
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
Volume 1: Long Papers, pages 7777–7791

July 9-14, 2023 ©2023 Association for Computational Linguistics

DIP: Dead code Insertion based Black-box Attack for Programming
Language Model

CheolWon Na, YunSeok Choi, Jee-Hyong Lee†

College of Computing and Informatics
Sungkyunkwan University

Suwon, South Korea
{ncw0034, ys.choi, john}@skku.edu

Abstract

Automatic processing of source code, such as
code clone detection and software vulnerabil-
ity detection, is very helpful to software en-
gineers. Large pre-trained Programming Lan-
guage (PL) models (such as CodeBERT, Graph-
CodeBERT, CodeT5, etc.), show very powerful
performance on these tasks. However, these
PL models are vulnerable to adversarial exam-
ples that are generated with slight perturbation.
Unlike natural language, an adversarial exam-
ple of code must be semantic-preserving and
compilable. Due to the requirements, it is hard
to directly apply the existing attack methods
for natural language models. In this paper, we
propose DIP (Dead code Insertion based Black-
box Attack for Programming Language Model),
a high-performance and efficient black-box at-
tack method to generate adversarial examples
using dead code insertion. We evaluate our
proposed method on 9 victim downstream-task
large code models. Our method outperforms
the state-of-the-art black-box attack in both at-
tack efficiency and attack quality, while gen-
erated adversarial examples are compiled pre-
serving semantic functionality.

1 Introduction

Automatic processing of source code (such as clone
detection, code completion, defect detection, etc.)
is an important task that increases the productiv-
ity of software engineers (Laguë et al., 1997; Li
et al., 2006; Mockus, 2007; Kapser and Godfrey,
2008; Islam et al., 2016; Choi et al., 2021, 2023).
For these tasks, deep learning-based models, such
as code2seq (Alon et al., 2019a) and code2vec
(Alon et al., 2019b), were developed. Recently,
transformer-based large pre-trained programming
language (PL) models (Feng et al., 2020; Guo et al.,
2021b; Wang et al., 2021; Ahmad et al., 2021; Ding
et al., 2021; Guo et al., 2022), showed powerful

†Corresponding author.

Figure 1: Dead code which is non-affecting to function-
ality is inserted into the original code in order to mislead
the target model.

performance. However, these PL models are also
vulnerable to adversarial examples as other natural
language (NL) models (Choi et al., 2022; Zhang
et al., 2020; Yang et al., 2022; Jha and Reddy, 2022;
Jin et al., 2020; Li et al., 2020, 2021).

Source code is textual data just like natural lan-
guage, but the requirements of attack methods are
different from NL model attacks. Attacks against
NL models should consider semantic and fluency
of original sentences, but attacks against PL models
should preserve functionality and guarantee compi-
lability. To consider for these issues, recent studies
(Yefet et al., 2020; Yang et al., 2022; Srikant et al.,
2021; Rabin et al., 2021; Zhang et al., 2020; Ra-
makrishnan et al., 2020) use semantic-preserving
code transformation which is commonly used in
software engineering. The semantic-preserving
code transformation includes Variable Renaming,
Dead Code Insertion, Statement Permutation, Loop
Exchange, Switch-to-If, and Boolean Exchange.
Most of the prior works used Variable Renam-
ing or Dead Code Insertion to attack PL mod-
els. Other transformations Statement-Permutation,
Loop-Exchange, Switch-to-If,Boolean-Exchange,
etc, were less used for attacks because they are ap-
plicable only to corresponding operations. Instead,
they were usually used for data augmentation (Jain

7777



et al., 2020; Rabin et al., 2021). Variable Renam-
ing and Dead Code Insertion can be much stronger
attacks because attackers can flexibly choose vari-
ous variable names or statements considering the
contextual information of code.

In the white-box setting, Yefet et al. (2020) pro-
posed attack methods on code2vec, using Variable
Renaming and Dead Code Insertion, which inserted
perturbations sampled from the output distribution
into input one-hot vectors representing variables.
Ramakrishnan et al. (2020) and Srikant et al. (2021)
proposed white-box attacks, optimizing position
and perturbation of adversarial attacks, for basic PL
models such as seq2seq, code2seq, and code2vec.
However, those gradient-based white-box attack
methods are inefficient, time-consuming, and com-
putationally expensive because large pre-trained
PL models, such as CodeBERT (Feng et al., 2020),
GraphCodeBERT (Guo et al., 2021b) and CodeT5
(Wang et al., 2021), have a very large number of
parameters. Also, it is hard to apply white-box at-
tacks on large pre-trained models in the real world
because the models are not fully opened and are
just accessible through API. Therefore, the black-
box attack is more practical than the white-box for
attacking large pre-trained models.

In the black-box setting, Zhang et al. (2020) pro-
posed MHM, a sampling-based black-box attack
method for programming language model using
Variable Renaming. Yang et al. (2022) proposed
ALERT, a genetic algorithm based black-box at-
tack method using Variable Renaming. However,
these attack methods using Variable Renaming are
inefficient in attack success rate and in query count,
because attack targets are limited to variables, and
the search space for candidate tokens is very large.
Additionally, these methods have a critical problem
that compilability is not guaranteed. In program-
ming language, unlike natural language, compil-
ability is more prior than naturalness, and must be
guaranteed. There are some variables that should
not be renamed. For example, global variables or
class static variables in Java, such as System.out
for standard input/output, should not be changed.
However, Variable Renaming can replace such vari-
ables, and could raise a critical problem such as
compile errors.

We propose DIP (Dead code Insertion based
Black-box Attack for Programming Language
Model), an efficient and the state-of-the-art adver-
sarial attack method using Dead Code Insertion

with an unused variable statement. Under the
black-box setting, we do not need any information
of a large pre-trained model, no additional compu-
tation for training is required for attack.

For efficiency, we reduce the candidate search
space by inserting a statement from other code, not
tokens. Randomly selected dissimilar codes are
used to obtain statements to be inserted. We extract
statements from code using the attention score of a
pre-trained model, which is based on transformer
architectures. The snippet extracted by our method
is powerful and transferable. In addition, our pro-
posed method guarantee to preserve functionality
and compilability in any case because the attack is
based on dead statement insertion.

