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Abstract

Despite their unprecedented success, even the
largest language models make mistakes. Sim-
ilar to how humans learn and improve using
feedback, previous work proposed providing
language models with natural language feed-
back to guide them in repairing their outputs.
Because human-generated critiques are expen-
sive to obtain, researchers have devised learned
critique generators in lieu of human critics
while assuming one can train downstream mod-
els to utilize generated feedback. However,
this approach does not apply to black-box or
limited access models such as ChatGPT, as
they cannot be fine-tuned. Moreover, in the
era of large general-purpose language agents,
fine-tuning is neither computationally nor spa-
tially efficient as it results in multiple copies
of the network. In this work, we introduce
RLAF (Reinforcement Learning for Feedback),
a multi-agent collaborative framework where
the critique generator is trained to maximize
end-task performance of GPT-3, a fixed model
more than 200 times its size. RL4F produces
critiques that help GPT-3 revise its outputs. We
study three datasets for action planning, sum-
marization and alphabetization and show rela-
tive improvements up to 10% in multiple text
similarity metrics over other learned, retrieval-
augmented or prompting-based critique genera-
tors.!

1 Introduction

Correcting model outputs is a pressing challenge in
natural language generation (Ribeiro et al., 2018;
Reid and Neubig, 2022), emerging across many
use-cases such as style transfer (Mallinson et al.,
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Action Planning Topic-Based Summarization
input (x):

input (x): Passage: When did it
all begin? Where it
always does I suppose,
with the vows [..]
Question: Summarize
the plot of the story.

put soap in dishwasher

model output (9):

1. open dishwasher door

2. grab some dish soap

3. put soap in
dispenser

model output (9):

Michael sits in the
waiting room, thinking
about his family [..]
he was betrayed by his
father Bill [..]

critique (c):

One cannot put soap in
the dispenser without
first opening it.

critique (c):

Bill wasn’t Michael’s
father.

corrected output ($pew):

1. open dishwasher door

2. grab some dish soap

3. open dispenser

4. put soap in
dispenser

corrected output (Jpew):

Michael sits in the
waiting room, thinking
about his marriage [..]
he was betrayed by his
friend Bill [..]

Figure 1: Two examples for action planning (Tandon et al.,
2021) and summarization (Saunders et al., 2022) tasks show-
case a scenario where initial predictions by a learned model
(9) are incorrect. Human-written critiques (c) indicate errors
in model outputs. While humans can reliably critique each
other, machines lack such ability. This paper studies a multi-
agent collaborative framework where one language model can
generate critiques to improve its peer’s performance.

2020; Malmi et al., 2022), grammatical (Lichtarge
et al., 2019) or factual error correction (Mitchell
et al., 2022b), debiasing and detoxification (Schick
et al., 2021). Unlike humans who can understand
natural language feedback and improve using the
information, most of the previous work relied on se-
quence tagging (Reid and Neubig, 2022), retraining
from scratch (Sun et al., 2019) or parameter editing
(Mitchell et al., 2022a) to repair model predictions.
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Recently, researchers show that large language
models can correct their answer given more sophis-
ticated feedback formulated in natural language
(Schick et al., 2022; Saunders et al., 2022). For
example, in Fig. 1, we present sample feedback for
two tasks. Both of these examples exemplify the
case where the initial model outputs ¢ have flaws.
In topic-based summarization, an automatically
generated summary of a story involves factually
incorrect statements such as “... he was betrayed
by his father Bill ...” where an appropriate critique
is “Bill is not Michael’s father”. In action planning,
given a goal x, the objective is to generate a set of
steps y to achieve the goal. The initial sequence
of actions in Fig. 1, denoted by ¢, has a missing a
step. The human-written natural language critiques
c describe the ways in which ¢’s are incorrect and
Unew denotes the corrected prediction conditioned
on the critique. Note that in many situations help-
ful critiques do not necessarily reproduce an entire
answer—they may simply point out one way in
which the answer could be improved.

Researchers use crowd-sourcing to collect cri-
tiques for model outputs (Saunders et al., 2022).
However, collecting feedback from humans is in-
feasible in an online setting where a model is re-
quired to produce a rapid stream of outputs. The
goal of this paper is to shed light on whether the
task of critiquing language model predictions can
be effectively passed on to an external agent while
keeping the language model itself intact.

Our multi-agent collaborative framework in-
volves two language models where one model’s
job is to criticize the other as the latter performs a
task of interest, such as summarization. This set-
ting comprises a task model, denoted by LM,
which learns the mapping from an input z (e.g.
passage) to a ground truth output y (e.g. sum-
mary); and a critiquing model LMyitque Which pro-
vides natural language critiques for LM, ’s out-
puts § ~ LMk (). The framework can addition-
ally involve a separate model (say LM ) for re-
pairing model outputs conditioned on critiques. We
follow past work (Schick et al., 2022), and merge
LMiask and LM,.fine into a single model. Hence,
in addition to predicting y given x, LM is also
tasked to improve its initial output conditioned on
a critique ¢ sampled from LMritique (2, 7).

We introduce RL4F (Reinforcement Learning
for Feedback Generation), a cascade (Dohan et al.,
2022) of two language models for automatic cri-

tique generation and refinement. RLA4F is trained to
maximize target task performance of LM by
learning to provide critiques for its outputs via
LMecritique- RLAF advances retrieval-based meth-
ods with learned critique generation (Madaan et al.,
2022). Unlike previous work which teaches LM,g¢
to read a crowd-sourced set of critiques (Schick
et al., 2022; Saunders et al., 2022), RL4F learns
the particular set of critiques that will steer LM g
into improving its predictions without requiring
any updates to LM, parameters. Treating LM g
as fixed is especially important in era of limited-
access large language models which are costly, if
not impossible, to fine-tune.

RLA4F is illustrated in Fig. 2(a,c). Previous work
demonstrate that language models smaller than
roughly 50 billion parameters lack the ability to
understand and act upon a natural language critique
(Saunders et al., 2022; Bai et al., 2022). Therefore,
we chose GPT-3 as the LM, model which is a
clear example of an inaccessible LM that shows
this ability. While RL4F is general enough to ac-
commodate an ensemble of feedback generators, in
this work we focus one single model as LMitique
for simplicity.

