′Nature, TargetNature)}

3.2 A Direct Approach

Directly translating Nature data into Nature out-
puts is also a zero-shot issue (Riley et al., 2020).
In order to make Nature input be translated more
naturally, and avoid the data size limitations men-
tioned by Riley et al. (2020), we adopt a two-step
training strategy, which is inspired by Zhang et al.
(2021), as shown in Figure 3(b).

We first use source and target side monolin-
gual data to generate SourceNature to TargetMT

and SourceMT to TargetNature data respectively.
We use only SourceNature to TargetMT data to
train the translation model and perform incremen-
tal training with SourceMT to TargetNature data.
During incremental training, we freeze all param-
eters in the encoder so the model only learns de-
coder parameters.

By using the two-step strategy, we aim to
let the translation model learn how to produce
Nature → Nature data. We consider this
approach as a Conditional Text Style Transfer
(CTST) method.

4 Experimental Setup

4.1 Data

Our main experiments are conducted on WMT18
EnDe, WMT17 ZhEn, and WMT16 EnRo news
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(a)

incremental training frozen

(b)

Figure 3: Left: TST Model and the process of training data generation. Right: our proposed two-step CTST
training scheme.

translation data. For EnDe, we use 5.2M bilin-
gual data except ParaCraw corpus to train the base-
line model, and 226.2M German monolingual data
from NewsCrawl 2007-2017 for back translation.
For ZhEn, we use 19.1M bilingual data to train the
baseline model, and 20.4M English monolingual
data from News Crawl 2016 for back translation.
For EnRo, we use 0.6M bilingual data to train the
baseline model and 2.2M Romanian monolingual
data from News Crawl 2015 for back translation.

Training the TST model requires source-side
monolingual data. we use 24M English monolin-
gual data from NewsCrawl 2007-2017 for EnDe
and EnRo, and 24M Chinese monolingual data for
ZhEn.

4.2 Evaluation

We use metrics including BLEU (Papineni et al.,
2002), ChrF (Popović, 2015), COMET (Rei
et al., 2020b) and BLEURT (Sellam et al., 2020)
to evaluate models performances on test sets.
Among them, BLEU and ChrF are calculated
using SacreBLEU2(Post, 2018), COMET using
wmt20-comet-da3, and BLEURT using BLEURT-
204. Based on the xlm-roberta-base5 pre-training
model, we use simpletransformers6 to train a bi-
nary classifier to classify Nature and MT text
for subsequent experiments. The training data in-
cludes 10M natural monolingual data and 10M
machine-translated monolingual data.

2https://github.com/mjpost/sacrebleu
3https://github.com/Unbabel/COMET
4https://github.com/google-research/

bleurt
5https://huggingface.co/

xlm-roberta-base
6https://github.com/ThilinaRajapakse/

simpletransformers

BT type Example sentence
Beam Raise the child, love the child.
Sampling Lift the child, love the child.
Noised Raise child love child, the.
Tagged <T> Raise the child, love the child.

Table 2: The source text of synthetic corpus for differ-
ent BT methods

4.3 Architecture

We train our NMT models and TST models with
Transformer (Vaswani et al., 2017) and fairseq
(Ott et al., 2019), and employ FP16 to accelerate
training under a joint source and target language
vocabulary setting. Specifically, EnDE, ZhEn, and
the TST models use the Transformer-big structure
with a vocabulary size of 32K, while EnRo models
use the Transformer-base structure with a vocab-
ulary size 16K. The dropout rate for EnDe base-
line model and TST model is 0.3, and 0.1 for other
models. Other settings are as follows: batch size
as 4096, learning rate as 7e-4, warmup steps as
4000, label-smoothing as 0.1 (Szegedy et al., 2016;
Pereyra et al., 2017), Adam β1 as 0.9, and β2 as
0.98 (Kingma and Ba, 2017). For each training
task, we select the best model according to the per-
plexities measured on the dev set.

5 Result

TST can be combined with popular BT strategies.
Our strategy can be seen as a universal data argu-
mentation method on basis of BT. To better verify
the effectiveness of our method, Beam BT, Sam-
pling BT, Noised BT, and Tagged BT are selected
for comparative experiments (see Section 2.1).