We show that our proposed method outperforms
the existing methods to attack pre-trained program-
ming language models in Section 4. We choose
3 pre-trained PL models, CodeBERT, GraphCode-
BERT, and CodeT5, and 3 tasks, code clone detec-
tion, defect detection, and authorship attribution
task. We build nine victim models in total. We
also conduct various experiments to explore our
method. The ablation study (§4.4) examines the
effectiveness of each component in DIP. In §4.5,
we test how strong DIP is on adversarially trained
models. We also test whether adversarial samples
used to attack a victim model can also fool another
in §4.6.

2 Task Definition

We evaluate DIP on code clone detection, defect de-
tection, and authorship attribution tasks. For these
tasks, we build the model by adding MLP classifier
to the state-of-the-art pre-trained PL models (such
as CodeBERT, GraphCodeBERT, and CodeT5).
Then, we fine-tune the nine victim models.

Black-box setting. Since our proposed method
is a black-box attack, we do not use any informa-
tion from the victim models. To obtain the code
representation and attention score in DIP, we need
a pre-trained model based on Transformer archi-
tectures (Vaswani et al., 2017). In this paper, we
use CodeBERT, a general pre-trained PL model
which is not fine-tuned, to obtain code embeddings
without any information from victim models.

Non-targeted Adversarial attack. Adversarial
attack can be usually categorized as either non-
targeted attack or targeted attack. Non-targeted
adversarial attack is to slightly modify the source

7778



Figure 2: Overview of DIP.

input in a way that the input will be misclassified far
from the ground truth. Targeted adversarial attack
is to slightly modify the source input in a way that
the input will be misclassified as a specified target
class. Since our method is a non-targeted attack,
the goal is defined as follows.

Goal. Given an input sample (ci, y), find cadvi , by
adding perturbation to ci, that preserves functional-
ity and guarantees compilability, and that misleads
the victim model. The adversarial code, cadvi , needs
to satisfy the followings:

M(cadvi ) ≠ y, (1)

where cadvi = ci + perturbation, M is the victim
model, and y is the ground truth.

3 DIP

We propose DIP, using dead code insertion to guar-
antee compilability while preserving the semantics
of source codes. Dead code insertion is very suit-
able for source code attack because it does not
affect functionality and compilability of code.

Our method consists of three main steps as
shown in Figure 2: (1) We find vulnerable posi-
tions to insert dead code in the original source code.
Dead code will be inserted between statements in
source code as a statement to guarantee compilabil-
ity. We evaluate the vulnerability of each position
in source code by a pre-trained code model which
is not fine-tuned, and choose some of them as candi-
date vulnerable positions. (2) We obtain dissimilar
codes of which snippets will be used as dead code.
Dissimilarity of source code is defined based on
the cosine similarity to the original source code
using [CLS] token representations. (3) To minimize
perturbation, we extract snippets from dissimilar

Algorithm 1: DIP Pseudo-code
Input :Source code ci, true label y, target

model M
Output :Adversarial Example cadvi

1 Compute position importance Vp∀ p ∈ ci
2 Generate k candidate dead code
3 dead code list D = [d1, . . . , dk] ordered by

the dissimilarity
4 for p in ascending order of Vp do
5 cadvi ← ci
6 for d ∈ D do
7 cadvi ← insert d into ci at p
8 if M(cadvi ) ≠ y then
9 # Success Attack

10 Return: cadv

11 end
12 end
13 end
14 # Fail Attack
15 Return: cadv ← None

source codes. Snippets are extracted by the atten-
tion score in dissimilar source codes. We wrap
the obtained snippet with an unused variable
statement and insert it into the source code as dead
code. We summarize our proposed method, DIP, in
Algorithm 1.

3.1 Vulnerable position selection

First, we choose vulnerable positions to insert dead
code in the original source code for efficient attack.
Dead code will be generated as a statement. Since
dead code can be inserted after any statement in
the original source code, the position is defined
as line (or statement) numbers in the source code.

7779



Algorithm 2: Dead Code Generation
Input :Source code ci, true label y,

attention layer of CodeBERT T
Output :dead code list D

1 C← {cn∣cn ∉ train/test data, n ≠ i}
2 Sample c1, . . . , ck from C
3 C← {c1, . . . , ck}
4 # sort C using ScoreD in Section3.2
5 for c ∈ C do
6 # tokenize and get attention score of c
7 S← {attT (tokc1), . . . , attT (tokcn)}
8 # get line index(start,end of line) list P
9 P← [(1, a), (a + 1, b), . . . , (n + 1,m)]

10 α ← 0
11 for (s, e) ∈ P do
12 if α <max{S[s ∶ e]} then
13 α ←max{S[s ∶ e]}
14 bestidx ← (s ∶ e)
15 end
16 snippetc ← c[bestidx]
17 end
18 d← string var = “snippetc”;
19 # append d to D
20 end
21 D← {d1, . . . , dk}
22 Return: D

To find out vulnerable positions and sort them by
vulnerability, we use [CLS] representations which is
obtained from a pre-trained PL model which is not
fine-tuned (such as CodeBERT). We insert a UNK
sequence, u = [UNK, UNK, . . . , UNK], into a position
of the original source code to be attacked. Since
we attack to insert the code token sequence as a
statement in the original source code to be modified,
we could find a vulnerable position by inserting u.
The original source code will be denoted by c, and
the modified code by inserting u into c at position
p will be denoted by c′. We put c into a pre-trained
PL model to get the [CLS] representation of c, rc.
Similarly, we put c′ to the pre-trained PL model to
obtain rc′ . The position score Vp of position p is
defined as follows:

Vp = rc ⋅ rc′∣∣rc∣∣ ⋅ ∣∣rc′ ∣∣ (2)

We evaluate the position score of each position, and
rank all the positions by position scores. We may
choose top-K vulnerable positions, or use all the
positions. The lower the position score, the more
vulnerable the position.