In summary, this work?:

* Presents a reinforced critique generator which
advances simple supervision in improving the
end-task performance without retraining the
downstream model.

* Demonstrates effectiveness of RL4F on three
tasks: topic-based summarization, action plan-
ning and alphabetization (e.g. sorting a list of
words alphabetically) with relative improve-
ments up to 10%.

* Showcases that RL4F exhibits promising scal-
ing properties and remains to be useful when
applied iteratively.

2 Related Works

Past works differ to a large extent with respect to
what they call human feedback and how they make
use of it. In this section, after elucidating the use
of human feedback in previous works, we briefly
describe connections of RLAF to the parameter-
efficient fine-tuning and discrete prompt learning
literature.

2Code for the experiments is released under https://
github.com/feyzaakyurek/rl4f.
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2.1 What kind of feedback is used and where
does it originate?

Human feedback on model predictions come in
different flavors. The most notable ones include
(1) binary feedback, e.g. thumbs up/down and
pairwise comparisons (Ouyang et al., 2022; Bai
et al., 2022; Gao et al., 2022), (2) natural lan-
guage critiques (Tandon et al., 2022; Schick et al.,
2022; Madaan et al., 2022; Saunders et al., 2022;
Murty et al., 2022; Chen et al., 2023; Madaan et al.,
2023) and (3) direct textual refinements to out-
comes (Scheurer et al., 2022; Shi et al., 2022).

Bai et al. (2022) introduce what they call Rein-
forcement Learning from Al Feedback (RLAIF) in
which they replace human preference labels with
those of the model’s itself; the model is prompted
to evaluate its own predictions in consideration of
human values and preferences. In a similar vein,
Gao et al. (2022) use accuracy for extractive ques-
tion answering as a reward signal when fine-tuning
their policy model.

In another thread,Schick et al. (2022) use com-
ments from forums and Wikipedia edit histories as
natural language feedback. Scheurer et al. (2022)
and Shi et al. (2022) collect human natural lan-
guage critiques and associated refinements. They
then fine-tune the task model on the refinements.
Our work is similar to these works in that we also
use human-generated critiques in the first stage
of our algorithm. Aside from human-written cri-
tiques, we additionally use synthetically generated
critiques in the absence of the former.

2.2 How is feedback used?

An overwhelming majority of past work simply
fine-tunes their task model using human feedback;
whether it is a general purpose language model
(Ouyang et al., 2022; Bai et al., 2022) or a task-
specific model (Shi et al., 2022; Gao et al., 2022;
Saunders et al., 2022; Scheurer et al., 2022; Schick
et al., 2022). Tandon et al. (2022) differently fine-
tunes a separate corrector model which takes in a
retrieved critique utterance to correct initial outputs.
Similarly, Madaan et al. (2022) retrieves from a
memory of previous critiques to improve GPT-3
predictions via few-shot prompting.

Our work separates from existing work by focus-
ing on critique generation and harnessing critiques
that yield better final outcomes by LM ,g. Similar
to Schick et al. (2022), we effectively propose a
multi-agent setup by disentangling critique gener-

ation and conditional refinement. Differently, we
keep the latter model intact and only train the cri-
tique generator LMyitique Via reinforcement learn-
ing. Moreover, we take a step forward by lever-
aging end task data for the first time and directly
optimize the critique generation process to improve
final task performance. In contrast to RLHF whose
policy network (LM, ) is trained to maximize hu-
man alignment (Wiener, 1960), our policy network
(LMcritique) 18 trained to bootstrap end-task success
of LMa. Our proposal RL4F is orthogonal to
RLHEF; in fact we use an RLHF fine-tuned check-
point in our experiments. For further discussion,
please refer to Fernandes et al. (2023) who cata-
logue different approaches on integrating natural
language feedback to textual generations.

2.3 Adapters & Discrete Prompt Learning

A large body of existing work finds that parameter-
efficient fine-tuning, often referred to as adapters
(Pfeiffer et al., 2020) is as effective as full fine-
tuning while being computationally cheap. RL4F
can also be interpreted as an alternative “adapter”
under the strict setting where only textual access
to task model is available. Furthermore, our work
can also be viewed from the perspective of learn-
ing discrete prompts for language models. Past
work propose to generate knowledge pieces (Liu
et al., 2022) or arbitrary textual snippets (Deng
et al., 2022) which they append to the input via
reinforcement learning. These works are different
than ours in that their policy is conditioned solely
on the input x whereas in our case we sample cri-
tiques of machine-generated predictions based on
x and .

3 Background

The problem of learning from critiques entails two
major challenges: (1) generating critiques and (2)
the task of refining initial answers based on a cri-
tique. In our experiments (Section 6), GPT-3 re-
sponds very well to ground-truth critiques. This
observation suggests that given quality critique,
GPT-3 is indeed able to improve a potentially erro-
neous prediction for the better. Hence, in this study
we focus our efforts on (1). Our ultimate goal is to
reach, and eventually exceed, human-level critique
performance using machines.

Following Saunders et al. (2022), we identify
four primary functions towards studying the prob-
lem of learning with natural language critiques.
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a) PREDICT x — y

1. CRITIQUE x, § — ¢

X— LMy —by

b) SUPERVISED Feedback Generation

c) RL4F: Reinforced Feedback Generation

8 x’j\}_>-_>é

Legend

x: input e.g. goal or passage and question

y: ground truth for x

LMg,k: large model for x — y and x, 3, ¢ —

,‘HL‘W

LMcriliqué small model for x,y — ¢

§: prediction by LMgqi X, y’ Cc——
€: natural language critique by LMcritique

8 : parameters are frozen

R: reward function; <--- :policy gradient loss

2.REFINE X, §,¢ = Yo

le "\ R(y’j}new)

X,y LMtask Ynew

8 8

Mgk — 3.0

Figure 2: a) A downstream task model takes in an input (e.g. a passage and a question) and predicts the output (e.g. summary).
b) Past work proposed using a supervised learning scheme (Saunders et al., 2022; Schick et al., 2022) or retrieval (Madaan et al.,
2022) for critique generation (CRITIQUE) and refinement tasks (REFINE). In our setting, we only train LMcriique and parameters
of the task model are left unchanged. c) RL4F uses LM.iique that was produced as a result of the training in part b. Using task
data pairs (e.g. passages and summaries) we continue fine-tuning LMriique With policy gradient such that critiques steer LM a5

to produce better outputs.