Table 2 is an example of synthetic source sen-
tences generated by four BT strategies. For Noised
BT, noise is added after TST is performed. While
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BLEU ChrF COMET BLEURT
All O R All O R All O R All O R

Bitext 32.9 35.2 28.9 60.8 62.1 59.1 54.8 50.1 59.7 73.6 71.8 75.6
+Beam BT 32.1 28.5 36.4 59.2 55.0 65.0 45.9 28.0 65.4 71.7 66.2 77.8

+TSTDirect 33.3 31.4 34.8 60.8 58.4 64.1 53.3 42.2 65.4 73.9 70.3 77.8
+TSTCascade 35.3 33.0 37.7 62.8 60.6 65.8 59.3 51.6 67.6 75.8 73.1 78.7

+Sampling BT 36.0 32.7 40.2 63.0 60.2 66.9 61.7 54.5 69.5 76.9 74.2 79.7
+TST 35.8 32.6 39.9 63.0 60.3 66.8 62.5 55.9 69.6 77.2 74.7 79.8

+Noised BT 36.6 36.2 36.4 63.6 62.6 65.0 59.8 53.4 66.9 75.7 73.0 78.5
+TST 37.0 36.5 37.1 64.1 63.1 65.5 62.3 57.1 67.9 76.5 74.4 78.9

+Tagged BT 37.0 36.6 36.7 63.9 63.1 64.9 61.6 56.0 67.6 76.2 73.9 78.6
+TST 37.4 37.4 36.5 64.3 63.8 64.9 62.2 57.2 67.6 76.6 74.4 78.9

+FT 33.6 36.4 28.9 61.5 63.1 59.3 56.3 52.4 60.4 74.1 72.5 75.8
+Beam BT 37.3 37.6 36.1 64.3 63.8 64.9 60.4 54.7 66.4 75.6 73.3 78.0

+TST 37.8 37.7 37.2 64.6 64.0 65.5 61.3 55.4 67.6 76.1 73.8 78.6

Table 3: English→German models trained on WMT 2018 bitext (Bitext) with four BT variants (Beam, Sampling,
Noised and Tagged BT). Their averaged TST results on Original test set (O), Reverse test set (R) and the combined
test sets (All) from WMT 2014-2018.

for other BT methods, we directly modify the
source side of BT data using our TST model.

To prove the effectiveness of TST BT, We per-
form experiments on high-resource (EnDe and
ZhEn) and low-resource (EnRo) languages, as
well as domain adaptation.

5.1 TST BT for EnDe

We believe that when we add Nature to Nature
BT data, the translation of Nature input can be
improved. However, the target side of original test
set is human-translated, which could influences
the scores measured by over-lapping metrics, such
as BLEU and ChrF. For the purpose of fair evalua-
tion, we report multiple metric scores, including
BLEU, ChrF, COMET, and BLEURT. The final
scores are averaged based on WMT14-18 test sets,
as shown in Table 3. The detail results are shown
in Appendix A.

All BT methods enhance model performance
over baselines. It has greater effect on reverse test
sets than original ones. Particularly, all metrics
on original test set decline after Beam BT is ap-
plied. This result is consistent with our findings
that merely adding BT data MT→Nature deteri-
orates translation of Nature input.

We try the two style transfer approaches men-
tioned above on basis of Beam BT. The result
shows that both cascaded and direct approaches
bring significant improvements but the cascaded
approach is better. So we use the cascaded ap-
proach by default in following experiments.

In general, TST BT mainly brings improvement
on original test sets while maintains standard BT’s
effectiveness on reverse test sets. Although BLEU
and ChrF scores are fluctuated, we observe steady
increase of COMET and BLEURT scores after
TST BT is applied. We observe similar improve-
ments against other BT baselines, with an average
improvement of 1.0+ COMET score.

According to the experiment results, TST is a
supplement to BT that further enhances the effec-
tiveness of BT.

5.1.1 Ablation Experiment

Although TST BT does not directly use additional
source text but the transfer model is trained with
source data. So we perform forward translation
(FT) or self-training (Zhang and Zong, 2016) with
the same data and compare the FT, FT+BT (Wu
et al., 2019), and FT + TST BT strategies, as
shown in Table 3.

FT enhancement is considerable on the original
test set but slight on the reverse test set. FT +
BT brings significant improvement on the reverse
and original test sets. When we perform TST BT
on such a strong baseline, we observe further 0.7
and 1.2 COMET score increases on original and
reverse sets respectively.

Although FT and TST use the same data, their
mechanisms are different and the two methods can
be used together. He et al. (2020) believe dropout
is the key for FT while TST BT focuses on style
transfer to create Nature to Nature data, which
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BLEU ChrF COMET BLEURT
All O R All O R All O R All O R

Bitext 24.7 23.8 26.1 53.4 53.0 54.2 43.5 34.2 55.0 68.0 65.9 70.6
+Beam BT 26.4 23.7 30.9 55.1 53.5 58.1 46.4 36.2 59.2 69.1 66.6 72.2

+TST 26.6 23.5 31.8 54.9 53.1 58.4 47.8 37.4 60.5 69.5 67.0 72.7

Table 4: Chinese→English models trained on WMT 2017 Bitext. The Beam BT and the averaged TST results on
Original test set (O), Reverse test set (R) and the combined test set (All) from WMT 2017-2019.