3.2 Dissimilar code selection

We obtain dissimilar source codes from an open set
of source code. To evaluate dissimilarity scores of
source code, we also use the cosine similarity of
[CLS] tokens in a similar way to Equation 2. Let
c and ci denote the source code to be modified
and another source code not in train/test dataset,
respectively. We obtain rc and rci , [CLS] represen-
tations of c and ci, from a pre-trained PL model,
respectively. Then, we use the cosine similarity to
calculate dissimilarity score, D, of ci against c. In
order to reduce the search space and prevent biased
collection of dissimilar source code by some fac-
tor, such as functionality of source code, we first
randomly select K source codes and sort them by
dissimilarity score D.

3.3 Snippet extraction

We extract a statement from each dissimilar code,
and insert it to the source code to minimize pertur-
bation instead of inserting the whole of dissimilar
code. In the dissimilar code, the statement with the
highest attention score is extracted. We obtain the
attention score of each token in a statement from
the second-to-last attention layer of a pre-trained
PL model. To obtain a general representation that
is less biased in object functions of a pre-trained
PL model, we use the representation of second-
to-last attention layer. We use CodeBERT, which
is not fine-tuned, as a pre-trained PL model. The
higher attention score is the more important in the
source code. Since the pre-trained PL model is
based on an attention mechanism, the higher atten-
tion score indicates that the corresponding token is
more focused on the model. Then, we use the max
value, which is the highest attention score in token
sequence of statement, as score α in Algorithm 2
(line 13). This process is described in Algorithm 2
(lines 6-16).

3.4 Adversarial code generation

We wrap the snippet obtained in §3.3 using a
wrapper, an unused variable statement, to make
it dead code. To consider the naturalness of the
adversarial examples, we define an unused variable
name as var_2 using the most used variable name
var in the code. For example, if the most used
variable name is str, then the unused variable
name will be str_2. If there is a snippet extracted
from dissimilar code, the dead statement generated
with a wrapper of unused variable is as follows:

7780



String var_2 =“snippet”;

We extract one snippet from each of K dissimi-
lar codes ordered by the dissimilarity score D. We
repeat inserting each dead statement into all posi-
tions p sorted by Vp, in the original source code
until the attack succeeds. Our method can gener-
ate powerful and effective adversarial examples.
Algorithm 2 describes the process of adversarial
example generation by inserting dead code.

4 Experiment

4.1 Experimental setup
Datasets and Tasks We evaluate DIP on code
clone detection, defect detection, and authorship
attribution tasks with 1000/1000/132 test samples,
respectively. Datasets of clone detection and defect
detection are included as a part of the CodeXGLUE
benchmarks (Lu et al., 2021). The dissimilar code
set is obtained from the validation dataset in our ex-
periments. For a fair comparison with the baselines,
we use the same training dataset as the baselines to
fine-tune victim models (Yang et al., 2022).

• Clone Detection is to determine whether the
functionalities of two given source codes are
the same or not. We use the BigCloneBench
(Svajlenko and Roy, 2015) dataset, which is a
widely used benchmark in the clone detection
task. This dataset contains true clone pairs
and false clone pairs from Java projects.

• Defect Detection aims to find whether a given
source code is insecure or not. We use a
dataset served by (Zhou et al., 2019). This
dataset is extracted from large-scale open-
source C projects. This dataset includes
27,318 functions.

• Authorship Attribution task is to identify the
author of a given source code. We use the
Google Code Jam (GCJ) dataset, which is col-
lected by Alsulami et al. (2017). This dataset
contains 660 python files (66 authors and 10
files per author).

Target Models We analyze the vulnerability of
three popular and powerful pre-trained PL models:
CodeBERT, GraphCodeBERT, and CodeT5. Code-
BERT (Feng et al., 2020)’s objectives are masked
language modeling on NL-PL pairs and replaced

token detection. GraphCodeBERT (Guo et al.,
2021b) is pre-trained with code structure informa-
tion as data flow. CodeT5 (Wang et al., 2021) is
an encoder-decoder PL model, which is pre-trained
by an identifier-aware objective. We build nine
victim models by fine-tuning these models in three
tasks. More details of victim models are listed in
Appendix A.

Baselines We compare with the state-of-the-art
black-box attack methods on PL models, MHM
(Zhang et al., 2020) and ALERT (Yang et al.,
2022). They used Variable Renaming transforma-
tions to attack PL models. MHM was based on
the metropolis-hastings sampling method. ALERT
used genetic algorithm with a masked language
model. We conduct the experiments in the same
environment as the baselines. CodeBERT and
GraphCodeBERT results of baselines are referred
from served by Yang et al. (2022) To evaluate on
CodeT5, we implement MHM and ALERT.

Hyperparameter Our method has two hyperpa-
rameters: M and K. M is the number of [UNK] to-
kens to evaluate vulnerable position scores, and K
is the number of randomly chosen dissimilar source
codes. Since the average length of statements in
source code of the test dataset is 9.7, the number of
[UNK] tokens to be inserted is set to M=10, which
is slightly longer than the average to make enough
difference in CLS vectors. We set K=30. If K is
small, the attack success rate will be low, and if it
is large, the attack will be inefficient. We choose a
number small but large enough to include various
source code. For comparison with the baselines,
we use the same maximal input length to 512.

4.2 Metrics

We use four metrics to evaluate our method. To
measure the efficiency of the generated adversarial
code, we use ASR and Query. We also use Pert
and CodeBLEU to measure quality of the gener-
ated examples. We define the following metrics.

Attack Success Rate (ASR) ASR is the success
ratio of attacks. The higher ASR, the better per-
formance of an attack method. Let Cadv denote
a generated adversarial example from the original
input C, M is the target model, and y is the true
label. Then ASR isndefined as follows:

ASR = ∣{C ∣M(Cadv) ≠ y ∧M(C) = y}∣∣{C}∣ (3)

7781



Task Victim Attack Attack efficiency Attack quality
(Language) Model Method ASR Query Pert CodeBLEU

Clone Detection
(Java)

CodeBERT
MHM 20.2 667.7 0.32 0.56
ALERT 28.6 529.4 0.13 0.73
DIP (ours) 46.7 19.9 0.13 0.92

GraphCodeBERT
MHM 4.2 1025.9 0.36 0.32
ALERT 9.2 448.6 0.13 0.72
DIP (ours) 36.6 78.2 0.14 0.85

CodeT5
MHM 4.6 104.5 0.26 0.42
ALERT 22.0 762.2 0.14 0.73
DIP (ours) 31.8 38.2 0.11 0.93

