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Abstract

Coherence is an important aspect of text quality,
and various approaches have been applied to co-
herence modeling. However, existing methods
solely focus on a single document’s coherence
patterns, ignoring the underlying correlation be-
tween documents. We investigate a GCN-based
coherence model that is capable of capturing
structural similarities between documents. Our
model first creates a graph structure for each
document, from where we mine different sub-
graph patterns. We then construct a hetero-
geneous graph for the training corpus, connect-
ing documents based on their shared subgraphs.
Finally, a GCN is applied to the heterogeneous
graph to model the connectivity relationships.
We evaluate our method on two tasks, assess-
ing discourse coherence and automated essay
scoring. Results show that our GCN-based
model outperforms all baselines, achieving a
new state-of-the-art on both tasks.

1 Introduction

Coherence describes the relationship between sen-
tences that makes a group of sentences logically
connected rather than just a random collection of
them (Jurafsky and Martin, 2021). It is an impor-
tant aspect of text quality (McNamara et al., 2010),
and its modeling has been applied in many down-
stream tasks, including summarization (Parveen
et al., 2015; Wu and Hu, 2018), dialogue genera-
tion (Mesgar et al., 2020; Xu et al., 2021), machine
translation (Xiong et al., 2019; Tan et al., 2019)
and document-level text generation (Wang et al.,
2021; Diao et al., 2021). Given the importance of
the task, there is a long line of methods proposed
for coherence modeling.

Previous models leverage linguistic features to
solve the problem. For example, entity grid-based
methods (Barzilay and Lapata, 2005; Elsner and
Charniak, 2011) capture the entity transition be-
tween adjacent sentences of a text to model local
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Figure 1: An example of structurally similar documents
connected through subgraphs, in which d2 is more simi-
lar in structure to d1 than d3. di denotes the i-th docu-
ment and gj denotes the j-th subgraph pattern, an edge
will be built between them if the sentence graph of di
contains subgraph gj .

coherence; in contrast, graph-based models (Guin-
audeau and Strube, 2013; Mesgar and Strube, 2015)
measure coherence using the entity-graph of a doc-
ument. Recently, neural network models (Li and
Hovy, 2014; Li and Jurafsky, 2017; Mesgar and
Strube, 2018; Xu et al., 2019b; Farag and Yan-
nakoudakis, 2019; Moon et al., 2019; Jeon and
Strube, 2020a,b; Mesgar et al., 2021) have been ap-
plied to the task due to their strength in representa-
tion learning and feature combination. Those mod-
els learn a document’s representation from word
embeddings or pre-trained language models, giv-
ing significantly better performance than previous
statistical methods.

However, one drawback of existing neural-based
methods is that they solely focus on extracting
features within a single document, ignoring the
underlying correlations between documents. Co-
herence describes how sentences of a text connect
to each other (Reinhart, 1980; Foltz et al., 1998;
Schwarz, 2001). Theoretically, documents with
similar connection structures should tend to have
similar degrees of coherence, which can be use-
ful prior knowledge for coherence modeling. For
example, a model is more likely to accurately as-
sess a new document’s coherence if it can refer
to the labels of known documents with a similar
organizational structure (see Appendix E.1 for an
example).

To fill this gap, we investigate a graph-based
approach to model the correlation between docu-
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ments from the perspective of structural similar-
ity. The main idea is to connect structurally simi-
lar documents through a graph and capture those
connectivity relationships using Graph Convolu-
tional Networks (GCN) (Kipf and Welling, 2017).
In particular, inspired by Guinaudeau and Strube
(2013), we first represent a document as a sentence
graph, where nodes are sentences and two nodes
will be connected if they contain semantically re-
lated nouns. Our method further converts each
sentence graph into a subgraph set as it proves to
be an efficient approach for measuring the topolog-
ical similarity between graphs (Shervashidze et al.,
2009; Kondor et al., 2009). Then, we construct a
heterogeneous graph for the training corpus, con-
taining document and subgraph nodes, based on
subgraphs shared between documents. In this way,
structurally-similar documents are explicitly linked
through the subgraphs (shown in Figure 1). Finally,
a GCN is applied to the heterogeneous graph to
learn the representation of document nodes while
considering the connections between them.

We evaluate our method on two benchmark
tasks1: assessing discourse coherence and auto-
matic essay scoring. Experimental results show
that our method significantly outperforms a base-
line model that does not consider structural similar-
ities between documents, achieving a new state-of-
the-art performance on both tasks. In addition, we
provide a comprehensive comparison and detailed
analysis, which empirically confirm that structural
similarity information helps to mitigate the effects
of uneven label distributions in datasets and im-
prove the model’s robustness across documents
with different lengths.

2 Related Work

Our work is related to text coherence modeling and
graph neural networks (GNN)-based methods for
natural language processing (NLP).
Coherence Modeling. Inspired by Centering The-
ory (Grosz et al., 1995), Barzilay and Lapata
(2005, 2008) propose an entity-based approach (the
entity grid) to assess coherence by considering en-
tity transitions between adjacent sentences of a
text. The entity grid model has been improved
by grouping entities based on their semantic relat-
edness (Filippova and Strube, 2007), incorporat-
ing entity-specific features (Elsner and Charniak,
2011), replacing grammatical roles with discourse

1https://github.com/liuwei1206/StruSim

roles (Lin et al., 2011). On the other hand, Guin-
audeau and Strube (2013) propose an entity graph
to capture entity transitions between not only ad-
jacent sentences but also non-adjacent ones. Mo-
tivated by the functional sentence perspective of
text coherence (Danes, 1974), Mesgar and Strube
(2015, 2016) improve the entity graph with graph-
based features extracted from text structures. Sim-
ilarly, we also leverage the structural features of
texts. However, instead of feeding individual docu-
ments’ structure into the model as coherence pat-
terns, we use them to capture the underlying corre-
lation between documents.

With the advent of deep learning, neural net-
works have been applied to coherence modeling.
Li and Hovy (2014); Xu et al. (2019b) learn to as-
sess coherence by training a model to distinguish
coherent texts from incoherent ones using different
neural encoders. Tien Nguyen and Joty (2017);
Joty et al. (2018) extend the entity grid model with
a convolutional neural network. Moon et al. (2019)
propose to enrich the coherence features of a doc-
ument by considering discourse relations and syn-
tactic patterns within it. Jeon and Strube (2020a)
design structure-guided inter-sentence attention to
learn a document’s local and global coherence pat-
terns. Inspired by human reading habits, Jeon and
Strube (2020b) investigate a model to measure a
document’s coherence by incrementally interpret-
ing sentences. Our work is in line with the above
approaches to learning a coherence model based
on neural networks. The main difference is that the
above neural models focus on extracting features
within a single document, whereas our graph-based
approach aims to study the effectiveness of corre-
lations between documents. Specifically, rooting
on the linguistic definition of text coherence, we
model the correlation from the perspective of struc-
tural similarities between documents.

GNN-based Methods for NLP. Graph neural net-
works are a family of neural networks that oper-
ate naturally on graphs. Many NLP problems can
be expressed with a graph structure, so there is a
surge of interest in applying GNNs for NLP tasks.
Marcheggiani and Titov (2017) present a Syntac-
tic GCN to learn latent feature representations of
words in a sentence over dependency trees for Se-
mantic Role Labeling. Yasunaga et al. (2017) pro-
pose a GCN-based multi-document summarization
system that exploits the sentence relation informa-
tion encoded in graph representations of document
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Figure 2: Overview of the proposed approach. Our method identifies a document’s graph structure, converts the
graph into a subgraph set, constructs a corpus-level graph based on the shared subgraphs between structurally similar
documents, and finally encodes those connections with a GCN. For simplicity, we only show three documents
and five subgraphs and limit the number of sentences in a document. su, di, and gj denote the u-th sentence in a
document, the i-th document in the training corpus, and the j-th defined subgraph, respectively.

clusters. Yao et al. (2019) build a graph containing
documents and words as nodes and used the Text
GCN to learn embeddings of words and documents.
Lv et al. (2020) design a graph-based approach to
encode structural information from ConceptNet for
commonsense question answering. Compared with
existing work, our graph-based method is differ-
ent in both motivation and graph construction. For
example, we specially design subgraph nodes to
connect documents with a similar structure for cap-
turing the structural correlations between samples.