BLEU ChrF COMET BLEURT
All O R All O R All O R All O R

Bitext 28.7 28.8 28.6 56.0 54.1 57.9 52.5 28.8 76.3 71.6 64.7 78.5
+Beam BT 32.3 29.0 35.8 59.0 54.8 63.5 63.5 38.9 88.1 74.0 66.9 81.0

+TSTEnDe 31.7 27.8 35.6 58.6 54.1 63.3 66.9 43.1 90.7 75.2 68.2 82.1
+TSTEnRo 31.9 27.8 36.1 58.6 54.0 63.5 65.0 39.9 90.2 74.5 66.9 82.1

Table 5: English→Romanian models trained on WMT 2016 bitext (Bitext). Beam BT and TST results on each
Original test set (O), Reverse test set (R) and the combined test set (All) from WMT 2016.

further improves the translation of Nature input.

5.2 TST BT for ZhEn

The size of ZhEn bilingual data is 20M, four times
that of EnDe. We perform TST on this language
pair to see whether TST BT is effective when ap-
plied to a even larger data size and to a language
from a different family. We use 20M English
monolingual data to ensure the ratio of bilingual
and monolingual data is 1:1. See overall results in
Table 4 and detailed results in Appendix B.

The overall result is similar to that of EnDE.
We observe significant increase of COMET and
BLEURT scores after applying TST BT, although
the BLEU and ChrF scores fluctuate. TST BT
achieves 1.4 COMET score increase on average on
basis of Beam BT. We observe significant increase
on both original and reverse test sets.

Our experiments also show that TST BT
achieves similar improvements against other BT
baselines in addition to Beam BT on ZhEn. The re-
sult is different from the EnDe experiment, where
the improvement brought by TST against Beam
BT is much greater than other BT baselines. We
assume that a larger bilingual data size and a dif-
ferent data ratio may be the reason.

It should be noted that the ZhEn baseline is al-
ready very strong considering the data size, and
even stronger after adding the standard BT data.
However, TST BT achieves further enhancement
against such strong baselines.

5.2.1 Human Evaluation
We also perform human evaluation on ZhEn to
verify the enhancement brought by TST BT. We
randomly sample 300 sentences from WMT17-19
original and reverse test sets respectively. We fol-
low the evaluation scheme mentioned by Callison-
Burch et al. (2007), and 8 professional annotators
are recruited to rate adequacy and fluency of three
MT results on a 5-point scale, given source text
and reference.

The result is listed in Table 6. TST improves ad-
equacy and fluency on both original and reverse
test sets. The result is consistent with COMET
and BLEURT scores in Table 4. The human eval-
uation result again proves the effectiveness of our
method. Both automatic metrics and human evalu-
ations demonstrate that TST BT mainly brings en-
hancement on the original test set, indicating that
TST BT improves the translation of Nature input.

5.3 TST BT for EnRo

We further perform experiments in low-resource
scenario to test the generalizability of TST BT. We
use WMT16 EnRo bilingual data (0.6M bilingual)
for the experiment. Table 5 presents the results.

In this experiment, we compare the effective-
ness of two TST models: one is trained with
EnRo models, and the other, used for our EnDe
experiment, is trained with EnDe models. The
style transfer model trained with EnRo data im-
proves performance against BT baselines (by 1.5
COMET score and 0.5 BLEURT score).

Another interesting finding is that the TST
model for the EnDe task also enhances the EnRo
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Original Reverse
Adequacy Fluency Adequacy Fluency

Bitext 3.89 4.52 4.57 4.81
+Beam BT 3.98 4.51 4.67 4.79

+TST 4.03 4.52 4.69 4.82

Table 6: Averaged Adequacy and Fluency results by
human annotators on Original and Reverse test sets.

BLEU ChrF COMET BLEURT
Bitext 26.1 57.1 50.4 71.0
+Beam BTMed 28.6 60.9 56.4 72.6

+TSTMed 30.3 61.0 57.8 73.3

Table 7: Metric scores of German→English models
trained on WMT 2018 Bitext. Biomedical Beam BT
(Beam BTMed) and the biomedical TST (TSTMed) re-
sults measured on WMT 2018 biomedical test set.

model performance (by 3.4 COMET score and 1.2
BLUERT score), which is even greater than that
of the TSTEnRo model. The result indicates that it
is possible to build a universal pre-trained model
for sytle transfer. This result demonstrates that the
style transfer model is universal and can be applied
to other language pairs.

5.4 Domain Augmentation

We observe that the translation of in-domain nat-
ural inputs improve significantly after applying
TST BT. We also found that TST BT still improve
translation of out-of-domain natural inputs (like
IWSLT14 and Flores (Goyal and Gao, 2022)) test
set (for details, see Appendix Table 19).