Defect Detection
(C/C++)

CodeBERT
MHM 27.4 451.9 0.33 0.32
ALERT 31.4 277.6 0.11 0.76
DIP★ 44.6 47.6 0.19 0.91

GraphCodeBERT
MHM 41.3 316.7 0.33 0.31
ALERT 46.7 263.6 0.10 0.76
DIP (ours) 49.7 71.0 0.13 0.79

CodeT5
MHM 49.3 333.5 0.10 0.78
ALERT 46.9 187.4 0.08 0.80
DIP (ours) 49.7 61.0 0.16 0.92

Authorship Attribution
(Python)

CodeBERT
MHM 15.9 444.0 0.13 0.78
ALERT 29.6 545.4 0.13 0.79
DIP (ours) 31.1 300.15 0.09 0.85

GraphCodeBERT
MHM 26.5 774.9 0.30 0.49
ALERT 50.8 573.2 0.15 0.75
DIP (ours) 61.4 292.6 0.08 0.81

CodeT5
MHM 36.4 684.6 0.16 0.78
ALERT 41.7 373.4 0.10 0.83
DIP (ours) 43.9 47.2 0.07 0.92

All Average
MHM 25.1 537.7 0.25 0.53
ALERT 34.1 440.1 0.12 0.76
DIP (ours) 43.9 106.2 0.12 0.88

Table 1: Comparison of our proposed method with the baseline methods on nine victim models. We set all of the
hyper-parameters (α,β, γ, and δ ) in CodeBLEU to 0.25, respectively. The best performance is in boldface, and the
next is underlined.

Number of Queries (Query) Query is the av-
erage query number of successful attacks. Our
method is a black-box approach, so queries are
the only accessible way to the target model. The
number of queries is one of important metrics to
evaluate efficiency of attack methods. Let qi de-
note the number of queries for i-th succeed attack,
Query is defined as follows:

Query = ∑ qi∑ f(i) (4)

where i ∈ {j∣f(j) = 1}, and

f(j) = ⎧⎪⎪⎨⎪⎪⎩
1, if M(Cadv

j ) ≠ yj ∧M(Cj) = yj
0, otherwise

Ratio of Perturbation (Pert) The ratio of per-
turbation indicates how many perturbations are in-
jected into the original source code. A lower Pert
indicates that examples are generated with less per-
turbation. Let Cadv

i is an adversarial example of Ci

of which the truth label is yi, and t(⋅) is the number
of tokens. Pert is defined as follows:

Pert = ∑ t(Cadv
i ) − t(Cadv

i ∩Ci)∑ t(Ci) (5)

where i are defined same as in Eq. 4.

CodeBLEU Ren et al. (2020) proposed
CodeBLEU to measure generated code by
machine learning models. CodeBLEU considers
functional and structural information of code such
as AST match and Data-flow match. CodeBLEU
is a more efficient metric than BLEU to measure
the consistency of generated code. If CodeBLEU
is close to 1, the code preserves the semantic
meaning of the original code.
CodeBLEU is defined as follows:

CodeBLEU = α ⋅BLEU + β ⋅BLEUweight+ γ ⋅Matchast + δ ⋅Matchdf (6)

7782



Method ASR Pert Query

DIP 46.7 0.13 19.9

w/o Dissim 45.2±0.9 0.14±0.01 26.0±5.1
w/o Position 46.7±0.0 0.14±0.00 29.6±5.0
w/o Att-line 47.0±0.5 0.12±0.00 110.3±6.1

Table 2: Ablation study on DIP. “w/o Dissim” denotes
random selection of dissimilar codes without dissimilar
scores in Eq. 2, “w/o Position” denotes random position
insertion without vulnerable position score, and “w/o
Att-line” denotes random extraction of statements as
snippets from dissimilar code without attention score.
The mean and variance of the five runs are presented.
In certain cases, identical results are observed across all
five runs, resulting in a standard variance of zero.

where BLEUweight is the weighted keyword n-
gram match. Matchast and Matchdf are scores
considering tree structures of AST and data-flow
of code, respectively. α,β, γ, and δ are hyper-
parameters.

4.3 Overall Results
We perform experiments with 9 victim models
for 3 tasks fine-tuned from 3 pre-trained PL mod-
els. Baselines are MHM (Zhang et al., 2020) and
ALERT (Yang et al., 2022) which are the state-of-
the-art baselines in black-box attacks on the PL
model. Experiments demonstrate that DIP outper-
forms the baselines in all metrics (ASR, Query,
Pert, and CodeBLEU ) as shown in Table 1. Our
proposed method, DIP, shows the best ASR and
Query on all victim models, which means that DIP
more effectively attacks the victim models than the
baselines. Compared to the baseline MHM, DIP im-
proves the average ASR by 74.9%, and the average
Query by 431.5% which is 5 times more efficient.
Compared with the strong baseline ALERT, DIP
also improves the average ASR by 28.7%, and
the average Query by 333.9% which is 4 times
more efficient. Pert and CodeBLEU measure
the quality of generated code. DIP shows the best
CodeBLEU on all the victim models, and the best
Pert on most victim models, which indicates more
semantic-preserving (as functionality). Since vari-
able names play important roles to represent code
semantics (Wang et al., 2021), code semantics may
be easily broken by variable renaming-based meth-
ods.

4.4 Ablation Study
We perform an ablation study with each component
of DIP to verify the effectiveness of dissimilar code

Method MHM ALERT DIP All

MHM 2.5 1.5 9.2 1.0
ALERT 5.5 4.5 28.1 4.5
DIP (ours) 32.0 41.5 15.0 8.0

Table 3: ASR on adversarially trained models. MHM ,
ALERT , and DIP are the models adversarially trained
by MHM, ALERT, and DIP, respectively. All is adver-
sarially trained with all the three attack methods.

selection, vulnerable position selection, and snip-
pet extraction. We evaluate with the CodeBERT
fine-tuned for the clone detection. Table 2 shows
the results of the ablation study on DIP. We replace
the code selection by dissimilarity score (Eq. 2)
with random selection in DIP w/o Dissim, the posi-
tion selection by vulnerability score with random
selection in DIP w/o Position, and the snippet ex-
traction by attention score with random extraction
in DIP w/o Att-line. As shown in Table 2, all the
ablated DIPs show lower ASR, and higher Pert
and Query than the original DIP. We verify that
all the components are very effective for PL model
attack. DIP w/o Dissim randomly selects the code
which a snippet is extracted from, resulting in de-
crease of ASR and increase of Pert. It shows that
our dissimilar code selection effects much on the
attack quality. DIP w/o Position and DIP w/o Att-
line show similar attack qualities (ASR and Pert),
but lower attack efficiencies (Query). DIP w/o Att-
line shows Query about 6 times higher. Our posi-
tion selection and snippet extraction methods play
important roles to increase the attack efficiency.
More various snippet extractions are evaluated in
Appendix C.