First is PREDICT: the base task of predicting with-
out using critiques to model z — y. As an ex-
ample, if x is a passage, y is the summary (see
Fig. 1). Moreover, we refer the task of learning to
generate critiques x,y — ¢ where § ~ LM ()
as CRITIQUE. Lastly, we call the conditional refine-
ment objective x, §, c — y as REFINE and repairing
an answer without a critique =,y — y as DIREC-
TREFINE>. We use ¢ and ¢ notation to indicate an
estimate of ground truth y, and similarly for ¢, from
a respective model.

3.1 SUPERVISED: Supervised Learning for
Critique Generation

We initialize LMcitique to be a pretrained encoder-
decoder-type model and fine-tune it to generate
critiques satisfying the CRITIQUE objective x, §j —
c using natural language critiques. Namely, if
LM_ritique is parameterized by ¢ we maximize
IE [log pg(c|x, )]. We delegate PREDICT and RE-
FINE tasks to GPT-3 via in-context learning. The
procedure is depicted in Fig. 2a-b.

The main difference of our implementation of
SUPERVISED to that of Saunders et al. (2022)’s is
that we rely on separate models for CRITIQUE and
the rest of the tasks while they train a single GPT-3-
style model to collectively achieve PREDICT, CRI-
TIQUE, REFINE and DIRECTREFINE; effectively
merging LMciitique and LM,k into a single model.
While this may seem parameter-efficient, our ver-
sion has a few key advantages. First, leaving any

3 Additionally, Saunders et al. (2022) put forth the tasks of
critiqueability to gauge whether an output requires a critique in
the first place and helpfulness referring to if a sampled critique
is useful. We let the critique generator model to implicitly
take care of these tasks.

LM,k model intact (parameters frozen) enables
us to work with models that are already-deployed
as LM,sk and those with expensive training and
inference processes. Moreover, our approach re-
frains from disturbing overall integrity of a general-
purpose language model by conditioning it to a
specific task. Lastly, training LMcyitique, Which is
multiple orders of magnitude smaller than GPT-3,
is much more computationally efficient and there-
fore accessible to a broader range of users.

3.2 Direct-Refinement

Madaan et al. (2023); Chen et al. (2023) propose
that using the critiques from the model itself via
few-shot prompting results in improved perfor-
mance. On the contrary, Saunders et al. (2022)
and Bai et al. (2022) argue that direct refinement
(as denoted with DIRECTREFINE in this work) i.e.
the practice of prompting a language model with-
out self-generated critiques to directly repair its
own answers proves a stronger baseline, especially
when the model size is large >50B. They hypoth-
esize that this is primarily due to model’s initial
answers getting increasingly more difficult to self-
critique as the model size grows. In fact, both Saun-
ders et al. (2022) and Bai et al. (2022) showed that
their largest model achieves superior end-task per-
formance when performing DIRECTREFINE than
refining using self-generated critiques. Hence, we
use Direct-Refinement as a baseline and describe
how we implement it via in-context learning in
Section 6 while providing further discussions in
Appendix B.5.
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4 RLA4F: Reinforcement Learning for
Feedback Generation

SUPERVISED is straightforward to implement but
it does not make use of any final task data (z — y)
that is usually more abundant than natural language
critiques. Moreover, it fails to provide ground for
adaptation when the critiques in the train set are
generally applicable but not entirely tailored to im-
proving a target model. We describe RLAF where
we follow supervised training with policy gradient
learning using end-task data in order to generate
critiques. We assume that the task model LMy, is
already deployed and treat it as a fixed module. In
all of our implementations we train the natural lan-
guage critique generator LMcyiiique alone. In both
SUPERVISED and RL4F, LMjtique takes in the in-
put x and an initial prediction § and produces a
(natural language) critique ¢:

LMcritique(xy 3)) =c. (1)

Fig. 2¢ provides an illustration of RL4F. We im-
plement LM, as GPT-3 given its adaptability into
new tasks using few-shot prompting. Our imple-
mentation which is primarily based on the RLALMs
library* (Ramamurthy et al., 2022) will be publicly
available.

Learning via Policy Gradient We warm-start
RLAF by first fine-tuning LMritique for CRITIQUE
which we defined as is the supervised objective
of learning to generate natural language critiques
c conditioned on x,7y. We continue fine-tuning
the policy network (LMcritique) to maximize the
reward using Proximal Policy Optimization (Schul-
man et al., 2017). We utilize the implementation
of PPO provided by Ramamurthy et al. (2022) and
refer the readers to the original work about the de-
tails for KL-regularized PPO objective. While any
policy gradient approach could be used e.g. REIN-
FORCE (Williams, 1992), our initial experiments
showed that PPO works best in this setting.
Pseudocode for RLA4F is provided in Algorithm 1
where we use two sets of in-context examples for
prompting GPT-3. We define E to be a set of in-
context-learning examples in the form of (z,y) to
get GPT-3 solve PREDICT. Similarly, £¢ contains
in-context examples to prompt GPT-3 to fix an
initial attempt g into y conditioned on the natural
language critique ¢ which we termed as REFINE;
E¢ = {(z,9,¢,y)}. As per our reward function,

4https ://github.com/allenai/RL4LMs

Algorithm 1 RLAF

Pseudocode of the algorithm used to train feedback model.

Input: Dataset D = { (2%, 4", y")} L, of size N

Input: Initial LMcriigue, LM ask

Input: In-context examples for refinement £

repeat
Sample mini-batch D,,, = {(z™,y™,§™)}M_, ~ D
Sample é ~ LMritique(x, §) for D™ in parallel
Sample Ynew ~ LMux(E€, z, 9, ¢) for D™
Compute KL-regularized rewards R;
Compute the advantage estimate A,
Update the LM itique by maximizing the PPO objective

until convergence and return LM ritique

> Eq. (2)

we opt to use a lexical similarity metric ROUGE
(1/2/L) (Lin, 2004) in Eq. (2) for planning and
summarization datasets. Measuring ROUGE is
computationally fast, making it easy to use in an
online learning setting. Reward is only collected at
a terminal stage i.e. either when the end of sentence
token is produced or maximum number of tokens
is reached.