Domain adaptation is a critical application of
BT. BT can improve in-domain performance given
in-domain monolingual data and an out-of-domain
translation model (Edunov et al., 2018). If we train
a TST model to modify the source-side text gener-
ated by BT to an in-domain style, we assume in-
domain translation can be further improved.

To test our hypothesis, we train an out-of-
domain DeEn model using WMT18 news bilin-
gual data, and perform BT on 12M biomedical En-
glish monolingual data. 2.5M biomedical German
monolingual data is used to train the in-domain
TST model. The result is shown in Table 7.

We observe significant improvement brought by
BT and more surprisingly, further significant im-
provement after we apply TST, with an increase of
1.4 COMET score and 0.7 BLEURT score. We be-
lieve the reason for such enhancement is the same
as that on Flores and IWSLT test sets mentioned
above: making the input style biased towards in-
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Figure 4: The Nature ratio of each round of trans-
lation results starting with ENNature and DENature

(EN_start, DE_start). The dotted line indicates the
Nature ratio of English or German human translations
(EN_HT, DE_HT). The green line represents the av-
eraged Nature ratio (EN_TST) of English data after
style transfer.

domain or Nature text to augment the effective-
ness of BT. The experiment again demonstrates
the generalizability of TST BT.

6 Analysis

6.1 Style Tide

As shown in Figure 1, bilingual data can be di-
vided into Nature to HT or HT to Nature.
By learning such data, the model inclines to gen-
erate translation-like output when the input is
Nature, and vice versa. To illustrate the phe-
nomenon, we perform several rounds of trans-
lation on ENNature and DENature data from
WMT18 EnDe test set. We calculate the propor-
tion of Nature text marked by the classifier after
each round of translation.

As shown in Figure 4, the percentage of
Nature sentences fluctuates regularly after each
round of translation, no matter the translation
starts from De or En. For English original data,
the percentage of Nature data is 85.7% before
translation. The percentage drops to 7.3% after
the first round of translation into German, and then
bounces back to 51.9 after the second round of
translation back into English. As we analyzed
above, the style of input determines the style of
output.

In general, the composition of bilingual data, as
well as the difference between Nature and HT
style, makes the source-side BT text significantly
different from Nature text. As a result, the trans-
lation of Nature input can hardly be improved by
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Equal TST better MT better
Annotator 1 220 27 53
Annotator 2 212 23 65
Annotator 3 218 24 58

Table 8: Evaluation results by professional annotators
on 300 randomly selected MT and TST sentences.

standard BT.

6.2 Style and Quality of TST

To understand what changes a TST model makes
to the source-side text, we analyze the style and
quality difference before and after applying TST
to the source-side text.

Taking EnDe data as an example, we analyze
the style of English text before and after TST, and
compare the quality through human evaluation.

As shown in Figure 4, after TST, the percentage
of Nature text increases from 5.5 to 20.1. The im-
provement is significant, reaching the same level
of Nature as human-translated data, but there is
still a certain gap with the real natural text.

In addition, to analyze the impact of TST on text
quality, we randomly select 300 sentences from
WMT14 test set and assess the quality of standard
BT data and TST data against references. We in-
vite three professional annotators to complete the
assessment. We use relative ranking and classify
the results into three categories: equal, TST bet-
ter or MT better. The result is shown in Table 8,
which is different from Freitag et al. (2019). APE
can further improve translation quality but TST
cannot.

Based on above analysis, we find that TST does
not improve the overall quality of source-side BT
data. Instead, it modifies the text towards a more
natural style, thus overcomes the weakness of stan-
dard BT. In addition, TST BT still maintains BT’s
tolerance (Bogoychev and Sennrich, 2019) of data
quality to make up the performance deterioration
caused by TST.

6.3 Style Transfer and BT Effects

In order to analyze the relationship between style
transfer results and final improvement on trans-
lation quality, we compare the improvements
brought by TST BT data that is generated via two
different approaches (cascaded/direct as we mo-
tioned above) on EnDe and EnRo.

We use Strength of Style Transfer (ACC) and
Semantic Preservation (Seman) to measure style

TST TST BT
ACC Seman COMET

EnDe Beam BT 5.5 71.1 35.3
+TSTDirect 25.2 70.8 51.1
+TSTCascade 20.1 69.9 59.3
EnRo Beam BT 25.4 65.6 38.9
+TSTEnDe 55.4 65.1 43.1
+TSTEnRo 52.2 65.7 39.9

Table 9: Style transfer performances of different TST
models on WMT 2018 English→German and WMT
2016 English→Romanian translation tasks.

transfer results. Taking EnDe as an example,
we perform BT on the DEnature data from the
reverse test set {ENHT , DEnature}, and calcu-
late Seman (measured by BLEURT) against ref-
erence ENHT . We then use the original test
set {ENNature, DEHT } to measure the improve-
ment of TST BT on the translation of Nature in-
put. The result shows that although the direct ap-
proach leads to higher ACC and Seman scores, the
cascaded approach brings greater enhancement to
the final translation performance. The results are
shown in Table 9.