4.5 Attack on Adversarially Trained Models

We test the attack performance of MHM, ALERT,
and DIP against adversarially trained models. We
conduct experiments with the CodeBERT fine-
tuned for clone detection. In Table 3, MHM ,
ALERT , and DIP denote the models trained with
adversarial examples generated by MHM, ALERT,
and DIP, respectively. All denotes an adversar-
ially trained model by all three attack methods.
Zhang et al. (2020) and Yang et al. (2022) reported
their adversarial examples improving the robust-
ness of target models. However, as shown in Table
3, DIP successfully attacks the adversarially trained
models by MHM and ALERT. Adversarial train-
ing should improve the robustness of the model,
but MHM and ALERT are not enough to increase

7783



Adversarial Code- G. Code- Code-
Examples BERT BERT T5

against CodeBERT - 31.3 22.0
against G.CodeBERT 12.6 - 17.8
against CodeT5 24.8 29.3 -

Table 4: Transferability of our proposed method. We use
ASR as evaluate metric. Columns are the tested victim
models, and rows are adversarial examples against each
model.

robustness. If we combine all the three methods,
the model becomes hard to attack. DIP shows the
highest ASR, but it is relatively low. Adversarial
training with combination of variable renaming and
dead code insertion may improve the robustness of
models.

4.6 Transferability

In this section, we test the transferability of our
adversarial examples. We obtain adversarial ex-
amples of successful attacks on victim models to
attack other models. As shown in Table 4, adversar-
ial examples by DIP are transferable in the clone
detection task. This experiment showed the poten-
tial of DIP in the other tasks.

5 Discussion

We discuss the compliability and detectactibility
for the attack on PL models.

5.1 Complilability

When we modify the source code to attack PL mod-
els, we should consider compilability. If a source
code is modified, it must be guaranteed to be com-
piled. DIP is guaranteed to compile in any case
unlike MHM and ALERT, which are variable re-
naming methods. As mentioned in §1, we can eas-
ily find uncompilable cases modified by ALERT.
In Appendix E, we present an example.

5.2 Dead Code Detection

Since we use an unused string variable, it could be
filtered out by a dead code detector. However, it
would be very hard to detect dead code by the static
analysis because it is theoretically equivalent to the
halting problem. We may simply eliminate code
which is not locally accessed in a function. How-
ever, the dead code may include global variables.
Simple elimination of statements including global
variables may cause critical problems. If we add
unused variables as if they are global, it would be

very hard to detect them with a high certainty. For
this reason, there are very few tools for dead code
elimination. Most existing dead code eliminator
tools, such as UCDetector and J2ObjC, they can
detect only unused classes or method units, but not
detect unused variables inside methods.

6 Related Work

The adversarial attack for language data (such as
text, source code) is significantly difficult due to
the discrete property of token embedding space.
Both text and source code have a discrete prop-
erty, but there is a difference in the attack methods.
In the adversarial attack for natural language, the
text should be considered for fluency and seman-
tic consistency. The previous works (Maheshwary
et al., 2020; Jin et al., 2020; Li et al., 2020; Garg
and Ramakrishnan, 2020; Li et al., 2021; Wang
et al., 2020; Guo et al., 2021a) proposed adversar-
ial attack methods, which considered semantic and
fluency of sentence. However, the source code is
more important in compilability than fluency. In
the adversarial attack for programming language,
the source code should be considered for semantic
(functionality) preserving and must be compiled.
The previous works, Rabin et al. (2021) evaluated
the generalizability of code2vec, code2seq, GGNN
by using the various transformation (Permute State-
ment, Boolean Exchange and Loop Exchange, etc.).
Zhang et al. (2020) proposed MHM, in black-box
setting, which is the Variable Renaming based on
metropolis-hastings sampling method. Yang et al.
(2022) proposed ALERT, to improve MHM, which
use the Variable Renaming based on genetic al-
gorithm. Ramakrishnan et al. (2020); Yefet et al.
(2020) proposed white-box attack method using
the AST transformation and the output distribution
into one-hot vector, which is represented variable
name. Srikant et al. (2021) proposed white-box
attack method to optimize the attack position and
perturbation at the same time.

7 Conclusion

In this paper, we presented DIP (Dead code
Insertion based Black-box Attack for Programming
Language Model), the state-of-the-art black-box
attack method. We proposed an attack method
consist of vulnerable position selection, dissimilar
code selection and snippet extraction. Experiment
results demonstrate the high-performance and ef-
fectiveness of DIP, also we evaluated the transfer-

7784



ability to apply other models. Under the black-box
setting, our proposed method guaranteed compil-
ability in any case and preserved functionality.

Limitation

We discuss some limitations of our study. Our pro-
posed method needs a pre-trained model to obtain
the attention score mentioned in Section 3.3. While
our method achieved successful attacks with 4∼5
times fewer queries compared to the baselines, the
time spent on the attack was approximately half
of the baselines. This is because preprocessing is
necessary to calculate the score V in Section 3.1
and D in Section 3.2.

Acknowledgements

This work was supported by Institute of Informa-
tion & communications Technology Planning &
Evaluation (IITP) grant funded by the Korea gov-
ernment (MSIT) (No.2019-0-00421, AI Graduate
School Support Program (Sungkyunkwan Univer-
sity), and No.2021-0-02068, Artificial Intelligence
Innovation Hub). This work was also supported
by Healthcare AI Convergence Research & Devel-
opment Program through the National IT Industry
Promotion Agency of Korea (NIPA) funded by the
Ministry of Science and ICT (No. S0254-22-1006).