R(7,y) = mean (R1(7,y), R2(9,y),RL(7,y))
(2)

5 Datasets

5.1 Topic-Based Summarization

Saunders et al. (2022) crowd-sourced natural lan-
guage critiques for topic-based summarization.
The train, validation and test sets contain 14230,
1150 and 2658 tuples of (z, 9, ¢). The dataset pro-
vides multiple questions for a given passage each
inquiring about a different aspect. Given a passage
and question (x) multiple summaries are sampled
from the model. Human annotators provide natu-
ral language critiques for the answers along with
improved summaries. One example is provided
in Fig. 1 and more are available in the Appendix
(Table 8).

5.2 Interscript

Interscript (Tandon et al., 2021) is an action plan-
ning dataset for everyday tasks such as “put on a
costume” or “play musical chairs”. Each goal =
is associated with a sequence of ground truth ac-
tions y. Along with x, y pairs, it contains erroneous
action plans g and natural language critiques ¢ sug-
gesting a fix. An example is provided in Fig. 1
for “put soap in dishwasher”. Other examples of
critiques are “You need to have music to play musi-
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cal chairs.” and ““You need to pay for the costume
before leaving the store”. More examples are avail-
able in the Appendix (see Table 6). Interscript
represents a low-resource scenario: it contains 253,
45 and 169 examples for train, validation and test
sets where each example contains 1-4 reference
texts.

5.3 Synthetic Task: Alphabetization

We synthetically generate a task for alphabetically
sorting a list of words with lengths ranging between
3-12. We use the lexicon #11 by Keith Vertanen
(2018) which contains 43K unique English words.
Given an unsorted list and a ground truth sorting
of the list we identify 5 operations to sample a
incorrect sorting of y denoted by ¢ and associated
critique c articulating what is wrong about ¢ in
natural language. One example is shown below:

x: mug, greek, book, house
y: book, greek, house, mug
y: book, greek, house
c: The word mug is missing.
The operations we use for distortion are

REORDER, REPLACE, ADD, REPEAT and REMOVE
(shown above). We also leave majority of sorted
lists intact for which the ground truth critique is
“The list is correctly sorted”. We use a total of 40K
examples for warm-starting LMyiique for the CRI-
TIQUE objective and another 10K, 1K and 1K ex-
amples for PPO stage, for train, dev and test splits,
respectively. Examples delineating other opera-
tions in action and corresponding natural language
critiques are provided in Appendix A.

In alphabetization, we use Inverse-Levenstein
distance for the reward function R as defined in
Eq. (3) where |-| measures length of the list. Leven-
stein distance is a form of edit distance for single
character edit operations such as removal, insertion
and substitution in a string. We count word-level
operations rather than character-level. Note that
the higher inverse-Levenstein score of a predicted
ordering, the closer it is to the alphabetically sorted
version. The sorted list gets the maximum reward
of 1.

Levenstein(y, y)
max(|g], |y|)

3)

6 Experiments and Results

Our experiments are designed to test effectiveness
of RLAF, along with other sources of critiques, in

both natural and controlled settings. In our evalua-
tions, we test the usefulness of critiques by looking
at the final task performance rather than evaluat-
ing generated critiques themselves; as multiple cri-
tiques may lead to the same correct answer.

Sampling Critiques We sample critiques from
LMritique as in Eq. (1) by first concatenating the in-
put and initial prediction. The specific input format
for LMcritique We use for Interscript is given below
and the other two can be found in Appendix B.1.
We initialize LMcritique With pretrained T5-large
which is a 0.77M parameter encoder-decoder type
language model trained on large web text (Raffel
et al., 2020).

Goal: {goal}
Steps: {initial_answer}

Downstream Predictions In our experiments,
we consider GPT-3 as the LM, model. GPT-3
can handle a wide range of tasks with prompting—
using a handful of task examples in the input and
without requiring task-specific fine-tuning (Brown
et al., 2020). GPT-3 is not only able to tackle
numerous tasks conveniently but also can refine
initial predictions when given a natural language
critique (Madaan et al., 2022). Since our setting
requires LM, model to be able to model both
the main task objective x — y and the refinement
objective x, 9, c — y, GPT-3 is a suitable candi-
date that can adapt to both, using few-shot exem-
plars. The prompt template we use for the latter is
shown in Fig. 3 where we provide the model with
an initial attempt to the question initial_answer
and re-sample a revised prediction conditioned on
the question and critique for the summariza-
tion task. We use code-davinci-002 checkpoint
via OpenAl API° and 3, 1 and 6 hand-written in-
context examples for planning, summarization and
alphabetizations tasks, respectively as we exhaust
the 4096 token input limit.

In action planning, instead of resampling entire
plans, we prompt GPT-3 to produce an edit opera-
tion on the initial plan ¢. The set of edit operations
identified in the original dataset are Insert, Remove
and Reorder where each critique comes with a cor-
responding edit operation. Note that, these oper-
ations can algorithmically be applied to y. While
Reorder and Remove are expected to refer to ex-
isting steps in ¢, we expect Insert to introduce a

>We find that only the largest 175B parameter GPT-3 can
handle REFINE.
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Interscript

Topic-Based Summarization

Source of Critiques BLEURT t BERTScoref  RI/RZRLT | BLEURTT BERTScoref RI1/R2/RLt

Direct-Refinement -1.07 86.97 158/0.9/155 0.09 93.1 54.3/46.0/50.9
SUPERVISED -1.02 86.99 19.4/0.5/18.5 0.06 92.9 53.2/46.4/50.7
MemPrompt -1.18 87.45 16.9/1.9/16.7 0.09 91.9 48.8 /40.4/45.6
RLAF (Ours) -0.92 87.23 22.1/0.9/21.3 0.10 93.6 55.1/48.2/52.6
With gold feedback -0.69 89.56 40.716.8/39.1 | 0.22 94.2 58.3/50.3/55.8

Table 1: Results for action sequence generation with Interscript (Tandon et al., 2021) and topic-based summarization by Saunders
et al. (2022). We evaluate the performance of different sources for natural language critiques in steering LM, to improve
its predictions. Best scores in each column are made bold. We compare our method, RL4F, to three strong baselines and
human-generated critiques. Self-Refinement prompts GPT-3 to self-repair its answer. MemPrompt uses memory to store
human-generated critiques to previous outputs (Madaan et al., 2022). ROUGE and BERTScore are out of 100 while BLEURT
can be negative or positive and should be used in comparing different methods.