For EnRo, we compare style transfer models
trained on EnRo and EnDe data as we stated be-
fore. Data modified by the TSTEnDe achieves
higher ACC and Seman scores, and lead to greater
enhancement to the overall translation quality. The
result is different from our EnDe experiment.

Therefore, the relationship between style trans-
fer and the effect of BT enhancement can not be
drawn and more researches are required.

7 Conclusion

This paper proposes Text Style Transfer Back
Translation (TST BT) to further enhance BT effec-
tiveness. We make a detailed analysis of training
data styles and find that BT hardly improves trans-
lation of Natural inputs, which are the main in-
puts in practical use. Our method simply modifies
the style of source-side BT data, which brings sig-
nificant improvements on translation quality, both
in high-resource and low-resource language sce-
narios. Further experiment finds that TST BT is
also effective in domain adaptation, which can fur-
ther expand the application of our method. The
generalizability of TST BT is thus proved.
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8 Limitations

TST BT is simple and straightforward, which
brings great improvements against BT baselines.
However, comparing with standard BT, TST BT
requires an additional style transfer model and ad-
ditional time to process generated BT data.
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A Experiment Details for EnDe

2014 2015 2016 2017 2018
All O R All O R All O R All O R All O R

Bitext 28.2 28.2 28.3 30.8 32.8 26.1 34.6 37.6 29.8 28.7 31.1 25.2 42.2 46.3 34.9
+Beam BT 28.8 23.7 35.2 28.9 27.6 30.6 33.2 28.7 39.3 29.2 26.1 32.3 40.2 36.2 44.5

+Direct-TST 30.1 26.5 34.2 30.2 29.9 29.8 34.7 32.5 37.1 29.4 27.8 30.4 42.1 40.5 42.6
+Cascade-TST 32.1 28.5 36.7 32.3 31.9 32.5 36.4 33.7 40.0 31.5 28.9 33.8 44.0 42.0 45.4

+Sampling BT 33.7 28.8 39.4 33.8 32.4 35.7 36.5 32.9 41.7 32.0 28.3 36.4 44.0 40.9 47.8
+TST 33.8 29.3 38.9 33.5 32.0 35.9 36.4 32.6 41.7 31.7 28.1 36.0 43.8 41.0 47.1

+Noised BT 32.5 29.8 36.1 33.4 34.3 31.5 38.4 38.0 38.4 31.9 31.5 31.8 46.6 47.2 44.1
+TST 33.0 30.4 36.4 34.2 34.9 32.8 38.8 38.1 39.4 32.6 32.0 32.7 46.5 47.1 44.3

+Tagged BT 32.7 30.0 36.0 34.1 34.4 32.3 38.7 38.6 38.7 32.9 32.6 32.3 46.8 47.6 44.4
+TST 33.0 30.6 36.1 34.5 35.6 31.8 39.3 39.8 38.3 32.9 32.7 32.2 47.3 48.5 44.2

+FT 28.7 29.2 28.1 31.5 33.8 26.1 35.6 38.8 30.3 29.5 32.5 25.3 42.9 47.7 34.9
+Beam BT 32.3 30.1 35.2 33.7 35.1 30.5 39.8 40.4 38.5 32.7 32.6 32.0 47.9 49.6 44.2

+TST 32.7 30.0 36.0 34.2 35.1 31.9 40.5 40.5 40.0 33.4 33.2 33.0 48.3 49.7 45.0

Table 10: English→German BLEU scores on WMT 2014-2018 test sets.

2014 2015 2016 2017 2018
All O R All O R All O R All O R All O R

Bitext 58.7 58.4 59.0 58.9 60.0 56.7 61.9 63.3 60.2 57.8 59.2 56.2 66.8 69.6 63.2
+Beam BT 57.4 51.8 64.9 56.4 54.1 61.2 60.1 54.9 66.9 57.4 53.8 61.9 64.6 60.4 70.1

+Direct-TST 59.2 55.4 64.3 58.3 57.2 60.7 61.8 58.9 65.7 58.0 56.0 60.6 66.6 64.7 69.0
+Cascade-TST 61.4 58.2 65.8 60.3 59.3 62.4 63.7 60.9 67.5 60.1 58.1 62.7 68.4 66.6 70.8

+Sampling BT 61.9 58.3 66.9 61.0 59.7 63.7 63.6 60.3 68.1 60.3 57.4 63.9 68.1 65.4 71.8
+TST 62.1 58.8 66.7 60.8 59.4 63.7 63.7 60.3 68.4 60.2 57.4 63.8 68.1 65.6 71.4