3 Method

Figure 2 shows an overview of our proposed
method. We describe step-by-step how to capture
the structural similarities between documents, in-
cluding i) identifying the structure of a document
(Section 3.1); ii) representing the sentence graph
of a document as a subgraph set (Section 3.2); iii)
building a corpus-level heterogeneous graph to con-
nect structurally similar documents based on the
shared subgraphs (Section 3.3); iv) applying a GCN
encoder to capture connectivity relationships be-
tween document nodes (Section 3.4).

3.1 Sentence Graph
To model the structural similarities between docu-
ments, we need to identify each document’s struc-
ture. We follow Guinaudeau and Strube (2013)
to represent a document as a directed sentence
graph but with some modifications in graph con-
struction. Specifically, in our implementation, two
sentences are semantically connected if there are
strong semantic relations between nouns in the two
sentences. We use nouns instead of entities (Guin-

audeau and Strube, 2013) because the former shows
better performance than the latter in modeling se-
mantic connection between sentences (Elsner and
Charniak, 2011; Tien Nguyen and Joty, 2017).

Given a document, we use the Stanza toolkit
(Qi et al., 2020) to segment it into sentences
{s1, s2, ..., sL} and recognize all nouns in each sen-
tence. For a pair of sentences su and sv (u < v), we
compute the similarity score for each pair of nouns
from them (one noun from su and the other from
sv) and use the maximum similarity score to mea-
sure their semantic connection. The score between
two nouns is obtained by calculating the cosine
value of their embedding. If the maximum simi-
larity score is greater than the preset threshold δ,
then the two sentences are considered semantically
connected, and we add a directed edge between
them (from su to sv). After computing all combi-
nations of su and sv (u < v) in the document, we
can build a directed graph containing sentences as
nodes (refer to Algorithm 1 in Appendix A).

3.2 Subgraph Set

After obtaining the graph structure of documents,
we represent each sentence graph as a subgraph
set. The subgraph set is an efficient way to com-
pare topological similarities between graphs (Sher-
vashidze et al., 2009), which we can employ to
compare documents in terms of structure.

Graph g is a subgraph of graph G if the nodes
in g can be mapped to the nodes in G and the
connection relations within the two sets of nodes
are the same. If the subgraph contains k nodes, we
call it a k-node subgraph. In our method, we only
consider subgraphs without backward edges. This
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Figure 3: An example of subgraphs, in which graph (b)
and graph (c) are 3-node subgraphs of graph (a).

is because when constructing the sentence graph,
we process the document from left to right and
never look back. We use weakly connected and
disconnected subgraphs (shown in Figure 3) since
we empirically find they both reflect the properties
of a document in terms of coherence.

Given a sentence graph Gi of a document di,
we first mine the contained k-node subgraphs by
enumerating all combinations of k nodes and cor-
responding edges in Gi. Subgraphs with inter-
sentence distances greater than w are filtered out
because far-distant sentences are less likely to be
related. It also reduces the search space when min-
ing subgraphs. In the retained subgraphs, two can
have the same structure but only differ in node IDs.
We consider them as the same subgraph since they
are isomorphic in graph theory. Then, we count
the frequency of each k-node subgraph and iden-
tify the isomorphic subgraphs using the pynauty
tool. Consequently, a sentence graph is represented
as a k-node subgraph set (refer to Algorithm 2 in
Appendix A).

3.3 Doc-subgraph Graph
A graph is an efficient way to model the correlation
between items and has been used in different do-
mains, such as knowledge graphs (Carlson et al.,
2010) and social networks (Tang and Liu, 2009).
We build a corpus-level undirected graph (on the
training dataset), named doc-subgraph graph, to
explicitly connect structurally similar documents
through their shared subgraphs (shown in Figure 2).
The graph contains document nodes and subgraph
nodes, and the total number of nodes is the sum
of the number of documents (N ) and the number
of k-node subgraph types (M ) mined in Section
3.2. We design two types of edges in the graph,
including edges between document and subgraph,
and edges between subgraphs. We build the first
type of edge if a document’s subgraph set contains
a subgraph, and set its weight as the product of the
subgraph’s normalized frequency in the subgraph
set and the subgraph’s inverse document frequency
in the corpus. The definition of inverse document

frequency is adopted from TF-IDF, but here it rep-
resents how common a subgraph is across subgraph
sets of all documents. As for the second kind of
edge, we construct it between two subgraphs that
appear in the same subgraph set of a document,
and its weight is the co-occurrence probability of
these two subgraphs. We model the co-occurrence
information between subgraphs because it has been
shown helpful for comparing similar structures be-
tween graphs (Kondor et al., 2009).

Formally, we denote documents in a train-
ing corpus as D = {d1, d2, ..., dN} and all
types of k-node subgraphs mined from the
corpus as SubG = {g1, g2, ..., gM}. We
use Gi to denote the sentence graph of doc-
ument di and Fi = {fi1, fi2, ..., fiM} to de-
note the k-node subgraph set mined from Gi,
where fij denotes the frequency of subgraph
gj . We represent nodes in the doc-subgraph
graph as V = {v1, ..., vN , vN+1, ..., vN+M},
in which {v1, ..., vN} are documents D and
{vN+1, ..., vN+M} are k-node subgraphs SubG.

For any pair of document node vi (i ≤ N) and
subgraph node vN+j (j ≤ M), we build an edge
between them if gj appears in the subgraph set of
di, i.e. fij > 0, and define the edge’s weight as:

Ai,N+j =
fij∑M

j′=1 fij′
· log N

|d ∈ D : gj ∈ d| (1)

where the first term is the normalized frequency of
subgraph gj in subgraph set Fi, and the second term
is an inverse document frequency factor, which di-
minishes the weight of subgraphs that occur fre-
quently in subgraph sets and increases the weight
of subgraphs that occur rarely. |d ∈ D : gj ∈ d|
represents the number of documents whose sub-
graph set contains subgraph gj . A denotes the adja-
cency matrix of the doc-subgraph graph with shape
(N + M) × (N + M) and is initialized as zero
matrix. To make the graph symmetrical, we set the
value of AN+j,i to be the same as Ai,N+j .

We also construct edges between any pair of
subgraph nodes vN+j and vN+j′ (j ≤ M, j′ ≤
M, j ̸= j′) if gj and gj′ co-occur in the subgraph
set of a document, i.e. ∃ di ∈ D : fij > 0, fij′ >
0. The weight is set as the Pointwise Mutual In-
formation (PMI) of these two subgraphs, which is
a popular way (Ghazvininejad et al., 2016; Yao
et al., 2019) to measure co-occurrence information:

AN+j,N+j′ = log
p(j, j′)

p(j) p(j′)
(2)
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p(j) =
|d ∈ D : gj ∈ d|

N

p(j, j′) =
|d ∈ D : gj ∈ d, gj′ ∈ d|

N

(3)

The PMI can be positive or negative, we follow
previous work to clip negative PMI at 0 since this
strategy works well across many tasks (Kiela and
Clark, 2014; Milajevs et al., 2016; Salle and Villav-
icencio, 2019).