Source of Critiques Exact Match Inverse Levenstein

Initial Outputs (3) 63.7 0.91
Fine-tuning davinci 55.3 0.89
MemPrompt 57.8 0.89
Direct-Refinement 65.9 0.92
SUPERVISED 389 0.82
RLAF 66.1 0.92
With gold feedback 759 0.94

Table 2: Results for alphabetization. Best scores are
highlighted.  Initial Outputs are obtained from GPT-3
(code-davinci-002) via in-context learning. SUPERVISED
critiques misguides GPT-3, hurting its initial performance, as
with MemPrompt. RL4F improves over the performance of
SUPERVISED model by 27 absolute points. Self-Refinement
around the same as RLAF. In Fig. 5, we further discuss ad-
vantages of RL4F over Self-Refinement when we sample and
refine iteratively.

novel action. Hence, we stick with a generic lexical
similarity metric in calculating reward (Eq. (2)) for
this task. In summarization, we compare human-
written summaries with the repaired model sum-
maries.

Baselines We compare effectiveness of RL4F to
SUPERVISED which is described in Section 3.1.
This is the closest baseline to the approach by
Saunders et al. (2022) and Schick et al. (2022)
that abides by our condition that LM, should re-
main unchanged. We use the same set of initial
predictions ¢ when comparing different critique
generators.

In addition to SUPERVISED, we use a simple
Direct-Refinement baseline where we ask LM ¢
to revise the initial prediction given a fixed cri-
tique “Improve the answer.” (DIRECTREFINE). The
prompt template is otherwise the same as in other
methods. We configure our in-context examples
to show that not all ¢ need to be repaired. Hence,
LM,k is free to update the prediction or leave

Edit the below summary of the passage taking into
account the remarks in the feedback.

{passage}

Question: {question}

Answer: {initial_answer}
Question: {question} {critique}
Answer: {new_answer}

{passage}

Question: ..

Figure 3: Prompt template for topic-based summarization. We
ask GPT-3 to refine the initial prediction by using critique.

it as is when it is correct. Despite its simplicity,
Direct-Refinement has been established as a strong
baseline (Saunders et al., 2022).

Moreover, we compare to MemPrompt (Madaan
et al., 2022). In their work, authors study a setup
where LM,z generates an understanding along
with the target output. For example, given a ques-
tion “What sounds like good?”, the model gener-
ates an understanding of the question “The question
is asking for homonym.” before saying “wood”.
In their critique retriever, they train a mapping to
model x into an understanding u. However under-
standing is redundant in particular tasks e.g. sum-
marization where the question is no different than
u, thus throughout our experiments, we replace
the learned retriever in MemPrompt with BM25
(Harter, 1975).

Lastly, we use human-written critiques (gold
feedback) for REFINE in getting LM,s to repair
outputs and report this as an upperbound.

6.1 Planning and Summarization

Our main results for Interscript and topic-based
summarization are provided in Table 1. Given the
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free-from nature of the outputs, we evaluate plan-
ning and summarization tasks using text similarity
metrics to capture semantic and lexical similarities.
We utilize learned metrics such as BLEURT (Sel-
lam et al., 2020) and BERTScore (Zhang* et al.,
2020) along with ROUGE (Lin, 2004). We com-
pare the performance achieved by using different
sources of critiques to that of human-written cri-
tiques. Across all metrics, RLAF yields one of the
closest outcomes to human-written critiques.®

6.2 Alphabetization

We initialize our LMcyitique using the synthetic cri-
tiques as described Section 5.3. Our results are
provided in Table 2. For alphabetization we com-
pute exact match and inverse-Levenstein scores as
defined in Eq. (3). As an additional baseline, we
fine-tune davinci (Brown et al., 2020) on the same
train set as our RLAF.

Because of the synthetic procedure to create
x, 4, ¢ triplets, the generated ¢ as well as ¢ do not
necessarily reflect the kinds of errors that LM g
would do. We observe this in the scores of SU-
PERVISED which fails to improve upon initial out-
puts. Nevertheless, RLAF procedure helps the pol-
icy network to capture a useful distribution of cri-
tiques, improving over SUPERVISED by more than
27 absolute points. In this simple task, Direct-
Refinement prompt also yields a competitive perfor-
mance. Compared to full fine-tuning, we observe
that despite training substantially fewer parame-
ters RL4F achieves a significantly better accuracy.
For a comparison to concurrent work Madaan et al.
(2023), please refer to the appendix.

7 Analysis

Scaling Properties While we use T5-large as
our main model for all of our experiments to ini-
tialize LMciitique. We inquire about different model
sizes. In Fig. 4, we consider three different model
sizes to tackle Interscript ranging from 60M to
770M parameters. On the y-axis we provide av-
erage of three ROUGE scores for the generated
plans. RL4F greatly benefits from an increase in
the model size where a similar trend in SUPER-
VISED is non-existent.

We have identified a handful of examples where a pair of
train and test examples differs by only a single concept e.g. all
occurrences of “noodle” in the train sample was replaced with
“food” to produce the test sample. The goal and steps are the
same otherwise. MemPrompt does exceedingly well on these

7 cases, hence performing occasionally higher, yet fails in the
rest of the test/val examples.

15 Method °
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Figure 4: Scaling properties of SUPERVISED and RL4F on
Interscript. We observe that RL4F greatly benefits from an
increase in the number of parameters.
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Figure 5: We apply REFINE multiple times given critiques
from LMiique (RL4F) on alphabetization task. RL4F leads
to a handful of more corrections when used iteratively.

Semantic Drift In goal-oriented training, seman-
tic drift occurs when the strings produced by the
policy begin diverging from initial language (Lee
et al., 2019; Blank, 1999). Although, RL4F does
not guarantee that ¢ ~ LMcique Will be natural
language, we find minimal sign of semantic drift
in the sampled critiques with respect to fluency
and naturalness. In most cases, generated critiques
are intelligible. We speculate that may be due to
GPT-3 responding to natural language best than
gibberish, though future work should look closely
into this to make a more conclusive argument. We
provide sample predictions from both models in
Appendix C for all three tasks.