+Noised BT 62.0 59.5 65.3 61.0 60.8 61.5 64.9 63.7 66.5 60.3 59.3 61.6 69.9 69.8 70.1
+TST 62.4 60.1 65.6 61.8 61.5 62.4 65.2 63.9 67.0 61.1 60.1 62.2 70.0 69.9 70.2

+Tagged BT 62.0 59.8 65.0 61.2 61.0 61.7 65.1 64.1 66.3 60.9 60.4 61.6 70.2 70.4 70.0
+TST 62.3 60.3 65.1 61.7 61.8 61.5 65.6 65.1 66.3 61.2 60.8 61.7 70.5 70.9 69.9

+FT 59.3 59.3 59.4 59.5 60.9 56.6 62.7 64.2 60.5 58.6 60.2 56.5 67.6 70.9 63.3
+Beam BT 62.0 59.9 65.0 61.4 61.5 61.2 65.9 65.5 66.4 61.0 60.4 61.7 71.0 71.7 70.0

+TST 62.2 59.8 65.4 61.7 61.7 61.9 66.4 65.6 67.5 61.5 60.9 62.3 71.3 71.9 70.4

Table 11: English→German ChrF scores on WMT 2014-2018 test sets.
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2014 2015 2016 2017 2018
All O R All O R All O R All O R All O R

Bitext 54.4 51.2 57.6 51.4 49.8 54.4 54.5 46.2 62.7 51.9 44.7 59.1 61.8 58.7 64.9
+Beam BT 44.3 23.8 64.8 41.0 32.3 57.9 46.0 22.5 69.5 44.8 25.9 63.7 53.3 35.3 71.3

+Direct-TST 52.4 39.6 65.2 49.4 44.6 58.6 53.1 37.8 68.3 50.4 37.8 63.1 61.4 51.1 71.8
+Cascade-TST 59.0 52.0 66.1 55.9 52.6 62.5 59.1 47.4 70.8 56.3 46.8 65.7 66.1 59.3 72.9

+Sampling BT 61.6 55.0 68.4 58.7 55.8 64.4 61.5 51.0 72.0 59.0 50.0 68.0 67.6 60.7 74.6
+TST 62.7 57.3 68.0 59.5 56.6 65.1 62.3 52.1 72.4 59.7 51.4 68.0 68.3 62.2 74.5

+Noised BT 60.1 54.5 65.6 55.7 53.0 61.1 60.1 50.2 70.0 56.1 47.1 65.1 67.2 62.0 72.5
+TST 62.0 57.6 66.4 57.8 55.7 62.1 62.8 54.2 71.4 59.7 53.0 66.3 69.1 64.8 73.3

+Tagged BT 61.4 56.2 66.7 57.8 55.6 62.0 61.7 52.9 70.6 58.6 51.6 65.7 68.3 63.9 72.8
+TST 61.8 57.4 66.3 58.2 56.2 62.0 62.4 54.2 70.6 59.3 52.6 66.0 69.2 65.4 73.1

+FT 56.5 53.5 59.6 52.8 51.9 54.6 55.7 48.3 63.0 53.2 47.0 59.4 63.3 61.3 65.4
+Beam BT 60.6 55.7 65.5 56.7 54.7 60.5 60.1 51.0 69.2 57.2 49.2 65.2 67.3 63.0 71.5

+TST 60.8 55.4 66.1 57.6 55.5 61.8 61.1 51.5 70.7 58.3 50.4 66.2 68.7 64.2 73.2

Table 12: English→German COMET scores on WMT 2014-2018 test sets.

2014 2015 2016 2017 2018
All O R All O R All O R All O R All O R

Bitext 73.5 71.9 75.2 72.7 72.2 73.7 73.5 70.5 76.5 72.7 69.8 75.6 75.8 74.5 77.2
+Beam BT 71.5 65.3 77.7 69.9 67.3 75.1 72.2 65.2 79.1 71.3 65.0 77.5 73.8 68.3 79.4

+Direct-TST 73.8 69.6 78.0 72.5 71.2 75.1 74.0 69.3 78.7 73.0 68.6 77.3 76.3 72.9 79.7
+Cascade-TST 75.7 72.9 78.5 74.5 73.5 76.5 75.9 72.1 79.7 74.9 71.4 78.5 77.8 75.4 80.3

+Sampling BT 77.1 74.4 79.7 75.7 74.7 77.6 76.8 73.1 80.5 76.0 72.7 79.3 78.7 76.1 81.4
+TST 77.4 75.1 79.7 76.0 75.2 77.8 77.2 73.7 80.7 76.3 73.1 79.5 78.9 76.5 81.3