3.4 GCN Encoder
We adopt a GCN (Kipf and Welling, 2017) to en-
code the built doc-subgraph graph. GCN is a graph
neural network which directly operates on graph-
structured data. By integrating the normalized adja-
cency matrix, the GCN learns node representations
based on both connectivity patterns and feature
attributes of the graph (Li et al., 2018).

Formally, given the built graph with (N +M)
nodes, we represent the graph with an (N +M)×
(N + M) adjacency matrix A. We first follow
Kipf and Welling (2017) to add self-connections
for each node:

Ã = A+ IN+M (4)

where IN+M is an identity matrix. Then, a two-
layer GCN is applied on the graph, and the con-
volution computation at the l-th layer is defined
as:

H(l) = σ
(
D̃− 1

2 ÃD̃− 1
2H(l−1)W(l−1)

)
(5)

Here, D̃ is the degree matrix (i.e. D̃i,i =
∑

j Ãi,j)
and W(l−1) is a layer-specific trainable weight ma-
trix. σ is an activation function, such as ReLU.
H(l) is the output of l-th GCN layer; H(0) = X ,
which is a matrix of node features. We use repre-
sentations from the pre-trained model as features of
document nodes due to its excellent performance
on document-level tasks (Guo and Nguyen, 2020;
Yin et al., 2021; Zhou et al., 2021). For subgraph
nodes, since they have no textual contents, we set
their features to zero vectors, which is a common
setting in heterogeneous graphs (Ji et al., 2021).
Finally, we feed the outputs of the two-layer GCN
into a softmax classifier:

P = softmax(H(2)) (6)

and train the model by minimizing the Cross-
Entropy loss over document nodes:

L = −
N∑

i=1

C∑

c=1

Yi,c · log (Pi,c) (7)

where Yi is the label of document node vi with a
one-hot scheme, C is the number of classes.

While evaluating, for each document in the test
corpus, we add it to the doc-subgraph graph, nor-
malize the adjacent matrix of the new graph, and
predict its label (refer to Appendix B).

4 Experiments

4.1 Datasets

We evaluate the proposed method on two bench-
mark tasks, assessing discourse coherence (ADC)
and automated essay scoring (AES). The descrip-
tive statistics of the dataset for each task are shown
in Appendix C.
Assessing Discourse Coherence. ADC is the task
of measuring the coherence of a given text. The
benchmark dataset for this task is the Grammarly
Corpus of Discourse Coherence (GCDC) dataset
(Lai and Tetreault, 2018). Specifically, GCDC con-
tains texts from four domains, including Yahoo
online forum posts, emails from Hillary Clinton’s
office, emails from Enron, and Yelp online busi-
ness reviews. It is annotated by expert raters with
a coherence score ∈ {1, 2, 3}, representing low,
medium, and high levels of coherence, respectively.
Automated Essay Scoring. AES is a task to assign
scores for essays, which has been used to evaluate
coherence models (Burstein et al., 2010; Jeon and
Strube, 2020b). We follow previous work (Jeon
and Strube, 2020b) to employ the Test of English as
a Foreign Language (TOEFL) dataset (Blanchard
et al., 2014) in our experiments. The corpus con-
tains essays from eight prompts along with score
levels (low/medium/high) for each essay.

4.2 Experimental Settings

We implement our method based on the Pytorch
library. The pre-trained embedding we use to cal-
culate the similarity between nouns is GloVe (Pen-
nington et al., 2014), and we set the similarity
threshold δ to 0.65. For the subgraph set construc-
tion, we use 4-node subgraphs as basic units for the
ADC task and 5-node subgraphs for the AES task,
and limit the maximum sentence distance w to 8
for both tasks. The two-layer GCN is employed
in our method, with ReLU as the activation func-
tion. We follow previous work (Jeon and Strube,
2020b) to use the representation from XLNetbase
as document node features, and initialize XLNet
using the pre-trained checkpoint from Huggingface.
We use XLNet instead of other pre-trained models,
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Model Yahoo Clinton Enron Yelp Avg
Li and Jurafsky (2017) 53.50 61.00 54.40 49.10 54.50
Lai and Tetreault (2018) 54.90 60.20 53.20 54.40 55.70
Mesgar and Strube (2018) 47.30 57.70 50.60 54.60 52.55
Mesgar and Strube (2016)† 61.300.84 64.600.89 55.740.90 56.700.78 59.59
Moon et al. (2019)† 56.800.95 60.650.76 54.100.89 55.850.85 56.85
Jeon and Strube (2020a)† 56.750.83 62.150.88 54.600.97 56.450.97 57.49
Jeon and Strube (2020b)† 57.30 61.70 54.50 56.90 57.60
XLNet+DNN 60.701.03 64.001.36 55.151.14 56.450.94 59.10
Our Method 63.650.74 66.200.81 57.000.81 58.051.21 61.23

Table 1: Mean accuracy (std) results on GCDC.

such as BERT, because the TOEFL dataset con-
tains long texts. For example, some essays have
more than 800 words (maybe more than 1000 sub-
words). Autoencoding-based pre-trained models,
such as BERT, limit input text length (usually 512
subwords), whereas XLNet can handle any input
sequence length.

For the GCDC dataset, we follow the setting in
Lai and Tetreault (2018) to perform 10-fold cross-
validation over the training dataset. As for the
TOEFL corpus, we conduct 5-fold cross-validation
on the dataset of each prompt, which is a com-
mon setting for the AES task (Taghipour and Ng,
2016). Consistent with previous work (Lai and
Tetreault, 2018; Jeon and Strube, 2020b), we use
mean accuracy (%) as the evaluation metric. For
more detailed settings and hyperparameters, please
refer to Appendix D.
Baselines. To investigate the effectiveness of struc-
tural similarities between documents for coherence
modeling, we empirically compare our method
with a baseline model that does not use this knowl-
edge. We call this baseline XLNet+DNN, which
inputs document representations from XLNet as
features, learns document embeddings with a two-
layer deep neural network (DNN), and uses a soft-
max layer as the classifier. The only difference be-
tween the XLNet+DNN baseline and our method
in terms of mathematical form is whether the reg-
ularized adjacency matrix D̃− 1

2 ÃD̃− 1
2 is applied

(Li et al., 2018). We configure this baseline to have
the same number of parameters as our method for
a fair comparison.

We also compare with Mesgar and Strube
(2016), which feeds subgraphs as input features.
For a fair comparison, we input document repre-
sentations from XLNet to this model, equip it with
a two-layer DNN and softmax layer for feature
extraction and classification. Furthermore, we com-
pare our method against existing state-of-the-art
models for each task to evaluate the effectiveness

of our approach.

4.3 Overall Results
Assessing Discourse Coherence. Table 1 shows
the experimental results on GCDC dataset2. The
first three rows (Li and Jurafsky, 2017; Mesgar
and Strube, 2018; Lai and Tetreault, 2018) in the
first block show the performance of embedding-
based models, and the last four rows (Mesgar and
Strube, 2016; Moon et al., 2019; Jeon and Strube,
2020a,b) in the same block are the state-of-the-
art models based on XLNet. With the pre-trained
model as the encoder, the latter four models outper-
form embedding-based methods by a large margin.