Iterative Improvement In Section 6, we provide
results with applying only one round of critiques
in alphabetization. Past work advocated for itera-
tive editing (Reid and Neubig, 2022; Faltings et al.,
2021) as opposed to one-shot editing. In Fig. 5,
we sample and apply critiques from LMcigigue t0
’s iteratively and see if the number of correctly
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sorted lists increase or decrease. Note that critiques
may also lead to deteriorating performance as we
are not eliminating the solved examples and it is at
LMecritique’s discretion to declare a solution as cor-
rect e.g. by saying “This list is correctly sorted.”.
In fact, when we ask GPT-3 to simply improve its
predictions iteratively (via Direct-Refinement as
described in Section 3.2), it occasionally scrambles
an already correct ordering while not scoring any
new points. In contrast, RL4F leads to up to 7 more
corrections (see Fig. 5).

8 Conclusion

We have described a collaborative framework in-
volving two language models where one model,
the critique generator, is trained to improve the
performance of the task model. We train the for-
mer via policy gradient learning while treating the
task model as a black-box. We show that RL4AF
leads to superior final performance across three do-
mains compared to other strong baselines without
resulting as the critiques remain fluent and natural.
Future work might focus on generalizing the cri-
tique generator into a mixture of experts allowing
humans and other models to contribute to critique-
ing procedure.

9 Limitations

RLAF is primarily targeted at improving final per-
formance. While we have found that the critiques
learned by RL4F remain natural, we do not intro-
duce any explicit restraints preventing semantic
drift. As though it may raise end-task performance,
semantic drift would also hinder interpretability.
Future work might study datasets that are not cov-
ered by this dataset and quantify semantic drift
along with proposing measures to prevent it, as
necessary. Moreover, this work does not provide
an explicit mechanism to incorporate new critique
labels that might become available in the future
nor it identifies a framework that could combine
critiques from multiple experts such humans and
other machines. Lastly, we limit our analysis to
GPT-3 and focus on a scenario where it is ineffi-
cient or impossible to train the task model while
this may be a conservative assumption for other
settings.
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A Dataset Processing

Action Planning Interscript is larger but we are
only using a subset, removing distractors. The
scripts used for data cleaning will be released along
with the codebase.

Alphabetization We sample initial predictions
from GPT-3 for alphabetization some of which
comprise multiple distortions simultaneously,
yet we use one-step distortions to warm-start
LMcritique~

Given the following a pair of unsorted and sorted
word lists e.g.

x: mug, greek, book, house
y: book, greek, house, mug

below are the operations we used to create our data:

REORDER

9: book, house, greek, mug

c: The word greek is placed in an
incorrect position.

REPLACE
y: book, greek, house, mud
c: The word mug is replaced with mud

REMOVE
y: book, greek, mug
c: The word house is missing

REPEAT
9: book, house, greek, house, mug
c: The word house is repeated

ADD

9: book, hair, greek, house, mug
c: The word hair is not in the
original list

NOTHING
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9: book, greek, house, mug
c: The list is correctly sorted.

B Experiment Details

We use code-davinci-002 as GPT-3 unless oth-
erwise specified. @~ We compute ROUGE im-
plementation in the datasets library and set
use_stemmer=True for summarization and Inter-
script.

B.1 Data Formats
We use the following input formats for LM riique:
e Summarization:
{passage}

Question: {question}
Answer: {initial_answer}

* Planning:

Goal: {goal} Steps: {steps}

* Alphabetization:
{unsorted_list} ||| {initial_answer}

We train separate models for each of the datasets
and evaluate individually. We use T5-large pro-
vided by transformers library.

B.2 Prompts for GPT-3

We provide prompt templates used for Alphabeti-
zation and Interscript when prompting GPT-3 for
REFINE. Template for summarization is provided
in the main text.

¢ Interscript:

Goal: {goal}

Steps: {steps}
Feedback: {critique}
Edit:

* Alphabetization:

{unsorted_list} ||| {initial_answer}
Feedback: {critique}
Edit:

In Direct-Refinement, templates remain the same
and critique’s are replaced with “Improve the
answer.”. Exact prompt exemplars will be made
available in the released code repository.

Model Params value

batch size: 8

epochs: 10

learning rate: 0.00001
learning rate scheduler: cosine
weight decay: 0.01

supervised

supervised+ppo  steps per update: 240
total number of steps: 96, 000
batch size: 24

epochs per update: 5
learning rate: 0.000001
entropy coefficient: 0.001
initial k1 coeff: 0.00001
target kl: 3

discount factor: 0.99

gae lambda: 0.95

clip ratio: 0.2

value function coeff: 0.5
rollouts top k: 100

decoding sampling: True
temperature: 0.7
min length: 5

max new tokens: 20

tokenizer padding side: left
truncation side: right

max length: 512

Table 3: List of hyperparameters for Alphabetization.

B.3 Standard Deviations

Standard deviations of R1/R2/RL scores across 5
runs in Interscript are 1.4/0.1/1.1 for SUPERVISED
and 0.5/0.4/0.5 for RL4F.

B.4 Hyperparameters

In all of our experiments we use temperature O for
prompting GPT-3 except when sampling initial pre-
dictions for alphabetization we set it to 0.5. We pro-
vide hyperparameters for RL4LMs (Ramamurthy
et al., 2022) in Table 3, Table 4 and Table 5.

B.5 Results for Self-Refine (Madaan et al.,
2023) on Alphabetization

Madaan et al. (2023) and Chen et al. (2023) pro-
pose that self-generated critiques (sampling cri-
tiques simply via few-shot prompting) is useful
for a range of tasks. We examine if self-generated
critiques are more useful for Alphabetization task
than other techniques proposed in Table 2. Doing
so, we curate a few-shot prompt:

Below is a given list of words which are
supposed to be sorted in alphabetical order.
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Model Params value

batch size: 5

epochs: 5

learning rate: 0.00001
learning rate scheduler: cosine
weight decay: 0.01

supervised

supervised+ppo  steps per update: 256
total number of epochs: 256, 000
batch size: 8

epochs per update: 5
learning rate: 0.0000005
entropy coefficient: 0.001
initial kI coeff: 0.01
target kl: 2

discount factor: 0.99

gae lambda: 0.95

clip ratio: 0.2

value function coeff: 0.5
rollouts temperature: 0.7

decoding sampling: True
temperature: 0.3
min length: 15
max new tokens: 50

repetition penalty: 0.2

tokenizer padding side: left
truncation side: left

max length: 512

Table 4: List of hyperparameters for Interscript.