+Noised BT 75.9 73.4 78.4 74.2 73.1 76.3 75.8 72.2 79.4 74.6 70.9 78.2 77.8 75.5 80.1
+TST 76.5 74.3 78.7 75.0 74.2 76.6 76.8 73.6 80.1 75.7 72.9 78.6 78.7 76.8 80.6

+Tagged BT 76.2 73.7 78.6 74.8 74.0 76.3 76.3 72.9 79.7 75.3 72.2 78.3 78.4 76.5 80.3
+TST 76.5 74.3 78.8 75.2 74.5 76.6 76.7 73.7 79.7 75.6 72.6 78.6 78.8 76.9 80.6

+FT 74.3 72.8 75.8 73.0 72.7 73.6 73.9 71.3 76.5 73.1 70.5 75.7 76.2 75.3 77.2
+Beam BT 75.8 73.5 78.1 74.2 73.5 75.4 75.5 72.1 79.0 74.6 71.2 77.9 77.9 76.0 79.7

+TST 76.2 73.8 78.6 74.8 74.0 76.2 76.1 72.5 79.6 75.1 71.9 78.4 78.5 76.6 80.3

Table 13: English→German BLEURT scores on WMT 2014-2018 test sets.
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B Experiment Details for ZhEn

2017 2018 2019 Average
All O R All O R All O R All O R

Bitext 24.4 24.5 24.2 24.8 23.0 28.3 24.8 24.0 25.7 24.7 23.8 26.1
+Beam BT 25.7 23.2 29.1 26.5 23.3 32.8 27.1 24.5 30.8 26.4 23.7 30.9

+TST 26.1 23.3 30.1 26.9 23.6 33.8 26.7 23.7 31.5 26.6 23.5 31.8
+Sampling BT 26.2 22.7 31.2 26.6 22.9 34.1 26.9 23.5 32.3 26.6 23.0 32.5

+TST 26.2 22.6 31.1 26.8 23.4 33.9 26.8 23.5 32.2 26.6 23.2 32.4
+Noised BT 26.3 24.4 28.9 26.6 23.7 32.5 27.0 24.7 30.6 26.6 24.3 30.7

+TST 26.1 24.2 28.6 26.9 24.1 32.5 27.0 24.8 30.5 26.7 24.4 30.5
+Tagged BT 26.3 24.3 29.0 26.6 23.7 32.5 27.1 24.5 31.0 26.7 24.2 30.8

+TST 25.7 23.6 28.7 27.0 24.2 32.7 27.0 24.5 31.0 26.6 24.1 30.8

Table 14: Chinese→English BLEU scores on WMT 2017-2019 test sets.

2017 2018 2019 Average
All O R All O R All O R All O R

Bitext 53.4 54.0 52.5 53.2 52.0 55.7 53.5 53.1 54.3 53.4 53.0 54.2
+Beam BT 54.7 53.6 56.2 54.8 52.6 59.7 55.8 54.3 58.5 55.1 53.5 58.1

+TST 54.3 52.9 56.4 54.9 52.6 60.0 55.6 53.8 58.7 54.9 53.1 58.4
+Sampling BT 54.4 52.4 57.2 54.5 52.0 60.2 55.0 52.7 59.0 54.6 52.4 58.8

+TST 54.1 51.9 57.1 54.5 52.1 59.9 54.8 52.7 58.7 54.5 52.2 58.6
+Noised BT 54.7 53.9 55.7 54.6 52.7 58.9 55.3 53.8 58.1 54.9 53.5 57.6

+TST 54.4 53.6 55.5 54.7 52.9 58.9 55.1 53.7 57.8 54.7 53.4 57.4
+Tagged BT 54.7 53.9 55.8 54.5 52.5 59.0 55.2 53.6 58.2 54.8 53.3 57.7

+TST 54.3 53.3 55.7 54.8 52.9 59.0 55.1 53.4 58.1 54.7 53.2 57.6

Table 15: Chinese→English ChrF scores on WMT 2017-2019 test sets.

2017 2018 2019 Average
All O R All O R All O R All O R

Bitext 46.6 39.7 53.4 39.5 29.2 56.4 44.4 33.7 55.1 43.5 34.2 55.0
+Beam BT 48.9 40.0 57.8 42.4 31.0 61.3 48.0 37.6 58.4 46.4 36.2 59.2

+TST 49.7 40.3 59.0 44.3 33.1 62.9 49.3 38.8 59.7 47.8 37.4 60.5
+Sampling BT 48.6 37.0 60.1 42.4 30.4 62.3 47.8 34.7 60.9 46.3 34.0 61.1

+TST 49.9 39.2 60.5 43.5 31.8 62.9 48.6 36.5 60.6 47.3 35.8 61.3
+Noised BT 49.7 41.1 58.4 43.3 32.3 61.5 48.8 37.6 60.1 47.3 37.0 60.0