We present the performance of the XLNet+DNN
baseline and our method in the last two blocks of
Table 1. As shown in the table, structural similar-
ity information between documents is helpful for
coherence assessment, which improves the average
accuracy from 59.10% of the XLNet+DNN base-
line to 61.23% of our method. Subgraphs as input
features (Mesgar and Strube, 2016) can also en-
hance performance, but the improvement is much
smaller than our method. We speculate that simply
concatenating subgraph features cannot efficiently
capture structural similarities between documents.
By contrast, our method explicitly connects struc-
turally similar documents via a graph, thereby fully
utilizing this information. Surprisingly, our simple
baseline outperforms previous state-of-the-art mod-
els, which are also built on XLNet. This is likely
because the GCDC dataset mainly contains short
and informal texts, whereas previous sota models
were designed to handle long and well-formed doc-
uments. By contrast, our method works well on the
corpus, achieving the best performance.
Automated Essay Scoring. As mentioned in Sec-
tion 4.1, AES is a task for scoring the quality of
essays and has been used to evaluate coherence

2In Tables 1, 2, † denotes that the same XLNet as our
method is employed in the model.
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Model Prompt
1 2 3 4 5 6 7 8 Avg

Dong et al. (2017) 69.30 66.47 65.84 66.38 68.89 64.20 67.11 65.73 66.74
Mesgar and Strube (2016)† 75.310.77 74.900.94 73.420.81 74.351.18 76.100.74 75.420.68 72.480.83 72.310.65 74.29
Moon et al. (2019)† 73.840.81 72.540.87 72.321.27 73.260.67 75.340.72 74.720.78 71.970.71 72.140.93 73.27
Jeon and Strube (2020a)† 75.100.74 73.350.92 74.750.61 74.181.07 76.380.91 74.301.13 73.610.72 73.441.15 74.39
Jeon and Strube (2020b)† 75.60 73.40 75.00 73.50 76.80 75.20 73.50 72.80 74.48
XLNet+DNN 74.700.88 74.460.97 73.070.92 74.091.04 75.450.83 75.210.94 71.170.76 71.950.81 73.84
Our Method 75.971.14 76.251.07 74.141.18 75.810.71 77.010.94 77.081.14 73.550.80 72.910.66 75.34

Table 2: Mean accuracy (std) results on TOEFL.
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Figure 4: Predicted label distribution.

models. Hence, to better illustrate the effectiveness
of our approach, we report the performance of both
existing coherence models (Mesgar and Strube,
2018; Moon et al., 2019; Jeon and Strube, 2020a,b)
and models designed to solve the AES task. For the
latter, we report the result of Dong et al. (2017),
which is a state-of-the-art method for the AES task.

Results on the TOEFL dataset are shown in Ta-
ble 2. Previous coherence models and the XL-
Net+DNN baseline give significantly better perfor-
mance than the AES model in Dong et al. (2017).
Similar to the results on the GCDC dataset, sub-
graphs as input features can slightly improve the
performance. However, the XLNet+DNN baseline
can not beat the state-of-the-art coherence models
on the TOEFL dataset. The results are reasonable
because those coherence models are not only based
on XLNet but also consider the characteristics of
long documents. Consistent with observations on
GCDC, our method, considering the structural sim-
ilarities between documents, outperforms the XL-
Net+DNN baseline on the TOEFL dataset, giving
state-of-the-art results.

4.4 Performance Analysis

To understand how structural similarity works for
coherence modeling, we compare our model with
the XLNet+DNN baseline in terms of the predicted
label distribution and document length.

Model Yahoo Clinton Enron Yelp Avg
XLNet+DNN 47.321.56 46.161.77 42.861.85 39.321.73 43.91
Our Method 51.921.06 48.491.61 45.671.57 44.181.10 47.66

Table 3: Mean F1-Macro results (std) on the GCDC.

Predicted Label Distribution. Figure 4 shows the
distributions of predicted essay scores from the XL-
Net+DNN baseline and our model on the TOEFL
P1 dataset. The XLNet+DNN’s predictions are
strongly biased, with about 60% of essays predicted
as medium scores. We speculate this is caused
by the uneven label distribution in the TOEFL P1
dataset (10.3%/53.8%/35.9% of low/medium/high-
scoring essays). By contrast, our model is less
affected by the uneven distribution, making more
low and high score predictions. We also collect
the prediction accuracy of the two models for each
essay score. The prediction accuracy of the XL-
Net+DNN model for low, medium, high scores is
35.29%, 83.71%, 76.47%, and that of our method
is 50.00%, 82.02%, 84.87%. XLNet+DNN mainly
predicts medium scores, so this label’s recall value
is high. Compared with the baseline, our method
makes relatively accurate predictions for all essay
scores, suggesting that capturing structural simi-
larities between essays helps mitigate the effects
of uneven label distribution and thus focuses on
learning coherence patterns.

To better verify this, we report the performance
of the XLNet+DNN baseline and our method using
F1-Macro as the evaluation metric. F1-Macro com-
putes the accuracy for each class independently and
then takes the average at the class level. Intuitively,
if our model’s predictions are more uniform and ac-
curate, the F1-Macro performance gap between our
method and the XLNet+DNN baseline should be
no smaller than the gap in terms of accuracy. Table
3 shows the F1-Macro results of the XLNet+DNN
baseline and our model on the GCDC dataset. Our
method achieves much better F1-Macro results than
the XLNet+DNN baseline, and the gap between
the two models in F1-Macro is larger than the gap
in accuracy, which further demonstrates that our
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Figure 5: The top two most positively correlated subgraphs for each coherence level on the GCDC Clinton and
TOEFL P1. r denotes the correlation coefficient value, and p is the p_value (p < 0.05 means statistically significant).
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Figure 6: Accuracy against essay length.

model makes more even and accurate predictions.
Document Length. Figure 6 shows the accu-
racy trends of the baseline and our method on the
TOEFL P1 dataset as essays become longer. The
curve of XLNet+DNN generally shows a down-
ward trend, accuracy decreasing as essays’ length
increases. The result is not surprising since long
documents contain more complicated semantics
and thus are more challenging. Our method per-
forms similarly to the XLNet+DNN baseline over
short documents (length <= 200). But when essays
become longer, our model gives relatively high ac-
curacy and even presents a slight increase (200 <
length <= 400). This suggests that structural sim-
ilarity information helps to improve the model’s
robustness when document length increases.

4.5 Ablation Study

We analyze the effectiveness of each type of edge
in our method. To this end, we test the performance
of our approach by first removing edges between
subgraph nodes (ESS) and then removing edges
between document node and subgraph node (EDS).
Note that if all edges are removed (i.e. each doc-

Model
GCDC Clinton TOEFL P1

Acc Acc
Our Method 66.20 75.97
- ESS 66.00 75.42
- ESS, EDS 64.00 74.70

Table 4: Ablation study for different edges on the GCDC
Clinton and TOEFL P1 dataset.

ument is an isolated node), our method degrades
into the XLNet+DNN baseline.

Table 4 shows the results on the GCDC Clin-
ton and TOEFL P1 datasets. We can observe from
the table that eliminating any type of edges would
hurt the performance. The decline in performance
is more significant when removing the EDS than
eliminating the ESS. The results are reasonable
because edges between documents and subgraphs
are the key to connecting documents with similar
structures, while edges between subgraphs are con-
sidered to further assist it (Kondor et al., 2009).

4.6 Subgraph Analysis

In this section, we statistically investigate which
subgraphs (sentence connection styles) mostly cor-
relate to each level of coherence3. Specifically,
we calculate the Pearson correlation coefficient be-
tween each subgraph and per label, and test the
significance of the correlation. Figure 5 shows the
top two results on GCDC Clinton and TOEFL P1.