References
Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi

Ray, and Kai-Wei Chang. 2021. Unified pre-training
for program understanding and generation. ArXiv,
abs/2103.06333.

Uri Alon, Shaked Brody, Omer Levy, and Eran Yahav.
2019a. code2seq: Generating sequences from struc-
tured representations of code. In 7th International
Conference on Learning Representations, ICLR 2019,
New Orleans, LA, USA, May 6-9, 2019. OpenRe-
view.net.

Uri Alon, Meital Zilberstein, Omer Levy, and Eran
Yahav. 2019b. code2vec: learning distributed rep-
resentations of code. Proc. ACM Program. Lang.,
3(POPL):40:1–40:29.

Bander Alsulami, Edwin Dauber, Richard E. Harang,
Spiros Mancoridis, and Rachel Greenstadt. 2017.
Source code authorship attribution using long short-
term memory based networks. In European Sympo-
sium on Research in Computer Security.

YunSeok Choi, JinYeong Bak, CheolWon Na, and Jee-
Hyong Lee. 2021. Learning sequential and structural

information for source code summarization. In Find-
ings of the Association for Computational Linguistics:
ACL-IJCNLP 2021, pages 2842–2851.

YunSeok Choi, Hyojun Kim, and Jee-Hyong Lee. 2022.
TABS: Efficient textual adversarial attack for pre-
trained NL code model using semantic beam search.
In Proceedings of the 2022 Conference on Empiri-
cal Methods in Natural Language Processing, pages
5490–5498, Abu Dhabi, United Arab Emirates. As-
sociation for Computational Linguistics.

YunSeok Choi, CheolWon Na, Hyojun Kim, and Jee-
Hyong Lee. 2023. Readsum: Retrieval-augmented
adaptive transformer for source code summarization.
IEEE Access.

Yangruibo Ding, Luca Buratti, Saurabh Pujar, Alessan-
dro Morari, Baishakhi Ray, and Saikat Chakraborty.
2021. Towards learning (dis)-similarity of source
code from program contrasts. In Annual Meeting of
the Association for Computational Linguistics.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi-
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin,
Ting Liu, Daxin Jiang, and Ming Zhou. 2020. Code-
bert: A pre-trained model for programming and nat-
ural languages. In Findings of the Association for
Computational Linguistics: EMNLP 2020, Online
Event, 16-20 November 2020, volume EMNLP 2020
of Findings of ACL, pages 1536–1547. Association
for Computational Linguistics.

Siddhant Garg and Goutham Ramakrishnan. 2020.
BAE: bert-based adversarial examples for text classi-
fication. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing,
EMNLP 2020, Online, November 16-20, 2020, pages
6174–6181. Association for Computational Linguis-
tics.

Chuan Guo, Alexandre Sablayrolles, Hervé Jégou, and
Douwe Kiela. 2021a. Gradient-based adversarial at-
tacks against text transformers. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2021, Virtual Event
/ Punta Cana, Dominican Republic, 7-11 November,
2021, pages 5747–5757. Association for Computa-
tional Linguistics.

Daya Guo, Shuai Lu, Nan Duan, Yanlin Wang, Ming
Zhou, and Jian Yin. 2022. Unixcoder: Unified cross-
modal pre-training for code representation. In An-
nual Meeting of the Association for Computational
Linguistics.

Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu
Tang, Shujie Liu, Long Zhou, Nan Duan, Alexey Svy-
atkovskiy, Shengyu Fu, Michele Tufano, Shao Kun
Deng, Colin B. Clement, Dawn Drain, Neel Sundare-
san, Jian Yin, Daxin Jiang, and Ming Zhou. 2021b.
Graphcodebert: Pre-training code representations
with data flow. In 9th International Conference on
Learning Representations, ICLR 2021, Virtual Event,
Austria, May 3-7, 2021. OpenReview.net.

7785

https://openreview.net/forum?id=H1gKYo09tX
https://openreview.net/forum?id=H1gKYo09tX
https://doi.org/10.1145/3290353
https://doi.org/10.1145/3290353
https://aclanthology.org/2022.emnlp-main.369
https://aclanthology.org/2022.emnlp-main.369
https://doi.org/10.1109/ACCESS.2023.3271992
https://doi.org/10.1109/ACCESS.2023.3271992
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.emnlp-main.498
https://doi.org/10.18653/v1/2020.emnlp-main.498
https://doi.org/10.18653/v1/2021.emnlp-main.464
https://doi.org/10.18653/v1/2021.emnlp-main.464
https://openreview.net/forum?id=jLoC4ez43PZ
https://openreview.net/forum?id=jLoC4ez43PZ


Judith F Islam, Manishankar Mondal, and Chanchal K
Roy. 2016. Bug replication in code clones: An em-
pirical study. In 2016 IEEE 23Rd international con-
ference on software analysis, evolution, and reengi-
neering (SANER), volume 1, pages 68–78. IEEE.

Paras Jain, Ajay Jain, Tianjun Zhang, P. Abbeel, Joseph
Gonzalez, and Ion Stoica. 2020. Contrastive code
representation learning. In Conference on Empirical
Methods in Natural Language Processing.

Akshita Jha and Chandan K. Reddy. 2022. Codeattack:
Code-based adversarial attacks for pre-trained pro-
gramming language models. ArXiv, abs/2206.00052.

Di Jin, Zhijing Jin, Joey Tianyi Zhou, and Peter
Szolovits. 2020. Is BERT really robust? A strong
baseline for natural language attack on text classifi-
cation and entailment. In The Thirty-Fourth AAAI
Conference on Artificial Intelligence, AAAI 2020, The
Thirty-Second Innovative Applications of Artificial
Intelligence Conference, IAAI 2020, The Tenth AAAI
Symposium on Educational Advances in Artificial In-
telligence, EAAI 2020, New York, NY, USA, February
7-12, 2020, pages 8018–8025. AAAI Press.

Cory J Kapser and Michael W Godfrey. 2008. “cloning
considered harmful” considered harmful: patterns of
cloning in software. Empirical Software Engineering,
13(6):645–692.