Model Params value

batch size: 4

epochs: 7

learning rate: 0.00001
learning rate scheduler: cosine
weight decay: 0.01

supervised

supervised+ppo  steps per update: 1024

total number of epochs: 143, 360
batch size: 4

epochs per update: 3

learning rate: 0.0000001
entropy coefficient: 0.001

initial k1 coeff: 0.01

target kl: 2

rollouts temperature: 0.7

decoding sampling: True
temperature: 0.7
min length: 20

max new tokens: 150

repetition penalty: 0.2

tokenizer padding side: right
truncation side: right

max length: 1024

Table 5: List of hyperparameters for Topic-Based Sum-
marization dataset by Saunders et al. (2022).

Describe what is wrong in the provided
ordering.

Ordering: quirky whimsical bubbly joyous
delightful melodic glimmering vivacious
radiant lively zestful spontaneous
Feedback: Whimsical should come in the end.
Delightful should come before joyous.

Ordering: airy amiable animated ardent
astute beaming blithe brilliant
Feedback: This listed is correctly sorted.

Ordering: curious sprightly vivacious
tenacious passionate vivacious
Feedback: The list contains duplicates
and passionate should come before
sprightly.

Ordering: {ordering}
Feedback:

After sampling critiques using the above prompt,
we follow the same steps described in Section 6
for refinement. We obtain 21.6% exact match
accuracy using these critiques which is a sig-
nificant drop from code-davinci-002’s initial
performance. When we sample critiques and
refinements from text-davinci-002, the exact
match score increases notably (to 58.6%) while
still hurting the initial accuracy of 63.6%. Self-
Refine may improve over initial performance when
critiques are sampled from more capable mod-
els such as text-davinci-003 (Madaan et al.,
2023). Nonetheless, having initialized as T5-large,
RLA4F’s critique model already produces useful
feedback despite being significantly smaller than
text-davinci-003.

C Sample Predictions

Sample predictions for all three tasks are provided
in Table 6, Table 7 and Table 8. A manual examina-
tion of the generated critiques revealed that close to
100% of the critiques generated for alphabetization
and action planning are grammatical. However, cri-
tiques for the topic-based-summarization task often
involve repetitions or generic calls to fix or improve
the answer e.g. "The answer is not adequate. The
answer is wrong, it is wrong and should be fixed."
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Input

SUPERVISED Critique

Edit w/ SUPERVISED

RLAF Critique

Edit w/ RL4F

Goal: go to the hardware store
Steps:

pay for the items

decided to go to the hardware store
pack items in a bag

create a shopping list

go to the grocery store
drive to the store

walk around the store

put items in cart

pay for the groceries

O 0 N0 R W =

You can’t pay for groceries
if you don’t pay for the
groceries. [Repetition]

Insert ’pay for the gro-
ceries’ before 9 [Repeated
nodes due to critique.]

The plan tells you to pay
for the items before you
go to the hardware store.
[Correctly points out an er-
ror.]

Reorder the edge between
1 and 2 [GPT-3 correctly
identifies the node to be
replaced, yet the new lo-
cation is not correct.]

Goal: ride the bus

Steps:

decided to ride the bus
put on shoes and clothing
walk to the front door
grab the handle

open the door

walk out of the house
lock the door

ride the bus

L R

You have to be in the
house before you can get
out. You can’t get out
of the house until you're
in the house. [Logically
sound, but unhelpful cri-
tique.]

Reorder the edge between
5 and 6 [GPT-3 fixes what
it thinks the critique is say-
ing.]

You have to be at the bus
stop before you can ride
it. [Points out an helpful
correction.]

Insert 'walk to the bus
stop’ after 8 [A missing
node is added to an incor-
rect place.]

Goal: turn on computer
Steps:
sit down at computer

check the power connection
move a finger to the power switch

relax until the computer boots up
turn on computer

N O e

pull the chair closer to the computer
look for the power switch on the computer

press the power switch on the computer

You can’t press the power
switch on the computer if
you don’t have the power
switch.  [Unhelpful cri-
tique.]

Insert node ’find the power
switch’ before 6 [Critique
results in incorrect edit.]

You have to press the
power switch to turn on
the computer. You have to
do this before you can re-
lax. [Points out what’s al-
ready correct in the plan.]

Reorder the edge between
6 and 7 [Critique results in
incorrect edit.]

Goal: pick up large kettle from counter

Steps:

1. make sure ingredients are all ready
2. look for the pot

3. extend hand out
4. reach for the pot
5. grip the pot

6. lift the pot

7. pick up pot from counter

You need to reach for the
pot before you can reach
for it. [Incorrect critique
involving repetition.]

Reorder the edge between
3 and 4 [Critique results in
an unnecessary edit.]

Plan tells you to reach for
the kettle before you reach
for it. [Points out a redun-
dancy in the plan,]

Remove node 3 [Removes
unnecessary node.]

Table 6: Samples for Interscript (Tandon et al., 2021). The authors’ comments evaluating the generations are given
in brackets. Red comments indicate what went wrong and blue means correct. Refinements use the corresponding

critiques.

Input SUPERVISED Critique SUPERVISED Refinement = RLAF Critique RLAF Refinement
accomplishments catwalk The word melted is placed accessory  accomplish- The list is correctly sorted. accessory  accomplish-
accessory incidental sixty in an incorrect position. ments catwalk dredge [Correct.] ments catwalk dredge

[The word melted is in the

gad remission melted
juices fellowship unto
dredge Il accessory
accomplishments catwalk
dredge fellowship gad
incidental juices melted
remission sixty unto

correct position.]

fellowship gad incidental
melted juices remission
sixty unto

fellowship gad incidental
juices melted remission
sixty unto [Correct.]

inseparable snapping as-
trology advertising unjust
indies dismantle bangkok
boosters brasil business-
men |l advertising astrol-
ogy bangkok brasil busi-
nessmen boosters disman-
tle indies inseparable in-
justice snapping

The word unjust is miss-
ing. [Correctly points out
that unjust is missing.]

advertising astrology
bangkok brasil business-
men boosters dismantle
indies injustice insepara-
ble snapping [GPT-3 fails
to add unjust; keeps the
word injustice which was
not in the original list.]