In general, subgraphs positively correlated with
higher coherence tend to contain more edges. This
is somewhat aligned with the previous finding
(Guinaudeau and Strube, 2013) that coherence cor-
relates with the average out-degree of sentence
graphs. Weakly connected subgraphs are more

3We perform this analysis on the whole corpus and show
readable text examples in Appendix E.2
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likely to reflect higher coherence than disconnected
ones. Taking results on GCDC Clinton as an exam-
ple, the top two most correlated subgraphs for low
coherence contain isolated nodes or components
while nodes in subgraphs for high coherence are
(weakly) connected. Furthermore, subgraphs with
more connections between adjacent sentences seem
more correlated with high coherence. For example,
there is an almost linear subgraph (or contains lin-
ear structure) in the high category of both datasets.
We also find that the subgraph results per coherence
level on the GCDC Clinton dataset differ from that
on the TOEFL P1 dataset. This could be due to
two reasons. First, the two datasets contain texts
from various domains with domain-specific writ-
ing styles and structures. Second, they are built
by different annotators, who may have different
preferences for text organization styles.

5 Conclusion

In this paper, we investigated the effectiveness
of structural similarity information between doc-
uments for coherence modeling. We proposed a
graph-based method to connect structurally similar
documents based on shared subgraphs, and model
the connectivity relations with a GCN. Experiments
on two benchmark tasks show that our method con-
sistently outperforms the baseline model, achieving
state-of-the-art results on both tasks.

6 Limitations

Despite showing impressive performance, our
graph-based approach still has several limitations.
The first one is related to the construction of the
sentence graph. At present, we consider two sen-
tences to be semantically related if they share sim-
ilar nouns. But coherence can be achieved not
only by describing similar entities but also by dis-
course (rhetorical) relations (Jurafsky and Martin,
2021). So it will be an exciting direction to incor-
porate discourse relations into the construction of a
graph. The second one is that we implemented our
method using only a plain GCN. Recent work has
pointed out that the original GCN can be further
improved with more advanced aggregation func-
tions (Xu et al., 2019a) or attention mechanisms
(Velickovic et al., 2018). So another interesting di-
rection is to explore the benefits of more powerful
graph neural networks for our method, which we
leave for future study.

Acknowledgements

The authors would like to thank the four anony-
mous reviewers for their comments. This work has
been funded by the Klaus Tschira Foundation, Hei-
delberg, Germany. The first and second authors
have been supported by a Heidelberg Institute for
Theoretical Studies Ph.D. scholarship.

References
Regina Barzilay and Mirella Lapata. 2005. Model-

ing local coherence: An entity-based approach. In
Proceedings of the 43rd Annual Meeting of the As-
sociation for Computational Linguistics (ACL’05),
pages 141–148, Ann Arbor, Michigan. Association
for Computational Linguistics.

Regina Barzilay and Mirella Lapata. 2008. Modeling
local coherence: An entity-based approach. Compu-
tational Linguistics, 34(1):1–34.

Daniel Blanchard, Joel Tetreault, Derrick Higgins,
Aoife Cahill, and Martin Chodorow. 2014. ETS
corpus of non-native written english ldc2014t06.
Philadelphia, Penn.: Linguistic Data Consortium.

Jill Burstein, Joel Tetreault, and Slava Andreyev. 2010.
Using entity-based features to model coherence in
student essays. In Human Language Technologies:
The 2010 Annual Conference of the North American
Chapter of the Association for Computational Lin-
guistics, pages 681–684, Los Angeles, California.
Association for Computational Linguistics.

Andrew Carlson, Justin Betteridge, Bryan Kisiel, Burr
Settles, Estevam R. Hruschka, and Tom M. Mitchell.
2010. Toward an architecture for never-ending lan-
guage learning. In Twenty-Fourth AAAI Conference
on Artificial Intelligence.

Jie Chen, Tengfei Ma, and Cao Xiao. 2018. FastGCN:
Fast learning with graph convolutional networks via
importance sampling. In International Conference
on Learning Representations.

Frantisek Danes. 1974. Functional sentence perspective
and the organization of the text. Papers on functional
sentence perspective, 23:106–128.

Shizhe Diao, Xinwei Shen, Kashun Shum, Yan Song,
and Tong Zhang. 2021. TILGAN: Transformer-based
implicit latent GAN for diverse and coherent text
generation. In Findings of the Association for Com-
putational Linguistics: ACL-IJCNLP 2021, pages
4844–4858, Online. Association for Computational
Linguistics.

Fei Dong, Yue Zhang, and Jie Yang. 2017. Attention-
based recurrent convolutional neural network for au-
tomatic essay scoring. In Proceedings of the 21st
Conference on Computational Natural Language
Learning (CoNLL 2017), pages 153–162, Vancouver,
Canada. Association for Computational Linguistics.

7800

https://doi.org/10.3115/1219840.1219858
https://doi.org/10.3115/1219840.1219858
https://doi.org/10.1162/coli.2008.34.1.1
https://doi.org/10.1162/coli.2008.34.1.1
https://aclanthology.org/N10-1099
https://aclanthology.org/N10-1099
https://openreview.net/forum?id=rytstxWAW
https://openreview.net/forum?id=rytstxWAW
https://openreview.net/forum?id=rytstxWAW
https://doi.org/10.18653/v1/2021.findings-acl.428
https://doi.org/10.18653/v1/2021.findings-acl.428
https://doi.org/10.18653/v1/2021.findings-acl.428
https://doi.org/10.18653/v1/K17-1017
https://doi.org/10.18653/v1/K17-1017
https://doi.org/10.18653/v1/K17-1017


Micha Elsner and Eugene Charniak. 2011. Extend-
ing the entity grid with entity-specific features. In
Proceedings of the 49th Annual Meeting of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 125–129, Portland, Ore-
gon, USA. Association for Computational Linguis-
tics.

Youmna Farag and Helen Yannakoudakis. 2019. Multi-
task learning for coherence modeling. In Proceed-
ings of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 629–639, Florence,
Italy. Association for Computational Linguistics.

Katja Filippova and Michael Strube. 2007. Extend-
ing the entity-grid coherence model to semantically
related entities. In Proceedings of the Eleventh Eu-
ropean Workshop on Natural Language Generation
(ENLG 07), pages 139–142, Saarbrücken, Germany.
DFKI GmbH.

Peter W. Foltz, Walter Kintsch, and Thomas K. Lan-
dauer. 1998. The measurement of textual coherence
with latent semantic analysis. Discourse processes,
25(2-3):285–307.

Marjan Ghazvininejad, Xing Shi, Yejin Choi, and Kevin
Knight. 2016. Generating topical poetry. In Proceed-
ings of the 2016 Conference on Empirical Methods
in Natural Language Processing, pages 1183–1191,
Austin, Texas. Association for Computational Lin-
guistics.

Barbara J. Grosz, Aravind K. Joshi, and Scott Weinstein.
1995. Centering: A framework for modeling the local
coherence of discourse. Computational Linguistics,
21(2):203–225.

Camille Guinaudeau and Michael Strube. 2013. Graph-
based local coherence modeling. In Proceedings
of the 51st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 93–103, Sofia, Bulgaria. Association for Com-
putational Linguistics.

Zhiyu Guo and Minh Le Nguyen. 2020. Document-
level neural machine translation using BERT as con-
text encoder. In Proceedings of the 1st Conference
of the Asia-Pacific Chapter of the Association for
Computational Linguistics and the 10th International
Joint Conference on Natural Language Processing:
Student Research Workshop, pages 101–107, Suzhou,
China. Association for Computational Linguistics.

Sungho Jeon and Michael Strube. 2020a. Centering-
based neural coherence modeling with hierarchical
discourse segments. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 7458–7472, Online. As-
sociation for Computational Linguistics.

Sungho Jeon and Michael Strube. 2020b. Incremental
neural lexical coherence modeling. In Proceedings of
the 28th International Conference on Computational

Linguistics, pages 6752–6758, Barcelona, Spain (On-
line). International Committee on Computational Lin-
guistics.