Bruno Laguë, Daniel Proulx, Jean Mayrand, Ettore M
Merlo, and John Hudepohl. 1997. Assessing the ben-
efits of incorporating function clone detection in a
development process. In 1997 Proceedings Interna-
tional Conference on Software Maintenance, pages
314–321. IEEE.

Dianqi Li, Yizhe Zhang, Hao Peng, Liqun Chen, Chris
Brockett, Ming-Ting Sun, and Bill Dolan. 2021. Con-
textualized perturbation for textual adversarial attack.
In Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
NAACL-HLT 2021, Online, June 6-11, 2021, pages
5053–5069. Association for Computational Linguis-
tics.

Linyang Li, Ruotian Ma, Qipeng Guo, Xiangyang Xue,
and Xipeng Qiu. 2020. BERT-ATTACK: adversarial
attack against BERT using BERT. In Proceedings of
the 2020 Conference on Empirical Methods in Nat-
ural Language Processing, EMNLP 2020, Online,
November 16-20, 2020, pages 6193–6202. Associa-
tion for Computational Linguistics.

Zhenmin Li, Shan Lu, Suvda Myagmar, and Yuanyuan
Zhou. 2006. Cp-miner: Finding copy-paste and re-
lated bugs in large-scale software code. IEEE Trans-
actions on software Engineering, 32(3):176–192.

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey
Svyatkovskiy, Ambrosio Blanco, Colin B. Clement,
Dawn Drain, Daxin Jiang, Duyu Tang, Ge Li, Lidong
Zhou, Linjun Shou, Long Zhou, Michele Tufano,

Ming Gong, Ming Zhou, Nan Duan, Neel Sundare-
san, Shao Kun Deng, Shengyu Fu, and Shujie Liu.
2021. Codexglue: A machine learning benchmark
dataset for code understanding and generation. ArXiv,
abs/2102.04664.

Rishabh Maheshwary, Saket Maheshwary, and Vikram
Pudi. 2020. Generating natural language attacks in a
hard label black box setting.

Audris Mockus. 2007. Large-scale code reuse in open
source software. In First International Workshop on
Emerging Trends in FLOSS Research and Develop-
ment (FLOSS’07: ICSE Workshops 2007), pages 7–7.
IEEE.

Md Rafiqul Islam Rabin, Nghi DQ Bui, Ke Wang, Yijun
Yu, Lingxiao Jiang, and Mohammad Amin Alipour.
2021. On the generalizability of neural program
models with respect to semantic-preserving program
transformations. Information and Software Technol-
ogy, 135:106552.

Goutham Ramakrishnan, Jordan Henkel, Zi Wang, Aws
Albarghouthi, Somesh Jha, and Thomas W. Reps.
2020. Semantic robustness of models of source code.
CoRR, abs/2002.03043.

Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie
Liu, Duyu Tang, M. Zhou, Ambrosio Blanco, and
Shuai Ma. 2020. Codebleu: a method for automatic
evaluation of code synthesis. ArXiv, abs/2009.10297.

Shashank Srikant, Sijia Liu, Tamara Mitrovska, Shiyu
Chang, Quanfu Fan, Gaoyuan Zhang, and Una-May
O’Reilly. 2021. Generating adversarial computer
programs using optimized obfuscations. In 9th In-
ternational Conference on Learning Representations,
ICLR 2021, Virtual Event, Austria, May 3-7, 2021.
OpenReview.net.

Jeffrey Svajlenko and Chanchal K. Roy. 2015. Evalu-
ating clone detection tools with bigclonebench. In
2015 IEEE International Conference on Software
Maintenance and Evolution, ICSME 2015, Bremen,
Germany, September 29 - October 1, 2015, pages
131–140. IEEE Computer Society.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Tianlu Wang, Xuezhi Wang, Yao Qin, Ben Packer, Kang
Li, Jilin Chen, Alex Beutel, and Ed H. Chi. 2020.
Cat-gen: Improving robustness in NLP models via
controlled adversarial text generation. In Proceed-
ings of the 2020 Conference on Empirical Methods in
Natural Language Processing, EMNLP 2020, Online,
November 16-20, 2020, pages 5141–5146. Associa-
tion for Computational Linguistics.

Yue Wang, Weishi Wang, Shafiq R. Joty, and Steven
C. H. Hoi. 2021. Codet5: Identifier-aware unified
pre-trained encoder-decoder models for code under-
standing and generation. ArXiv, abs/2109.00859.

7786

https://ojs.aaai.org/index.php/AAAI/article/view/6311
https://ojs.aaai.org/index.php/AAAI/article/view/6311
https://ojs.aaai.org/index.php/AAAI/article/view/6311
https://doi.org/10.18653/v1/2021.naacl-main.400
https://doi.org/10.18653/v1/2021.naacl-main.400
https://doi.org/10.18653/v1/2020.emnlp-main.500
https://doi.org/10.18653/v1/2020.emnlp-main.500
http://arxiv.org/abs/2002.03043
https://openreview.net/forum?id=PH5PH9ZO_4
https://openreview.net/forum?id=PH5PH9ZO_4
https://doi.org/10.1109/ICSM.2015.7332459
https://doi.org/10.1109/ICSM.2015.7332459
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.18653/v1/2020.emnlp-main.417
https://doi.org/10.18653/v1/2020.emnlp-main.417


Zhou Yang, Jieke Shi, Junda He, and David Lo. 2022.
Natural attack for pre-trained models of code. CoRR,
abs/2201.08698.

Noam Yefet, Uri Alon, and Eran Yahav. 2020. Ad-
versarial examples for models of code. Proc. ACM
Program. Lang., 4(OOPSLA).

Huangzhao Zhang, Zhuo Li, Ge Li, Lei Ma, Yang Liu,
and Zhi Jin. 2020. Generating adversarial exam-
ples for holding robustness of source code processing
models. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 34, pages 1169–1176.

Yaqin Zhou, Shangqing Liu, J. Siow, Xiaoning Du,
and Yang Liu. 2019. Devign: Effective vulnera-
bility identification by learning comprehensive pro-
gram semantics via graph neural networks. ArXiv,
abs/1909.03496.