+TST 50.1 41.9 58.2 43.8 33.3 61.1 48.7 38.1 59.8 47.5 37.8 59.7
+Tagged BT 49.7 41.1 58.2 43.1 31.9 61.7 48.3 36.4 60.2 47.0 36.5 60.0

+TST 49.3 40.1 58.4 44.1 33.8 61.4 48.8 37.7 60.0 47.4 37.2 59.9
Table 16: Chinese→English COMET scores on WMT 2017-2019 test sets.
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2017 2018 2019 Average
All O R All O R All O R All O R

Bitext 67.7 65.9 53.4 67.6 65.2 71.6 68.8 66.7 70.8 68.0 65.9 70.6
+Beam BT 68.6 66.2 57.8 68.7 65.9 73.3 70.0 67.7 72.3 69.1 66.6 72.2

+TST 68.9 66.3 59.0 69.3 66.6 73.8 70.4 68.0 72.8 69.5 67.0 72.7
+Sampling BT 68.7 65.5 60.1 68.7 65.5 73.9 70.0 67.0 73.1 69.1 66.0 73.0

+TST 69.0 66.1 60.5 69.1 66.1 74.0 70.3 67.3 73.3 69.5 66.5 73.1
+Noised BT 68.9 66.5 58.4 68.9 66.2 73.3 70.1 67.6 72.7 69.3 66.8 72.4

+TST 68.8 66.5 58.2 69.0 66.4 73.3 70.2 67.8 72.6 69.3 66.9 72.3
+Tagged BT 68.9 66.6 58.2 68.8 66.0 73.5 70.1 67.4 72.8 69.3 66.7 72.5

+TST 68.7 66.2 58.4 69.1 66.5 73.5 70.3 67.8 72.8 69.4 66.8 72.5

Table 17: Chinese→English BLEURT scores on WMT 2017-2019 test sets.

C Experiment Details for EnRo

BLEU ChrF COMET BLEURT
All O R All O R All O R All O R

Bitext 28.7 28.8 28.6 56.0 54.1 57.9 52.5 28.8 76.3 71.6 64.7 78.5
+Beam BT 32.3 29.0 35.8 59.0 54.8 63.5 63.5 38.9 88.1 74.0 66.9 81.0

+TSTEnDe 31.7 27.8 35.6 58.6 54.1 63.3 66.9 43.1 90.7 75.2 68.2 82.1
+TSTEnRo 31.9 27.8 36.1 58.6 54.0 63.5 65.0 39.9 90.2 74.5 66.9 82.1

+Sampling BT 32.6 29.3 35.9 59.0 54.8 63.5 66.0 42.1 90.1 75.1 68.0 82.2
+TSTEnDe 31.9 28.2 35.7 58.5 54.1 63.2 66.9 42.7 91.2 75.4 68.2 82.5
+TSTEnRo 32.1 28.4 35.9 58.5 54.2 63.1 65.4 40.8 90.0 75.2 67.9 82.5

+Noised BT 32.2 30.8 33.7 58.8 55.9 62.0 66.8 45.0 88.5 75.3 68.7 81.9
+TSTEnDe 32.3 31.6 33.1 59.2 56.8 61.7 68.7 47.5 90.0 76.2 70.0 82.4
+TSTEnRo 32.7 31.9 33.7 59.1 56.5 61.8 67.3 45.9 88.7 75.7 69.1 82.4

+Tagged BT 32.5 31.7 33.2 58.9 56.5 61.5 67.7 45.8 89.6 75.7 69.1 82.2
+TSTEnDe 33.1 32.6 33.7 59.3 57.1 61.7 70.3 49.8 90.7 76.8 70.9 82.8
+TSTEnRo 32.6 32.0 33.3 59.0 56.7 61.5 68.2 46.5 89.8 76.1 69.5 82.7

Table 18: WMT 2016 English→Romanian results on the WMT 2016 test set.

D TST BT on OOD

Flores IWSLT-2014 Med-2021
BLEU ChrF COMET BLEURT BLEU ChrF COMET BLEURT BLEU ChrF COMET BLEURT

Bitext 34.5 61.8 55.3 74.2 28.5 55.8 34.8 68.7 23.5 54.8 46.8 71.1
Beam BT 33.7 60.9 53.2 73.5 24.5 50.6 18.5 64.6 25.9 57.6 49.4 71.7
+TST 34.9 62.2 59.6 75.8 27.9 55.2 38.0 69.7 26.3 57.0 49.9 72.2
Tagged BT 37.2 63.6 61.1 76.0 29.7 56.7 40.4 70.0 25.5 56.1 49.1 71.9
+TST 38.2 64.0 61.8 76.4 30.0 57.1 41.3 70.4 25.8 56.6 50.6 72.3

Table 19: WMT 2018 English→German results on out-of-domain (Flores, IWSLT and Medical) original test set.
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