H. Ji, C. Yang, C. Shi, and P. Li. 2021. Heterogeneous
graph neural network with distance encoding. In
2021 IEEE International Conference on Data Mining
(ICDM), pages 1138–1143, Los Alamitos, CA, USA.
IEEE Computer Society.

Shafiq Joty, Muhammad Tasnim Mohiuddin, and Dat
Tien Nguyen. 2018. Coherence modeling of asyn-
chronous conversations: A neural entity grid ap-
proach. In Proceedings of the 56th Annual Meeting
of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 558–568, Melbourne,
Australia. Association for Computational Linguistics.

Daniel Jurafsky and James H Martin. 2021. Speech and
language processing (3rd ed. draft).

Douwe Kiela and Stephen Clark. 2014. A systematic
study of semantic vector space model parameters. In
Proceedings of the 2nd Workshop on Continuous Vec-
tor Space Models and their Compositionality (CVSC),
pages 21–30, Gothenburg, Sweden. Association for
Computational Linguistics.

Thomas N. Kipf and Max Welling. 2017. Semi-
supervised classification with graph convolutional
networks. In International Conference on Learning
Representations (ICLR).

Risi Kondor, Nino Shervashidze, and Karsten M. Borg-
wardt. 2009. The graphlet spectrum. In Proceedings
of the 26th Annual International Conference on Ma-
chine Learning, pages 529–536.

Alice Lai and Joel Tetreault. 2018. Discourse coherence
in the wild: A dataset, evaluation and methods. In
Proceedings of the 19th Annual SIGdial Meeting on
Discourse and Dialogue, pages 214–223, Melbourne,
Australia. Association for Computational Linguistics.

Jiwei Li and Eduard Hovy. 2014. A model of coher-
ence based on distributed sentence representation. In
Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 2039–2048, Doha, Qatar. Association for Com-
putational Linguistics.

Jiwei Li and Dan Jurafsky. 2017. Neural net models
of open-domain discourse coherence. In Proceed-
ings of the 2017 Conference on Empirical Methods
in Natural Language Processing, pages 198–209,
Copenhagen, Denmark. Association for Computa-
tional Linguistics.

Qimai Li, Zhichao Han, and Xiao-Ming Wu. 2018.
Deeper insights into graph convolutional networks
for semi-supervised learning. In Thirty-Second AAAI
Conference on Artificial Intelligence, pages 3538–
3545.

7801

https://aclanthology.org/P11-2022
https://aclanthology.org/P11-2022
https://doi.org/10.18653/v1/P19-1060
https://doi.org/10.18653/v1/P19-1060
https://aclanthology.org/W07-2321
https://aclanthology.org/W07-2321
https://aclanthology.org/W07-2321
https://doi.org/10.18653/v1/D16-1126
https://aclanthology.org/J95-2003
https://aclanthology.org/J95-2003
https://aclanthology.org/P13-1010
https://aclanthology.org/P13-1010
https://aclanthology.org/2020.aacl-srw.15
https://aclanthology.org/2020.aacl-srw.15
https://aclanthology.org/2020.aacl-srw.15
https://doi.org/10.18653/v1/2020.emnlp-main.604
https://doi.org/10.18653/v1/2020.emnlp-main.604
https://doi.org/10.18653/v1/2020.emnlp-main.604
https://doi.org/10.18653/v1/2020.coling-main.594
https://doi.org/10.18653/v1/2020.coling-main.594
https://doi.org/10.1109/ICDM51629.2021.00135
https://doi.org/10.1109/ICDM51629.2021.00135
https://doi.org/10.18653/v1/P18-1052
https://doi.org/10.18653/v1/P18-1052
https://doi.org/10.18653/v1/P18-1052
https://web.stanford.edu/~jurafsky/slp3/
https://web.stanford.edu/~jurafsky/slp3/
https://doi.org/10.3115/v1/W14-1503
https://doi.org/10.3115/v1/W14-1503
https://doi.org/10.18653/v1/W18-5023
https://doi.org/10.18653/v1/W18-5023
https://doi.org/10.3115/v1/D14-1218
https://doi.org/10.3115/v1/D14-1218
https://doi.org/10.18653/v1/D17-1019
https://doi.org/10.18653/v1/D17-1019


Ziheng Lin, Hwee Tou Ng, and Min-Yen Kan. 2011. Au-
tomatically evaluating text coherence using discourse
relations. In Proceedings of the 49th Annual Meeting
of the Association for Computational Linguistics: Hu-
man Language Technologies, pages 997–1006, Port-
land, Oregon, USA. Association for Computational
Linguistics.

Shangwen Lv, Daya Guo, Jingjing Xu, Duyu Tang, Nan
Duan, Ming Gong, Linjun Shou, Daxin Jiang, Gui-
hong Cao, and Songlin Hu. 2020. Graph-based rea-
soning over heterogeneous external knowledge for
commonsense question answering. In Proceedings
of the AAAI Conference on Artificial Intelligence,
volume 34, pages 8449–8456.

Diego Marcheggiani and Ivan Titov. 2017. Encoding
sentences with graph convolutional networks for se-
mantic role labeling. In Proceedings of the 2017
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1506–1515, Copenhagen,
Denmark. Association for Computational Linguis-
tics.

Danielle S McNamara, Scott A Crossley, and Philip M
McCarthy. 2010. Linguistic features of writing qual-
ity. Written Communication, 27(1):57–86.

Mohsen Mesgar, Sebastian Bücker, and Iryna Gurevych.
2020. Dialogue coherence assessment without ex-
plicit dialogue act labels. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, pages 1439–1450, Online. Association
for Computational Linguistics.

Mohsen Mesgar, Leonardo F. R. Ribeiro, and Iryna
Gurevych. 2021. A neural graph-based local coher-
ence model. In Findings of the Association for Com-
putational Linguistics: EMNLP 2021, pages 2316–
2321, Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Mohsen Mesgar and Michael Strube. 2015. Graph-
based coherence modeling for assessing readability.
In Proceedings of the Fourth Joint Conference on Lex-
ical and Computational Semantics, pages 309–318,
Denver, Colorado. Association for Computational
Linguistics.

Mohsen Mesgar and Michael Strube. 2016. Lexical
coherence graph modeling using word embeddings.
In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 1414–1423, San Diego, California. Associa-
tion for Computational Linguistics.

Mohsen Mesgar and Michael Strube. 2018. A neural
local coherence model for text quality assessment.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
4328–4339, Brussels, Belgium. Association for Com-
putational Linguistics.

Dmitrijs Milajevs, Mehrnoosh Sadrzadeh, and Matthew
Purver. 2016. Robust co-occurrence quantification
for lexical distributional semantics. In Proceedings of
the ACL 2016 Student Research Workshop, pages 58–
64, Berlin, Germany. Association for Computational
Linguistics.

Han Cheol Moon, Tasnim Mohiuddin, Shafiq Joty, and
Chi Xu. 2019. A unified neural coherence model. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 2262–
2272, Hong Kong, China. Association for Computa-
tional Linguistics.

Daraksha Parveen, Hans-Martin Ramsl, and Michael
Strube. 2015. Topical coherence for graph-based ex-
tractive summarization. In Proceedings of the 2015
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1949–1954, Lisbon, Portu-
gal. Association for Computational Linguistics.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. GloVe: Global vectors for word
representation. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing (EMNLP), pages 1532–1543, Doha, Qatar.
Association for Computational Linguistics.

Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason Bolton, and
Christopher D. Manning. 2020. Stanza: A python
natural language processing toolkit for many human
languages. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics:
System Demonstrations, pages 101–108, Online. As-
sociation for Computational Linguistics.