7787

http://arxiv.org/abs/2201.08698
https://doi.org/10.1145/3428230
https://doi.org/10.1145/3428230


A Statistics of Victim Models

Task Model Acc.

Clone Detection
(# of Classes: 2)

CodeBERT 97.3%
GraphCodeBERT 97.8%
CodeT5 97.1%

Defect Detection
(# of Classes: 2)

CodeBERT 63.3%
GraphCodeBERT 64.2%
CodeT5 63.7%

Authorship Attribution
(# of Classes: 66)

CodeBERT 82.6%
GraphCodeBERT 81.1%
CodeT5 85.6%

Table 5: Statistics of Victim Models

B Length of dissimilar code

The K is the key hyperparameter as the number of
candidate dissimilar codes. Figure 3 shows perfor-
mance by K on the DIP. As seen in Figure 3 , the
ASR and Query increase with K increasing. We
confirmed, increasing K from 1 to 30, the ASR in-
creases significantly but hardly increases after that.
When K is increasing, ASR increases because the
search space is larger for attacking to victim model.
However, when K is over 30, the ASR per Query
gets lower. It is inefficient in terms of Query.

1 10 30 50 100
K 

0

10

20

30

40

50

60

70

80

90

AS
R 

& 
Qe

ur
y

ASR
Qeury
A/Q

Figure 3: Using different parameter K from 1 to 100 in
our attack method. The ASR and A/Q increase until
K to 30

C Snippet Extraction

We compare various snippet extraction methods to
generate dead statements as shown in Table 6. We
analyze with DIP to observe the effects of snippet
extraction method. The types of additional snippet
are 4, which include the following:

• [RandSeq-N] is to randomly extract a sequence of N
tokens from dissimilar code. The sequence can start at
any token of dissimilar code.

• [Rand-N] is to randomly extract N tokens (not sequen-
tially) from dissimilar code. Each token is extracted
independently.

Snippet ASR% Pert Query

Method: DIP

RandSeq-10 42.7 0.09 131.6
Rand-10 21.1 0.09 154.4
RandSeq-5 23.4 0.06 180.2
Rand-5 11.9 0.06 238.1
RandSeq-5% 38.8 0.08 104.4

Natural language 0.1 0.40 1.00

Table 6: Performance by various snippet extractions.

• [RandSeq-N%] is same as RandSeq-N except that the
length of the extracted sequence is proportional to the
length of dissimilar code. Its length is N% of dissimilar
code length.

• [Natural language] is to insert text in natural lan-
guage not in programming language. We insert “I want
to fool this model. Hello, World! Python is a very simple
and powerful language, and has a very straightforward
syntax”.

RandSeq-N performs better than Rand-N. Since
the model learns sequential information of source
code during pre-training, consecutively extracted
tokens are more effective then independently ex-
tracted ones. If we compare RandSeq-N% to
RandSeq-N, it is better than RandSeq-N. We may
conclude that it is effective to extract one whole
statement as a snippet. It is interesting that a state-
ment in natural language does not have any effect
on adversarial attack. Since statements in natu-
ral language is very common in string variables,
models may know how to handle it.

D Runtime Comparison

Our proposed method is very efficient, and less
time-consuming. We reduce the search space by in-
serting a dead statement, not tokens, and obtain dis-
similar codes after random sampling from code sets.
The baseline methods try to rename variables with
a large number of token combinations. Thus their
methods are inefficient and high time-consuming.
When attacking the PL models, DIP is about 3
times faster than MHM, and 2 times faster than
ALERT.

7788



E Qualitative Example

Original Code private static void readAndRewrite(File inFile, File outFile) throws IOException {
// Some code . . .
ImageOutputStream out = ImageIO.create. . .Stream(new Buffere. . .Stream(new File..Stream(outFile)));
ds.writeDataset(out, dcmEncParam);
ds.writeHeader(out, dcmEncParam, Tags.PixelData, dcmParser.get. . .VR(), dcmParser.get. . .Length());
System.out.println("writing " + outFile + ". . . ");
// Some code . . .

ALERT private static void readAndRewrite(File inFile, File outFile) throws IOException {
// Some code . . .
ImageOutputStream url = ImageIO.create. . .Stream(new Buffere. . .Stream(new File..Stream(outFile)));
ds.writeDataset(url, dcmEncParam);
ds.writeHeader(url, dcmEncParam, Tags.PixelData, dcmParser.get..VR(), dcmParser.get. . .Length());
System.url.println("writing " + outFile + ". . . ");
// Some code . . .

DIP(our) private static void readAndRewrite(File inFile, File outFile) throws IOException {
// Some code . . .
ImageOutputStream out = ImageIO.create. . .Stream(new Buffere. . .Stream(new File..Stream(outFile)));
String out_2 =“r = new BufferedReader(new InputStreamReader(url.openStream()))”;
ds.writeDataset(out, dcmEncParam);
ds.writeHeader(out, dcmEncParam, Tags.PixelData, dcmParser.get..VR(), dcmParser.get. . .Length());
System.out.println("writing " + outFile + ". . . ");
// Some code . . .

Table 7: The example for the qualitative comparison. The first example is Original Code. The second/third are
generated adversarial examples by ALERT, DIP, respectively. The example of ALERT is not compiled because
the variable out, which should not be changed, has been changed to url. In the example of DIP, red color is
wrapper(unused string variable) and orange color is high attention snippet. The example of DIP is compiled.

7789



ACL 2023 Responsible NLP Checklist

A For every submission:
�3 A1. Did you describe the limitations of your work?

"Limitation" section after the 7. Conclusions section

�3 A2. Did you discuss any potential risks of your work?
5.2

�3 A3. Do the abstract and introduction summarize the paper’s main claims?
1

�7 A4. Have you used AI writing assistants when working on this paper?
Left blank.

B �7 Did you use or create scientific artifacts?
Left blank.

� B1. Did you cite the creators of artifacts you used?
No response.

� B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
No response.

� B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
No response.

� B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
No response.

� B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
No response.

� B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
No response.

C �7 Did you run computational experiments?
Left blank.

� C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
No response.

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

7790

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/


� C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
No response.

� C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
No response.

� C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
No response.

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
No response.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
No response.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
No response.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No response.

7791