The word unjust is re-
placed with injustice.
[Correctly indicates unjust
is replaced with injustice]

advertising astrology
bangkok brasil business-
men boosters dismantle
indies inseparable injus-
tice snapping [GPT-3 fails
to replace injustice with
unjust.]

Table 7: Samples for Alphabetization. Unsorted list and GPT-3’s attempt in sorting them are separated with lIl in the
input.
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Input

SUPERVISED Critique

SUPERVISED Refinement

RLAF Critique

RLA4F Refinement

Jeffery was sitting in his
statistics class nodding
away as the information
was simply passing by
him. He could hardly wait
to get out of class. Mon-
days, and Fridays were
fine because there was
a small chance of him
seeing her. However,
on Wednesdays she was
always on time. He
could see it now walk-
ing out from his this
room strolling down Tay-
lor Mall.[...]

The response does not
mention that Jeffery’s
friend is killed.  The
response only mentions
that he is saved. [No
mention of murder in the
story.]

Summer is a student in Jef-
fery’s statistics class. She
is a beautiful girl with long
dark hair and a sunflower
dress.  Every Wednes-
day at 12:30, she waits
for Jeffery to come out
of class so she can see
his smiling face. How-
ever, she has never had the
courage to ask him to a
date. [GPT-3 ignores the
critique and leaves the an-
swer as is. It’s Jeffery
who is interested in asking
Summer out not the other
way around.]

The answer doesn’t men-
tion Jeffery asking her to
a date. It should mention
that he is not sure how to
ask her to a date. [This is
an important detail that’s
is confused by the model’s
initial prediction.]

Summer is a student in Jef-
fery’s statistics class. She
is a beautiful girl with long
dark hair and a sunflower
dress. Every Wednesday
at 12:30, she waits for Jef-
fery to come out of class
so she can see his smiling
face. However, she has
never had the courage to
ask him to a date. Jeffery
is not sure how to ask her
to a date. [GPT-3 success-
fully adds that it’s Jeffery
who is into Summer, yet
it fails to remove the previ-
ous incorrect sentence sug-
gesting otherwise.]

Gary left the house at
six am on Wednesday;
headed out to endure an-
other long workday. Af-
ter he walked through the
yard to the driveway, he
made sure to latch the gate
securely, because that’s
what Sarah liked. He
smiled as he did so, and
thought of how earlier,
he had closed the shower
curtain all the way (an-
other Sarah preference),
and gently lowered the toi-
let seat. [...]Summarize
how Gary feels about his
life.

Answer: Gary feels that
his life is boring and that
he is stuck in a rut. He
feels that he is a slave to
his wife and his job. He
wants to be free of his re-
sponsibilities and wants to
be a bartender.

The answer should men-
tion that Gary gets a friend
for dinner. There are other
examples of a friendship
that are mentioned in the
text. [The feedback is not
helpful with respect to the
question which asks how
Gary is feeling about life.]

Gary feels that his life is
boring and that he is stuck
in a rut. He feels that he is
a slave to his wife and his
job. He wants to be free
of his responsibilities and
wants to be a bartender.
However, he gets a friend
for dinner and there are
other examples of a friend-
ship that are mentioned in
the text. [GPT-3 appends
the irrelevant details sug-
gested by the critique.]

It’s omitted that he is the
one who is angry. He has
a son, Steven. [Critique
suggests a detail about his
anger.]

Gary feels that his life is
boring and that he is stuck
in a rut. He feels that he is
a slave to his wife and his
job. He wants to be free
of his responsibilities and
wants to be a bartender.
He is angry at his wife and
has a son, Steven. [Hav-
ing seen the critique finds
out that Gary’s anger is
actually towards his wife
and improves its answer
accordingly.]

SR-25 pattern magazine
An SR-25, AR-10 or LR-
308 PATTERN MAGA-
ZINE is a type of de-
tachable firearm maga-
zine based on the origi-
nal Armalite AR-10 “waf-
fle” magazine design in-
troduced in the late 1950s.
[...]What does the text
say about the SR-25, AR-
10, or LR-308 Pattern
Magazine?

Answer: A detachable
firearm magazine based
on the original Armalite
AR-10 *waffle’ magazine
design introduced in the
late 1950s, the design has
been used on many AR-10
derivatives. It was reintro-
duced in 2012 with their
new AR-10A model.

The response includes
inaccurate  information.
Firstly, a reference to the
SR-25 pattern is omit-
ted. [The response does
not contain inaccurate
information and AR10A
indeed contains SR25
pattern.]

A detachable firearm mag-
azine based on the origi-
nal Armalite AR-10 ’waf-
fle’ magazine design intro-
duced in the late 1950s,
the design has been used
on many AR-10 deriva-
tives. It was reintroduced
in 2012 with their new AR-
10A model. [GPT-3 re-
peats the initial answer.]

The response is missing
several important informa-
tion about the magazine.
The first sentence should
be more specific. [Critique
calls for a more detailed
summary.]

A detachable firearm mag-
azine based on the origi-
nal Armalite AR-10 ’waf-
fle’ magazine design intro-
duced in the late 1950s,
the design has been used
on many AR-10 deriva-
tives. It was reintroduced
in 2012 with their new
AR-10A model. The mag-
azine is used in many
AR-10 derivatives such as
the Knight’s Armament
SR-25 and DPMS Pan-
ther LR-308, as well as
bolt action rifles such as
the Mossberg MVP.308,
Ruger Precision Rifle and
Q FIX. Aftermarket mag-
azines are produced by
Magpul, Lancer Systems,
and others. [More compre-
hensive summary of mag-
azine designs.]

Table 8: Samples for Topic-Based Summarizatip71)7 13)6 Saunders et al. (2022). Passages are truncated.



test/custom_metrics/editmatch_rougel
= t5large_rougecombined
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(a) ROUGE for topic-based summarization.
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(b) Mean ROUGE for Interscript.
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(d) Exact match for alphabetization.

Figure 6: As RLA4F is trained, we track how evaluation
metrics evolve for dev and test sets. Here, we display
the results assessing the revised outputs conditioned on
the critiques for test samples.

D Learning Curves for Reinforcement
Learning

In Fig. 6, we provide how evaluation metrics
progress as LMyitique in RL4F is trained.
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