Tanya Reinhart. 1980. Conditions for text coherence.
Poetics Today, 1(4):161–180.

Alexandre Salle and Aline Villavicencio. 2019. Why so
down? The role of negative (and positive) pointwise
mutual information in distributional semantics. arXiv
preprint arXiv:1908.06941.

Monika Schwarz. 2001. Establishing coherence in text.
conceptual continuity and text-world models. Logos
and Language, 2(1):15–24.

Nino Shervashidze, SVN Vishwanathan, Tobias Petri,
Kurt Mehlhorn, and Karsten Borgwardt. 2009. Effi-
cient graphlet kernels for large graph comparison. In
Artificial intelligence and statistics, pages 488–495.
PMLR.

Kaveh Taghipour and Hwee Tou Ng. 2016. A neural
approach to automated essay scoring. In Proceedings
of the 2016 Conference on Empirical Methods in Nat-
ural Language Processing, pages 1882–1891, Austin,
Texas. Association for Computational Linguistics.

Xin Tan, Longyin Zhang, Deyi Xiong, and Guodong
Zhou. 2019. Hierarchical modeling of global context
for document-level neural machine translation. In
Proceedings of the 2019 Conference on Empirical

7802

https://aclanthology.org/P11-1100
https://aclanthology.org/P11-1100
https://aclanthology.org/P11-1100
https://doi.org/10.18653/v1/D17-1159
https://doi.org/10.18653/v1/D17-1159
https://doi.org/10.18653/v1/D17-1159
https://doi.org/10.18653/v1/2020.acl-main.133
https://doi.org/10.18653/v1/2020.acl-main.133
https://doi.org/10.18653/v1/2021.findings-emnlp.199
https://doi.org/10.18653/v1/2021.findings-emnlp.199
https://doi.org/10.18653/v1/S15-1036
https://doi.org/10.18653/v1/S15-1036
https://doi.org/10.18653/v1/N16-1167
https://doi.org/10.18653/v1/N16-1167
https://doi.org/10.18653/v1/D18-1464
https://doi.org/10.18653/v1/D18-1464
https://doi.org/10.18653/v1/P16-3009
https://doi.org/10.18653/v1/P16-3009
https://doi.org/10.18653/v1/D19-1231
https://doi.org/10.18653/v1/D15-1226
https://doi.org/10.18653/v1/D15-1226
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.18653/v1/2020.acl-demos.14
https://doi.org/10.18653/v1/2020.acl-demos.14
https://doi.org/10.18653/v1/2020.acl-demos.14
http://www.jstor.org/stable/1771893
https://doi.org/10.18653/v1/D16-1193
https://doi.org/10.18653/v1/D16-1193
https://doi.org/10.18653/v1/D19-1168
https://doi.org/10.18653/v1/D19-1168


Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 1576–
1585, Hong Kong, China. Association for Computa-
tional Linguistics.

Lei Tang and Huan Liu. 2009. Relational learning via
latent social dimensions. In Proceedings of the 15th
ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, pages 817–826.

Dat Tien Nguyen and Shafiq Joty. 2017. A neural local
coherence model. In Proceedings of the 55th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1320–1330,
Vancouver, Canada. Association for Computational
Linguistics.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Liò, and Yoshua Bengio.
2018. Graph attention networks. In 6th International
Conference on Learning Representations, ICLR 2018,
Vancouver, BC, Canada, April 30 - May 3, 2018,
Conference Track Proceedings. OpenReview.net.

Ziao Wang, Xiaofeng Zhang, and Hongwei Du. 2021.
Building the directed semantic graph for coherent
long text generation. In Proceedings of the 2021
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 2563–2572, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Yuxiang Wu and Baotian Hu. 2018. Learning to extract
coherent summary via deep reinforcement learning.
In Thirty-Second AAAI Conference on Artificial In-
telligence, volume 32, pages 5602–5609.

Hao Xiong, Zhongjun He, Hua Wu, and Haifeng Wang.
2019. Modeling coherence for discourse neural ma-
chine translation. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 33, pages
7338–7345.

Jun Xu, Zeyang Lei, Haifeng Wang, Zheng-Yu Niu,
Hua Wu, and Wanxiang Che. 2021. Discovering di-
alog structure graph for coherent dialog generation.
In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the
11th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
1726–1739, Online. Association for Computational
Linguistics.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie
Jegelka. 2019a. How powerful are graph neural net-
works? In 7th International Conference on Learning
Representations, ICLR 2019, New Orleans, LA, USA,
May 6-9, 2019. OpenReview.net.

Peng Xu, Hamidreza Saghir, Jin Sung Kang, Teng Long,
Avishek Joey Bose, Yanshuai Cao, and Jackie Chi Kit
Cheung. 2019b. A cross-domain transferable neural
coherence model. In Proceedings of the 57th Annual

Meeting of the Association for Computational Lin-
guistics, pages 678–687, Florence, Italy. Association
for Computational Linguistics.

Liang Yao, Chengsheng Mao, and Yuan Luo. 2019.
Graph convolutional networks for text classification.
In Proceedings of the AAAI conference on artificial
intelligence, volume 33, pages 7370–7377.

Michihiro Yasunaga, Rui Zhang, Kshitijh Meelu, Ayush
Pareek, Krishnan Srinivasan, and Dragomir Radev.
2017. Graph-based neural multi-document summa-
rization. In Proceedings of the 21st Conference on
Computational Natural Language Learning (CoNLL
2017), pages 452–462, Vancouver, Canada. Associa-
tion for Computational Linguistics.

Wenpeng Yin, Dragomir Radev, and Caiming Xiong.
2021. DocNLI: A large-scale dataset for document-
level natural language inference. In Findings of
the Association for Computational Linguistics: ACL-
IJCNLP 2021, pages 4913–4922, Online. Association
for Computational Linguistics.

Wenxuan Zhou, Kevin Huang, Tengyu Ma, and Jing
Huang. 2021. Document-level relation extraction
with adaptive thresholding and localized context pool-
ing. In Proceedings of the AAAI Conference on Arti-
ficial Intelligence, volume 35, pages 14612–14620.

7803

https://doi.org/10.18653/v1/P17-1121
https://doi.org/10.18653/v1/P17-1121
https://openreview.net/forum?id=rJXMpikCZ
https://doi.org/10.18653/v1/2021.emnlp-main.200
https://doi.org/10.18653/v1/2021.emnlp-main.200
https://doi.org/10.18653/v1/2021.acl-long.136
https://doi.org/10.18653/v1/2021.acl-long.136
https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=ryGs6iA5Km
https://doi.org/10.18653/v1/P19-1067
https://doi.org/10.18653/v1/P19-1067
https://doi.org/10.18653/v1/K17-1045
https://doi.org/10.18653/v1/K17-1045
https://doi.org/10.18653/v1/2021.findings-acl.435
https://doi.org/10.18653/v1/2021.findings-acl.435


A Graph Construction

Algorithm 1 Constructing sentence graph

Input: Document d, threshold δ
Output: Sentence graph G

1: S,NS ← stanza(d) ▷ Sentences and nouns
2: L← len(S)
3: G← zeros(L, L) ▷ Init adjacency matrix
4: for u← 1 to L− 1 do
5: for v ← u+ 1 to L do
6: un, vn← len(NSu), len(NSv)
7: sim_scores← [ ]
8: for a← 1 to un do
9: for b← 1 to vn do

10: ea ← embed(NSu,a)
11: eb ← embed(NSv,b)
12: score← cos_sim(ea, eb)
13: Append(score, sim_scores)
14: end for
15: end for
16: max_score← max(sim_scores)
17: if max_score > δ then
18: Gu,v ← 1
19: end if
20: end for
21: end for

Algorithm 2 Counting Subgraph Frequency

Input: Sentence graph G, subgraph size k, max
sentence distance w

Output: subgraph set freq
1: freq ← {} ▷ frequency of each subgraph
2: nodes← G.nodes()
3: i, n← 0, len(nodes)
4: while i < (n− k + 1) do
5: w_n← nodes[i : i+ w] ▷ distance < w
6: k_node_combs← combinations(w_n, k)
7: for k_nodes in k_node_combs do
8: subgraph← extract(G, k_nodes)
9: signature← pynauty(subgraph)

10: Add(freq[signature], 1)
11: end for
12: i← i+ (w − k + 1)
13: end while

B Train and Evaluation

Vanilla GCN is a transductive method in which
both training and test data are presented to the
model during training. This, however, is not appli-
cable in practice since we do not know the eval-

Algorithm 3 Evaluation
Input: Test corpus TC, Doc-subgraph graph G,

Trained GCN
Output: Predictions preds

1: preds← []
2: N ← len(TC)
3: for i← 1 to N do
4: di ← TC[i]
5: G∗ ← Add(di, G) ▷ Add document
6: G∗ ← Norm(G∗) ▷ Norm graph
7: li ← GCN(G∗) ▷ Predict label
8: Append(li, preds)
9: end for

Dataset Split #Doc Avg #W Max #W Avg #S

GCDC

Yahoo Train 1000 157.2 339 7.8
Test 200 162.7 314 7.8

Clinton Train 1000 182.9 346 8.9
Test 200 186.0 352 8.8

Enron Train 1000 185.1 353 9.2
Test 200 191.1 348 9.3

Yelp Train 1000 178.2 347 10.4
Test 200 179.1 340 10.1

TOEFL

Prompt 1 Total 1656 339.1 806 13.7
Prompt 2 Total 1562 357.8 770 15.7
Prompt 3 Total 1396 343.5 731 14.7
Prompt 4 Total 1509 338.0 699 15.1
Prompt 5 Total 1648 358.4 876 15.2
Prompt 6 Total 960 358.3 784 15.3
Prompt 7 Total 1686 336.6 638 14.0
Prompt 8 Total 1683 340.9 659 14.7

Table 5: The statistics of datasets. #Doc, #W, #S denotes
the number of documents, words, sentences.

uation documents in advance. To overcome this
drawback, we implement an inductive GCN in-
spired by the work in fast GCN (Chen et al., 2018).
Specifically, we first construct the doc-subgraph
graph based on the training corpus (Section 3.3)
and train GCN on this graph (Section 3.4). While
evaluating, for each document in the test corpus,
we add it to the doc-subgraph graph, normalize the
adjacency matrix of the new graph, and predict its
label (refer to Algorithm 3). Consequently, our
method is in a pure inductive setting. That is, our
model does not see the test corpus during train-
ing, and its evaluation is performed on individual
documents without using the information of other
samples in the test corpus. Note that when calcu-
lating weights for edges between the newly added
document node and subgraph nodes, the inverse
document frequency we used in equation (1) is the
one we computed using only the training corpus.

C Dataset Description

The statistics of the GCDC and TOEFL datasets is
shown in Table 5.
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Figure 7: An example of two highly coherent texts with similar connection structures. We bold the recognized
nouns in the example.

D Detailed Experimental Setting

For the GCDC dataset, we perform 10-fold cross-
validation over the training dataset following pre-
vious work (Lai and Tetreault, 2018). The dimen-
sionality of the two-layer GCN is set to be 240 for
Clinton and Enron domains, and 360 for Yahoo and
Yelp domains. We use the Adam optimizer with
an initial learning rate of 0.01 on Clinton and En-
ron, 0.008 on Yahoo and Yelp. As for the TOEFL
corpus, we conduct 5-fold cross-validation on the
dataset of each prompt, which is the common eval-
uation setting for the AES task (Taghipour and Ng,
2016). A two-layer GCN with dimension size 240
and the Adam optimizer with an initial learning
rate of 0.05 is employed for every prompt dataset.
Dropout with a rate of 0.5 is applied to both tasks.
And we train the model for 160 epochs on the
GCDC dataset and 400 on the TOEFL dataset. For
the XLNet+DNN baseline, we configure it with
the same trainable parameters as our method. As
for Mesgar and Strube (2016), we concatenate the
document presentation from XLNet and subgraphs
mining from the document’s sentence graph as in-
put, and also use a two-layer DNN and a softmax
layer. Note that this model has more trainable pa-
rameters since its input dimension becomes larger
(the concatenation of subgraphs and XLNet repre-
sentation). For other baseline models, we apply the
same experimental setting and XLNet to them as
our method and tune their hyperparameters accord-
ing to the performance on the Dev set. We conduct
all experiments on a single Tesla P40 GPU with
24GB memory. It takes about 0.5 days to train our
model on the GCDC dataset and 1.5 days on the

TOEFL dataset.
We follow previous works (Lai and Tetreault,

2018; Taghipour and Ng, 2016) to use the mean of
multi-run accuracy (std) as the evaluation metric.

E Examples

E.1 Text Example
Coherence describes how sentences of a text con-
nect to each other (Reinhart, 1980; Foltz et al.,
1998; Schwarz, 2001). Theoretically, documents
with similar connection structures should tend to
have similar degrees of coherence. To help readers
understand it, we show two texts in Figure 7. Al-
though the two texts have different content, they
share very similar connection structures. For ex-
ample, the first text first talks about Africa, then
discusses specific African countries, and finally
makes a conclusion. The second text starts with
exercise, then goes to certain daily sports, and fi-
nally makes a summary. Based on the linguistic
definition of text coherence, the two texts should
have a similar degree of coherence due to their sim-
ilar organizational structures. This could be a very
useful prior knowledge when we measure a text’s
coherence. For example, in Figure 7, we can easily
assess the coherence of one text by referring to the
label of the other one since they have very similar
organizational structures.

E.2 Subgraph Examples
We show several text pieces with constructed
subgraphs in Figure 8 (from the GCDC Clinton
dataset) and Figure 9 (from the TOEFL P1 dataset).
In each example, the corresponding subgraph is
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Figure 8: Three text examples with constructed subgraphs from the GCDC Clinton dataset. We show subgraphs of
each text example to the left of that example.
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Figure 9: Three text examples with constructed subgraphs from the TOEFL Clinton dataset.

shown on the left. We use blue boxes to mark the
recognized nouns in each sentence and link seman-
tically related nouns between different sentences by

a directed edge between two boxes. Two sentences
will be connected if there are semantically related
nouns between them.

7806



ACL 2023 Responsible NLP Checklist

A For every submission:
�3 A1. Did you describe the limitations of your work?

In Section 6.

�7 A2. Did you discuss any potential risks of your work?
This is an entirely technical paper. We don’t think it has any risk of bias or otherwise.

�3 A3. Do the abstract and introduction summarize the paper’s main claims?
In Abstract section and Section 1.

�7 A4. Have you used AI writing assistants when working on this paper?
Left blank.

B �3 Did you use or create scientific artifacts?
In Section 4.

�3 B1. Did you cite the creators of artifacts you used?
In Section 4.

�7 B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
We are the member of LDC, so we can use those corpora.

�7 B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
Those corpora are created for research purpose.

�7 B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
Those corpora have been widely used in the field for a long time. We don’t think it contains any
offensive content.

�3 B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
In Section 4.

�3 B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
In Appendix C.

C �3 Did you run computational experiments?
In Section 4.

�3 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
In Appendix D.

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

7807

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/


�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
In Appendix D.

�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
In Section 4.

�3 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
In Section 3.

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
No response.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
No response.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
No response.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No response.

7808


